crystallography18

合集下载

小角散射综述

小角散射综述

材料现代测试研究方法小角度散射综述2015年10月摘要综述了小角x射线散射(SAXS)的发展历史及国内外的发展趋势。

SAXS是在纳米尺度(1~100 nm)上研究物质结构的主要手段之一,它是在原光束附近小角度范围内电子对x射线的散射。

通过对散射图形或散射曲线的观察和分析可解析散射体的形状、尺寸以及它们在空间和时间上的分布等信息。

历史上SAXS发展比较缓慢,不仅是因为小角相机的装配操作麻烦,还因为受x射线强度的限制,曝光时间很长,对于一些弱散射体系如蛋白质溶液、高聚物等就难以测定。

随着同步辐射装置的发展,以同步辐射为光源的小角散射实验站成了SAXS实验的主要基地。

尽管SAXS理论和方法还不成熟,但其发展势头强劲。

关键词:小角x射线散射;同步辐射;研究进展1.基础介绍自发现X射线以来,已经发展了多种基于X射线的物质结构分析测试手段,它们被广泛地应用于生产及科研实践中。

在纳米尺度(1~100 nm)上研究物质结构的主要手段之一就是小角X射线散射,或称X射线小角散射(small angle X—rayscattering,SAXS),也有称小角x光散射。

X射线是一种波长介于0.001~10 nm的电磁波。

当一束极细的X射线穿过存在着纳米尺寸的电子密度不均匀区的物质时,X 射线将在原光束方向附近的很小角域(一般散射角为3°~5°)散开,其强度一般随着散射角的增大而减小,这个现象称为小角X射线散射(SAXS)。

由于X射线是同原子中的电子发生交互作用,所以SAXS对于电子密度的不均匀性特别敏感,凡是存在纳米尺度的电子密度不均匀区的物质均会产生小角散射现象。

根据电磁波散射的反比定律,相对于波长来说(应用于散射及衍射分析的X 射线波长在0.05~0.25 nm之间),散射体的有效尺寸与散射角呈反比关系。

所以,SAXS并不反映物质在原子尺度范围内的结构,而是相应于尺寸在1~100 nm 区域内的结构。

学硕-070304-物理化学

学硕-070304-物理化学

物理化学(代码: 070304)培养方案(硕士)一、专业(学科)简介及研究方向本专业培养具备物理化学方面的知识, 能在高等院校、科研院所、工矿企业等部门从事教学、科研、技术管理工作等方面工作的化学人才。

有3个主要研究方向: 1. 化学热力学;2. 催化化学;3. 功能材料。

二、培养目标按照研究生教育要“面向现代化、面向世界、面向未来”的要求, 培养“德、智、体、美”全面发展的社会主义现代化建设所需要的人才。

具有扎实的物理化学学科的基础知识, 了解物理化学学科的国内外研究状况、发展前沿及与相关学科的交叉渗透, 治学态度严谨, 有实事求是的科学作风和开拓创新的素质。

掌握一门外语, 能熟练查询、阅读本专业该语种的文献资料, 并有一定的应用该语种的写作能力和听、说能力。

理论联系实际, 能解决物理化学有关的理论和实际问题。

三、课程设置及学分要求1. 本学科硕士研究生应修总学分不低于36 学分。

学位课: 政治理论课必修2门, 3学分;基础英语必修, 4学分;专业类学位课必修4 门, 12 学分。

非学位课须修5 门, 11 学分。

必修环节: 社会实践2学分;学术活动2学分;开题报告2学分。

注意: 申请学位的成绩要求为学位课成绩≥70分, 非学位课≥60分四、实践环节基本要求实践环节为社会实践, 时间安排为第二学年。

可以参加教学实践, 讲授一定学时的本科课程, 批改本科课程的习题, 讲解习题课、辅带专业实验、辅助指导本科生毕业设计(论文)等教学环节的任务, 具体内容由导师根据教学需要来指定, 总时间不少于20学时;亦可以在教师指导下进行与本学科专业相关的社会实践, 并提交有较高价值的调查报告, 调查报告不少于2000字。

考核方式: 教学实践完成后, 本人写出报告, 由指导研究生教学实践的老师写出评语, 获得通过, 计2学分。

五、学术活动基本要求硕士研究生在校期间, 须参加15次以上(含15次)的学术活动, 中期考核前必须达到10次, 其中包括本学科内做学术报告1次。

矿物名词解释全集 - 副本

矿物名词解释全集 - 副本

矿物学结晶学:crystallography 研究晶体的生成和变化,外表形态的几何性质,化学组成和内部结构,物理性质以及它们相互间关系的一门科学。

要包括晶体生成学、几何晶体学、晶体结构学、晶体化学、晶体物理学及数学晶体学等分支。

它们阐明晶体各个方面的性质和规律,并可用以指导对晶体的利用和人工培养。

晶体crystal 由结晶质构成的物体,即内部的原子或离子有规律地在三维空间呈周期性重复排列的,因而具有格子构造的固体。

一切晶体都有自发地成长为几何多面体外形的固有特性;但许多晶体在生长过程中受到外界条件的限制,因而最终并不一定表现出几何多面体的规则外型。

晶体的分布极其广泛,绝大部分的固体矿物都是晶体,土壤主要由粘土矿物的细小晶粒组成。

此外,从各种金属、合金、陶瓷、水泥制品到白糖、食盐、青霉素等绝大多数的固态化合物,一直到组成生命有机体的某些物质,如我国在世界上首次用人工方法合成有活力的蛋白质――结晶牛胰岛素等,也都是晶体。

晶体的大小相差很大,可以从小于1微米(10-3毫米)到几十米。

有时,晶体一词仅指具有几何多面体外型的晶体,即结晶多面体;而将不具几何多面体外形的晶体称为晶粒。

结晶作用crystallization 指形成晶体的作用,即原来不结晶的物质在一定的物理化学条件(温度、压力、组成浓度)下转变为结晶质的作用。

物质结晶的方式有:(1)由气体结晶,如火山口硫蒸气冷凝直接形成硫磺晶体;(2)从液体中结晶出石盐,硼砂等晶体,岩浆熔融体因过冷却而结晶出长石、石英、云母等晶体;(3)由故态的非晶质的火山玻璃经过晶化而形成结晶质的石髓。

重结晶作用:recrystallization 这一术语用法不一。

在结晶学中可有两种含义:(1)已形成的晶体,由于所处物理化学条件的变化,部分地熔融或溶解而转入母液,然后又重新成长的作用。

(2) 已形成的晶体,由于温度和压力的影响,在固体状态下再次成长,而使结晶颗粒由细变粗的作用,如石灰岩变质成大理岩时,方解石晶粒的变粗。

结晶学第一二章

结晶学第一二章

无 底心单斜B(=简单单斜P)
33
(4)单斜晶系,点阵常数:a≠b≠c, α=γ=90°≠β
无 体心单斜I(=底心单斜C)
1
2
3
4
34
(4)单斜晶系,点阵常数:a≠b≠c, α=γ=90°≠β
无 面心单斜F(=底心单斜C )
35
(5)三斜晶系,点阵常数:a≠b≠c, α≠β≠γ≠90°
简单三斜P
21
7.空间点阵的正当格子
按正当单位的要求, 空间点阵的正当格子有七种形状,十四种型式。 七种形状即七个晶系。 十四种型式即十四种布拉菲点阵类型。 (由布拉菲在1885年推导得出,故称为“布拉菲空间格子”)
22
8.十四种布拉菲格子分为四种类型
a 简单格子;b、c、d 底心格子;e 体心格子;f 面心格子
2.1 人们对晶体的认识过程:由表及里,由现象到本质。
有一类固体具有天然的整齐的凸几何多面体外形。(感性认识)
推测 晶体内部构造中存在有一定的规律性 1895年,伦琴发现X射线(波长短,穿透力强) 1912年,劳埃:晶体对X射线衍射实验成功 证实了晶体内部微粒的排列具有规律性。(微观具有格子构造)
3
2.单位:平面格子中每个 平行四边形称为 一个单位。
16
3.素单位、复单位
平移向量a和b选择的多样性决定了平面格子的形状和大小也是多样的。
17
3.素单位、复单位
每个单位顶点位置的阵点为四个单位所公用,故对每个单位的贡献是1/4。 每个单位边上的阵点为两个单位所公用,对每个单位的贡献是 1/2。 每个单位内部的阵点为该单位所独有。
三斜晶系

