有理数(一)课下练习
最新2019-2020年度北师大版七年级数学上册《有理数》课时练习及解析-精品试题
北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误. 分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
人教版七年级数学上册 第1章 有理数 1.2有理数 课后练习(含答案)
第1章有理数 1.2有理数一、选择题1.在12,0,1,-9四个数中,负数是( )A.12B.0 C.1 D.-92.如图,数轴上蝴蝶所在点表示的数可能为( )A.3 B.2 C.1 D.-13.相反数是它本身的数是( )A.1和-1 B.0C.0和±1 D.0和14.若|-3|=x,则x的值为( )A.3 B.-3C.±3 D.以上都不正确5.若a是有理数,则下列说法正确的是( )A.|a|一定为正数B.-a一定为负数C.-|a|一定为负数D.|a|+1一定为正数6.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列是( )A.-b<-a<a<b B.a<-b<b<-aC.-b<a<-a<b D.a<-b<-a<b7.学校、冰冰家、书店依次坐落在一条南北走向的大街上,学校在冰冰家的南边20米,书店在冰冰家的北边100米,冰冰从家里出发,向北走了50米,接着又向南走了70米,此时冰冰的位置( )A.在家B.在学校C.在书店D.不在上述地方8.已知数轴上的点A表示的数是2,那么在数轴上到点A的距离是3的点表示的数是( ) A.3或-3 B.5C.-1 D.-1或5二、填空题9.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,记作+0.23米,那么小东跳出了3.75米,记作________.10.若a是最大的负整数,则a=________;若b是绝对值最小的有理数,则b=________;若c比最小的正整数大3,则c=________.11.如图所示,表示0.5的点是________,表示-1.5的点是________,点A表示的数是________.12.化简下列各数:+(-5)=________,-(-313)=________,-[-(-335)]=________.13.A是数轴上的一个点,将点A先向右移动5个单位长度,再向左移动3个单位长度(向右为正方向),终点恰好是原点,则点A表示的数是________.14.比较大小:(1)-2.1________1;(2)-23________-34;(3)-(-5)________-|-5|.15.小明在写作业时不慎将墨水滴在数轴上,请根据图中的数值,判断墨迹盖住部分的整数有________个.三、解答题16.在数轴上表示出下列各数,并将它们用“<”号连接起来:0,-4.5,-|-3|,-(-1),1 3 .17.2018·淮安清江浦区期中把下列各数分别填入相应的大括号里:-4,-|-43|,0,227,-3.14,2020,-(+5),+1.88.(1)正数:{ …};(2)负数:{ …};(3)整数:{ …};(4)分数:{ …}.18.某汽车配件厂生产一种圆形橡胶垫,从中抽取6件产品进行检验.规定:其直径比标准直径大的部分记作正数;比标准直径小的部分记作负数.检查的结果(单位:毫米)记录如下:(1)请找出三个误差相对较小的零件,并用绝对值的知识来说明;(2)若规定与标准直径相差不大于0.2毫米的为合格产品,则6件产品中有几件不合格产品?请写出不合格产品的序号.19.观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2022个数是什么?(3)如果这一列数无限排列下去,与哪两个有理数越来越接近?20.小华骑车从家出发,先向东骑行2 km到达A村,继续向东骑行3 km到达B村,接着又向西骑行9 km到达C村,最后回到家,试解答下列问题:(1)以家为原点,向东为正方向,用1个单位长度表示1 km画数轴,并在数轴上表示出家以及A,B,C三个村庄的位置;(2)C村与A村的距离是多少?(3)小华一共行驶了多少千米?21.已知a,b,c为有理数,且它们在数轴上对应的点的位置如图所示.(1)试判断a,b,c的正负性.(2)根据数轴化简:①|a|=________;②|b|=________;③|c|=________;④|-a|=________;⑤|-b|=________;⑥|-c|=________.(3)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案1.D 2.D 3.B 4.A5.D 6.B 7.B 8.D 9.-0.25米10.-1 0 411.G D -3 12.-5 313 -33513.-2 14.(1)< (2)> (3)>15.9 [解析] 墨迹盖住部分的整数有-5,-4,-3,-2,1,2,3,4,5,共9个.16.解:将各数表示在数轴上如下:用“<”号连接为-4.5<-|-3|<0<13<-(-1). 17.解:(1)正数:{227,2020,+1.88,…}; (2)负数:{-4,-|-43|,-3.14,-(+5),…}; (3)整数:{-4,0,2020,-(+5),…};(4)分数:{-|-43|,227,-3.14,+1.88,…}. 18.解:(1)三个误差相对较小的零件是3号,4号,5号.理由:|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2.因为0<0.1<0.2<0.3<0.5,故三个误差相对较小的零件是3号,4号,5号.(2)6件产品中有2件不合格产品,分别是1号和2号.19.解:(1)第7,8,9个数分别为78,-89,910. (2)-20222023. (3)与1和-1越来越接近. 20.解:(1)如图:(2)2+|-4|=2+4=6(km).答:C 村与A 村的距离是6 km.(3)|2|+|3|+|-9|+|4|=2+3+9+4=18(km).答:小华一共行驶了18 km.21.解:(1)a为负数,b为正数,c为正数.(2)①-a ②b③c④-a ⑤b⑥c(3)a=-5.5,b=2.5,c=5.。
最新北师大版七年级数学上册《有理数》课时练习及解析
