第三章 第1课时 一元一次方程

合集下载

苏版初中数学课标版初一上册第三章实际问题与一元一次方程(第1课时)教案

苏版初中数学课标版初一上册第三章实际问题与一元一次方程(第1课时)教案

苏版初中数学课标版初一上册第三章3一、内容和内容解析1.内容建立方程模型解决配套问题和工程问题.2.内容解析配套问题和工程问题是生活中的常见问题,具有一定的电视性和开发性.生活中的数学问题大多是具有开放性的问题,因此对这类问题的探究是“数学回来生活,服务于生活”的需要.本节课是3.4节“实际问题与一元一次方程”的第一课,所设置的探究内容不仅是具体问题,更是通过问题的解决过程让学生体验“建模解题”的过程,为研究其它实际问题渗透建模思想.建模解题大致分为三个环节:将实际问题转化为数学模型(建立模型)、解决数学模型、利用模型结论说明实际问题,在这三个环节中“建立模型“尤为重要,需要学生具有一定的分析、转换能力.在配套和工程问题中建立模型的关键有两个,一是明白得配套问题和工程问题的差不多常识,二是发觉并利用相等关系确立方程模型.基于以上分析,确定本节课的教学重点:建立配套问题和工程问题的方程模型.二、目标和目标解析1.目标(1)体验建立方程模型解决问题的一样过程.(2)体会转化思想和方程思想,增强应用意识和应用能力.2.目标解析达成目标(1)标志是:经历以下过程:通过查找等量关系将配套问题和工程问题转化为方程问题、解决方程问题、利用方程问题的结论说明配套方案及工程方案.达成目标(2)的标志是:配套的比例是什么;如何依照配套比例查找相等关系;工作总量与工作效率、工作时刻之间的关系是什么?如何借助图表寻求工程问题中的相等关系;相等关系的数学模型—方程的建立对问题整体分析的重要性等等。

三、数学问题诊断分析学生通过之前的学习,把握了一元一次方程的解法,以及解决简单实际问题的方案,而关于在典型问题中应用方程模型,还缺乏结局问题的体会,容易无所适从或片面明白得.学生一样能够发觉“配套问题”和“工程问题”的解决要依靠于寻求等量关系,但缺乏系统有效的构建模型方法,会显现等量确定不准确的问题;同时学生缺乏将实际问题数学化,然后利用数学原理来说明问题的意识.关于本节课的问题,学生不是完全没有基础,知识在思维方式的逻辑性和解决方法的科学性方面有待清晰的梳理和规范,因此本节课针对以上问题,实施以下三个步骤:(1)先由学生依照问题情境独立摸索并表述对问题的认识;(2)通过借鉴其他同学的观点再次摸索、讨论;(3)教师在学生认识的基础上加以点播,引导学生数学化地解决问题,而后学生形成系统认识并解决问题.本节课的教学难点是:由实际问题抽象出数学模型的探究过程.四、数学支持条件分析依照本节课内容的特点,为了更直观、形象地突出“配套问题”和“工程问题”中的等量关系,可借助信息技术工具,将实际问题中的数量关系转化为表格或图形,关心学生确定探究方向,验证探究结论.五、数学过程设计1.创设情境,初步认知例题1 某车间有22名工人,每人每天能够生产1200个螺钉或2021个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?教师提问,学生摸索、回答.教师对学生回答的方向适当给予提示,如先寻求生产螺母人数如何用含x的代数式表达,再去寻求每天能生产多少个螺钉,多少个螺母.设计意图:通过提问和学生回答,了解学生对问题信息的明白得能力,引导学生对问题信息通过表格做初步梳理和简单加工;通过对表格填空,检验学生是够明白得问题信息的含义,并渗透如何寻求等量关系.2. 深入探究,尝试合作师生活动:教师提问,通过填写表格,你对题目中的螺钉和螺母的数量关系有什么认识?学生摸索回答.依照学生的回答,教师适当加以引导,利用“1个螺钉需要配2个螺母”的条件,得出每天螺钉生产数量和螺母生产数量之间的关系,从而列出方程:2×1200x=2021(22-x)注意:教师要关注学生在寻求等量时是否准确,是否显现螺钉数量是螺母数量的两倍或直截了当认为螺钉数量等于螺母数量等配套错误的现象.设计意图:学生通过对表格信息的探究,参考其他同学对问题中数量关系的观点后再次对问题进行认识,其认识过程与结论差不多逐步接近正确而合理的方向,教师在此基础上加以引导和启发,关心学生确定建立模型的研究方式,是学生的学习由“感性认识”逐步过渡到“理性分析”.师生活动:学生解方程,教师巡视,注意收集错例进行展现,由学生分析错误缘故,师生共同梳理规范解方程过程.设计意图:在得出方程模型的结论之后,学生再次认识去括号解一元一次方程的方法,在解答过程中进一步补充不严密、不完善的地点,加深对去括号解方程的认识.例题2 整理一批图书,由一个人做要40h完成,现打算由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?师生活动:教师引导提问,学生讨论交流.(1)人均效率(一个人做1小时完成的工作量)为 .(2)设先安排x 人,则先做4小时,完成的工作量为 . 再增加2人和前一部分人一起做8小时,完成的工作量为 .(3)这项工作分两段完成,两段完成的工作量之和为 .(4)完成下面表格:学生讨论交流,分小组展现成果,比比谁快、准.教师适当加以引导,利用人均效率、工作人数、工作时刻和工作量之间的关系,从而列出方程.注意:教师要关注学生在确定两时期工作量关系时是否准确,同时收集错例展现,并关注去分母解方程的过程是否正确.设计意图:通过活动使学生把握在工程问题中,通常把全部工作量简单表示为1.并得出运算工作量的差不多公式是:工作量=人均效率×人数×时刻. 假如一件工作分几个时期完成,那么“各时期工作量的和=总工作量”.师生活动:教师引导学生讨论归纳用一元一次方程解决实际问题的差不多过程.这一过程一样包括审、设、列、解、验、答等步骤,即审题、设未知数,列方程,解方程,检验所得结果,确定答案.正确分析问题中的相等关系是列方程的基础.设计意图:通过归纳解题的一样过程,使学生得到“方程模型“,初步体会建立模型思想在解决实际问题中的应用.3.巩固新知,应用拓展设未知数、列方程检 验练习1:一套仪器由一个A部件和三个B部件构成. 用13m钢材能够做40个A部件或240个B部件. 现要用6 3m钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?练习2:一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 假如由这两个工程队从两端同时施工,要多少天能够铺好这条管线?设计意图:在完成了对例题的探究和解题一样过程的归纳后,通过练习使学生刚刚猎取的体会得到进一步的巩固和深化,进一步熟悉利用建模思想解决解决问题的方法和过程,从而提高分析和解决问题的能力.4.归纳总结,反思提高教师与学生一起回忆本节课所学要紧内容,并请学生回答以下问题:本节课学习了哪些要紧内容?在探究过程中你有哪些收成?设计意图:在总结了本课知识性问题之后,连续引导学生总结本节课的过程和方法,使学生原先模糊的意识、零散的体会得以梳理,从而初步把握探究同类问题的一样思路,完成建模解题的完整过程.5.布置作业必做:教科书106页习题3.4第3-5题;选做:自己设计一道配套问题或工程问题.六、目标检测设计1.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒.现有150张白铁皮,可用多少张白铁皮制盒身、多少张白铁皮制盒底能够正好制成整套罐头盒而无余料?2.整理一批图书,假如由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?设计意图:检测学生对“配套”方程解决实际问题的能力.提示:设用x 张白铁皮制盒身,(150-x )张白铁皮制盒底,列方程2×16x=43(150- x ),解得x =86,150-86=64.2.本题要紧考查列一元一次方程解决工程问题的能力.提示:设先安排整理的人员有x 人,列方程130)6(230=++x x ,解得x=6.。