26
(1)立方晶系,点阵常数:a=b=c, α=β=γ=90°

100个化学用语

100个化学用语

100个化学用语1. 元素 (element)2. 化合物 (compound)3. 分子 (molecule)4. 原子 (atom)5. 反应 (reaction)6. 酸 (acid)7. 碱 (base)8. 盐 (salt)9. 溶液 (solution)10. 晶体 (crystal)11. 气体 (gas)12. 液体 (liquid)13. 固体 (solid)14. 离子 (ion)15. 化学键 (chemical bond)16. 反应速率 (reaction rate)17. 摩尔质量 (molar mass)18. 摩尔浓度 (molar concentration)19. 反应平衡 (chemical equilibrium)20. 离子化 (ionization)21. 电离度 (ionization degree)22. 化学式 (chemical formula)23. 反应机制 (reaction mechanism)24. 化学平衡 (chemical balance)25. 比较分析 (comparative analysis)26. 氧化还原反应 (redox reaction)27. 酸碱中和反应 (acid-base neutralization reaction)28. 氧化剂 (oxidizing agent)29. 还原剂 (reducing agent)30. 晶体结构 (crystal structure)31. 电子亲和力 (electron affinity)32. 电离能 (ionization energy)33. 共价键 (covalent bond)34. 极性 (polarity)35. 热力学 (thermodynamics)36. 核化学 (nuclear chemistry)37. 催化剂 (catalyst)38. 光催化 (photocatalysis)39. 量子力学 (quantum mechanics)40. 电子结构 (electronic structure)41. 有机化合物 (organic compound)42. 无机化合物 (inorganic compound)43. 生物化学 (biochemistry)44. 放射性 (radioactive)45. 电解质 (electrolyte)46. 晶体缺陷 (crystal defect)47. 热分析 (thermal analysis)48. 光谱学 (spectroscopy)49. 核磁共振 (nuclear magnetic resonance)50. 红外光谱 (infrared spectroscopy)51. 质谱 (mass spectrometry)52. 光电子能谱 (photoelectron spectroscopy)53. 光谱分析 (spectral analysis)54. 电化学 (electrochemistry)55. 电导率 (conductivity)56. 比色法 (colorimetry)57. 密度 (density)58. 粘度 (viscosity)59. 热容 (heat capacity)60. 摩尔吸光度 (molar absorptivity)61. 晶体学 (crystallography)62. 热力学循环 (thermodynamic cycle)63. 化学动力学 (chemical kinetics)64. 反应速度常数 (rate constant)65. 反应活化能 (activation energy)66. 催化作用 (catalysis)67. 氧化态 (oxidation state)68. 还原态 (reduction state)69. 链式反应 (chain reaction)70. 增溶剂 (cosolvent)71. 电解 (electrolysis)72. 电解槽 (electrolytic cell)73. 化学计量 (stoichiometry)74. 氧化数 (oxidation number)75. 比例法 (proportional method)76. 酸碱指示剂 (acid-base indicator)77. 沉淀 (precipitate)78. 污染物 (pollutant)79. 溶解度 (solubility)80. 毒性 (toxicity)81. 晶体生长 (crystal growth)82. 光催化剂 (photocatalyst)83. 酸碱滴定 (acid-base titration)84. 沸点 (boiling point)85. 熔点 (melting point)86. 比热容 (specific heat capacity)87. 催化剂活性 (catalyst activity)88. 化学反应平衡常数 (chemical equilibrium constant)89. 氧化物 (oxide)90. 电子云 (electron cloud)91. 分子轨道 (molecular orbital)92. 电子转移 (electron transfer)93. 能带 (band)94. 离子晶体 (ionic crystal)95. 配位化合物 (coordination compound)96. 可燃性 (flammability)97. 气液平衡 (gas-liquid equilibrium)98. 表面张力 (surface tension)99. 热解 (pyrolysis)100. 溶剂 (solvent)。

CaRIne Crystallography 使用教程

CaRIne Crystallography 使用教程

课程辅助教学软件/《学生自学平台》收集的软件介绍引言:本课程介绍了较多的晶体材料本身及结构转变过程的热力学、动力学、晶体学及组织方面的基本知识。

学生主要的注意力用在理解这些知识上,很少有时间考虑计算机的飞速发展对材料科学教学及研究带来的巨大帮助和便利。

也很少意识到,了解相关的软件不仅可加深对课上内容的理解,还可大大促进将来本科结业中角色的进入,给科研带来大的便利,还锻炼了独立解决问题的能力,以及英语水平。

在《学生自学平台》应用2年多的时间内,因种种原因,我们感觉这些软件并未得到充分的应用。

我们也在思考,在今后的课程学习考核中,以应用这些软件解决一些问题作为成绩的一部分。

其目的还是培养能运用现代科技手段解决实际问题的人才,而不是仅仅记住一些书本知识。

以下简单介绍我们所收集到的相关软件的用途及使用方法。

一、Materials Science on CD-ROM 说明:这是除教学授课用自编多媒体以外最常用的、也是最适合本课程的辅助教学软件。

其特点是,全部为英文。

因本课程在我校定为双语课程,虽然目前开设了英语教学班,但并未能达到与中文授课内容同样多的程度。

因课程内容较难,大范围直接用英文讲学生难以接受,达不到预想效果。

特点二,该软件是教学用商业软件,动画形象效果很好。

缺点是内容较浅,且与所用教材匹配有一定出入,如再结晶、界面两章内容基本未涉及到。

所以它不可能代替我们自己编写的多媒体,只能是辅助材料。

目前该软件得到较大的扩充,可上网访问。

图2是位错塞积现象的模拟块。

可自行设置晶粒尺寸,应力值,观察位错与障碍物交互作用造成的应力集中。

图3是位错间交互作用及位错运动的模拟块,可观察不同位错的运动结果及形成的位错墙。

图1 MA TTER 软件界面图2图3图4是模拟割阶对位错运动产生的拖曳作用的实验界面。

图5是脱溶过程模拟的界面。

可考察不同冷速对脱溶过程及最终组织的影响。

图4图5二、CaRIne Crystallography晶体学软件使用方法简介说明:这是一个既适合于教学也适合于科研的晶体学计算软件。

晶体学基础

晶体学基础

2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl

r rhkl
r .rhkl

h
k
av*
l

r bcv**
av*
r b*
h
cv*
k

l
h
h
k
l

G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;

