《1.1.1平面直角坐标系》教学案3

合集下载

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。

《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。

数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。

北师大版数学高二-选修4教案 1.1平面直角坐标系

北师大版数学高二-选修4教案 1.1平面直角坐标系

【课堂新坐标】数学选修4-4教师用书:1.1平面直角坐标系一平面直角坐标系课标解读1.回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用并领会坐标法的应用.2.了解在伸缩变换作用下平面图形的变化情况,掌握平面直角坐标系中的伸缩变换.3.能够建立适当的直角坐标系解决数学问题.1.平面直角坐标系(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系.(3)坐标法解决几何问题的“三步曲”:第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;第二步:通过代数运算,解决代数问题;第三步,把代数运算结果“翻译”成几何结论.2.平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x′=λ·x(λ>0),y′=μ·y(μ>0)的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.(1)在坐标伸缩变换的作用下,可以实现平面图形的伸缩,因此,平面图形的伸缩变换可以用坐标的伸缩变换来表示.(2)在使用时,要注意点的对应性,即分清新旧:P′(x′,y′)是变换后的点的坐标,P(x,y)是变换前的点的坐标.1.如何根据几何图形的几何特征建立恰当的坐标系?【提示】①如果图形有对称中心,可以选对称中心为坐标原点;②如果图形有对称轴,可以选对称轴为坐标轴;③若题目有已知长度的线段,以线段所在的直线为x轴,以端点或中点为原点.建系原则:使几何图形上的特殊点尽可能多的落在坐标轴上.2.如何确定坐标平面内点的坐标?【提示】如图,过点P分别作x轴、y轴的垂线段PM、PN,垂足分别为M、N,则M的横坐标x与N的纵坐标y对应的有序实数对(x,y)即为点P的坐标.3.如何理解点的坐标的伸缩变换?【提示】在平面直角坐标系中,变换φ将点P(x,y)变换到P′(x′,y′).当λ>1时,是横向拉伸变换,当0<λ<1时,是横向压缩变换;当μ>1时,是纵向拉伸变换,当0<μ<1时,是纵向压缩变换.运用坐标法解决平面几何问题【思路探究】从要证的结论,联想到两点间的距离公式(或向量模的平方),因此首先建立坐标系,设出A,B,C,D点的坐标,通过计算,证明几何结论.【自主解答】 法一 (坐标法)以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0), 设B (a,0),C (b ,c ),则AC 的中点E (b 2,c2),由对称性知D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2, |AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2, |AC |2+|BD |2=4a 2+2b 2+2c 2-4ab =2(2a 2+b 2+c 2-2ab ), |AB |2+|AD |2=2a 2+b 2+c 2-2ab , ∴|AC |2+|BD |2=2(|AB |2+|AD |2). 法二 (向量法)在▱ABCD 中,AC →=AB →+AD →,两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD →,同理得BD →2=|BD →|2 =BA →2+BC →2+2BA →·BC →, 以上两式相加,得 |AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB →+BA →) =2(|AB →|2+|AD →|2),即|AC |2+|BD |2=2(|AB |2+|AD |2).1.本例实际上为平行四边形的一个重要定理:平行四边形的两条对角线的平方和等于其四边的平方和.法一是运用代数方法即解析法实现几何结论的证明的.这种“以算代证”的解题策略就是坐标方法的表现形式之一.法二运用了向量的数量积运算,更显言简意赅,给人以简捷明快之感.2.建立平面直角坐标系的方法步骤(1)建系——建立平面直角坐标系.建系原则是 利于运用已知条件,使运算简便,表达式简明.(2)设点——选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程; (3)运算——通过运算,得到所需要的结果.已知△ABC 中,点D 在BC 边上,且满足|BD |=|CD |. 求证:|AB |2+|AC |2=2(|AD |2+|BD |2).【证明】 法一 以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐标系xOy .则A (0,0),设B (a,0),C (b ,c ), 则D (a +b 2,c 2),所以|AD |2+|BD |2=(a +b )24+c 24+(a -b )24+c 24=12(a 2+b 2+c 2), |AB |2+|AC |2=a 2+b 2+c 2=2(|AD |2+|BD |2). 法二 延长AD 到E ,使DE =AD ,连接BE ,CE ,则四边形ABEC 为平行四边形,由平行四边形的两条对角线的平方和等于四条边的平方和得|AE |2+|BC |2=2(|AB |2+|AC |2),即(2|AD |)2+(2|BD |)2=2(|AB |2+|AC |2),所以|AB |2+|AC |2=2(|AD |2+|BD |2).用坐标法解决实际问题航编队奔赴某海域执行护航任务,对商船进行护航.某日,甲舰在乙舰正东6千米处,丙舰在乙舰北偏西30°,相距4千米.某时刻甲舰发现商船的某种求救信号.由于乙、丙两舰比甲舰距商船远,因此4 s后乙、丙两舰才同时发现这一信号,此信号的传播速度为1 km/s.若甲舰赶赴救援,行进的方位角应是多少?【思路探究】本题求解的关键在于确定商船相对于甲舰的相对位置,因此不妨用点A、B、C表示甲舰、乙舰、丙舰,建立适当坐标系,求出商船与甲舰的坐标,问题可解.【自主解答】设A,B,C,P分别表示甲舰、乙舰、丙舰和商船.如图所示,以直线AB为x轴,线段AB的垂直平分线为y轴建立直角坐标系,则A(3,0),B(-3,0),C(-5,23).∵|PB|=|PC|,∴点P在线段BC的垂直平分线上.k BC=-3,线段BC的中点D(-4,3),∴直线PD的方程为y-3=13(x+4).①又|PB|-|PA|=4,∴点P在以A,B为焦点的双曲线的右支上,双曲线方程为x24-y25=1(x≥2).②联立①②,解得P点坐标为(8,53).∴k PA=538-3= 3.因此甲舰行进的方位角为北偏东30°.1.由于A、B、C的相对位置一定,解决问题的关键是:如何建系,将几何位置量化,根据直线与双曲线方程求解.2.运用坐标法解决实际问题的步骤:建系→设点→列关系式(或方程)→求解数学结果→回答实际问题.已知某荒漠上有两个定点A 、B ,它们相距2 km ,现准备在荒漠上开垦一片以AB 为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8 km.(1)问农艺园的最大面积能达到多少?(2)该荒漠上有一条水沟l 恰好经过点A ,且与AB 成30°的角,现要对整条水沟进行加固改造,但考虑到今后农艺园的水沟要重新改造,所以对水沟可能被农艺园围进的部分暂不加固,问暂不加固的部分有多长?【解】 (1)设平行四边形的另两个顶点为C 、D ,由围墙总长为8 km 得|CA |+|CB |=4>|AB |=2,由椭圆的定义知,点C 的轨迹是以A 、B 为焦点,长轴长2a =4,焦距2c =2的椭圆(去除落在直线AB 上的两点).以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立直角坐标系,则点C 的轨迹方程为x 24+y 23=1(y ≠0).