人教版七年级数学上册课件:第三章3.4第1课时

人教版七年级数学上册课件:第三章3.4第1课时

12. 整理一批数据,由一个人做需20 h完成,现在先由 若干人做2 h,然后增加2人再共同做4 h完成了这项工作, 问开始时参与整理数据的有几人?
解:设开始时参与整理数据的有x人. 依题意,得
×4=1. 解得x=2.
答:开始时参与整理数据的有2人.
13. 一个蓄水池有甲、乙两个进水管和一个丙排水管, 单独开甲管6 h可注满水池;单独开乙管8 h可注满水池, 单独开丙管9 h可将满池水排空,若先将甲、乙管同时开放 2 h,然后打开丙管,问打开丙管后几小时可注满水池?
能力提升 10. 用铝片做听装饮料瓶,每张铝片可制瓶身16个或 制瓶底43个,一个瓶身与两个瓶底配成一套,现有150 张铝片,用多少张制瓶身,多少张制瓶底才能正好制成整 套的饮料瓶?
解:设用x张制瓶身,则用(150-x)张制瓶底才能正 好制成整套的饮料瓶. 依题意,得 2×16x=43×(150-x). 解得x=86. 150-x=64. 答:用86张制瓶身,64张制瓶底才能正好制成整套的 饮料瓶.
A. 12x=18(28-x) B. 12x=2×18(28-x) C. 2×18x=18(28-x) D. 2×12x=18(28-x)
4. 杨老师带七(1)班的同学外出参加社会实践活动,住 宿的时候在分配房间时发现分配4人住1间,结果有3人没 有房间住;如果分配5人住一间,最后一间未住满还差2人, 问:杨老师总共带了多少名学生参加这次活动?设共有x个 房间,依题意列方程得( ) D
5. 一张桌子有一张桌面和四条桌腿,做一张桌面需 要木材0.03 m3,做一条桌腿需要木材0.002 m3. 现做一 批这样的桌子,恰好用去木材3.8 m3,则共做了多少张 桌子?
解:设共做了x张桌子,则桌面需要木材为0.03x m3, 桌腿需要木材为0.002x m3.依题意,得 0.03x+4×0.002x=3.8. 解得x=100. 答:共做了100张桌子.