crystallography20

crystallography20

C H A P T E R T W E N T YProtein Precipitation TechniquesRichard R.BurgessContents1.Introduction3322.Ammonium Sulfate Precipitation3322.1.Principles3322.2.Basic procedure3342.3.Doing an ammonium sulfate precipitation test336ments/problems/solutions3373.Polyethyleneimine Precipitation3373.1.Principles3373.2.Different modes of use of PEI3383.3.Basic procedure for Strategy C3383.4.Doing an PEI precipitation test3403.5.An example of using PEI to precipitate a basic proteinbound to DNA3404.Other Methods3414.1.Ethanol and acetone precipitation3414.2.Isoelectric precipitation3414.3.Thermal precipitation3414.4.Polyethylene glycol(nonionic polymer)precipitation3415.General Procedures When Fractionating Proteins by Precipitation341References342 AbstractAfter cell lysis,the most often used second step in a protein purification procedure is some sort of a rapid,bulk precipitation step.This is commonly accomplished by altering the solvent conditions and taking advantage of the changes in solubility of your protein of interest relative to those of many of the other proteins and macromolecules in a cell extract.This chapter will focus on the two most widely used precipitation methods:(1)ammonium sulfate precipitation and(2)polyethyleneimine(PEI)precipitation.These two methods work through entirely different principles,but each can achieve significant enrichment of target protein if optimized and applied carefully.McArdle Laboratory for Cancer Research,University of Wisconsin–Madison,Madison,Wisconsin,USA Methods in Enzymology,Volume463#2009Elsevier Inc. ISSN0076-6879,DOI:10.1016/S0076-6879(09)63020-2All rights reserved.331332Richard R.Burgess1.IntroductionFor both laboratory scale and larger scale protein fractionation,there is a need for a quick,bulk precipitation to remove much of cellular protein and other components.It is especially important to remove proteases as early in the procedure as possible to avoid protein degradation.This precip-itation must be rapid,gentle,scalable,and relatively inexpensive.In addi-tion to the fractionation,it can also achieve a significant concentration of the enriched protein.While many different precipitation methods have been used over the last hundred years,ammonium sulfate(AS)has remained the most widely used and polyethyleneimine(PEI)has increased in popu-larity,especially for acidic proteins.These two methods will be discussed in detail,followed briefly by several other precipitation methods and some general advice on handling precipitates and obtaining maximal purification from your precipitation step.An extensive and very useful general overview of various types of protein precipitation procedures can be found in Scopes (1994).An excellent review of AS and organic solvent(ethanol and acetone)precipitation can be found in Englard and Seifter(1990).2.Ammonium Sulfate Precipitation2.1.PrinciplesWhile several salts can be used as precipitants,AS has several properties that make it the most useful.It is very stabilizing to protein structure,very soluble, relatively inexpensive,pure material is readily available,and the density of a saturated solution(4.1M)at25 C(r¼1.235g/cm3)is not as high as another salting-out agent,potassium phosphate(3M,r¼1.33g/cm3).Figure20.1shows a typical protein solubility curve where the log of the protein solubility is plotted as a function of AS concentration.The main features of this curve are a region at low salt where the solubility increases (called‘‘salting in’’),and then a region where the log solubility decreases linearly with increasing AS concentration(called‘‘salting out’’).The latter part of the curve can be described by the equation log10S¼bÀK s(G/2) where S in the solubility of the protein in mg/ml of solvent,G/2is the ionic strength,and b and K s are constants characteristic of the protein in question. K s is a measure of the slope of the line and b is the log of the solubility if the salting-out curve is extrapolated to zero ionic strength.In general,most proteins have similar K s values but vary considerably in their b value.Suppose that the curve in Fig.20.1is valid for your protein and that the concentration of your protein in a cell extract is1mg/ml.The upperhorizontal dotted line intercepts the solubility line at log S ¼0(S ¼1mg/ml)and at an AS percent saturation of 26%.This means that if you add AS to 26%saturation,all of your protein would be soluble.Now if you increased the AS to 32%saturation (the middle horizontal dotted line),the log S would be À1(S ¼0.1mg/ml)so 90%of your protein would become insoluble and precipitate out.For this extract,an excellent strategy would be to make a 26–32%saturated AS cut:add AS to 26%,spin out insoluble material,and then make the supernatant 32%saturated and collect what precipitates,which would contain 90%of your protein.You would remove those proteins and cell components that precipitate at 26%saturation and those that fail to precipitate at 32%saturation.It is instructive to consider what would happen if you diluted the extract 10-fold with buffer.Now the initial concentration of your protein in the100.01 mg/mlL o g 10S (m g /m l )0.1 mg/ml1 mg/ml“Salting in”“Salting out”Slope =K s20Ammonium sulfate (% saturation)302632384050−1−2−31bFigure 20.1Ammonium sulfate solubility curve for a hypothetical protein.This represents the log solubility of a hypothetical protein as a function of percent saturation of ammonium sulfate.The ‘‘salting-out’’line follows the relationship log S ¼b ÀK s (G /2)as described in the text,where G /2is the ionic strength,which here is given as ammonium sulfate percent saturation.Precipitation Techniques 333334Richard R.Burgess extract is0.1mg/ml or log S¼À1.You can add AS to32%saturation and your protein will not precipitate.To achieve90%precipitation of your protein,you would have to increase the AS to about38%saturation (bottom horizontal dotted line)or carry out a32–38%saturated AS cut. You would end up having to use more than10times as much AS with the diluted extract to obtain your protein.This illustrates how important it is to specify the concentration of your extract.You do not usually have a curve like that shown in Fig.20.1for your protein of interest so you have to determine the appropriate AS concentra-tions experimentally as described below.2.2.Basic procedureWhile there are numerous variations on AS precipitation,the most common ones are to add solid AS to a protein extract to give a certain percent saturation.Adding an amount of solid AS based on Table20.1is convenient,reproducible,and practical.1.Generally one determines a lower percent saturation at which theprotein of interest just does not precipitate and a higher percent satura-tion that gives>90%precipitation as described in the section below.2.Add solid AS to reach the lower value.Take care to add the AS slowlywith rapid stirring so that the local concentration does not‘‘overshoot’’the target value.Some people carefully grind the solid AS with a mortar and pestle to a fine powder that dissolves rapidly.Once the AS is completely dissolved,allow the precipitation to continue for about 30min.This is a compromise between waiting several hours as precipi-tation slowly approaches equilibrium and the desire to move along with the purification and not to introduce long delays in the procedure.Generally,one carries out all operations in an ice bucket or cold room.3.Centrifuge at about10,000Âg for about10min in a precooled rotor topellet the material that is insoluble.4.Carefully pour off the supernatant and determine its volume.Determinethe grams of AS from Table20.1to go from the lower desired percent saturation to the final higher percent saturation.Again add the AS slowly with rapid mixing to avoid high local concentrations and let the solution sit for30min to allow precipitation to occur.5.Centrifuge as above.Let the pellet drain for about1min to remove asmuch as possible of the supernatant.If you have carried out the test precipitation carefully,the pellet will contain90%or more of your target protein.This protein can be dissolved in an appropriate buffer and after either dialysis,desalting,or dilution used in the next step of the purification.Table20.1Final concentration of ammonium sulfate:Percentage saturation at0 C aInitial concentration of ammonium sulfate (percentage saturation at0 C)Percentage saturation at0 C20253035404550556065707580859095100 Solid ammonium sulfate(g)to be added to1l of solution0106134164194226258291326361398436476516559603650697 579108137166197229262296331368405444484526570615662 105381109139169200233266301337374412452493536581627 15265482111141172204237271306343381420460503547592 200275583113143175207241276312349387427469512557 250275684115146179211245280317355395436478522 300285686117148181214249285323362402445488 350285787118151184218254291329369410453 400295889120153187222258296335376418 450295990123156190226263302342383 500306092125159194230268308348 550306193127161197235273313 600316295129164201239279 650316397132168205244 700326599134171209 7503266101137174 8003367103139 8503468105 9003470 95035 1000 a Reprinted from Englard and Seifter(1990),which was adapted from Dawson et al.(1969).2.3.Doing an ammonium sulfate precipitation testGenerally one can precipitate 90%of a given protein with a 10%increase in AS saturation so one should restrict the range of the ‘‘AS cut’’to no more than 10%(the proteins that are just soluble at 30%saturation but precipitate at 40%saturation are referred to as the 30–40%AS cut).Figure 20.2illustrates a method to determine the optimal AS precipita-tion conditions using only two centrifugation steps.Basically you place a volume of cell extract,for example,10ml in each of five tubes.You add with mixing amounts of solid AS to give 20%,30%,40%,50%,and 60%saturation based on Table 20.1,let sit 30min to allow precipitation,and then centrifuge to pellet the insoluble material.The pellets represent the 20%,30%,40%,50%,and 60%saturated AS pellets.The volumes of the corresponding supernatants are determined and again solid AS is added to raise each to a 10%higher level of saturation.Again you mix,allow 30min to precipitate,and then spin.The five pellets are the 20–30%,30–40%,40–50%,50–60%,and 60–70%AS cuts.Each of these is dissolved in buffer and assayed for enzyme activity and total protein and perhaps subjected to SDS gel analysis.Most of the activity should be in one of the cuts,but if,for example,half is in 30–40%cut and half is in the 40–50%cut,then perhaps a 35–45%cut would be optimal.While this test may seem onerous,it is really20%AS0.55g0.56g0.58g 0.60g 0.62g AS10ml 10mlsupernatant% saturation30%50%60%min, 0ЊC, centrifuge30%% saturation 40%60%70%min, 0ЊC, centrifuge20–30%Pellet (% cut)30–40%50–60%60–70%Figure 20.2How to do an ammonium sulfate precipitation test.This test is carried out as described in the text and is self-explanatory.336Richard R.BurgessPrecipitation Techniques337 quite an efficient way to determine the optimal conditions that will result in higher enrichment in this important step.ments/problems/solutions1.Pellet is not solid.If the AS pellet is not firm after centrifugation it will bedifficult to cleanly pour off the supernatant.One solution is simply to centrifuge50%longer such that the precipitate that sedimented to the bottom of the tube has more time to compact.Another reason for a loose pellet is the presence of DNA that increases viscosity and slows sedimen-tation rates.If viscosity is a problem,it can be reduced by sonicating longer to break cells and shear DNA into shorter pieces.Another approach is to treat with the recombinant nuclease Benzonase(EMD/Novagen).2.Pellet floats in high concentrations of AS.Since the density of very highconcentrations of AS approach that of protein aggregates,the AS pre-cipitate might float rather than sediment to the bottom of the tube during centrifugation.This can be a problem especially when your protein contains lipid or if there are nonionic detergents around that bind to the protein and decrease its density.3.Published protocols are often hard to follow.Many published proce-dures fail to indicate the AS saturation convention(saturated at0,20,or25 C)or the protein concentration of the extract.As cautioned above,the amount of AS needed to achieve a given precipitation is dependent on the protein concentration.4.You must interrupt an AS precipitation procedure.If you must stop theprocedure,leave the protein as an AS precipitate.Proteins are remarkably stable in AS,either as a suspension of precipitated protein or as a pellet.3.Polyethyleneimine Precipitation3.1.PrinciplesPEI,whose trade name is Polymin P,is a basic cationic polymer made by BASF in large quantities for use in the textile and paper industry.PEI is a product of polymerization of ethyleneimine to yield a basic polymer with the structure:CH3CH2N–(–CH2CH2–NH–)n–CH2CH2NH2.Typically, n equals700–2000to give a molecular weight range of30,000–90,000Da. Since the p K a value of the imino group is10–11,PEI is a positively charged molecule in solutions of neutral pH.The use of PEI in protein fractionation originated at Boehringer Mannheim and was published by Zillig et al. (1970).More extensive examples of its application in protein purification338Richard R.Burgess and several reviews have been published(Burgess,1991;Burgess and Jendrisak,1975;Jendrisak,1987;Jendrisak and Burgess,1975).PEI can be thought of as similar to soluble DEAE cellulose.It binds to negatively charged macromolecules such as nucleic acid and acidic proteins and forms a network of PEI and bound acidic molecules that rapidly precipitates.The binding is stoichiometric.A heavy precipitate rapidly forms that can be pelleted by centrifugation for5min at5000rpm.Whether an acidic protein binds to PEI depends on the salt concentration.At low salt (0.1M NaCl),a mildly acidic protein will bind and precipitate,but at intermediate salt(0.4M NaCl),it will elute from the polymer and become soluble.A highly acidic protein will bind at low salt,not be solubilized at intermediate salt,and will be eluted at high salt(0.9M NaCl).It should be noted that when a protein is eluted from a PEI pellet both the protein and the PEI become soluble.Thus it is necessary to remove the PEI from the protein before returning to low salt(see below).3.2.Different modes of use of PEIThere are three different strategies for the use of PEI precipitation. Strategy A:Precipitate with PEI at high salt(1M NaCl).This precipitates the nucleic acids and leaves almost all protein in the supernatant. Strategy B(for neutral or basic proteins):Precipitate with PEI at0.1M NaCl to remove nucleic acids and acidic proteins.This leaves protein of interest in the supernatant.Strategy C(for acidic proteins such as E.coli RNA polymerase):This protocol will be presented in detail below and is based on Burgess and Jendrisak (1975)as refined by Burgess and Knuth(1996).3.3.Basic procedure for Strategy C1.Prepare a10%(v/v)[5%(w/v)]PEI stock solution.PEI comes as viscousliquid that is50%(w/v).(We use PEI from MP Biochemicals, M w¼50,000–100,000,but one can also use material from other sources, for example,Sigma and Aldrich,M w¼750,000).Ten milliliter is diluted to70ml with ddH2O and concentrated HCl(3.8–4.0ml)is added until the pH reaches7.9.The volume is made up to a final volume of100ml with ddH2O.This stock solution is stable at cold room or room temperature indefinitely.It should be noted that some companies sell PEI solutions that have been diluted one to one with ddH2O to reduce viscosity and aid in dispensing.This material is only25%(w/v).2.Break E.coli cells(about3g wet weight cell pellet)by sonication in30ml buffer containing50m M Tris–HCl,pH7.9,5%glycerol,0.1m MPrecipitation Techniques339 EDTA,0.1m M DTT,and0.15M NaCl.Centrifuge out cell debris at 15,000rpm for15min.All operations are carried out on ice.3.Based on a PEI precipitation test for your system(see below)add10%(v/v)PEI,pH7.9to a final concentration of,for example,0.3%(v/v) and mix well for5min to allow formation of a dense white precipitate.4.Centrifuge at5000rpm for5min.Note:Do not centrifuge too hard or thepellet will be harder to resuspend.Decant the0.3%PEI supernatant and save for later analysis.Let the pellet drain for1–2min to get rid of as much of the supernatant as possible.5.Thoroughly resuspend the0.3%PEI pellet in30ml of the above buffercontaining0.4M NaCl.If available,the Tissue Tearor homogenizer (BioSpec Products,Inc.Cat#985370-07)works very well to finely resuspend the pellet and effectively washes out proteins physically trapped in the pellet,and elutes out mildly acidic protein that are weakly bound to the PEI in the pellet.Let sit5min and then centrifuge at 5000rpm for5min and decant the0.4M NaCl wash.6.Resuspend thoroughly the0.4M NaCl pellet in30ml of buffer abovebut containing0.9M NaCl.This elutes more acidic proteins(like E.coli RNA polymerase),but leaves the nucleic acids in the pellet(it takes about1.6M NaCl to elute the nucleic acids).Let sit about5min,mix, and centrifuge at15,000rpm for10min.7.To the0.9M NaCl eluate,add solid AS to60%saturation(add3.61g per10ml of eluate).Mix well and let precipitation occur forat least30min.Centrifuge at15,000rpm for10min.Let pellet drain for5min.The pellet contains the AS precipitated protein,but almost all of the PEI remains in the supernatant.While traces of PEI are trapped in the pellet,they usually do not interfere with subsequent operations.If it is necessary to more completely remove these PEI traces,one can resuspend the pellet in buffer containing60% saturated AS and recentrifuge.This procedure typically gives a sixfold purification of RNA polymerase from other proteins,greater than90%recovery,and a nearly complete removal of nucleic acids in1–2h.3.3.1.Additional comments1.It is important to emphasize that it is necessary to remove PEI from the0.9M NaCl eluate.If you merely dilute to low salt or dialyze to low salt,the proteins will again bind PEI and reprecipitate.2.We have found that the PEI precipitation can occur even in the presenceof1%Triton X-100.3.In contrast to AS precipitation,when you dilute an extract10-fold withbuffer,you use the same total amount of PEI(e.g.,if you found that0.3%PEI gave good precipitation of your protein with a normal extract,340Richard R.Burgess you would only have to add0.03%PEI to achieve the same precipitation with the10-fold diluted extract,but of course there would be10times the volume of extract).This reflects the fact that PEI binds tightly to the acidic components and essentially titrates them.3.4.Doing an PEI precipitation testSince one cannot predict how much PEI to add to precipitate a given acidic protein nor how much salt it will take to elute the protein from the PEI pellet,one is advised to carry out simple PEI precipitation and elution tests (Burgess and Jendrisak,1975;Burgess and Knuth,1996).Basically this involves taking about six200-m l samples into six microfuge tubes and adding10%(v/v)PEI to final concentrations of0%,0.1%,0.2%,0.3%, 0.4%,and0.5%(v/v).Mix well and microfuge for1min at high speed. Analyze the supernatants by enzyme activity or by SDS polyacrylamide gel electrophoresis and,if necessary,by Western blot to determine the mini-mum amount of PEI needed to precipitate all of the target protein.Let us say that it takes0.3%.Now prepare a set of six microfuge tubes which each contain a small0.3%PEI pellet prepared as above and add200m l of buffer containing0,0.2,0.4,0.6,0.8,and1.0M NaCl.Resuspend well.Let sit for 15min,microcentrifuge,and analyze supernatant for your protein as above. The highest salt concentration that does not elute any of your protein is used as a wash and the salt concentration where all of your protein is eluted is used as the eluent.3.5.An example of using PEI to precipitate a basic proteinbound to DNARecently(Duellman and Burgess,2008),in trying to purify the very basic protein Epstein–Barr virus nuclear antigen1(EBNA1)expressed in E.coli, we carried out a PEI precipitation test at0.1M NaCl to see if we could precipitate the nucleic acid and acidic proteins and leave the basic EBNA1 in the supernatant(this is Strategy B).To our surprise,the EBNA1pre-cipitated as we added some PEI(0.15%),but then failed to precipitate when we added more PEI(0.4%).It appears that the EBNA1was bound to DNA and precipitated out with the DNA.However,at higher PEI concentrations the PEI preferentially bound the DNA and displaced the EBNA1.We found that precipitating with0.15%PEI,washing with0.3M NaCl,and then eluting out of the PEI pellet with0.8M NaCl gave both a good enrichment for EBNA1and rapid removal of nucleic acids.Precipitation Techniques3414.Other MethodsThis chapter has focused on AS and PEI precipitation.Other methods for protein precipitation mentioned very briefly below have been well described in numerous publications(see,Englard and Seifter,1990; Ingham,1990;Scopes,1994).4.1.Ethanol and acetone precipitationPrecipitation with organic solvents,such as ethanol and acetone,has been in use for well over a hundred years,but is probably best known for its use in fractionating human serum in the classic work of Cohen and Edsall.Care must be taken to carry out precipitations at very cold temperatures to avoid protein denaturation.4.2.Isoelectric precipitationProteins are less soluble at their isoelectric point where they have zero net charge and can most easily approach each other with minimal charge repulsion.Since proteins are also less soluble at very low ionic strength, isoelectric precipitation is usually done at very low or no salt.4.3.Thermal precipitationIn this method,cell extracts are heated to a temperature at which many proteins denature and precipitate,where the protein of interest is more stable and stays soluble.This approach is particularly useful in purifying enzymes from thermophiles expressed in E.coli where the extract is heated to a high enough temperature,often to denature and precipitate almost all E.coli protein,leaving the heat stable enzyme in solution.4.4.Polyethylene glycol(nonionic polymer)precipitationThis subject has been reviewed extensively by Ingham(1990).5.General Procedures When FractionatingProteins by Precipitation1.Thorough resuspension of precipitated protein pellets is important dur-ing washing or elution.While a pellet may seem quite solid,there is a very significant amount of supernatant trapped in a pellet and adhering342Richard R.Burgess to the walls of the centrifuge tube.As mentioned earlier,it is wise to let the pellet drain well to remove as much of the supernatant as possible.If the pellet is large compared to the total amount of supernatant then it is recommended that one resuspend the pellet in10volumes of an appro-priate buffer to remove supernatant proteins trapped in the pellet.For example,with a40%saturated AS precipitate,one can wash by resus-pending the pellet in40%saturated AS and recentrifuging.For washing pellets of PEI precipitated material,washing is very useful and the use ofa homogenizer like a Tissue Tearor is recommended to break up theprecipitate into a very fine suspension.If resuspension is not thorough, then material that you want to wash out is not efficiently removed and the fractionation is less effective.2.Try to avoid frothing when mixing.Whipping air into a protein solutioncan promote oxidation of proteins and also cause protein denaturation at the air–water interface.REFERENCESBurgess,R.R.(1991).The use of polyethyleneimine in the purification of DNA binding proteins.Meth.Enzymol.208,3–10.Burgess,R.R.,and Jendrisak,J.J.(1975).A procedure for the rapid,large-scale purification of E.coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography.Biochemistry14,4634–4638.Burgess,R.R.,and Knuth,M.W.(1996).Purification of a recombinant protein over-produced in E.coli.In‘‘Strategies for Protein Purification and Characterization:A Laboratory Manual’’,(D.Marshak,J.Kadonaga,R.Burgess,M.Knuth,W.Brennan,Jr.,and S.-H.Lin,eds.),pp.219–274.Cold Spring Harbor Press,Cold Spring Harbor,NY.Dawson,R.M.C.,Elliot,D.C.,Elliot,W.H.,and Jones,K.M.(1969).In‘‘Data for Biochemical Research.’’2nd edn.,p.616.Oxford University Press,Oxford. Duellman,S.J.,and Burgess,R.R.(2008).Large-scale Epstein-Barr virus EBNA1protein purification.Protein Expr.Purif.63,128–133.Englard,S.,and Seifter,S.(1990).Precipitation techniques.Meth.Enzymol.182,287–300. Ingham,K.C.(1990).Precipitation of proteins with polyethylene glycol.Meth.Enzymol.182,301–306.Jendrisak,J.J.(1987).The use of PEI in protein purification.In‘‘Protein Purification:Micro to Macro’’,(R.Burgess,ed.),pp.75–97.A.R.Liss,New York.Jendrisak,J.J.,and Burgess,R.R.(1975).A new method for the large-scale purification of wheat germ DNA-dependent RNA polymerase II.Biochemistry14,4639–4645. Scopes,R.K.(1994).Protein Purification,Principles and Practice.3rd edn.pp.7–101.Springer-Verlag,New York.Zillig,W.,Zechel,K.,and Halbwachs,H.J.(1970).A new method of large scale preparation of highly purified DNA-dependent RNA-polymerase from E.coli.Hoppe Seylers Z.Physiol.Chem.351,221–224.。