易知点D 也在此椭圆上,要使平行四边形ABCD 面积最大,则C 、D 为此椭圆短轴的端点,此时,面积S =23(km 2).(2)因为修建农艺园的可能范围在椭圆x 24+y 23=1(y ≠0)内,故暂不需要加固水沟的长就是直线l :y =33(x +1)被椭圆截得的弦长,如图.因此,由⎩⎨⎧y =33(x +1)x 24+y23=1⇒13x 2+8x -32=0,那么弦长=1+k 2|x 1-x 2|= 1+(33)2·(-813)2-4×(-3213)=4813,故暂不加固的部分长4813km.已知伸缩变换求点的坐标和曲线方程在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A (13,-2)经过φ变换所得的点A ′的坐标;(2)点B 经过φ变换后得到点B ′(-3,12),求点B 的坐标;(3)求直线l :y =6x 经过φ变换后所得直线l ′的方程; (4)求双曲线C :x 2-y 264=1经过φ变换后所得曲线C ′的焦点坐标. 【思路探究】 (1)由伸缩变换⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,求得x ′,y ′,即用x ,y 表示x ′,y ′;(2)(3)(4)将求得的x ,y 代入原方程得x ′,y ′间的关系.【自主解答】 (1)设点A ′(x ′,y ′).由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .又已知点A (13,-2).于是x ′=3×13=1,y ′=12×(-2)=-1.∴变换后点A ′的坐标为(1,-1).(2)设B (x ,y ),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x2y ′=y 得到⎩⎪⎨⎪⎧x =13x ′,y =2y ′,由于B ′(-3,12),于是x =13×(-3)=-1,y =2×12=1,∴B (-1,1)为所求.(3)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′y =2y ′代入y =6x 得2y ′=6×(13x ′),所以y ′=x ′,即y =x 为所求. (4)设曲线C ′上任意一点P ′(x ′,y ′), 将⎩⎪⎨⎪⎧x =13x ′y =2y ′代入x 2-y 264=1, 得x ′29-4y ′264=1,化简得x ′29-y ′216=1,∴曲线C ′的方程为x 29-y 216=1.∴a 2=9,b 2=16,c 2=25,因此曲线C ′的焦点F 1(5,0),F 2(-5,0).1.解答本题的关键:(1)是根据平面直角坐标系中的伸缩变换公式的意义与作用;(2)是明确变换前后点的坐标关系,利用方程思想求解.2.伸缩变换前后的关系已知平面直角坐标系中的伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0)y ′=μy (μ>0),则点的坐标与曲线的方程的关系为联系 类型 变换前 变换后 点P (x ,y ) (λx ,μy ) 曲线Cf (x ,y )=0f (1λx ′,1μy ′)=0若将例题中第(4)题改为:如果曲线C 经过φ变换后得到的曲线的方程为x 2=18y ,那么能否求出曲线C 的焦点坐标和准线方程?请说明理由.【解】 设曲线C 上任意一点M (x ,y ),经过φ变换后对应点M ′(x ′,y ′).由⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x ′=3x ,y ′=y 2.(*) 又M ′(x ′,y ′)在曲线x 2=18y 上, ∴x ′2=18y ′ ① 将(*)代入①式得 (3x )2=18×(12y ).即x 2=y 为曲线C 的方程.可见仍是抛物线,其中p =12,抛物线x 2=y 的焦点为F (0,14).准线方程为y =-14.由条件求伸缩变换在同一平面直角坐标系中,求一个伸缩变换,使得圆x 2+y 2=1变换为椭圆x 29+y 24=1. 【思路探究】 区分原方程和变换后的方程――→待定系数法设伸缩变换公式―→代入变换后的曲线方程―→与原曲线方程比较系数.【自主解答】 将变换后的椭圆的方程x 29+y 24=1改写为x ′29+y ′24=1,设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入上式.得λ2x 29+μ2y 24=1,即(λ3)2x 2+(μ2)2y 2=1.与x 2+y 2=1比较系数,得⎩⎨⎧(λ3)2=1,(μ2)2=1,∴⎩⎪⎨⎪⎧λ=3,μ=2. 所以伸缩变换为⎩⎪⎨⎪⎧x ′=3x ,y ′=2y .因此,先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长到原来的3倍,得到椭圆x 29+y 2=1,再将该椭圆的横坐标不变,纵坐标伸长到原来的2倍,得到椭圆x 29+y 24=1.1.求满足图象变换的伸缩变换,实际上是让我们求出变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数可得.2.解题时,区分变换的前后方向是关键,必要时需要将变换后的曲线的方程改写成加注上(或下)标的未知数的方程形式.在同一平面坐标系中,求一个伸缩变换使其将曲线y =2sin x4变换为正弦曲线y =sin x .【解】 将变换后的曲线的方程y =sin x 改写为y ′=sin x ′,设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入y ′=sin x ′, ∴μy =sin λx ,即y =1μsin λx .比较与原曲线方程的系数,知⎩⎨⎧ λ=14,1μ=2,∴⎩⎨⎧λ=14,μ=12,所以伸缩变换为⎩⎨⎧x ′=14x ,y ′=12y .即先使曲线y =2sin x 4的点的纵坐标不变,将曲线上的点的横坐标缩短为原来的14倍,得到曲线y =2sin x ;再将其横坐标不变,纵坐标缩短到原来的12倍,得正弦曲线y =sin x .(教材第8页习题1.1,第5题)在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=3xy ′=y 后,曲线C 变为曲线x ′2+9y ′2=9,求曲线C 的方程,并画出图象.(2013·郑州调研)在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=14y 后,曲线C 变为曲线x ′216+4y ′2=1,求曲线C 的方程并画出图形.【命题意图】 本题主要考查曲线与方程,以及平面直角坐标系中的伸缩变换. 【解】 设M (x ,y )是曲线C 上任意一点,变换后的点为M ′(x ′,y ′).由⎩⎪⎨⎪⎧x ′=2x ,y ′=14y ,且M ′(x ′,y ′)在曲线x ′216+4y ′2=1上, 得4x 216+4y 216=1, ∴x 2+y 2=4.因此曲线C 的方程为x 2+y 2=4,表示以O (0,0)为圆心,以2为半径的圆(如图所示).1.点P (-1,2)关于点A (1,-2)的对称点坐标为( ) A .(3,6) B .(3,-6) C .(2,-4) D .(-2,4)【解析】 设对称点的坐标为(x ,y ), 则x -1=2,且y +2=-4, ∴x =3,且y =-6. 【答案】 B2.如何由正弦曲线y =sin x 经伸缩变换得到y =12sin 12x 的图象( )A .将横坐标压缩为原来的12,纵坐标也压缩为原来的12B .将横坐标压缩为原来的12,纵坐标伸长为原来的2倍C .将横坐标伸长为原来的2倍,纵坐标也伸长为原来的2倍D .将横坐标伸长为原来的2倍,纵坐标压缩为原来的12【解析】 y =sin x ――→横坐标伸长为原来的2倍y =sin 12x ――→纵坐标压缩为原来的12y =12sin 12x .故选D. 【答案】 D3.将点P (-2,2)变换为点P ′(-6,1)的伸缩变换公式为( ) A.⎩⎪⎨⎪⎧ x ′=13x y ′=2y B.⎩⎪⎨⎪⎧x ′=12xy ′=3y C.⎩⎪⎨⎪⎧x ′=3x y ′=12y D.⎩⎪⎨⎪⎧x ′=3x y ′=2y 【解析】 将⎩⎪⎨⎪⎧x ′=-6y ′=1与⎩⎪⎨⎪⎧x =-2y =2代入到公式φ:⎩⎪⎨⎪⎧x ′=λxy ′=μy 中,有⎩⎪⎨⎪⎧-6=λ·(-2),1=μ·2, ∴⎩⎪⎨⎪⎧λ=3,μ=12.