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

初中七年级数学上册,第三章第一节第一课时,《一元一次方程》,新课教学课件

初中七年级数学上册,第三章第一节第一课时,《一元一次方程》,新课教学课件

(3)y² =4+y (5) 3m+2=1–m
( 7) x
1 1 0
(4)x+y=5 (6)3x+y=3x-5
------------强化训练-------------3、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= _____ -6 。 4、列方程:某数χ 的相反数比它的 大1 , 4 求某数。
|k 1 是一元一次方程,则k=__: -2 是一元一次方程,则k =____
第四关:( k 2 ) x kx 21 0
2
------------强化训练-------------5.下列等式中,是一元一次方程的为( C ) A、 2 x C、 2
y
y 1
2 y 3
;B、 ;D、
x
2
y ; 2
y
2
4

B
6.下列一元一次方程中,解为 的是( x 1 x 1 2 A、 2 x 1 4 B、 C、
2x 3 5

D、
x 2 2x 1
------------强化训练-------------7. 若关于 x 的方程 ( a 2 ) x 2 a x 1 0 是一元一次方程, 则 a =_______. 2
x
速度已知,路 程为x ,时间有 什么关系?
因为客车比卡车早1h经过B地,所以可列
x
等式为:______________. 60 70

x
1

小资料
x 60 x 70 1
必须掌握
方程
含有未知数的等式. 只含有一个未知数(元)x, 未知 数x的指数都是1次的方程.

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解实际问题的一般步骤

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解实际问题的一般步骤
例3 两桶内共有水48千克,如果甲桶给乙桶加水一倍, 然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶 内的水的质量相等.问:原来甲、乙两桶内各有多 少千克水?
感悟新知
2x-(48-x-x)
知3-讲
原来
第一次改变 后
甲桶内水的 质量 48-x
48-x-x
乙桶内水的 质量 x
2x
感悟新知
解:设乙桶内原来有水x千克, 则甲桶内原来有水(48-x)千克. 根据题意,得2(48-x-x)=2x-(48-x-x), 解得x=18,48-x=48-18=30. 答:甲桶内原来有水30千克, 乙桶内原来有水18千克.
感悟新知
知2-讲
(3)设圈出的四个数中,最小数为y,则另三个数 分别为:y+1、y+7、y+8,根据题意,得 y+(y+1)+(y+7)+(y+8)=56.
解这个方程,得y=10. 所以y+1=10+1=11,y+7=10+7=17, y+8=10+8=18. 答:这四天分别是10号、11号、17号、18号.
课堂小结
用一元一次方程解实际问题的一般步骤
1.①列方程解实际问题的关键是找等量关系. ②列方程时,方程两边所表示的量必须相等,并
且单位一定要统一. ③解出方程的解还要检验其是否符合实际意义. 2.列一元一次方程解应用题的一般步骤为:①审、
②设、③列、④解、⑤验、⑥答.
课后作业
作业1 必做:请完成教材课后习题 补充:
知1-导
感悟新知
(1)你认为小红和小华的做法正确吗?方程
知1-导
15%x+170=x与15%x=x-170有怎样的联系?

人教版七年级上册数学第三章《3.1.1一元一次方程》

人教版七年级上册数学第三章《3.1.1一元一次方程》

1700 + 150x = 2450
(3)某校女生占全体学生人数的52%,比 男生多80人,这个学校有多少学生?
解:设这个学校的学生数为x,那么女生数为
0.52x,男生数为(1-0.52)x.
列方程
0.52x-(1 - 0.52)x= 80
观察上面例题列出的三个方程有什么特征?
(1)只含有一个未知数x,
A.①②③④⑤ B.①③④⑤
C.②③④⑤
D.③④⑤
x C. =2 3 3 D. =2 x
2. 下列各式中,是一元一次方程的是( C ) A.3x-2=y B.x2-1=0
3. 根据条件列出等式: (1)比a大5的数等于8 a+5=8 ___________________
(2)b的三分之一等于9
1 b=9 3 ___________________
中的数量关系.
列方程时,要先设字母表示未知数,然后根
据问题中的相等关系,写出含有未知数的等式—
—方程.
通常用x,y,z等字母表示未知数,
法国数学家笛卡儿是最早这样做的人.我
国古代用“天元、地元、人元、物元”
等表示未知数.
知识点2
一元一次方程
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24 cm的铁丝围成一个正方形,
正方形的边长是多少? 解:设正方形的边长为x cm. 列方程 4x = 24.
(2)一台计算机已使用1700 h,预计每月再
使用150 h,经过多少月这台计算机的使用使用时间达到2450 h,
那么在x月里这台计算机使用了150x h.
列方程
(2)未知数x的指数都是1,
(3)整式方程.

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

人教版七年级数学上册3.解一元一次方程去括号课件

人教版七年级数学上册3.解一元一次方程去括号课件

1.移项要变号;
2.合并同类项时系数相加,
字母部分不变;
3.系数化为1时方程两边同
时除以未知数的系数或乘以
未知数系数的倒数。
新课导入
前面我们已经学习了运用移项、合并同类项的方法
解一元一次方程.对于像2(x–3)+3(x–1)=5这样的方程,
又该怎么办呢?今天我们来学习含有括号的一元一次
方程的解法.
分析:等量关系:这艘船往返的路程相等,即
×
×
顺流速度___顺流时间___逆流速度___逆流时间

解:设船在静水中的平均速度为x km/h,则顺流的速度
为(x +3) km/h,逆流速度为(x -3) km/h.