晶体学基础-晶体对称性

晶体学基础-晶体对称性

旋转反映轴的图解
L4s=L4i L6s=L3+C=L31i 6
对称元素--两种符号:
国际符号(International Notation), 圣弗里斯符号(Schoenflies Notation)。
对称元素
对 称 中 心
对称 面
一次 对称 轴
二次 对称 轴
三次 对称 轴
四次 对称 轴
六次 对称 轴
2、对称要素(symmetry element)
在进行对称变换时所凭借的几何要素 ——点、线、面等。
17:14
6
3、宏观晶体中的对称要素及相应对称变换
(1)对称中心(center of symmetry, 符号C):
一假想的几何点; 对称变换:对于这个点的反伸(反演)。
(a)
(b)
(c)
具有对称中心的图形
17:14
18
七种晶系的对称性及点阵常数间的关系
晶族(3) 低级晶族 无高次轴
中级晶族: 只有1个 高次轴
晶系(7) 三斜 单斜
正交
四方 (正方)
六方
对称性
1 (E) 2 (C2) 2个 2(C2) 4 (C4)
6 (C6)
菱方
高级晶族 立方
高次轴>1
3 (C3) 4个3 (C3)
17:14
棱边 /夹角
a = b = c α=β=γ=90°
6L2, 3L4,4L3, 9P,C
? 本质上,决定立方系的主要对称元素? ? 一定有几次轴?
17:14
23
属于立方系,只有三次轴而 没有四次轴的形。
二个三次轴就可以导出立方晶系。
17:14
24
☺立方系主对称元素:4个体对角线方向的

结晶化学第3章习题答案

结晶化学第3章习题答案

结晶化学·第三章习题与思考题1.简述晶体结构要素和空间格子要素的异同。

2.相当点是一种什么点?有什么用?为什么它不一定非要选在质点上?3.举例说明确定平行六面体的三个基本原则。

★答:自行画一个平面空间格子(类似图3.3)。

原则一:所选平行六面体应与空间格子整体的对称性一致。

原则二:所选平行六面体中棱与棱之间的夹角尽可能为直角。

原则三:所选平行六面体体积最小。

4.试证明:晶体结构中只存在一种空间格子规律。

★答:举例:可自行画出一个平面晶体结构,在其中不同的部位分别安置至少3个原始点,然后,利用相当点方法提取至少3套平面空间格子(事实上,你提出的若干套空间格子一定相同的)。