【答案】 C 4.将圆x 2+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=4xy ′=3y 后的曲线方程为________.【解析】 由⎩⎪⎨⎪⎧x ′=4x ,y ′=3y .得⎩⎪⎨⎪⎧x =x ′4,y =y ′3.代入到x 2+y 2=1,得x ′216+y ′29=1.∴变换后的曲线方程为x 216+y 29=1.【答案】 x 216+y 29=1(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.动点P 到直线x +y -4=0的距离等于它到点M (2,2)的距离,则点P 的轨迹是( ) A .直线 B .椭圆 C .双曲线 D .抛物线【解析】 ∵M (2,2)在直线x +y -4=0上,∴点P 的轨迹是过M 与直线x +y -4=0垂直的直线. 【答案】 A2.若△ABC 三个顶点的坐标分别是A (1,2),B (2,3),C (3,1),则△ABC 的形状为( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .钝角三角形 【解析】 |AB |=(2-1)2+(3-2)2=2,|BC |=(3-2)2+(1-3)2=5, |AC |=(3-1)2+(1-2)2=5,|BC |=|AC |≠|AB |,△ABC 为等腰三角形. 【答案】 A3.在同一平面直角坐标系中,将曲线y =13cos 2x 按伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=3y 后为( )A .y =cos xB .y =3cos 12xC .y =2cos 13xD .y =12cos 3x【解析】 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得⎩⎨⎧x =x ′2,y =y ′3.代入y =13cos 2x ,得y ′3=13cos x ′. ∴y ′=cos x ′,即曲线y =cos x . 【答案】 A4.将直线x +y =1变换为直线2x +3y =6的一个伸缩变换为( )A.⎩⎪⎨⎪⎧ x ′=3x y ′=2yB.⎩⎪⎨⎪⎧x ′=2x y ′=3yC.⎩⎨⎧x ′=13xy ′=12yD.⎩⎨⎧x ′=12xy ′=13y【解析】 设伸缩变换为⎩⎪⎨⎪⎧x ′=λx ,y ′=μy ,由(x ′,y ′)在直线2x +3y =6上, ∴2x ′+3y ′=6,则2λx +3μy =6. 因此λ3x +μ2y =1,与x +y =1比较,∴λ3=1且μ2=1,故λ=3且μ=2. 所求的变换为⎩⎪⎨⎪⎧x ′=3x ,y ′=2y .【答案】 A二、填空题(每小题5分,共10分)5.若点P (-2 012,2 013)经过伸缩变换⎩⎨⎧x ′=x2 013,y ′=y2 012.后的点在曲线x ′y ′=k 上,则k =________.【解析】 ∵P (-2 012,2 013)经过伸缩变换⎩⎨⎧ x ′=x2 013,y ′=y2 012,得⎩⎪⎨⎪⎧x ′=-2 0122 013,y ′=2 0132 012.代入x ′y ′=k , 得k =x ′y ′=-1.【答案】 -16.△ABC 中,若BC 的长度为4,中线AD 的长为3,则A 点的轨迹是________. 【解析】 取B 、C 所在直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,则B (-2,0)、C (2,0)、D (0,0).设A (x ,y ),则|AD |=x 2+y 2.注意到A 、B 、C 三点不能共线,化简即得轨迹方程:x 2+y 2=9(y ≠0).【答案】 以BC 的中点为圆心,半径为3的圆(除去直线BC 与圆的两个交点) 三、解答题(每小题10分,共30分)7.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=x 3,y ′=y2后的图形.(1)x 2-y 2=1; (2)x 29+y 28=1. 【解】 由伸缩变换⎩⎨⎧ x ′=x3,y ′=y2.得⎩⎪⎨⎪⎧x =3x ′,y =2y ′.① (1)将①代入x 2-y 2=1得9x ′2-4y ′2=1,因此,经过伸缩变换⎩⎨⎧x ′=x3,y ′=y2后,双曲线x 2-y 2=1变成双曲线9x ′2-4y ′2=1,如图(1)所示.(2)将①代入x 29+y28=1得x ′2+y ′22=1,因此,经过伸缩变换⎩⎨⎧x ′=x3,y ′=y2后,椭圆x 29+y 24=1变成椭圆x 2+y 22=1,如图(2)所示.8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处.求城市B 处于危险区内的时间.【解】以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0), 以点B 为圆心,30为半径的圆的方程为(x -40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区.台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2. 求得|MN |=2302-d 2=20(km),故|MN |20=1, 所以城市B 处于危险区的时间为1 h. 9.图1-1-1学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图1-1-1,航天器运行(按顺时针方向)的轨迹方程为x 2100+y 225=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴,M (0,647)为顶点的抛物线的实线部分,降落点为D (8,0),观测点A (4,0),B (6,0)同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x 轴上方时,观测点A ,B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?【解】 (1)设曲线方程为y =ax 2+647.因为D (8,0)在抛物线上,∴a =-17.∴曲线方程为y =-17x 2+647.(2)设变轨点为C (x ,y ).根据题意可知⎩⎨⎧x 2100+y 225=1 ①y =-17x 2+647 ②得4y 2-7y -36=0,解得y =4或y =-94(不合题意).∴y =4.得x =6或x =-6(不合题意,舍去). ∴C 点的坐标为(6,4).|AC |=25,|BC |=4.所以当观测点A 、B 测得离航天器的距离分别为25、4时,应向航天器发出变轨指令. 教师备选10.已知A (-1,0),B (1,0),圆C :(x -3)2+(y -4)2=4,在圆C 上是否分别存在一点P ,使|PA |2+|PB |2取得最小值与最大值?若存在,求出点P 的坐标及相应的最值;若不存在,请说明理由.【解】 假设圆C 上分别存在一点P 使|PA |2+|PB |2取得最小值和最大值,则由三角形的中线与边长的关系式得|PA |2+|PB |2=2(|PO |2+|AO |2)=2|PO |2+2,可见,当|PO |分别取得最小值和最大值时,相应地|PA |2+|PB |2分别取得最小值与最大值. 设直线OC 分别交圆C 于P 1,P 2, 则|P 1O |最小,|P 2O |最大,如图所示.由已知条件得|OC |=32+42=5,r =2,于是|P 1O |=|OC |-r =5-2=3, |P 2O |=|OC |+r =5+2=7,所以|PA |2+|PB |2的最小值为2×32+2=20, 最大值为2×72+2=100. 下面求P 1,P 2的坐标: 直线OC 的方程为y =43x ,由⎩⎪⎨⎪⎧y =43x .(x -3)2+(y -4)2=4,消去y 并整理得25x 2-150x +9×21=0, ∴(5x -9)(5x -21)=0, 解得x 1=95,x 2=215,∴⎩⎨⎧x 1=95,y 1=125,或⎩⎨⎧x 2=215,y 2=285.∴P 1(95,125),P 2(215,285)为所求.。