×
根据顺流速度___顺流时间___逆流速度
×
___逆流时间
列出方程,得 2(x+3)=2.5(x-3)
( A)
A. 1
B.
3
5
C.
1
5
D.-1
【解析】把x=a-1代入原方程,得3(a-1)+2a=2,解得a=1。
3.若关于x的方程 3x + ( 2a+1 ) = x-( 3a+2 ) 的解为x = 0,
则a的值等于 (
A.


B.
D )


C.



D.



4.定义新运算:对于任意有理数 a,b 都有 a*b=2a-b,如(-3)*4
A.4x-1-x-3=1
B. 4x -1- x+3 =1
C.4x-2-x-3=1
D.4x-2-x+3=1
【解析】去括号时,当括号前面是“-”号,括

3.1.1一元一次方程

3.1.1一元一次方程

3.1.1 一元一次方程
栏目索引
知识点二 一元一次方程
定义 条件
一般形式 重要 提示
只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫 做一元一次方程.如2x-3=0,5y+2=9等
(1)只含有一个未知数,如x-y=3含有两个未知数x,y,所以它不是一元一 次方程; (2)未知数的次数都是1,如x2-4=0中,x的次数是2,所以它不是一元一次 方程;
栏目索引
初中数学(人教版)
七年级 上册
第三章 一元一次方程
第三章 一元一次方程
栏目索引
3.1.1 一元一次方程
栏目索引
知识点一 方程的概念
定义 重要提示
知识拓展
含有未知数的等式叫做方程.如:3x-4=5,x2-16=0, 1 (y-1)= 1 (y-2)+1等
2
3
(1)方程必须同时具备两个条件:①等式;②等式中含有未知数,二者缺 一不可. (2)在方程2x+a+1=0中,若x是未知数,a是常数,则该方程叫做关于x的方 程. 方程中的未知数可以是一个,也可以是多个,未知数的次数可以是1次, 也可以是多次.如2x2=3y是方程. 方程中的未知数可以用x,y,z表示,也可以用其他字母表示
点拨 在一元一次方程中,如果未知数的次数或系数中含有某个字母常 数,根据一元一次方程中未知数的次数等于1与未知数的系数不等于0可 以求得这个字母常数.
3.1.1 一元一次方程
栏目索引
题型二 根据一元一次方程的解求值
例2 已知关于x的方程3a-x= x +3的解是x=4,求a2-2a的值.
2
分析 由方程的解的意义可知x=4必使方程左右两边相等,可把x=4代入

初一数学上-第三章:一元一次方程

初一数学上-第三章:一元一次方程

第三章:一元一次方程3.1.1 一元一次方程一、方程的前提:方程首先是一个等式二、方程的定义:含有未知数的等式叫方程三、一元一次方程的定义:只含有一个未知数,且未知数的次数都是1,等号两边都是整式,这样的方程叫一元一次方程注释:未知数叫“元”,有几个未知数就是几元;未知数的次数就是“次”,未知数的最高次数就是这个方程的次数。

例:x+4=-4x (一元一次方程)X+y=4 (二元一次方程)X+y=4 +z (三元一次方程)x2+4=3x-7 (一元二次方程)3.1.2等式的性质一共两个性质:(1)等式的性质1:等式两边加(或减)同一个数(或式子)结果仍相等。

通俗说法:等式中,同加同减结果还相等。

(2)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

通俗说法:等式中,同乘同除结果还相等,但除法中不能除以0,要把0除外。

精品题目1.下列方程中是一元一次方程的是()A.x+3=y+2 B.x+3=3﹣x C.=1 D.x2﹣1=02.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=23.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=54.①x﹣2=;②0.3x=1;③x2﹣4x=3;④=5x﹣1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.55.在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个6.已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2 B.m=﹣3 C.m=±3 D.m=17.关于x的一元一次方程x3﹣3n﹣1=0,那么n的值为()A.0 B.1 C.D.8.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数9.如果方程(m﹣1)x2|m|﹣1+2=0是一个关于x的一元一次方程,那么m的值是()A.0 B.1 C.﹣1 D.±110.若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0 B.3﹣a=b﹣1 C.2a=2b+2 D.﹣=111.已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣k B.x+2k=y+2k C.D.kx=kyA.若a=b,则a﹣3=b﹣3 B.若a=3,则a2=3a3.2.1解一元一次方程(一)----合并同类项和移项AB (1)移项:①定义:就是把等式左边的项移动到右边去,或者把右边的项移动到左边来②规则:移项过程中,被移动的每一项都要改变符号。

人教版七年级数学上册教案:第3章 一元一次方程 解一元一次方程(一)——合并同类项与移项(2课时)

人教版七年级数学上册教案:第3章 一元一次方程  解一元一次方程(一)——合并同类项与移项(2课时)