依次列出你抽象出来的、若干套相同的空间格子,你就证明了:每种晶体结构中只有一种空间格子规律。

5.简述如何确定晶体结构的空间格子。

6.简述晶胞和平行六面体的关系。

★答:A、晶胞是晶体结构的最小重复单位,是物质实体。

B、平行六面体是空间格子的最小重复单位,是从晶体结构中抽象出来、表现晶体结构中质点排列规律的纯几何点阵图像。

C、平行六面体与晶胞的几何形态和尺寸相同。

D、实际工作中,晶胞是通过平行六面体确定的(即:先有平行六面体,后有晶胞)。

7.论述空间格子。

(提示:论述要全面,但须扼要,即有关空间格子的方方面面都要考虑到,但行文不要啰嗦)★答题要点:A、空间格子是一种从晶体结构中抽象出来的三维立体纯几何点阵图像,它用来表现晶体结构中质点排列的规律。

B、空间格子要素:结点、行列、面网、平行六面体,其中平行六面体是空间格子的最小重复单位。

C、平行六面体的形态和尺寸由晶格常数决定;但根据结点分布的不同,平行六面体有四种格子类型:P、C、I、F格子。

D、七个晶系中一共14种平行六面体或布拉维格子。

8.为什么只有14种布拉维格子?它们分别都是哪些?9.晶体对称定律的表述是“晶体没有五次和六次以上的对称轴”。

试利用晶体结构的长程平移有序特征和布拉维格子的概念证明晶体对称定律。

晶体学基础-布喇菲点阵与米勒指数A

晶体学基础-布喇菲点阵与米勒指数A

22:17
35
4. 晶系(Crysta1 System)
按点阵常数的特征对晶体的分类。
晶系
棱边
三斜晶系 a≠b≠c
单斜晶系 a≠b≠c
正交晶系 a≠b≠c
四方(正方)a = b ≠ c
六方晶系 菱方晶系 立方晶系
22:17
a=b ≠ c a=b=c a=b=c
棱边夹角
α≠β ≠γ
α=β=90°≠γ
棱边夹角
α≠β ≠γ
α=β=90°≠γ α=β=90°= γ α=β=90°= γ α=β=90°γ=120°
α=β=γ ≠90°
α=β=γ=90°
三斜晶系(Triclinic System)
22:17
42
按点阵常数的特征对晶体的分类。
7大晶系与14种布拉菲点阵:
晶系
棱边
三斜晶系
a≠b≠c
单斜晶系 a≠b≠c
2.1.1空间点阵与晶胞 2.1.2 晶系与布拉菲点阵
2.2 晶向指数与晶面指数
(Indices of crystallographic orientation and plane)
2.2.1 立方晶系的晶向指数与晶面指数 2.2.2 六方晶系的晶向指数与晶面指数 2.2.3晶向和晶面间的关系
2.3 晶体投影 (Crystal projection) 2.4 晶体的对称性 (Crystal symmetry)
材料内部质点 在三维空间的 排列 特点:
• 晶体 与非晶体 • 准晶体 • 液晶
• …….
晶体 Crysta1
非晶体 Noncrysta1
准晶体(Quasiperiodic Crysta1,Quasicrystal)

CaRIne Crystallography 使用教程

CaRIne Crystallography 使用教程

课程辅助教学软件/《学生自学平台》收集的软件介绍引言:本课程介绍了较多的晶体材料本身及结构转变过程的热力学、动力学、晶体学及组织方面的基本知识。

学生主要的注意力用在理解这些知识上,很少有时间考虑计算机的飞速发展对材料科学教学及研究带来的巨大帮助和便利。

也很少意识到,了解相关的软件不仅可加深对课上内容的理解,还可大大促进将来本科结业中角色的进入,给科研带来大的便利,还锻炼了独立解决问题的能力,以及英语水平。

在《学生自学平台》应用2年多的时间内,因种种原因,我们感觉这些软件并未得到充分的应用。

我们也在思考,在今后的课程学习考核中,以应用这些软件解决一些问题作为成绩的一部分。

其目的还是培养能运用现代科技手段解决实际问题的人才,而不是仅仅记住一些书本知识。

以下简单介绍我们所收集到的相关软件的用途及使用方法。

一、Materials Science on CD-ROM 说明:这是除教学授课用自编多媒体以外最常用的、也是最适合本课程的辅助教学软件。

其特点是,全部为英文。

因本课程在我校定为双语课程,虽然目前开设了英语教学班,但并未能达到与中文授课内容同样多的程度。

因课程内容较难,大范围直接用英文讲学生难以接受,达不到预想效果。

特点二,该软件是教学用商业软件,动画形象效果很好。

缺点是内容较浅,且与所用教材匹配有一定出入,如再结晶、界面两章内容基本未涉及到。

所以它不可能代替我们自己编写的多媒体,只能是辅助材料。

目前该软件得到较大的扩充,可上网访问。

图2是位错塞积现象的模拟块。

可自行设置晶粒尺寸,应力值,观察位错与障碍物交互作用造成的应力集中。

图3是位错间交互作用及位错运动的模拟块,可观察不同位错的运动结果及形成的位错墙。

图1 MA TTER 软件界面图2图3图4是模拟割阶对位错运动产生的拖曳作用的实验界面。

图5是脱溶过程模拟的界面。

可考察不同冷速对脱溶过程及最终组织的影响。

图4图5二、CaRIne Crystallography晶体学软件使用方法简介说明:这是一个既适合于教学也适合于科研的晶体学计算软件。

晶体结构2

晶体结构2

4) 晶体确定的熔点
5) 晶体的对称性
理想晶体的外形与其内部的微观结构是紧密相关的,都具 有特定的对称性,而且其对称性与性质的关系非常密切。
6)晶体对的X-射线衍射 晶体的周期性结构使它成为天然的三维光栅,周期与 晶体的周期性结构使它成为天然的三维光栅,周期与X 光波长相当, 能够对X光产生衍射 光产生衍射。 光波长相当, 能够对 光产生衍射。
固体物质按原子(分子、离子 在空间排列 固体物质按原子 分子、离子)在空间排列 分子 是否长程有序 是否长程有序
晶态结构示意图
按周期性规律重复排列
非 晶 态 结 构 示 意 图
晶体的基本特征
1)晶体能自发形成多面体外形(晶体的自范性 自范性) 自范性 F(晶面数 晶面数)+V(顶点数 顶点数)=E(晶棱数 2 晶棱数)+ 晶面数 顶点数 晶棱数 满足欧拉定理 欧拉定理
T0,T1,T2, …Tm …组成的集合,满足群的条件,构成∞阶平移群 组成的集合,满足群的条件,构成 阶平移群 组成的集合
a
a'
b.二维周期性结构与平面点阵 二维周期性结构与平面点阵: 二维周期性结构与平面点阵
平移群表示 Tm,n = ma + nb (m, n = 0,±1, ± 2 …) ±
周期性结构二要素: 周期性结构二要素:
(1) 周期性重复的内容结构基元 周期性重复的内容结构基元(motif); 结构基元 (2) 周期性重复的大小与方向,即平移矢量。 周期性重复的大小与方向,即平移矢量。
周期性结构的研究方法—点阵理论: 周期性结构的研究方法 点阵理论: 点阵理论
将晶体中的结构基元(重复的内容)抽象为几何学 中的点,这些点按一定的方式在空间重复排列形成点 阵(由点阵点组成)

JADE18(晶格常数计算)

JADE18(晶格常数计算)
jade18晶格常数计算晶格常数计算公式晶格常数计算晶格常数硅的晶格常数si的晶格常数晶格常数表铁的晶格常数ni的晶格常数nacl晶格常数
晶格常ቤተ መጻሕፍቲ ባይዱ计算
注意一定要先作角度校正曲线。
若不知镜子指数,不能使用。
击左键。(打开文件)
选DEMO19.MDI。
击分析/角度校正。
クリックし、閉じる。
角度校正过的数据
可做为该系统数据的初始值利用。。
结束
紫色
击换成原始数据。
平滑
扣背景BG

击做寻峰。
(击reset)、适用、关
闭。
击选件/
晶格常数。
寻峰结果自动传记。
从低角度侧到6根峰最
大。
指定晶系后、输入对应各谱峰的镜子指数,计算晶格常数。
击精密化。做谱峰分离,算出在精密谱峰位置上的晶格常数。
精密化结果画面
击保存,登记文件名
可保存谱峰位置、镜子
指数。

-晶体结构的几何理论

-晶体结构的几何理论
Z
若行列经过坐标原点, 把该行列上距原点最近 的结点坐标x,y,z放在 “[ ]”内, [xyz]即为该行列的行 列符号。
X
[111]
Y
Crystallography
点的坐标 coordinates of point
空间格子中结点、行列符号的表示方法
图中粗实线及箭头表示行列方向,圆圈代表结点
质点
结点 (相当点)
立方面心格子
质点
NaCl晶胞
Crystallography
第8章 晶体结构的几何理论
Crystallography
第8章 晶体结构的几何理论
a
b
在一个晶胞中,反映了晶体结构中对称要素和 质点的种类及分布规律。 对一个晶胞进行分析,就可以知道整个晶体结 构中对称要素和质点分布规律。
第8章 晶体结构的几何理论
⑶各晶系单位平行六面体的形状
③斜方晶系 a≠b≠c α=β=γ=90°
c
β α a γ
b
斜方格子
CrystallographyΒιβλιοθήκη 第8章 晶体结构的几何理论
⑶各晶系单位平行六面体的形状
④单斜晶系 a≠b≠c α=γ=90° β ≠ 90°
c
β α γ a
b
单斜格子
Crystallography
有些格子类型与所在晶系的对称不符。 有些格子类型与空间格子的条件不符。 有些格子类型可以被改划为其它格子。
因此,只有14种空间格子,也叫14种布拉维格子。 (A.Bravis于1848年最先推导出来的)