平面解析几何教案

平面解析几何教案

平面解析几何教案一、引言平面解析几何是高中数学中的一门重要课程,通过研究平面上的点、直线、圆等几何图形的性质,来探索空间中的几何问题。

本教案旨在系统地介绍平面解析几何的基本概念和主要内容,帮助学生全面理解和掌握该领域的知识。

二、教学目标1. 理解平面解析几何的基本概念,如坐标、向量等;2. 掌握平面几何图形的方程表示方法;3. 熟练运用平面解析几何的定理和公式解决实际问题;4. 培养学生的逻辑思维和几何推理能力;5. 提高学生的问题分析和解决能力。

三、教学内容1. 坐标系与坐标1.1 直角坐标系的建立1.2 平面上的点的坐标表示1.3 坐标变换与平移2. 点与向量2.1 点的向量表示2.2 向量的基本运算(加法、减法、数乘)2.3 向量的数量积和向量积3. 直线的方程3.1 直线的一般方程3.2 直线的点斜式和两点式方程3.3 直线的截距式方程4. 圆的方程4.1 圆的标准方程4.2 圆的一般方程4.3 圆的切线和法线方程5. 平面几何问题的应用5.1 两条直线的性质及其应用5.2 直线与圆的性质及其应用5.3 圆与圆的性质及其应用四、教学方法1. 讲授与归纳法:通过讲解和举例,引导学生理解和记忆知识点。

2. 典型例题分析法:通过分析典型例题,培养学生解决问题的能力和思维方式。

3. 练习与拓展法:布置大量练习题和拓展问题,让学生巩固知识和拓展思维。

五、教学步骤1. 第一课时:坐标系与坐标1.1 引入课题,介绍平面解析几何的基本概念。

1.2 讲解直角坐标系的建立和平面上点的坐标表示。

1.3 练习与巩固。

2. 第二课时:点与向量2.1 讲解点的向量表示及向量的基本运算。

2.2 引入向量的数量积和向量积的概念。

2.3 练习与巩固。

3. 第三课时:直线的方程3.1 讲解直线的一般方程和点斜式、两点式方程的表示方法。

3.2 引入直线的截距式方程。

3.3 练习与巩固。

4. 第四课时:圆的方程4.1 讲解圆的标准方程和一般方程的表示方法。

平面直角坐标系教案

平面直角坐标系教案

平面直角坐标系教案一、引言平面直角坐标系是数学中重要的基础概念之一,它为我们描述和分析平面上的几何图形提供了有力的工具。

本教案旨在帮助学生深入理解平面直角坐标系的概念、特点和应用,并能够熟练运用它进行问题的解答。

二、概念说明1. 平面直角坐标系的定义- 平面直角坐标系由两个相互垂直的数轴组成,分别称为x轴和y 轴。

- 坐标系的原点是x轴和y轴的交点,用O表示。

- x轴和y轴上的单位长度相等,通常记作1。

- 坐标系将平面分成四个部分,分别称为象限。

象限的编号顺时针依次为第一象限、第二象限、第三象限和第四象限。

2. 点的坐标表示- 在平面直角坐标系中,每个点都可以用一对有序实数表示,记作(x, y)。

- x值表示该点在x轴上的位置,y值表示该点在y轴上的位置。

- 坐标系中每个点都有唯一的坐标表示。

三、平面直角坐标系的特点1. 对称性- 坐标系关于原点对称,即对任意点(x, y),有(-x, -y)也在坐标系中。

- 坐标系关于x轴对称,即对任意点(x, y),有(x, -y)也在坐标系中。

- 坐标系关于y轴对称,即对任意点(x, y),有(-x, y)也在坐标系中。

2. 距离计算- 两点在平面直角坐标系中的距离可以用勾股定理来计算:AB的距离= √((x₂ - x₁)² + (y₂ - y₁)²)四、平面直角坐标系的应用1. 函数图像绘制- 平面直角坐标系可以用来绘制函数的图像。