北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米 B.向西走8米 C.向西走-8米 D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数 B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数 D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米 B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克 D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误.分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
《有理数》同步练习 2022年一课一练附答案
1.2有理数1.2.1有理数能力提升,π,0,14,-5,0.333…六个数中,整数的个数为()1.在-225A.1B.2C.3D.4不属于()2.-12A.负数B.分数C.整数D.有理数3.在以下集合中,分类正确的选项是(),0.5,…}A.正数集合{5,32B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数()A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,非正数有.5.以下各数:-4,3.5,136.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√〞表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-312,99.9,0,4.(1)(2)9.写出五个数(不能重复),同时满足以下三个条件:①其中三个数是非正数; ②其中三个数是非负数; ③五个数都是有理数.10.在七(1)班举行的“数学晚会〞上,A,B,C,D,E 五名同学的手上各拿着一张卡片,卡片上分别写着以下各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢创新应用★11.黑板上有10个有理数,小明说“其中有6个正数〞,小红说“其中有6个整数〞,小华说“其中正分数的个数与负分数的个数相等〞,小林说“负数的个数不超过3个〞.请你根据四名同学的表达判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C-12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21-4,0,-26.0和负整数正分数17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0.解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.第二课时一元一次方程能力提升1.以下说法中错误的选项是()A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元x-1=5D.比x的一半大-1的数是5,那么可列方程122.某市电力部门呼吁广阔市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,那么有8人无座位;每排坐31人,那么空出26个座位.以下方程正确的选项是()x-8=31x+26x+8=31x+26x-8=31x-26x+8=31x-263.假设x=2是关于x的方程2x+3m-1=0的解,那么m的值为()A.-1 D.134.方程(a-2)x|a|-1=1是关于x的一元一次方程,那么a=.5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心〞的活动,王老师利用寒假带着团员乘车到农村开展“送字典下乡〞活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.〞乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.〞王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ 农场〞游戏时,观察好友“咖啡思语〞和“雨薇〞的信息发现:“咖啡思语〞的金币比“雨薇〞的金币的4倍还多3个.“咖啡思语〞的金币数如下列图,那么“雨薇〞有多少个金币如果设“雨薇〞有x 个金币,那么可列方程为.8.由于电子技术的飞速开展,计算机的本钱不断降低,假设每隔3年计算机的价格降低13,现价为2 400元的某型号计算机,3年前的价格为多少元下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.〞 顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.〞请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可) ★10.关于x 的方程ax+b=c 的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的16;七(2)班捐的钱数是四个班捐款总和的13;七(3)班捐的钱数是四个班捐款总和的14;七(4)班捐了159元,求这四个班捐款的总和.假设设这四个班捐款的总和为x 元,你能列出方程吗并检验x=636是不是所列方程的解.★12.关于x 的方程(m-3)x m+4+18=0是一元一次方程. 试求:(1)m 的值; (2)2(3m+2)-3(4m-1)的值.参考答案能力提升 1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2由题意,得|a|-1=1,所以|a|=2, 所以a=2或a=-2. 又因为a-2≠0, 所以a ≠2,所以a=-2. 5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x 此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x 元,根据题意,得x =2400,经检验知,x=3600是方程的解. 9.解:设顾客买了x 箱鸡蛋,由题意,得12x=2×14x-96. 10.解:当x=1时,有a+b=c ,所以|c-a-b-1|=|0-1|=1. 创新应用11.解:根据题意,列方程得16x+13x+14x+159=x.将x=636代入方程的两边,左边=16×636+13×636+14×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解. 12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.。