十四种空间格子
举例说明:
1、四方底心格子可转变为体积更小的四方原
始格子 ;
2、在等轴晶系中,若在立方格子中的一对面

x开头 单词

x开头 单词

x开头单词以x开头的单词有很多,以下列举一些:1、xmas:圣诞节的缩写,表示耶诞节。

2、xylophone:木琴,是一种打击乐器,通常由一系列长短不同的木块组成。

3、x-ray:X射线,是一种高能电磁辐射,可用于医学、工业和科学领域。

4、xerox:静电复印,一种通过静电将图像或文字复制到纸上的技术。

5、x-axis:X轴,在二维图形中,水平向右为正方向的直线。

6、x-ray astronomy:X射线天文学,研究天体发出或散射的X射线的学科。

7、x-ray crystallography:X射线晶体学,一种研究物质晶体结构的物理方法。

8、xylophane:是一种用于装饰和制造工艺品的薄而有光泽的玻璃状塑料。

9、xylography:木版印刷术,一种印刷技术,使用木块或木版印刷。

10、xylitol:木糖醇,一种甜味剂和保湿剂。

11、xylene:二甲苯,一种用于溶剂和生产其他化学品的有机化合物。

12、xylogram:木版印刷品。

13、xymoron:矛盾修饰法,一种使用相互矛盾的词语来创造意想不到的或有讽刺意味的效果的修辞手法。

14、xylophone player:木琴演奏者。

15、xerography:干印术,一种无墨复印技术。

16、xerophile:喜旱微生物,喜欢干燥环境的微生物。

17、xerox machine:静电复印机。

18、xerox copy:静电复印品。

19、xanthine oxidase:黄嘌呤氧化酶,一种存在于许多种生物中的酶,能催化黄嘌呤氧化为尿酸。

20、xanthophyll:叶黄素,一种植物色素,呈黄色或棕色,存在于一些水果和蔬菜中,尤以红薯最为丰富。

3.正四面体的对称群-湘教版选修3-4对称与群教案

3.正四面体的对称群-湘教版选修3-4对称与群教案

3. 正四面体的对称群一、概念与定义1. 正四面体正四面体是一种五种正多面体之一,它可以被看作一个四面体的每个面都是等边三角形。

正四面体的对称性可以被描述为它具有四个三元对称轴和六个四元旋转轴。

2. 对称群对称群是描述一个物体的对称性质的一种数学工具。

对称群是所有保持物体不变的变换所形成的群,这些变换包括旋转、反射、平移等。

二、正四面体的对称群正四面体的对称群也被称为四面体群,是群论中的一个经典例子。

正四面体的对称群共有24个元素,其中有6个旋转元素和18个反射元素。

1. 旋转元素正四面体的旋转元素对应于围绕其四角的四个轴的旋转操作。

这些旋转操作包括以下元素:•一个不动点(即单位元)•三个二面角均为120度的三元旋转•一个四面角为109.5度的四元旋转•一个四面角为70.5度的四元旋转•一个正三角形为面的多孔旋转这些旋转元素共同形成了正四面体的旋转轴。