- 将函数的自变量和函数值代入直角坐标系,通过连结各个点得到函数的图像。

2. 几何图形研究- 平面直角坐标系可以帮助我们研究各种几何图形的性质。

- 通过坐标系中的点来表示图形的特点,比如直线的斜率、圆的方程等。

3. 问题求解- 平面直角坐标系可以用来解决各种问题,如线性方程组的求解、几何图形的相交关系判断等。

五、练习题1. 在平面直角坐标系中,求点A(3, 4)与点B(1, -2)之间的距离。

2. 给出函数y = 2x + 1的图像在坐标系中的位置。

平面直角坐标系基础教案

平面直角坐标系基础教案

平面直角坐标系基础教案一、教学目标1、能够理解并掌握平面直角坐标系的基本概念和特性。

2、掌握平面直角坐标系中点、距离和斜率的计算方法。

3、具备平面直角坐标系的应用能力,能够解决相关实际问题。

二、教学重点和难点1、教学重点:平面直角坐标系中点、距离和斜率的计算方法。

2、教学难点:平面直角坐标系的应用能力,能够解决相关实际问题。

三、教学过程1、知识点1:平面直角坐标系的基本概念和特性平面直角坐标系是数学中一个重要的基础知识,理解它的基本概念和特性是学好这一知识点的关键。

我们需要了解以下几个概念:(1)横坐标和纵坐标在平面直角坐标系中,每个点都可以用它的横坐标和纵坐标唯一地确定。

横坐标通常用x表示,纵坐标通常用y表示。

比如,点P(x,y)表示平面直角坐标系中的一个点,其横坐标为x,纵坐标为y。

(2)坐标轴平面直角坐标系由两条相交的直线组成,这两条直线分别称为x轴和y轴。

在它们的交点处形成了一个原点O。

(3)象限平面直角坐标系将平面分为四个部分,这四个部分称为象限。

第一象限位于x轴和y轴的正半轴之间,第二象限位于x轴的负半轴和y 轴的正半轴之间,第三象限位于x轴和y轴的负半轴之间,第四象限位于x轴的正半轴和y轴的负半轴之间。

(4)直线的斜率在平面直角坐标系中,一条直线可以用一般式y=kx+b表示。

其中,k表示这条直线的斜率,b表示其与y轴的截距。

斜率k的大小表示直线的倾斜程度,它可以用下面的公式计算:k=(y2-y1)/(x2-x1)其中,(x1,y1)和(x2,y2)分别表示直线上的两个点。

2、知识点2:平面直角坐标系中点、距离和斜率的计算方法在掌握平面直角坐标系的基本概念和特性之后,我们需要学习如何在坐标系中计算点的位置、两个点之间的距离以及直线的斜率等重要参数。

(1)点的位置在平面直角坐标系中,一个点的位置由它的横坐标和纵坐标共同决定。

如果我们知道一个点P(x,y)的坐标,那么它就在坐标系中唯一确定了。

平面直角坐标系教案全

平面直角坐标系教案全

第三章平面直角坐标系集体备课:(共7课时)教材内容本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等。

实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。

用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。

用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。

用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。

此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。

教案目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。

〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。

重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。

课时分配6.1平面直角坐标系……………………………………… 3课时6.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时3.1平面直角坐标系(1)〔教案目标〕理解有序数对的意义,能利用有序数对表示物体的位置。

《平面直角坐标系+第1课时》精品教学方案

《平面直角坐标系+第1课时》精品教学方案

2 平面直角坐标系第1课时配套北师大版【教学方案】第三章位置与坐标2 平面直角坐标系第1课时一、教学目标1.认识到建立平面直角坐标系的必要性,并能掌握平面直角坐标系的相关概念.2.在给定的坐标系中,会根据坐标描出点的位置、由点的位置写出点的坐标.3.经历画平面直角坐标系、描点、连线、看图及由点找坐标的过程,体会数形结合思想.4.培养学生的合作精神和积极参与、勤于思考、善于探索的习惯.二、教学重难点重点:掌握平面直角坐标系的相关概念.难点:会根据坐标描出点的位置、由点的位置写出点的坐标.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【情境导入】教师活动:教师出示课件,让学生先认真思考,再找学生回答.1.文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(2,7),(8,4),(4,6),(5,6),(4,4),(5,2),(6,1),(8,8).预设:密码是:“我爱北京天安门!”2.如图,是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?预设:①经纬度定位法(经度,纬度);②极坐标系定位法(方向角,距离).回忆上节课所用的方法,教师指出:有些同学可能还会这样介绍,以科技大学到碑林为例:向东多少,向北多少.如果这样介绍,那么向东多少、向北多少该如何说明呢?根据上一节的经验,同学们不难想到在地图上打上方格线,从而引出新课的做一做环节.【做一做】教师活动:通过做一做环节,引导学生得出平面直角坐标系的相关概念.(1)小红在旅游示意图上画上了方格,标上数字,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置(5,2)呢?提示:教师可引导学生从每行每列画直线,两线的交点即为所求.预设:钟楼的位置是(3,8);(2,5)表示大成殿;(5,2)表示影月湖强调:通常将(0,0)点称为原点.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?提示:教师可以引导学生按下图所示找出对应的位置.预设:碑林的位置在(3,1),大成殿的位置在(-3,-2).通过做一做环节,教师与学生一起归纳得出如下知识:平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系).三要素:(1)两条数轴;(2)互相垂直;(3)公共原点.水平的数轴叫做x轴或横轴,x轴取向右为正方向;竖直的叫做y轴或纵轴,y轴取向上为正方向.x轴与y轴的公共原点O称为直角坐标系的原点.【思考】如何在平面直角坐标系中表示点呢?预设:对于平面内任意一点P,过点P分别向x 轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.提示:有序数对(a,b)是指:横坐标a写在前,纵坐标b写在后,中间用逗号隔开!如图,在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成四个区域. 右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.注意:坐标轴上的点不在任何一个象限内.【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,最终教师展示答题过程.例1 写出下图中的多边形ABCDEF各个顶点的坐标.分析:根据平面直角坐标系的特点写出各点的坐标即可.解:各个顶点的坐标分别为:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).例2在平面直角坐标系中找点A(3,-2).解:归纳:由坐标找点的方法:(1)先找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.【做一做】(1)在如图所示的平面直角坐标系中,描出下列各点:A (-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4).(2) 依次连接A,B,C,D,E,F,A,你得到什么图形?(3) 在平面直角坐标系中,点与实数对之间有何关系?预设:(1)(2)它的图象像飞机(3)我们可以得出:①在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.下面是某学校的示意图,以办公楼所在位置为原点,以图中小正方形的边长为单位长度,建立平面直角坐标系.(1)请写出教学楼、实验楼、图书馆的坐标;(2)学校准备在(-3,-3)处建一栋学生公寓,请你标出学生公寓的位置.2. 如图,分别写出五边形各个顶点的坐标.3.下图是画在方格纸上的某岛简图.(1) 分别写出地点A,L,N,P,E的坐标;(2) 坐标(4,7) ,(5,5) ,(2,5) 所代表的分别是图中的哪个点?答案:1.解:(1)教学楼(2,4),实验楼(3,-3),图书馆(-3,3).(2)如图所示:2.解:各个顶点的坐标分别为:A(5,2),B(0,5),C(-5,2),D(-3,-4),E(3,-4).3.解:(1) A(3,8),L(6,7),N(9,5),P(9,1),E(3,5).(2) (4,7)所代表的点是C,(5,5)所代表的点是F,(2,5)所代表的点是D.思维导图的形式呈现本节课的主要内容:。