新人教版七年级数学《有理数》课堂同步练习题
新人教版七年级上册数学《有理数》课堂同步练习题一、正数、负数一、【基础平台】1.任意写出5个正数:_______________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:-51,432,-3.14,+3065,0,-239.则正数有_________________________;负数有__________________.4.向东行进-50m表示的意义是〖〗A.向东行进50m B.向南行进50mC.向北行进50m D.向西行进50m5.下列结论中正确的是〖〗A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213,+3.1,-21,-2004,+2008.其中是负数的有〖〗A.2个B.3个C.4个D.5个二、【自主检测】1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.某天中午11时的温度是11℃,早晨6时气温比中午低7℃,则早晨温度为_____℃,若早晨6时气温比中午低13℃,则早晨温度为_____℃.4.“甲比乙大-3岁”表示的意义是______.5.在下列四组数(1)-3,2.3,41;(2)43,0,212;(3)311,0.3,7;(4) 21,51,2中,三个数都不是负数的组是〖〗A.(1)(2) B.(2)(4)C.(3)(4) D.(2)(3)(4)三、【拓展平台】1.写出比0小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.3、学校对初一男生进行立定跳远的测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2,-4,0,+5,+8,-7,0,+2,+10,-3 问:第一组有百分之几的学生达标?二、有理数、数轴一.填空题1.数轴上原点所表示的数是(),原点右边的点所表示的数是()数,原点左边的点所表示的数是()数.2.数轴上表示-4.5的点到原点的距离是()个单位长度;+4.5的点到原点的距离是()个单位长度;到原点距离4.5个单位长度的数有()个.3.数轴上的点A所对应的数是-2,点B所对应的数是5,那么A、B两点的距离是(),点A、B的中点表示的数是().4.一个点从数轴的原点开始,先向右移动了3个单位长度,再向左移动4个单位长度,则终点表示的数是().5.小于7.5的正整数有(),大于-3小于3的整数有()。
第一章有理数一颗一练(课本同步含答案)
第一章有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示.5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F遇到+3就变成了L.”余英提问:“从L出发前进2下.”……依此规律,当李明回答“Q遇到-4就变成了M”时,赵燕刚刚提出的问题应该是.6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有;负数有;既不是正数,也不是负数的有.1.2 有理数1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( )A.-12B.1 7C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有,正分数有,非正有理数有.5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A表示的有理数是3,将点A向左移动2个单位长度,这时A点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是.5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和1 3C.-2和-12D.0和03.若一个数的相反数是1,则这个数是.4.化简:(1)+(-1)=;(2)-(-3)=;(3)+(+2)=.5.求出下列各数的相反数:(1)-3.5;(2)35;(3)0;(4)28;(5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是.5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x+1|+|y-2|=0,求x,y的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-22.有理数a在数轴上的位置如图所示,则( )A.a>2B.a>-2C.a<0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12-23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.211-+0.5=-1 B.(-2)+(-2)=4C.(-1.5)+⎪⎭⎫ ⎝⎛-212=-3 D.(-71)+0=715.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)187-+⎪⎭⎫ ⎝⎛-61.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法律)=( )+( )=.3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎪⎭⎫⎝⎛-312+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg,77kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,25kg,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)32--112-⎪⎭⎫⎝⎛-41.