3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。

一元一次方程 精品课件

一元一次方程 精品课件
你会用算术方法解决这个问题吗?列算式试试. 如果设A,B两地相距: xkm,你能分别列式 表示 客车和卡车从A地到B地的行驶时间吗?
匀速运动中,时间=
路程 速度
.
根据问题的条件,
客车和卡车从A地到B地的行驶时间,可以分别表示
为 x h和 x h. 70 60
想一想,如何用式子表示两 车的行驶时间之间的关系?
⑥ 5 +3=2;⑦4(t-1)=2(3t+1).
y
A.1个 B.2个 C.3个 D.4个
知2-练
3 方程■x-2=2(x-3)是一元一次方程.■是被污
染了的x的系数,下列关于被污染了的x的系数的
值,推断正确的是( D )
A.不可能是-1
B.不可能是-2
C.不可能是0
D.不可能是2
知识点 3 方程的解
(来自教材)
知4-练
3 (中考·杭州)某村原有林地108公顷,旱地54公顷, 为保护环境,需把一部分旱地改造为林地,使 旱地占林地面积的20%,设把x公顷旱地改为林 地,则可列方程( B ) A.54-x=20%×108 B.54-x=20%×(108+x) C.54+x=20%×162 D.108-x=20%(54-x)
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
2 (中考·咸宁)方程2x-1=3的解是( C )
A.-1 B.-2 C.1
D.2
知3-练
3 (中考·无锡)方程2x-1=3x+2的解为( D )
A.x=1
B.x=-1
C.x=3
D.x=-3
知识点 4 列方程

苏科版数学七年级上册第三章3.4实际问题与一元一次方程

苏科版数学七年级上册第三章3.4实际问题与一元一次方程

第三章一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的___ 倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮、黑皮各多少块?(提示:一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍)针对训练部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B 部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?探究点2:工程问题填一填一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是 .议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:_____________________________________________________________________________.例2加工某种工件,甲单独作要20天完成,乙只要10天就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和. 2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间. 3. 通常在没有具体数值的情况下,把工作总量看作“1”. 针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题一元一次方程的解(x =a )设未知数,列方程检验1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x天制作甲种零件,则可列方程为.2.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x天完成,那么所列方程为.3.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4.一项工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?参考答案课堂探究一、要点探究解:设足球上黑皮有x块,则白皮为(32-x)块,五边形的边数共有5x条,六边形边数有6(32-x)条.依题意,得2×5x=6(32-x),解得x=12,则32-x=20.答:白皮20块,黑皮12块.【针对训练】1. 12x×3=18×(30−x)2.解:设应用 x 立方米钢材做 A 部件,则应用(6-x)立方米做 B 部件.根据题意,列方程:3×40x = (6-x)×240.解得x = 4.则6-x = 2.共配成仪器:4×40=160 (套). 答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.填一填(1议一议(1)工作效率、工作时间(2)工作量=工作效率×工作时间例2 解:解:设乙需工作x天后甲再继续加工才可正好按期完成任务,则甲做了(12-x)天.依题意,得11(12) 1.2010x x-+=解得x=8. 答:乙需工作8天后甲再继续加工才可正好按期完成任务.想一想:解:设甲加工y天,两人如期完成任务,则在甲加入之前,乙先工作了(8-y)天.依题意,得18 1.2010y +=解得y =4. 答:乙需加工4天后,甲加入合作加工才可正好按期完任务.【针对训练】解:设要 x 天可以铺好这条管线,由题意得:11 1.1224x x +=解方程,得x = 8. 答:要8天可以铺好这条管线. 当堂检测1. 2×50x = 20(30-x)2.88++1182418x= 3. 解:设用 x 立方米的木材做桌面,则用 (10-x) 立方米的木材做桌腿.根据题意,得 4×50x = 300(10-x),解得x =6,所以 10-x = 4,可做方桌为50×6=300(张). 答:用6立方米的木材做桌面,4立方米的木材做桌腿,才能使桌面、桌腿刚好配套,可做)+ 1.12xx =13+(3+) 1.24x =解得x = 13. 答:乙队还需13天才能完成.第三章 一元一次方程3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路. 重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路.一、要点探究探究点:销售中的盈亏 合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格.标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小.(1)盈利:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(2)亏损:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(3)不盈不亏:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”、 “<”或“=”).例1 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价 > 总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.请通过计算说明这次交易中的盈亏情况.例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题的关键.针对训练1.某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为元.2.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,则这种药品在2005年涨价前价格为元.二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)1.某种商品的进价为每件a 元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是( )A .85%a=10%×90B .90×85%×10%=aC .85%(90-a)=10%D .(1+10%)a=90×85%2.两件商品都卖120元,其中一件赢利25%,另一件亏本20%,则两件商品卖出后( ) A .赢利16元 B .亏本16元 C .赢利6元 D .亏本6元3.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( ) A .500元 B .400元 C .300元 D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?参考答案课堂探究一、要点探究连一连:进价也称成交价,是商店销售商品时的销售价格.标价商店销售商品时所赚的钱.售价商店购进商品时的价格.利润商店销售商品时标出的价格,也称定价.填一填:1.1802. 30 20%3.0.9a4.1.25a5.16议一议:(1)>>(2)<<(3)= =解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是-25%y元,列方程y+(-25%y)=60,解得y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元,120-128=-8元,所以这两件衣服亏损8元.【针对训练】1.解:设盈利20%的钢琴的成本为x元,x(1+20%)=960,解得x=800.设亏本20%的钢琴的成本为y元,y(1-20%)=960,解得y=1200.所以960×2-(800+1200)=-80,所以亏损80元.这次琴行亏本80元.2. 解:根据题意得:64-64÷(1+60%)+64-64÷(1-20%)=64-40+64-80=8(元).所以这次交易盈利8元.设盈利60%的计算器的成本为x 元,x (1+60%)=64,解得x=40.设亏本20%的计算器的成本为y 元,y (1-20%)=64,解得y=80.所以64×2-(40+80)=8(元),所以这次交易盈利8元.解:设该商品的进价为每件 x 元,依题意,得 900×0.9-40=10% x +x , 解得x =700.答:该商品的进价为700元.【针对训练】1.2722.5 2.10039a 当堂检测1. D2.D3.C4.解:设商店最多可以打x 折出售此商品,根据题意,得15001000(15).10x ⨯=+% 解得x = 7. 答:商店最多可以打7折出售此商品.5. 解:答:应在360元~480元内还价.。