《平面直角坐标系》教案

《平面直角坐标系》教案

《平面直角坐标系》教案精选平面直角坐标系教案。

教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。

教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。

2、把握坐标法解决几何问题的步骤;体会坐标系的作用。

教学难点:能够建立适当的直角坐标系,解决数学问题。

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要消失正确的背景图案,需要缺点不同的画布所在的位置。

在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P 都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。

新北师大版八年级数学上册《平面直角坐标系的坐标轴》教学案

新北师大版八年级数学上册《平面直角坐标系的坐标轴》教学案

新北师大版八年级数学上册《平面直角坐标系的坐标轴》教学案教学目标- 了解平面直角坐标系的概念和组成要素- 掌握平面直角坐标系中坐标轴的表示方法和性质- 能够在平面直角坐标系中表示和定位点的坐标教学准备- 教材《新北师大版八年级数学上册》- 平面直角坐标系示意图- 黑板或白板- 教学辅助工具:直尺、铅笔等教学过程1. 导入- 引入平面直角坐标系的概念,简单解释数学中的坐标系是用来描述点在平面上位置的工具。

- 让学生观察周围环境中的直角坐标系,鼓励他们思考坐标系的作用。

2. 介绍坐标轴- 使用黑板或白板上绘制平面直角坐标系的示意图,标注出两个正交的直线,分别代表x轴和y轴。

- 解释x轴和y轴的定义,x轴是水平方向的直线,y轴是垂直方向的直线。

3. 坐标轴的表示方法- 给出一个点在坐标系中的位置,问学生如何描述该点的位置。

- 引导学生发现,通过x轴和y轴上的坐标可以表示一个点在平面上的位置。

- 解释坐标的表示方法:点P在平面直角坐标系中的坐标表示为(Px, Py),其中Px表示点P在x轴上的坐标,Py表示点P在y轴上的坐标。

4. 坐标轴的性质- 引导学生思考,如果两个不同的点在平面直角坐标系中的x轴坐标相同,那么这两个点是否在同一条垂直线上?- 引导学生发现,如果两个点在平面直角坐标系中的x轴坐标相同,则这两个点一定在同一条垂直线上;同理,如果两个点在平面直角坐标系中的y轴坐标相同,则这两个点一定在同一条水平线上。

5. 练与巩固- 出示几个点在平面直角坐标系中的位置,请学生计算出这些点的坐标。

- 给出一些点的坐标,请学生在坐标系中找到对应的点并标出。

- 鼓励学生互相出题目,进行小组间或个人间的练。

教学总结- 复平面直角坐标系的概念和组成要素,以及坐标轴的表示方法和性质。

- 强调坐标系的重要性,它是描述和定位点在平面上位置的基本工具。

- 鼓励学生多做练,加深对坐标系和坐标轴的理解和应用。

课后作业1. 完成课堂上的练题。

高中数学第一章坐标系1.1平面直角坐标系1.1.1平面直角

高中数学第一章坐标系1.1平面直角坐标系1.1.1平面直角

题型一 题型二 题型三
解:(1)设
������ ������
=
������,
得y=kx,所以
k
为过原点的直线的斜率.
又 x2+y2-4x+1=0 可化简为(x-2)2+y2=3,
它表示以(2,0)为圆心, 3为半径的圆,如图所示.
当直线 y=kx 与已知圆相切,且切点在第一象限时,k 最大,
此时,|CP|= 3, |������������| = 2,
(2)曲线可看作是满足某些条件的点的集合或轨迹,由此我们可借 助坐标系,研究曲线与方程间的关系.
名师点拨1.两点间的距离公式:在平面直角坐标系 中,P1(x1,y1),P2(x2,y2)两点之间的距离公式为
|P1P2|= (������1-������2)2 + (������1-������2)2.
所以
-1 + 2������ < -3-������ < 0,
0,

������
<
1 2
,
������ > -3.
所以-3<m< 12.
答案:-3<m<
1 2
2.曲线与方程 在平面直角坐标系中,如果某曲线C上的点与一个二元方程 f(x,y)=0的实数解建立了如下关系: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都在曲线C上. 那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲 线. 名师点拨求曲线的方程一般有以下五个步骤:(1)建立适当的平面 直角坐标系,并用(x,y)表示曲线上任意一点M的坐标;(2)写出适合条 件p的点M的集合p={M|P(M)};(3)用坐标表示条件p(M),写出方程 f(x,y)=0;(4)化简方程f(x,y)=0(必须等价);(5)证明以(4)中方程的解为 坐标的点都在曲线上.一般地,方程的变形过程若是等价的,则步骤 (5)可以省略.

《平面直角坐标系》市公开课获奖教案省名师优质课赛课一等奖教案

《平面直角坐标系》市公开课获奖教案省名师优质课赛课一等奖教案

《平面直角坐标系》教案一、教学目标1. 理解平面直角坐标系的概念和基本要素;2. 掌握平面直角坐标系的绘制方法;3. 理解平面直角坐标系在数学中的应用。

二、教学内容1. 平面直角坐标系的概念和基本要素1.1 平面直角坐标系的定义和作用1.2 平面直角坐标系中的横坐标和纵坐标1.3 平面直角坐标系中的原点和轴线2. 平面直角坐标系的绘制方法2.1 确定原点和轴线2.2 绘制横坐标轴和纵坐标轴2.3 绘制刻度线和标识符3. 平面直角坐标系的应用3.1 图形的位置表示3.2 图形的坐标表示3.3 距离和长度的计算3.4 点的对称三、教学过程1. 导入新知识教师通过实例向学生介绍平面直角坐标系的作用和意义,引发学生的兴趣。