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)-321-⎪⎭⎫ ⎝⎛-325+713;(3)-0.5+⎪⎭⎫⎝⎛-41-(-2.75)-12; (4)314+⎪⎭⎫ ⎝⎛-817+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4.1 有理数的乘法第1课时有理数的乘法法则1.计算-3×2的结果为( )A.-1B.-5C.-6D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是;(2)-12的倒数是.4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎪⎭⎫⎝⎛-2516; (4)(-2.5)×⎪⎭⎫⎝⎛-312.第2课时多个有理数相乘1.下列计算结果是负数的是( )A.(-3)×4×(-5)B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5)2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝⎛⎭⎪⎫-97×(-24)×⎝⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( )A.加法交换律B.加法结合律C.乘法交换律和结合律D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180 C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=12 4.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( )A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12D.(-2)×3+2×⎝ ⎛⎭⎪⎫-125.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律) =[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( )A.-64B.64C.1D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2) C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等 5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( )A.-52B.-58C.52D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= . 2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 .3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( )A.-(-2)2=4 B.-(32-)2=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32 B.(-2)2与-22 C.|-2|与-|+2| D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎪⎭⎫⎝⎛253= .7.计算:(1)(-2)3; (2)-452; (3)-⎪⎭⎫ ⎝⎛-732; (4)⎪⎭⎫ ⎝⎛-323.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第一章 有理数1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-259 0 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.3 5.正整数集合:{+4,13,…};负整数集合:{-7,-80,…};正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…}; 非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}. 1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35. (3)0的相反数是0.(4)28的相反数是-28.(5)-2018的相反数是2018.6.解:如图所示.1.2.4 绝对值第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下:-6<-514<-35<0<1.5<2. 1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019.(4)原式=0.(5)原式=4.(6)原式=-59. 第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10.(2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812-112+312=-12. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3.(2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112.(4)原式=314+534+⎝⎛⎭⎫-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.C2.B3.(1)16 (2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621-10 -6 8 -48 (2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0.(3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23.(4)原式=-34×73×67=-32. 第2课时 分数的化简及有理数的乘除混合运算 1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59. (3)原式=-30×415×38×112=-14. 第3课时 有理数的加、减、乘、除混合运算 1.C 2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂 6.