七年级上册数学第三章《一元一次方程》教案

七年级上册数学第三章《一元一次方程》教案

数学七年级上册第三章《一元一次方程》教案课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.2 解一元一次方程(2)──合并同类项与移项课型:新授本课(节)第4课时本期总第课时【学习目标】:运用方程解决实际问题,会用移项法则解方程;【学习重点】:运用方程解决实际问题,会用移项法则解方程;【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系;【导学指导】一、知识链接解方程:(1)3x-2x=7;(2)14x+12x=3;二、自主探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等;根据这一相等关系,列方程: __________________;本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20即 3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.3x+20=4x-25↓移项3x-4x=-25-20↓合并同类项-x=-45↓系数化为1x=45由此可知这个班共有45个学生.例3 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】:1.解方程:(1)6x-7=4x -5 (2)12x-6 =34x (3)3x+5=4x+1 (4)9-3y=5y+5【要点归纳】:上面解方程中“移项”的作用很重要:“移项”使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x=a形式.在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”;【拓展训练】火眼金睛:下列移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得3x=6;课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.4实际问题与一元一次方程(4)课型:新授本课(节)第10课时本期总第课时【学习目标】1、掌握用分类讨论法解决电话计费问题,提高独立解决问题的能力。

《一元一次方程》(第1课时)说课稿

《一元一次方程》(第1课时)说课稿

第三章一元一次方程说课稿尊敬的各位领导、老师:大家好!今天说课的内容是人教版义务教育教科书七年级数学(上)第三章一元一次方程(第1课时)。

下面,我将从以下五个方面对本节课的设计进行说明.一、教材分析:1、教材所处的地位和作用:从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.2、教学目标:根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:知识技能目标①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.数学思考目标用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.情感价值目标:让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.3、重点、难点:结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.教学重点:知道什么是方程、一元一次方程,找相等关系列方程.教学难点:思维习惯的转变,分析数量关系,找相等关系。

3.1.1一元一次方程(教案)

3.1.1一元一次方程(教案)
5.情感与态度:激发学生对数学学习的兴趣,培养他们勇于探索、积极思考的学习态度,形成正确的数学价值观。
本节课将紧紧围绕这些核心素养目标,注重培养学生的综合能力和学科素养。
三、教学难点与重点
1.教学重点
(1)一元一次方程的定义及一般形式
-学生需要理解并掌握含有一个未知数,且未知数的最高次数为1的方程为一元一次方程。
3.解一元一次方程的方法:包括移项、合并同类项、系数化为1等步骤,培养学生解决一元一次方程的能力。
4.应用一元一次方程解决实际问题:通过列举生活中的实例,让学生学会将实际问题转化为方程,并运用所学知识求解。
5.一元一次方程的解的性质:让学生了解一元一次方程有唯一解的性质,并掌握如何判断方程是否有解。
针对学生在学习难点方面的掌握情况,我打算在下一节课中增加一些针对性的练习,尤其是移项和合并同类项方面的训练。同时,加强对学生的个别辅导,确保他们在这些难点上能够有所突破。
最后,我认为在今后的教学中,要注重以下几点:
1.加强基础知识讲解,让学生熟练掌握一元一次方程的定义、一般形式和解法。
2.注重培养学生的实际应用能力,将理论知识与生活实际相结合。
3.引导学生独立思考,提高他们在小组讨论中的参与度。
4.加强对学生的个别辅导,关注他们在学习中的困难,并及时给予帮助。
5.定期进行教学反思,调整教学方法和策略,以提高教学效果。
3.重点难点解析:在讲授过程中,我会特别强调一元一次方程的定义和解方程的方法这两个重点。对于难点部分,比如移项和合并同类项,我会通过具体的例题和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量物体的速度或距离,通过收集数据来构建一元一次方程。