2. 讲解平面直角坐标系的概念和基本要素通过图示和具体例子,讲解平面直角坐标系的定义,横坐标和纵坐标的含义,以及原点和轴线的作用。

4. 示范绘制平面直角坐标系教师向学生示范绘制平面直角坐标系的步骤,并分别介绍如何确定原点和轴线、绘制横坐标轴和纵坐标轴、绘制刻度线和标识符。

5. 学生练习绘制平面直角坐标系学生根据教师的示范,自行绘制平面直角坐标系,互相交流讨论并纠正错误。

6. 讲解平面直角坐标系的应用通过具体的数学问题,如图形的位置表示、图形的坐标表示、距离和长度的计算、点的对称等,讲解平面直角坐标系在数学中的应用。

7. 拓展应用引导学生应用平面直角坐标系解决实际生活中的问题,如地图上两点之间的最短距离、建筑物的位置坐标等,并让学生自行思考解决方法。

四、教学评价1. 教师观察学生的绘制过程和对平面直角坐标系的理解程度,及时给予指导和反馈。

2. 布置练习作业,检查学生对平面直角坐标系的应用能力。

3. 利用小组讨论、提问等方式进行随堂测验,检验学生对平面直角坐标系的掌握情况。

五、教学反思通过本节课的教学,学生能够理解平面直角坐标系的概念和基本要素,掌握平面直角坐标系的绘制方法,并能够理解和应用平面直角坐标系在数学中的应用。

《1.1.1 直角坐标系》教学案2

《1.1.1 直角坐标系》教学案2

《1.1.1 直角坐标系》教学案2单元课题:坐标系本节课题:平面直角坐标系单元目标:理解坐标系的意义,坐标法解决几何问题的步骤,直角坐标和极坐标的应用本节目标:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法过程与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学措施与方法:启发、诱导发现教学.教学过程:一、阅读教材P2—P4情境:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

思考:GPS定位系统中声响定位问题:(2004年广东高考题)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。

(假定当时声音传播的速度为340m/s,各相关点均在同一平面上)问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系并解决上述问题?二、讲解新课:1、 建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、 确定点的位置就是求出这个点在设定的坐标系中的坐标3、通过对上述思考题解答总结出解决此类应用题的关键:(1)、建立平面直角坐标系(2)、设点(点与坐标的对应)(3)、列式(方程与坐标的对应)(4)、化简(5)、说明例1:已知△ABC 的三边a,b,c 满足2225b c a +=,BE,CF 分别为边AC,CF 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系。

解题心得:建系时,根据几何特点选择适当的直角坐标系。

1)如果图形有对称中心,可以选对称中心为坐标原点;2)如果图形有对称轴,可以选择对称轴为坐标轴;3)使图形上的特殊点尽可能多的在坐标轴上。

平面直角坐标系(第一课时)教案

平面直角坐标系(第一课时)教案

《平面直角坐标系》教案(第一课时)执教人:彭宣武一、教学目标1、知识与技能⑴认识并能画出平面直角坐标系。

⑵能在方格纸上建立适当的直角坐标系,描述物体的位置。

⑶在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

⑷根据平面直角坐标系中点的坐标与点的位置关系,进一步感受点的坐标的特点。

2、过程与方法在“坐标系的建立”、“由坐标找点”及“由点找坐标”等过程中,体会“发现”、“探索”的乐趣,进一步提高学生学生数形结合意识,合作交流意识。

3、情感、态度与价值观在平面直角坐标系的建立过程中,进一步培养“空间观念”,并从中体会到合作的重要性,加强动手、操作能力和观察能力,培养形象思维能力。

二、教学重点正确建立坐标系;确定点的坐标的方法及点的坐标书写方法 三、教学难点点(a,b )与(b,a )的区别及特殊点的坐标的特征 四、教具准备挂图,小黑板 五、教学过程㈠学前准备1、在电影院内如何找到电影票上所指的位置?2、在地图上怎样确定唐山大地震的震中的具体位置? ㈡探究新知1、创设问题情景,引入新知(出示挂图)2、讲解平面直角坐标系的概念⑴平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

⑵x 轴(横轴)、y 轴(纵轴)直角坐标系的原点。

⑶平面直角坐标系,将平面分成了四个部分,强调按逆时针方向旋转。

⑷点P 的坐标的确定方法:过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a,b 分别叫点P 的横坐标和纵坐标,有序实数对(a,b )叫做点P 的坐标。

⑸各象限内的点的坐标的符号特点⑹比较点(a,b )与点(b,a )的区别,揭示有序实数对与坐标平面的点的对应关系。

3、例题教学 ⑴例1题目略学生回答各个顶点的坐标(出示小黑板) ①强调坐标书写方法②坐标轴上的点不属于任何一个象限⑵想一想:学生交流想一想中的问题,总结出一般结论 ①当两点的横坐标相同时,其连线平行于y 轴;当两点的纵坐标相同时,其连线平行于x 轴,反之亦然。

111平面直角坐标系教学设计

111平面直角坐标系教学设计

《平面直角坐标系》教学设计安徽省固镇县九湾中学——杨国帅一、教材说明:1、学科:初中数学2、教材版本:《义务教育课程标准实验教科书》(华东师大出版社)八年级(下)第十七章第2节平面直角坐标系第一课时。

3、“平面直角坐标系”是学习函数及其图象、曲线和方程的基础,是沟通数与形的桥梁。

这节课是在学习了数轴与有关几何知识的基础上,进行函数图像教学的第一节课,万事开头难,学生在学好平面直角坐标系的概念,探究出特殊点的坐标特征,为以后学习函数图像打下基础。

本节内容需2课时,本设计为第一课时,只是对点的坐标特征进行初步探究,而对于特殊点的坐标特征的深入研究是下一节课的重点与难点。

二、教学目标:(一)【知识目标】1、了解平面直角坐标系的产生过程;2、认识平面直角坐标系及其相关概念;3、探索象限内点的特征与坐标轴上点的特征。

(二)【技能目标】1、会正确画出平面直角坐标系;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;3、在给定的条件下,能够根据象限内点的特征与坐标轴上点的特征,结合特殊点,利用方程、不等式等已有的知识解决一些简单的数学问题;4、初步培养学生把现实问题抽象成数学模型的能力。

(三)【情感目标】1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。

3、让学生得到尝试、成功的情感体验,感受数学之美。

三、教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。

2、教学难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用。

四、教学媒体和教学技术选用1、提供学习资源:(1)笛卡尔与平面直角坐标系。

(2)数学拓展:GPS全球定位系统、极坐标、围棋棋子位置表示。

2、教学资源:根据教学需要制作相关的教学课件(“点将”游戏、成功的“点”、教室“点兵”),方便教学。

《1.1.1 直角坐标系》教学案1

《1.1.1 直角坐标系》教学案1

《1.1.1 直角坐标系》教学案1【基础知识导学】1、 坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。

2、 “坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。

3、 坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。

应注意:通过一个表达式,平面直角坐标系中坐标伸缩变换将x 与y 的伸缩变换统一成一个式子了,即⎩⎨⎧>='>=0,0,/μμλλy y x x 我们在使用时,要注意对应性,即分清新旧。

【知识迷航指南】【例1】(2005年江苏)圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN ,试建立适当的坐标系,求动点P 的轨迹方程。