(1)-1 (2)-81 (3)0 (4)12587.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827. 第2课时 有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. (3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46.(4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 1.5.2 科学记数法1.C2.C3.C4.(1)1.02×106 (2)7 (3)2990000005.解:(1)6.4×106m.(2)4.0×107m.1.5.3 近似数1.D2.C3.B4.百万 270000005.解:(1)23.45≈23.5.(2)0.2579≈0.26.(3)0.50505≈0.5.(4)5.36×105≈5.4×105(或54万).。
新人教版七年级上册第一章有理数全部 课堂同步练习之欧阳科创编
新人教版七年级上册第一章有理数全部课堂同步练习第1课正数和负数1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.如果温度上升3℃记作+3℃,那么下降5℃记作____________.3.海拔高度是+1356m,表示________,海拔高度是-254m,表示______.4.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.5.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.6.粮食产量增产11%,记作+11%,则减产6%应记作______________.7.如果向西走12米记作+12米,则向东走-120米表示的意义是___.8.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.9.在下列横线上填上适当的词,使前后构成意义相反的量:(1)收入1300元,800元;(2)80米,下降64米;(3)向北前进30米,50米.10.观察下列排列的每一列数,研究它的排列有什么规律?并填出空格上的数.(1)1,-2,1,-2,1,-2,,,,…(2)-2,4,-6,8,-10,,,…(3)1,0,-1,1,0,-1,,,,…11.甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.12.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?13.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值;(2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差;第2课有理数测试1、___、___和___统称为整数;___和___统称为分数;___、___、___、___和___统称为有理数;___和___统称为非负数;___和___统称为非正数;___和___统称为非正整数;___和___统称为非负整数;2、6,2005,212,0,-3,+1,41-,-6.8中,正整数和负分数共有…( )A .3个B .4个C .5个D .6个3、下列不是有理数的是( )A 、-3.14B 、0C 、37D 、π4、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.35、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对6、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数7、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版数学七年级上册第一章有理数《有理数的减法(一)》学习任务单及课后练习作业设计
人教版数学七年级上册第一章有理数《有理数的减法(一)》学习任务单及课后练习【学习目标】1.理解有理数减法的意义;2.有理数减法法则的理解和运用.【课前学习任务】复习有理数加法法则【课上学习任务】学习任务一:1.北京市某天气温是-3ºC~3ºC,这天的温差是多少摄氏度呢?那么我们应该列什么样的算式呢?加法还是减法?2.观察下面两个算式:3 −(−3) = 6 ①3 + (+3) = 6 ②你有什么发现?有什么相同?有什么不同?3.在进行有理数减法运算时,有几个要素要发生改变?学习任务二:4.我们今天学习的减法运算与小学学习的减法运算有什么不同?5.有理数的减法法则是什么?6.进行有理数的减法运算时需要注意哪几个步骤?7.观察被减数与减数之间的大小关系与差的正负性之间有什么关联呢?【课后作业】(1)6-9 (2) (+4)-(-7)(3)(-5)-(-8) (4) 0 -(-5)2.计算:(1)(-2.5)-5.9 (2) 1.9 -(-0.6)(3)1.8 − 5.6 (4)(−5.2) − (−7.1)(5)(−0.9) − (−1.5) (6) 2 − 5.7(7)1.7 − (−2) (8)(−0.6) − 0.253.计算:4.计算:(1)比 2ºC 低 8ºC 的温度;(2)比-3ºC 低 6ºC 的温度.5. 陆上最高处是珠穆朗玛峰的峰顶8844.43米,最低处位于亚洲西部名为死海的湖−415米,两处高度相差多少?课后作业答案:1.(1)-3;(2)11;(3)3;(4)5;2.(1)-8.4;(2)2.5;(3)-3.8;(4)1.9;(5)0.6;(6)-3.7;(7)3.7;(8)-0.854.(1)-6ºC;(2)-9ºC.用珠穆朗玛峰的海拔高度减去死海的海拔高度,即具体列式为8844.43 −(−415),然后根据减去一个数等于加上这个数的相反数进行计算即可得解.具体解答过程为:解:8844.43 − (−415) ,= 8844.43 + 415,= 9259.43(米).故答案为9259.43 米.。
第一课有理数大练习
15 16
<
20 20
∴
3 4
> 4 5
例2 十袋大米,以每袋50千克为准,超过的千 克数记作正数,不足的千克数记作负数,称重 的记录如下:
+0.5, 0, +0.3, -0.2, -0.3, +1.1, -0.7, -0.2, +0.6, +0.7 十袋大米共超重或不足多少千克?总重量是多 少千克?