人教版七年级上册数学精品教学课件 第3章 一元一次方程 第1课时 利用去括号解一元一次方程

人教版七年级上册数学精品教学课件 第3章 一元一次方程 第1课时 利用去括号解一元一次方程

解:-2x-10 = 3x-15-6, -2x-3x =-15-6+10, -5x =-11,
x 11. 5
二 去括号解方程的应用
例2 一艘船从甲码头到乙码头顺流而行,用了 2 h; 从乙码头返回甲码头逆流而行,用了 2.5 h. 已知水 流的速度是 3 km/h,求船在静水中的平均速度.
分析:这艘船往返的路程相等,即等量关系为: 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间
解:设壶中原有 x 斗酒, 依题意,得
2 [2(2x-1)-1]-1 = 0.
解得 x = 0.875. 答:壶中原有 0.875 斗酒.
课堂小结
1. 解一元一次方程的步骤:去括号→移项→合并 同类项→系数化为 1.
2. 若括号外的因数是负数,去括号时,原括号内 各项的符号要改变.
解:设他这个月用电 x 度,根据题意,得 0.50×100 + 0.65×(200 - 100) + 0.75(x - 200) = 310, 解得 x = 460.
答:他这个月用电 460 度.
方法总结:对于此类阶梯收费的题目,需要弄清楚各 阶段的收费标准,以及各节点的费用,然后根据缴纳 费用的金额,判断其处于哪个阶段,再列方程求解即 可.
6
解得 x = 840.
则 3×(840-24) = 2448.
答:两城之间的距离为 2448 km.
例3 为鼓励居民节约用电,某地对居民用户用电收费 标准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过部分每度按 0.65 元收费;如果超过 200 度,那么超过部分每度按 0.75 元收费.若某户居民 在 9 月份缴纳电费 310 元,则他这个月用电多少度? 提示:若一个月用电 200 度,则这个月应缴纳电费 为 0.50×100 + 0.65×(200 - 100) = 115 元. 故当缴纳 电费为 310 元时,该用户 9 月份用电量超过 200 度.

第1节 一元一次方程的基本概念

第1节  一元一次方程的基本概念

第三章一元一次方程第一节一元一次方程的基本概念一、课标导航1.方程的相关概念(1)方程:含有未知数的等式叫做方程.(2)方程的已知数和未知数.已知数:一般是具体的竖直,如x+5=0中(x的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上用a、b、c、m、n等表示.未知数:是指要求的数,未知数通常用x、y、z等字母表示,如:关于x、y的方程ax-2by=c中,a、-2b、c是已知数,x、y是未知数.(3)方程的解:使方程左、右两边相等的未知数的值,叫做方程的解.(4)解方程:求方程的解的过程叫做解方程.(5)方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边竖直相等,那么这个数就是方程的解,否则就不是.2.一元一次方程的定义(1)一元一次方程的概念只含有一个未知数,未知数的最高次数是1,这样的方程叫做一元一次方程.(2)一元一次方程的形式标准形式:ax+b=0(其中a≠0,a,b是已知数).最简形式:ax=b(其中a≠0,a,b是已知数).三、全能突破基础演练1.判断下列各式是不是方程,如果是,指出已知数和未知数.(1)5x -9=x ;(2)2|y |-2=3x ;(3)15x 2+1;(4)-1-1=-2;(5)4x -2=-x ;(6)52x y -=1.2.下列各式中:①x +3;②2+5=3+4;③x +4=4+x ;1x=2;⑤x 2+x +1=3;⑥x -4=4-x ; ⑦2|x |=3;⑧x 2+x =x (x +2)+3.关于x 的一元一次方程有 . 3.已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +534.下列等式是由5x -1=4x 根据等式性质变形得到的,其中正确的有( )个①5x -4x =1;②4x -5x =1;③52x -12=2x ;④6x -1=3x . A .0B .1C .2D .35.下列一元一次方程中,解为-3的是( )A .4x -5=3xB .5x -1=3x +4C .3x +2=2x -1D .7x -3=3x +1能力提升6.若(m -5)x =6是关于x 的一元一次方程,则m 的取值为( )A .不等于5的数B .任何数C .5D .-57.已知x |m-1|+3=0是关于x 的一元一次方程,则m =( )A .0B .1C .2D .0或28.若(5a +1)x 2-5bx -c =0是关于x 的一元一次方程,则一定有( )A .a =-15,b ≠0,c 为任意数B .a =-15,b ,c 为任意数C .a =-15,b ≠0,c =0D .a =15,b =0,c ≠09.若有公式M =2D dL-,用含有D 、L 、M 的代数式表示d 时,正确的是( ) A .d =D -2LM B .d =2LM -D C .d =LM -2DD .d =2LM D- 10.如图3—1—1所示,下列四个天平中,相同形状的物体的重量是相等的,其中第(a )个天平是平衡的,根据第(a )个天平,后三个天平仍然平衡的有( )个A.0 B.1 C.2 D.3 11.若关于x的方程(m-2)x|m-1|=5是一元一次方程,则m=.12.用等式的性质求未知数x:(1)8-x=6 (2)12x=8(3)x+5=6x(4)13x+32=013.已知m≠n且m+n=2012(m-n),则()()18045m nm n+-=.14.根据题意,列出方程:(1) x的20%与15的差的一半等于-2.(2) x的3倍比x的一半多15,求这个数.(3) 某数的3倍与2的差等于16,求这个数.(4) 笼子里有鸡和兔子共12只,共有40条腿,求鸡有多少只.(5) 用绳子量井深,把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺.求绳子的长.(6) 一块长方形的场地周长为310米,长比宽长25米,求这个场地的长和宽.(7) 一次劳动中,先安排31人去拔草,18人去植树,后又派20人支援他们,结果拔草的人数是植树的人数的两倍,求支援拔草的人数.15.已知:y1=4x-2,y2=8-x,当x为何值时,(1)y1=y2;(2)y1与y2互为相反数;(3)y1比y2小4.16.已知(m2-1)x2+(m+1)x+8=0是关于x的一元一次方程,它的解为n.(1)求代数式200(m+n)(n-2m)-3m+5的值;(2)求关于y的方程-m|y|=n的解.17.已知(m2-9)x2-(m-3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,求|a+m|+|a-m|的值.18.若p、q都是质数,以x为未知数的方程px+5q=97的根为1,求p2-q的值.中考链接19.(2011•江津区)已知3是关于x的方程2x-a=1的解,则a的值是()A.-5 B.5 C.7 D.2 20.(2010•淄博)下列结论中不能由a+b=0得到的是()A.a2=-ab B.|a|=|b|C.a=0,b=0 D.a2=b221.(2011•邵阳)请写出一个解为x=2的一元一次方程:.巅峰突破22.已知x=2是关于x的方程3x-2m=4的解,则m的值是()A.5 B.-5 C.1 D.-123.已知5是关于x的方程3mx+4n=0的根,那么nm=.24.若方程(m2-1)x2-mx+8=x是关于x的一元一次方程,则代数式m2008-|m-1|的值为.。