解:以直线O 1O 2为X 轴,线段O 1O 2的垂直平分线为Y 轴,建立平面直角坐标系,则两圆的圆心坐标分别为O 1(-2,0),O 2(2,0),设P (y x ,)则PM 2=PO 12-MO 12=1)2(22-++y x 同理,PN 2=1)2(22-+-y x 因为PM=2PN ,即1)2(22-++y x =2[1)2(22-+-y x ],即,031222=++-y x x 即,33)6(22=+-y x 这就是动点P 的轨迹方程。

【点评】这题考查解析几何中求点的轨迹方程的方法应用,考查建立坐标系、数形结合思想、勾股定理、两点间距离公式等相关知识,及分析推理、计算化简技能、技巧等,是一道很综合的题目。

【例2】在同一直角坐标系中,将直线22=-y x 变成直线42='-'y x ,求满足图象变换的伸缩变换。

分析:设变换为⎩⎨⎧>⋅='>⋅='),0(,),0(,μμλλy y x x 可将其代入第二个方程,得42=-y x μλ,与22=-y x 比较,将其变成,442=-y x 比较系数得.4,1==μλ【解】⎩⎨⎧='='y y x x 4,直线22=-y x 图象上所有点的横坐标不变,纵机坐标扩大到原来的4倍可得到直线42='-'y x 。

平面直角坐标系(1)教学案.doc

平面直角坐标系(1)教学案.doc

教学案集备时间:画一个平面直 角坐标系.有序数对先写 横坐标,再写 纵坐标,顺序 不能颠倒.3. 类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的4.我们可心在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系. 阅读课本第41页,指出什么是x 轴(或横轴)、y 轴(或纵轴)、原点.5.点的坐标有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了,如图 3,由点A 分别向x 轴和y 轴作垂线,垂足肱在x 轴上的坐标是3,垂足N 在 y 轴上的坐标是4,有序数对(3,4)就叫做点A 的坐标,其中3是横坐标,4 是纵坐标.%1 请在图3中写出点3、C 、。

的坐标.%1 请在图2中建立适当的坐标系,写出点A 、3、C 、。

的坐标.2.如果小兵站在一个篮球场上,你用什么方法可以确定小兵的位置. 导学说明用一个数还可 以吗?反思点的位置呢?(例如图2中导学说明小组内交流,讨论.注意先写横坐标,再写纵坐标. 反思6.坐标轴上点的坐标问题:(1)在图4中的平面直角坐标系中,你能分别说出点A、4、C、D的坐标是什么吗?(2)从上面的练习中你有什么发现?原点。

的坐标是什么?尤轴和y轴上的点的坐标有什么特点?练习:1.课本第43页练习第1题.2.在前面的问题中,如果我们把小兵(P)的位置分别放在图5、图6的平面直角坐标系中,你能根据图中的数据分别写出点F的坐标吗?小结:1.平面直角坐标系的作用和有关概念.2.巳知一个点,如何确定这个点的坐标?反思作业:1. 如图,下列说法正确的是( 0.点A 的横坐标是4 B. 点A 的横坐标是一4 C. 点A 的坐标是(4, -2) 点A 的坐标是(一2, 4)2.下列说法中错误的是()轴上的所有点的纵坐标都等于0 B. y 轴上的所有点的横坐标都等于0 C. 原点的坐标是(0,0)点A (2, -7)与点B (-7, 2)是同一个点 3.习题6.1第3、4、9题(第4题要画图)教 学 反 思问老师 可有问。

平面直角坐标系第一课时.1 平面直角坐标系 教案2

平面直角坐标系第一课时.1 平面直角坐标系 教案2
写出图中A,B,C,D,E,F,O各点的坐标。
(五)怎样由点的坐标确定其在平面内的位置结合图形,启发学生想出方法。
例2在平面直角坐标系中,描出下列各点:
A(4,3),B(-2,3),
C(-4,l),D(2,一2),
E(-1.5,0),F(0,-2.5)。
结合课本的图,讲述确定坐标平面内点的坐标的方法。
以教室学生座。
1.结合课本的图
老师一边画,一边指,一边讲的形式,—一介绍平面直角坐标系及有关概念。
两条数轴
(l)互相垂直;
(2)原点重合;
(3)通常取向右、向上为正方向;
(4)单位长度一般取相同的。
学生画平面直角坐标系
以旧迎新
1.通过实例,使学生认识到平面内点的位置可以用一对实数来表示。
建立直角坐标系后知道了什么是平面内点的坐标以及怎样由点求坐标和由坐师生行为设计意图阅读本节教材思考并回答下列问题两条相交的数轴一定能组成平面直角坐标系坐标平面内的每一个点不论其位置如何它的坐标都是一对有序实2
课题:7.1.2平面直角坐标系




知识技能
1.使学生理解平面直角坐标系的有关概念,并会正确地画出平面直角坐标系。
2.使学生理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。
数学思考
通过画平面直角坐标系,渗透数、形结合思想,初步体会几何与代数间的联系.
解决问题
在平面直角坐标系中,根据坐标找出点,由点求得坐标。
情感态度
培养学生细致、认真的学习习惯,体验数学充满智慧和创造.
重点
1.能正确地画出平面直角坐标系。
五、布置作业
1.画出平面直角坐标系。
2.预习题:四个象限及坐标轴上的点的坐标各有什么特征?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面直角坐标系》教学案
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法.
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用.
教学重点:
体会直角坐标系的作用.
教学难点:
能够建立适当的直角坐标系,解决数学问题.
授课类型:
新授课
教学模式:
启发、诱导发现教学.
教具:
多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹.
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的.要出现正确的背景图案,需要缺点不同的画布所在的位置.
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线
的方向,就建立了平面直角坐标系.它使平面上任一点P 都可以由惟一的实数对(x ,y )确定.
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系.它使空间上任一点P 都可以由惟一的实数对(x ,y ,z )确定.
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1.选择适当的平面直角坐标系,表示边长为1的正六边形的顶点.
变式训练
如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置
例2.已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m .但在A 村的西北方向400米出,发现一古代文物遗址W .根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s ,已知A 、B 两地相距800米,并且此时的声速为340m /s ,求曲线的方程
2在面积为1的PMN ∆中,22
1-=∠=
∠MNP PMN tan ,tan ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程
例3 已知Q (a ,b ),分别按下列条件求出P 的坐标
(1)P 是点Q 关于点M (m ,n )的对称点
(2)P 是点Q 关于直线l :x -y +4=0的对称点(Q 不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点.
思考 通过平面变换可以把曲线14
1912
2=-++)()(y x 变为中心在原点的单位圆,请求出该复合变换?
五、小结:本节课学习了以下内容:
1.平面直角坐标系的意义.
2.利用平面直角坐标系解决相应的数学问题.
六、课后作业:。

相关文档
最新文档