2. 反射元素正四面体的反射元素对应于顶点平分面和棱中垂面的反射操作。

这些反射操作可以被分为两类,即按顶点平分面反射的操作和按棱中垂面反射的操作。

按顶点平分面反射的操作有六个,分别为以每个顶点为反射中心的操作。

按棱中垂面反射的操作有12个,分别为以每条棱的中点为反射中心的操作。

这些操作合起来共同形成了正四面体的反射面。

3. 总结正四面体的对称群共有24个元素,其中的旋转元素和反射元素共同构成了正四面体的全对称性群。

由于正四面体有许多对称性质,因此它的对称群也具有许多代数性质,这些性质对于Crystallography等领域的研究具有重要的意义。

三、应用正四面体的对称性在库里、晶体学和分子物理学等领域中具有重要的应用,特别是在描述分子的对称性质、分子振动和分子光谱等方面。

在晶体学中,正四面体的对称群被广泛应用于描述晶体的对称性,包括晶体的点群、空间群、X射线晶体学、电子显微镜晶体学、颜色和光学等方面。

总结正四面体的对称群是群论中的一个经典例子,它具有许多代数和几何性质,在许多领域都有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C H A P T E R E I G H T E E NAdvances in Preparation of Biological Extracts for Protein PurificationAnthony C.GrabskiContents1.Introduction2862.Chemical and Enzymatic Cell Disruption2863.Mechanical Cell Disruption2904.Concluding Remarks2935.Procedures,Reagents,and Tips for Cell Disruption2935.1.Buffer composition2935.2.Cell disruption buffers2965.3.Microscale protocols for E.coli cell lysis2965.4.Gram-scale mechanical disruption of E.coli299References301 AbstractThere are a variety of reliable methods for cellular disintegration and extraction of proteins ranging from enzymatic digestion and osmotic shock to ultrasonica-tion,and pressure disruption.Each method has inherent advantages and disadvantages.Generally vigorous mechanical treatments reduce extract vis-cosity but can result in the inactivation of labile proteins by heat or oxidation, while gentle treatments may not release the target protein from the cells,and resulting extracts are extremely viscous.Depending on the cell type selected as the source for target protein expression,cellular extracts contain large amounts of nucleic acid,ribosomal material,lipids,dispersed cell wall polysaccharide, carbohydrates,chitin,small molecules,and thousands of unwanted proteins.Isolation and recovery of a single protein from this complex mixture of macro-molecules presents considerable challenges.The first and possibly most impor-tant of these challenges is generation of a cellular extract that can be efficiently manipulated in downstream processes without inactivation or degradation of labile protein targets.Cell disruption techniques must rapidly and efficiently lyse cells to extract proteins with minimal proteolysis or oxidation while reduc-ing extract viscosity caused by cell debris and genomic DNA contamination.Department of Research and Development,Semba Biosciences,Inc.,Madison,Wisconsin,USAMethods in Enzymology,Volume463#2009Elsevier Inc. ISSN0076-6879,DOI:10.1016/S0076-6879(09)63018-4All rights reserved.285286Anthony C.Grabski Advanced bioprocessing equipment and reagents have been developed over the past twenty years to complement established disruption procedures and accomplish these tasks with even greater success.This chapter will summarize these advances and describe detailed protocols for some of the most popular methods for protein extraction.1.IntroductionEarly protein chemists worked primarily with small extracellular proteins that were stable,plentiful,and easily isolated without cell disrup-tion.Intracellular proteins expressed at physiological levels might constitute <0.001%of the total cellular protein and were difficult to extract and recover without proteolysis or loss of enzymatic activity.Modern recombinant protein production through genetic engineering of Escherichia coli can result in expression of the target protein at over40%of the cellular total.Recombinant yeasts such as Saccharomyces cerevisiae,Pichia pastoris,and Kluvyeromyces lactis are capable of expressing complex proteins requiring posttranslational modifications(Spencer and Spencer,1997).Recovery of the intracellular recombinant proteins from these hosts requires effective cell disruption and extraction techniques.Well established protocols have been reviewed and detailed procedures described for laboratory and process scale disruption of various cell types by both mechanical and nonmechanical methods(Andrews and Asenjo,1987;Cull and McHenry,1990;Dignam, 1990;Engler,1985;Gegenheimer,1990;Harrison,1991;Hopkins,1991; Jazwinski,1990;Middelberg,1995).Radical changes to standard disruption equipment and procedures had not occurred up to1995(Foster,1995). However,the evolution of structural and functional proteomics demanded new reagents and automated methods to streamline the process steps converting gene sequences to purified proteins(Grabski et al.,2002).Proteomics and structural genomics efforts require cell extraction meth-ods that allow screening of multiple host vector combinations for hundreds of proteins in parallel(Stevens et al.,2001).The best combinations for correctly folded high-level expression identified in these multiparallel screens are scaled up in order to produce milligram quantities of purified protein for functional and structural analysis(Dieckman et al.,2002;Lesley, 2001;Stevens and Wilson,2001;Zhu et al.,2001).These high-throughput (HT)protein expression and purification strategies have fostered develop-ment and optimization of reagents and instrumentation that allow efficient cell lysis and protein extraction at both micro-and macroscales.Preparation of Biological Extracts2872.Chemical and Enzymatic Cell DisruptionMicro-scale cell disruption is often accomplished through chemical and enzymatic methods or combinations of the two.Lysis methods such as sonication and French press are not easily applied to cell pellets harvested from5ml of culture or less,and excess heat and oxidation are common problems.A significant advancement for simplification of microscale cell lysis and has been the development of detergent-based reagents such as B-PerÒ(Chu et al.,1998)and BugBusterÒ(Grabski et al.,1999).These reagents do not require expensive equipment,are very fast and easy to use,and are the most practical and effective means to HT cell extract preparation.Highly active enzymes and enzyme mixtures have also been developed to improve lysis efficiencies and decrease extract viscosity by completely digesting geno-mic ed alone and in combinations these commercially available lysis reagents and enzymes(Table18.1)efficiently disrupt cells and extract pro-teins from bacteria,yeasts,plants,insect cells,and higher eukaryotes.Deter-gent-based methods for extraction and enrichment of proteins and subcelluar organelles from eukaryotic cells and tissues are covered extensively in chapter 19by Michelsen and von Hagen of this volume.Another advancement in chemical cell disruption tailored for HT robotic processing of samples,is the development of reagents for extraction of recombinant proteins from E.coli without cell harvest from the culture media(Grabski et al.,2001,2003;Stevens and Kobs,2004).Traditional protein purification methods require an initial cell harvest step,which concentrates cell mass and removes spent media components(Burgess, 1987;Deutscher,1990;Scopes,1994).This step,as well as any mechanical lysis step is difficult to automate and scale down for parallel extraction and purification of small amounts of proteins simultaneously.Concentrated, detergent-based reagents(Table18.1)such as PopCulture TM,FastBreak TM, and B-PERÒDirect,combined with high-activity lysozyme and nuclease overcome these bioprocessing hurdles to automation.The advantages of these reagents for HT extraction and purification are eliminating the need for multiple centrifugation steps to separate cells from culture media and clarify the crude extract,and eliminating the need for mechanical disruption (Nguyen et al.,2004).These innovations allow direct affinity adsorption of target proteins from the total culture extract,and the entire cell growth, extraction,and purification can be done in a single tube or well.The active ingredients in many of the bacterial lysis reagents are nonionic or zwitterionic detergents functioning to disrupt cell membrane and cell wall structures weakening the cells for rupture by osmotic shock,Table18.1Commercial cell disruption reagents and enzymesVendor Reagents Cell types Vendor web siteEMD Chemicals-Novagen BugBusterÒ,YeastBuster TM,Bacteria,yeast,insect,mammalianwww.emdbiosciences.comCytoBuster TMPopCultureÒrLysozyme TM,BenzonaseÒ,Lysonase TMM-Pek,S-PekEpicentre EasyLyse TM,OmniCleave TM,ReadyLyse TM Bacteria Promega FastBreak TM Bacteria Roche Complete TM Lysis(B,M,Y)Bacteria,mammalian,yeast www.roche-applied-Semba Biosciences, Inc.Recombinant Lysozyme,BenzonaseÒ,Liquisonic TMBacteria Sigma Aldrich CelLytic TM(B,IB,M,MEM,MT,NuClear TM,P,PN,and Y)Bacteria,mammalian,plant,yeastwww.sigmaaldrich.comThermo Fisher-Pierce POP-PERSÒ(B-,I-,M-,NE-,P-,andY-PerÒ)Bacteria,insect,mammalian,plant,yeastwww.thermofisher.comPreparation of Biological Extracts289 freeze-thaw,or enzymatic attack by phage or chicken egg white lysozyme. Gram positive bacteria are easily disrupted by lysozyme treatment alone, with a few exceptions(Cull and McHenry,1990).Gram negative bacteria are difficult-to-disrupt with lysozyme alone because their outer lipid bilayer must be permeabilized first to expose the peptidoglycan cell wall to lyso-zyme digestion.Tris buffer plus EDTA liberates about50%of the poly-anionic lipopolysaccharide in the bilayer(Lieve,1974),but EDTA interferes with the most popular downstream purification step for recombi-nant proteins,immobilized metal affinity chromatography(IMAC).The detergent lysis reagents are extremely effective for outer membrane per-meabilization without IMAC interference.However,detergent-based reagent cell disruption has several disadvantages.Solubilities for some pro-teins extracted with detergents may be enhanced by detergent–protein interactions,and protein solubilities will change depending on the detergent–protein ratio.The solubility of a particular protein extracted by these reagents may not correlate with the protein’s solubility as extracted by scale-up mechanical methods.Detergents and detergent impurities can inter-fere with downstream processing and structural characterization(Swiderek et al.,1997),and fractionation methods that depend on hydrophobic interac-tion should be avoided(Marshak et al.,1996).Despite these drawbacks, detergent-based lysis reagents are widely used in modern proteomics.The exact concentrations and types of detergents employed in these lysis reagents are proprietary and the cellular architecture to be disrupted dictates the chemical properties and concentration of detergent required for the task. Several references from this chapter(Neugebauer,1990;Chu and Mallia, 2001;Eshaghi et al.,2005;Kashino,2003)on applications of detergents for protein extraction and solubilization provide a wealth of information allowing home brewed extraction reagents to be formulated with reasonable success.Yeasts are more difficult-to-disrupt than bacteria.Their thick complex cell wall can compose up to25%of the cells’dry weight.Typical compo-nents are glucans,cellulose,mannoproteins,and chitin interconnected by covalent,disulfide,hydrogen,and hydrophobic bonds.Yeast cells should be harvested in late log or early stationary phase,for more efficient disruption. Yeasts cultured longer into stationary phase develop thicker cell walls and multiple budding scars or aggregates in the case of budding yeast(Catley, 1988).Protease inhibitors should be included in lysis buffers or added to commercial lysis reagents and protease deficient strains used for expression. Yeast lysis with reagents such as Y-PerÒand YeastBuster TM(Table18.1) and lysis by controlled manipulation of genes involved in cell wall biogene-sis have provided new tools to complement previously developed mechan-ical and enzymatic methods(Drott et al.,2002).Enzymatic treatment of microbial cells for lysis and viscosity reduction has several distinct advantages over mechanical and chemical methods. The lytic enzymes are highly specific for targeted cell wall components,290Anthony C.Grabski they are gentle and do not generate shear,high temperature or oxidative damage,and they are simple to use requiring no specialized equipment for processing.Enzyme treatments of cells and extracts are also combined with mechanical disruption methods to increase the selectivity of product release, to increase the rate and yield of extraction,to minimize product damage, and to reduce viscosity for downstream processes(Andrews and Asenjo, 1987;Grabski et al.,1999).Improved bioprocessing enzymes and enzyme mixtures(Table18.1)include high-specific activity phage lysozymes such as rLysozyme TM,Ready-Lyse TM,and Recombinant Lysozyme,nonspecific nucleases like BenzonaseÒand OmniCleave TM,and the lysozyme-nuclease cocktails Liquisonic TM,Lysonase TM,and EasyLyse TM.Recombinant Lyso-zyme,Ready-Lyse TM and rLysozyme TM phage lysozymes have specific activities over200-fold greater than that of chicken egg white lysozyme. The nuclease of Serratia marcesens,available as a highly purified recombinant enzyme BenzonaseÒ,is one of the most promiscuous nucleases known.The enzyme cleaves all forms of DNA and RNA(Meiss et al.,1995;Nestle and Roberts,1969).Compared to bovine pancreatic DNase I,Benzonase attacks substrates more evenly making it an excellent choice for reducing extract viscosity caused by nucleic acids.ZymolaseÒand Lyticase glucanases are enzymes useful for yeast protoplasting or yeast cell lysis.Potential problems with enzymatic treatment limit its use especially for industrial cell disruption.These problems include the added lytic enzyme and impurities in the enzyme preparation that complicate downstream purification,degradation of the recovered product during lysis,tempera-ture,and pH optima for the lytic enzyme may be incompatible with the target protein,and the expense and limited availability of most lytic enzymes prohibits their use at an industrial scale(Hopkins,1991).3.Mechanical Cell DisruptionSonication and high-pressure disruption have been effectively applied for disruption of microorganisms,plants,and animal cells.These methods have been used for decades and the equipment and mechanisms involved described in detail(Harrison,1991;Hopkins,1991;Middelberg,1995). Sonication is based on the shear forces created by high frequency ultrasonic vibrations generated by resonation(15–25kHz)of a tuned probe or horn.The sonic pressure waves created cause the collapse of formed microbubbles and their implosion generates shock waves with sufficient energy to disrupt cell walls,and reduce viscosity by shearing nucleic acids.High-pressure homogenizers and pressure extruders operate by forcing a pressurized cell suspension through a narrow orifice valve.The valve may be