-810000
写成科学记数法形式吗?说说你 的理由。
-810000= -8.1×100000=
-8.1×105
例题尝试
例2、说出下列各式的意义并化简符号 (1)-(+3) (2)-(-4)
解 (1) -(+3)表示+3的相反数 所以 -(+3)=-3
(2)-(-4)表示-4的相反数 所以-(-4)=4
(B) 负数 (D) 非负数
(3)一个数的相反数的绝对值是正数,这个数一定是
(A) 非正数
(B) 非负数
(C) 非零数
(D)不能确定
文字叙述 表达式叙述
一个数的绝对值是它本身,这个数是( 正数或零 ). 一个数的绝对值是它的相反数,这个数是(负数或零).
如果 | a | = a , a 0 . 如果 | a | = -a , a 0 .
解: 依题意得
5 (1) 0.8 100
=6÷0.8×100 =750(米)
答: 这个山峰的高度为750米.
练习:
1.两个数的商是正数,那么这两个数是( )
A.和为正 B.和为负 C.积为正 D.异号 2.如果a÷b=0,那么( )
A.a=0,b=0 B.a=0,b≠0 C. a≠ 0,b=0 D.a=0
例1 把下列各数分别填在相应的大括号中,并在数轴上 把他们表示出来,用“<”号把它们从小到大的顺序连接
浙教版七年级上册数学第1章 有理数课本练习及答案
课本练习—《1.1 从自然数到有理数》第一课时课内练习1.鸟类中最大的蛋是鸵鸟蛋,一个鸵鸟蛋的质量大约是1500克. 如果改用千克作单位,应怎样表示鸵鸟蛋的质量?答案:1500克=1.5千克,所以改用千克作单位,鸵鸟蛋的质量为1.5千克.2.一张课桌桌面的长与宽大约是几米?先估计,然后量一量,与你的同伴比一比,看谁的估计更准确些. 请算一算,宽是长的百分之几?答案:答案不唯一,按操作要求先估计桌面的长和宽,然后再动手测量,最后计算3.请举一个实际例子,说明只有自然数、分数还不能满足人们生活和生产实际的需要.答案:答案不唯一.例如:小聪原有零用钱12元,星期一花了5元,星期三他母亲又给他10元,星期四用了12元,此时,小聪还想购买一支单价为14.90元的钢笔,钱够吗?作业题1.请阅读下面这段报道:杭州湾跨海大桥于2008年5月1日全线通车,这座6车道公路斜拉桥设计日通车量为8万辆,时速100千米/时,全长36千米,使用年限为100年,是当时世界上最长、工程量最大的第1跨海大桥.你在这段报道中看到了那些数?请找出这些数,并说明它们哪些表示计数和测量,哪些表示标号或排序.答案:解:看到了自然数2008,5,1,6,8,100,36,100.表示标号或排序的有“2008年5月1日中的数”;表示计数和测量的有“6车道”“8万辆”“100千米/时”“36千米”“100年”中的数.2.一种商品有两种不同规格的包装,其质量和价格如图所示.请问哪一种包装每毫升的价格比较低?答案:解:15÷250=0.06元/毫升,25÷500=0.05元/毫升,因为0.06>0.05,所以500mL包装每毫升的价格比较低.3.如图所示的正方形的边长为2,用分数表示下列各图形的面积.答案:(1)29×4=89;(2)39×4=43;(3)69×4=83.4.因燃油涨价,从城市A到城市B的货运价格上调了15%,三个月后又因燃油价格的回落而重新下调15%. 问下调后的货运价格与上涨前相比,有变化吗?是贵了,还是便宜了?答案:解:设上涨前的货运价格为a元,则上涨15%后的货运价格是a(1+ 15%)= 1.15a(元),重新下调10%后的价格是1.15a(1-15%)= 1.15a×0.85= 0.9775a(元),因为0.9775a<a,所以下调后的价格比上涨前的便宜了.5.商店里有单价分别为1元,1元5角,2元2角三种贺年卡. 小明每种先买了5张,为了凑成整元,小明又买了1张贺年卡.(1)用元作单位,各种贺年卡的单价应怎样表示?(2)小明一共支付了多少钱?答案:解:(1)1元,1.5元,2.2元.(2)1×5+ 1.5×5+2.2×5= 23.5(元).因为小明又买了一张贺年卡凑成了整元,于是可知他买的是单价为1.5元的贺年卡,因此,小明共付的钱数为23.5+1.5= 25(元).课本练习—《1.1 从自然数到有理数》第二课时 课本例题1. 下列给出的各数,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是整数?哪些是分数?哪些是有理数? -8.4,22,+176,0.33,0,−35,-9答案:解:22是正整数;-9是负整数;+176,0.33是正分数;-8.4,−35是负分数;22,0,-9是整数;-8.4, +176,0.33, −35是分数;所给各数均为有理数.课内练习 1. 填空:(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正. 汽车向北行驶45km ,记做+45km (或45km ),汽车向南行驶60km ,记做-60km.(2)如果银行账户余额增加50元记为50元,那么-30.50元表示银行账户余额减少30.50元. (3)规定增长的百分比为正,增加25%记做25%(或+25%),-12%表示减少12%.(4)规定温度零上为正,月球白天气温高达零上123℃,记为123℃(或+123℃),夜晚气温低至零下233℃,记为-233℃. 图中阿波罗11号宇航员登上月球后不得不穿着既御寒又防热的太空服.2. 判断表中各数分别是什么数,在相应的空格内打“√”.答案:作业题 1. 填空:(1)某校举行“生活中的科学”知识竞赛,若将加200分记为+200分,则扣200分记为-200分. (2)记运入仓库的大米吨数为正,则-3.5吨表示运出大米3.5吨,2.5吨表示运入大米2.5吨. (3)如果+3表示转盘沿逆时针方向转3圈,那么-6表示转盘沿顺时针方向转6圈.(4)规定海面以上的高度为正,则海鸥在海面以上2.5米处,可记为+2.5米(或2.5米);鱼在海面以下3米处,可记为-3米;海面的高度可记为0米.2. 把下列各数填入相应的横线内:-2.7,15,56,0.11,0,−1213,-21,+9.87,+69,+47,0.99. 正整数:15,+69; 负整数:-21;正分数:56,0.11,+9.87,+47,0.99; 负分数:-2.7,−1213;正有理数:15,56,0.11,+9.87,+69,+47,0.99; 负有理数:-2.7,−1213,-21.3. 任意写出两个自然数,两个负整数,一个正分数和两个负分数. 答案:答案不唯一,如: 两个自然数:2,3;两个负整数:-1,-2;一个正分数:4;5,-3.14两个负分数:−344.