内乡县第四中学七年级数学上册第三章一元一次方程3.1从算式到方程3.1.1一元一次方程第1课时方程

内乡县第四中学七年级数学上册第三章一元一次方程3.1从算式到方程3.1.1一元一次方程第1课时方程

第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程(2课时)第1课时方程的概念1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.培养学生获取信息、分析问题、处理问题的能力.重点了解一元一次方程及相关概念.难点寻找问题中的相等关系,列方程.活动1:创设情境,导入新课师:小学中我们已经学习过列方程解决问题,什么是方程?你能举一个例子吗?学生回答.活动2:探究新知1.定义方程,回顾举例师:你知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?由学生举例,教师总结.练习:判断下列式子是不是方程,正确的打“√”,错误的打“×”.(1)1+2=3 (2)x+2>1 (3)1+2x=4(4)x+y=2 (5)x2-1 (6)x2=x+2(7)x+3-5 (8)x=82.如何根据题意列方程师:利用多媒体展示图片,出示教材本小节开头的问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时经过B地,A,B两地间的路程是多少?学生分组活动,同桌两个同学讨论看能否用算术方法解,然后考虑用方程如何解决,然后小组内同学交流,教师可以参与到学生中去,要关注学生解决问题的思路,在用算术法时,是否遇到了麻烦,用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km.根据客车比卡车早1小时经过B地,可得方程x 60-x70=1.在这一过程的教学中,教师不仅要使学生掌握本问题的解决方法,更重要的是让学生去体会列方程过程中的一般思路和方法.在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.活动3:归纳整理师:提出问题,你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上观察:算术方法与方程方法有什么不同的情况出现?从思路上看:你刚才做题的想法有什么不同?(师根据学生的口述列成表,便于比较)用方程解用算术方法解1.未知数用x表示,x参加列式 1.未知数不参加列式2.根据题意找出数量间的相等关系,列出含有未知数x的等式 2.根据题里已知数和未知数间的关系,确定解答步骤,再列式计算师指出:在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答.教师不必苛求学生的回答,只要学生能谈出一两点体会,教师都应当加以鼓励.练习:教材练习第1,2题.学生独立完成,然后交流.活动4:小结与作业小结:谈谈你本节课的收获.作业:习题3.1第1,5题.要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会做学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住实施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果.有理数混合运算的顺序1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________;(2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的.3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________.4. 计算:(-4×2.5)3的结果为( ).A. 1000B. -1000C. 30D. -305. 计算:-2×52-(-2×52)的结果为( ).A. 0B. -100C. 100D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 357. 计算:(1)(-21)-(-13)-|+5|+|-9|;(2)(-7)×(-6)-54÷(-6).8. 计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -29. 如果||a -1=0,2008(b +3)=1,那么b a -1的值是( ).A. -4B. -5C. -6D. 210. 计算:-102+(-10)2-103÷(-10)3=________.11. 计算:(1)-2-23×⎝ ⎛⎭⎪⎫123;(2)-22÷⎝ ⎛⎭⎪⎫-152×||-5×(-0.1)3;(3)32-(-5)2×⎝ ⎛⎭⎪⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 .(2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: .(3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. (2010•遵义)如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A.-1.1B.-1.8C.-3.2D.-3.9参考答案1. 一 二 三2. (1)乘方乘除加减(2)从左至右(3)小括号中括号大括号3. 假分数乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-808. B 9. A10. 111. (1)-3 (2)0.5 (3)-3 (4)4712. 解:(1)分配律;(2)⎪⎭⎫⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747.13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6.故答案为:37.6℃.15.C5.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档