a simple restricting needle valve as in the French Press or a more complexPreparation of Biological Extracts291 design with a combined valve seat and impact ring found in the APV Manton-Gaulin homogenizer.The mechanism for disruption is a combined pressure drop and shear at the nozzle in pressure extrusion.Numerous mechanisms for cell disruption with pressure homogenizers have been proposed including turbulence,cavitation,viscous shear,and impingement (Kleinig and Middelberg,1998;Pandolfe,1999).Universal acceptance for a single mechanism has not been reached.However,cavitation and impinge-ment have been reported as the major forces responsible for disruption (Shirgaonkar et al.,1998;SPX Corp.,2009).Cell disruption using glass beads to grind the cells in suspension,also known as bead milling or bead homogenization,is a frequently used procedure at both laboratory and production scale.Bead milling can be accomplished with laboratory equipment as simple as a magnetic stirrer, vortex mixer,or blender and with commercial equipment specialized for the process in the form of high speed mills,agitators,and mixers.The cell disintegration is dependent on cell concentration,bead size and composi-tion,ratio of beads to suspension,processing duration,and the forces applied(Ramanan et al.,2008).The method is effective with difficult-to-disrupt cells like yeasts,spores,and microalgae.It is used for bacteria, plant and animal cells and is a preferred method for large-scale disruption of fungi(Hopkins,1991).The mechanism and models of the bead milling process have been reviewed(Harrison,1991;Middelberg,1995),but basi-cally the cells are crushed,ground,and torn apart by abrasive contact and shear forces created between the beads,cells,and reaction chamber itself.The specialized equipment necessary for mechanical cell disruption techniques has undergone functional innovation and new instruments have been developed.The majority of mechanical methods are not easily applied to cell pellets harvested from5ml of culture or less,and excess heat and oxidation are common problems with mechanical disruption.How-ever,96-well sonicator heads and microplate horns are available(Misonix, Inc.Farmingdale,NY;)and for cases where traces of detergent in the purified protein preparation might interfere with biochem-ical characterization or crystallography,this HT physical method is a viable option.The SonicMan high-throughput sonication system(MatriCal,Inc. Spokane,WA;)is a stand alone or integrated unit for 96-,384-,and1536-well plate sonications.This touch screen controlled microplate sonicator uses disposable gasketed pin lids to prevent well-to-well cross-contamination and has a plate shuttle allowing direct integra-tion into robotics platforms.Another new sonicator available from BioSpec Products is the cordless handheld Sonozap Ultrasonic Homogenizer.The 1/8in.diameter auto-tuned probe is ideal for small samples of0.3–5.0ml. Pressure Biosciences,Inc.()has developed the Barocycler TM,bench top,and PCT Shredder,hand held,sample preparation systems.These instruments are capable of rapid,high-pressure292Anthony C.Grabski (up to35kpsi)cycling using specialized PULSE TM tubes.The1.2–1.5ml tubes contain a ram and pored lysis disk that facilitate the hydrostatic pressure induced lysis of plant,animal,insect,or microbial cells(Garrett et al.,2002).The FastPrep(MP Biomedicals,Irvine,CA;www.mpbio. com),Geno/Grinder(SPEX Certiprep,Inc.,Metuchen,NJ;www. )MagNA Lyser(Roche Diagnostics,Penzberg,Germany; ),Mikro-Dismembrator(Sartorius Stedim Biotech, Aubagne,France;),Mini-Bead Beater(BioSpec Products,Bartlesville,OK;),and Retsch Mixer Mill(Retsch GmbH,Haan,Germany;)are all shaking-type bead mills that process multiple milliliter size samples.These devices are not truly HT but are capable of high-yield disruption results from recalcitrant cells in1–5min.The Microfluidics Microfluidizer(Newton,MA;www. )differs from other high-pressure homogenizers. The instrument pressurizes and accelerates split streams of the cell suspen-sion by gas driven pumping of the liquid through fixed-geometry micro-channels.The two high-velocity streams directly impinge on each other creating very high shear forces and pressure drop as the suspension exits the device.Microfluidizer models range from the M-110P capable of processing small sample volumes of25ml and ideal for laboratory use to the M-700biopharmaceutical process models with up to900l/h through-put,complete process control monitoring,CIP,and validatable under21 CFR to cGMP.Constant Systems Ltd.(Low March Daventry,Northants, England;)has designed hydraulically operated disruption instruments that function similar to the original French press by exerting the disruptive forces of pressure extrusion but under controlled, contained and repeatable conditions.The Constant Systems instruments are available in single shot bench(1–20ml)to continuous process scale (405–565ml/min.)eful features include touch screen moni-toring and control,cooling jacket,and CIP/SIP processes.Avestin, Inc.()offers high-pressure EmulsiFlex homogenizers capable of cell disruption from1.0–1000l/h.The homogenizers generate disrupting pressure from500to30,000psi using either gas or electrically driven piston pumps.They can be equipped with heat exchangers for cooling cell extracts and are SIP sterilizable for GMP manufacturing.The BioNeb cell disruption systems of Glas-Col,LLC(Terre Haute,IN; )employ nebulizing gas pressures from10to250psi to break open cells without heat minar flow in the nebuli-zation channel creates cell disrupting shear forces.The magnitude of the force depends on the pressure applied,type of gas(argon<nitrogen <helium)and viscosity of the liquid.The smaller the nebulized droplets, the higher the viscosity,and the greater the gas pressure applied,the greater the shear force created(Surzycki et al.,1996).Preparation of Biological Extracts2934.Concluding RemarksThe cell disruption methods,reagents,and instrumentation described in this chapter are useful and effective if appropriately modified for different cell types and scales,but the question of which method is superior for each application has certainly been asked.Studies have been conducted compar-ing methods of microbial disruption and protein quantitation in resulting extracts(Benov and Al-Ibraheem,2002;De Mey et al.,2008;Guerlava et al.,1998;Ho et al.,2008).The mechanical methods of high-pressure homogenization and bead milling are favorite methods at large scale because of their effectiveness and ability to rapidly handle various process volumes at low cost.Sonication,chemical reagents including detergents,enzymatic treatments,freeze-thaw,and enzymatic plus chemical or physical method combinations are also very effective and are used more frequently at labora-tory and especially microscale.The uniqueness of proteins and differences in host cell structure force a high degree of empiricism in selection and optimization of cell disruption and extract preparation techniques. However,the tools and methods for success in biological extract prepara-tion are available and have kept pace with the demands of modern structural and functional proteomics.5.Procedures,Reagents,and Tips for CellDisruptionThe following strategies and guidelines serve as starting points to produce quality cellular extracts suitable for most downstream purification and analysis processes.Although the focus is on disrupting E.coli at micro-and macrolaboratory scale,many of the techniques can be applied to disrupting and isolating intracellular proteins from other sources and at larger prehensive references for protein purification provide additional information on some of the guidelines for protein extract prepa-ration outlined here as well as on many important aspects of protein purification and characterization(Burgess,1987;Deutscher,1990;Harris and Angal,1989;Hopkins,1991;Marshak et al.,1996;Scopes,1994).5.1.Buffer compositionThe components and volume of cell disruption buffers are critical not only for efficient disruption but will also affect subsequent purification steps and the target protein’s stability and recovery after it has been released from the cells.Each protein extracted is an individual and ideally would have an294Anthony C.Grabski extraction and purification buffer tailored specifically for its own biochemi-cal requirements and intended direction through the purification pipeline. In most cases a more generic extraction buffer can be used with good results if a few basic criteria are met.These criteria are pH,ionic strength,additives to prevent degradation and improve stability,and buffer to cell paste ratio.A very good reference for maintenance of active enzymes through buffer composition and other means is Scopes(1994;‘‘Protein Purification’’). Technical information on pH and buffers including tables for preparation of pH1–13buffers,buffer properties,and the influence of salt,temperature, and dilution values can be found by Dawson et al.(1986).The pH selected for the extraction buffer should be at least one pH unit above or below the protein’s isoelectric point.This pH difference from the pI will prevent isoelectric precipitation by maintaining a positive or nega-tive charge on the protein and also facilitate ion-exchange purification as a purification step.The buffer ionic strength should be20–50m M with a p K a within0.5unit of the desired pH in order to maintain buffering capacity with minimal conductivity increase.The ionic strength inside the cytoplasm of a typical cell is150–200m M with very high concentrations of charged biomolecules for ionic protein interaction.The lysis buffer should contain at least50–100m M NaCl.Increased ionic strength of the extraction buffer will reduce these ionic interactions and precipitating losses from charged particulates that would adsorb protein and be removed by centrifugation or filtration steps.Finally,buffer components to prevent degradation and improve stability should be added as necessary.These include protease inhibitors(Table18.2),reducing agents such as dithiothreitol(DTT),tris (2-carboxyethyl)phosphine(TCEP),or tris(hydroxypropyl)phosphine (THP),divalent cations,cofactors,and kosmotropes like glycerol,sorbitol, or trehalose.The water soluble odorless phosphines TCEP and THP are more stable and effective for the maintenance of reduced protein disulfide bonds than the more commonly used thiol reductants2-mercaptoethanol and DTT(Cline et al.,2004;Getz et al.,1999;Han and Han,1994). Nonionic or zwitterionic detergents may be added to increase solubility of hydrophobic proteins.Reducing agents,protease inhibitors,and deter-gents may interfere with some purification and detection methods and assays.The potential interference of these buffer components must be considered when selecting the chemicals and concentrations employed.A very versatile buffer(Buffer B)for bacterial cell disruption is50m M Tris/HCl or sodium phosphate pH7.5–8.0,50m M NaCl,5%glycerol, 0.5m M EDTA,and0.5m M DTT.Buffer formulations recommended for yeast disruption(Buffer Y)and insect cell disruption(Buffer I)are given below.The volume of buffer used for resuspension of cell pellets must be at least three times the volume of the original pellet for effective disruption and good recovery of the liquid fraction after removal of insoluble cellTable18.2Protease inhibitorsInhibitor Proteases inhibited Stock solution Effective concentration Aprotinin Serine10mg/ml PBS0.6–2.0m g/ml Benzamidine Serine50mg/ml water0.5–4.0m ME-64(L-transepoxysuccinyl-leucylamido-Cysteine 5.0mg/ml water 1.0–10m M [4-guanidino]butane)EDTAMetallo 1.9g/10ml water 1.0–10m M (ethylenediaminetetraacetic acid)Leupeptin Serine/cysteine50mg/11ml water10–100m MPMSF(phenylmethylsulfonylfluoride)Serine120mg/ml water0.1–1.0m MAEBSF(4-[2-aminoethyl]benzenesulfonylfluoride hydrochloride)AEBSF is less toxicthan PMSFPepstatin A Aspartic5mg/7.3ml(1.0m M)1.0–10m Mmethanol or DMSOComplete tablets a Broad spectrum Tablets1X of multiple inhibitors Inhibitor cocktails I–VII b Broad spectrum100X1X of multiple inhibitors Inhibitor mixes Broad spectrum100X1X of multiple inhibitors B,FY,G,HP,M,P ca b c www.serva.de296Anthony C.Grabski debris and precipitated material by centrifugation or filtration.Since approximately50%of the volume of the insoluble residue will be trapped liquid,at least three volumes are required for greater than85%liquid recovery.Proteins are more stable at high concentration,but highly con-centrated extracts are difficult to process and aggregation can occur. Although a3:1ratio of disruption buffer to cell paste may be used to produce a more concentrated extract,5–10volumes of buffer are preferred and will yield more soluble protein and a less viscous extract.5.2.Cell disruption buffersBuffer B:50m M Tris/HCl(pH8.0),50m M NaCl,5%glycerol,0.5m M EDTA,0.5m M DTT or1.0m M THP,0.5m M benzamidine,1.0m M AEBSF.Buffer I:50m M sodium phosphate(pH7.5),150m M NaCl,5% glycerol,0.03%Brij35,0.5m M EDTA,0.5m M DTT or1.0m M THP, 1.0%Triton X-100,0.5m M benzamidine,1.0m M pepstatin A,1.0m M AEBSF.Alternatively,to avoid nuclear lysis in insect cells,substitute1.0% NP-40for Triton X-100.Buffer Y:50m M Tris/HCl(pH8.0),150m M LiCl,10%ethylene glycol,0.5m M EDTA,2.0m M THP,0.1%Triton X-100,0.5m M benzamidine,1.0m M E-64,1.0m M pepstatin A,1.0m M AEBSF.Note:Protease inhibitors may be omitted from or supplemented to (Table18.2)these buffers depending on the sensitivity of the protein target to proteolysis,and the degree or class of inhibition required.The ionic strength of buffers I and Y may need to be reduced or appropriate dilution of the extract performed if the initial protein fractionation step is ion-exchange chromatography.5.3.Microscale protocols for E.coli cell lysis5.3.1.Detergent-based reagent lysisLysis reagent recipe for10ml solution:10ml B-Per or BugBuster,20m l Lysonase Bioprocessing Reagent.Additives such as EDTA,protease inhi-bitors,5–10%glycerol,and reducing agents may be included in the lysis reagent as required to limit proteolysis and improve target protein solubility and stability.Downstream purification and analysis requirements must be considered when selecting lysis buffer components and their concentrations.1.Culture and express the target proteins using 1.0ml medium in2mlÂ96or5ml medium in10ml24-deep well plates with air permeable sealing film or BugStopper TM cap mats.2.Pellet the cells by centrifugation.3.Remove and discard the spent medium by aspiration.。

相关文档
最新文档