小聪、小明、小慧三位同学分别记录了一周内各天收支情况,如下表(记收入为正,单位:元).根据上表回答下列问题:(1)说出“小聪”这一行中10,-5.20,0,-4.80,5,-3,-4各数的实际意义.(2)说出“星期五”这一列中-6,6的实际意义.(3)说出“结余”一列中-2,1,0的实际意义.答案:解:(1)10表示小聪星期一收入10元,-5.20表示小聪星期二支出5.20元,0表示小聪星期三没有收入也没有支出,-4.80表示小聪星期四支出4.80元,5表示小聪星期五收入5元,-3表示小聪星期六支出3元,-4表示小聪星期日支出4元;(2)-6表示小明星期五支出6元,6表示小慧星期五收入6元;(3)-2表示小聪一周总计超支2元,1表示小明一周累计盈余1元,0表示小慧一周没有盈余也没有超支.5.下列各数中,哪些数是负数而不是整数?哪些数是整数而不是负数?哪些数既是负数,又是整数?-3,−6,5,-5.1,0,-1.7和-5.1是负数而不是整数;5和0是整数而不是负数;-3和-1既是负数,又是整数.答案:−67课本练习—《1.2 数轴》 课本例题1. 如图,数轴上点A ,B ,C ,D 分别表示什么数?答案:解:点A 表示-5,点B 表示-1,点C 表示0,点D 表示3.5. 2. 在数轴上表示下列各数:(1)0.5,−52,0,-4,52,-0.5,1,4. (2)200,-150,-50,100,-100. 答案:解:(1)如图所示:(2)如图所示:课内练习1. 如图,数轴上点A ,B ,C ,D ,E 分别表示什么数?其中哪些数是互为相反数?答案:解:点A ,B ,C ,D ,E 分别表示-4.5,-1,1,2,4.5,其中-4.5与4.5,-1与1互为相反数.2. 在下表的空格中填入适当的数,并把这些数表示在数轴上.答案:解:−133的相反数是133;相反数是+3.3的数是-3.3;0的相反数是0。
人教版七年级数学上册 第1章 有理数 1.1 正数和负数 课后练习(含答案)
第1章 有理数 1.1正数和负数一、选择题1.下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( ) A .2个 B .3个 C .4个 D .5个2.下列关于“0”的说法正确的是( )A .0既是正数,也是负数B .0是偶数,但不是自然数C .0既不是正数,也不是负数D .0 ℃表示没有温度3.在下列选项中,具有相反意义的量的是( )A .收入20元与支出30元B .上升6米与后退7米C .卖出10千克米与盈利10元D .长大1岁与减少2千克4.若海平面以上1045米,记作+1045米,则海平面以下155米,记作( )A .-1200米B .-155米C .155米D .1200米5.在跳远测验中,合格的标准是4.00 m ,王非跳了4.12 m ,记作+0.12 m ,何叶跳了3.95 m ,记作( )A .+0.05 mB .-0.05 mC .+3.95 mD .-3.95 m6.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( )A .-3B .-1C .2D .47.某粮食店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)千克,(25±0.2)千克,(25±0.3)千克的字样.从中任意拿出两袋,它们的质量最多相差( )A .0.8千克B .0.6千克C .0.5千克D .0.4千克二、填空题8.如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.9.若指针顺时针旋转4圈记作+4圈,则-5圈表示的意义是______________.10.若小亮的体重增加了3 kg,记作+3 kg,则小阳的体重减少了2 kg,可记作________kg.11.在4个不同时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降.如果上升3厘米记为+3厘米,那么,其余3个记录分别记为____________________.12.如果运进40千克大米记为+40千克,那么运进-45千克大米表示的意义是________________.13.将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.正数:_______________________________________________________________________;负数:______________________________________________________________________.链接听P1例1归纳总结14.写出与下列各量具有相反意义的量:(1)飞机上升200米,____________;(2)铝球的质量低于标准质量2克,__________________________________________;(3)木材公司购进木材2000立方米,_____________________________________________.15.如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.16.某种药品的说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度:________.三、解答题17.2019年,小明、小刚、小兰、小颖四个家庭的旅游费用开支比上一年的变化情况如下:小明家增长20%,小刚家减少15%,小兰家增长18%,小颖家与上一年持平.请用正、负数分别表示这一年中四个家庭的旅游费用增长率;哪些家庭的旅游费用增长了?哪些家庭的旅游费用减少了?哪个家庭的旅游费用的增长率最高?哪个家庭的旅游费用最高?18.某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?19.粮库粮食进出记录如下(运进为正):请说明每天粮食进出记录的实际意义.链接听P1例3归纳总结20.“牛牛”饮料公司的一种瓶装饮料外包装上有“(500±30)mL”的字样,那么“±30 mL”是什么含义?质检局抽查了5瓶该产品,容量分别为503 mL,511 mL,489 mL,473 mL,527 mL,则抽查的产品的容量是否合格?21.某化肥厂计划每月生产化肥500吨,2月份超额生产12吨,3月份少生产2吨,4月份少生产3吨,5月份超额生产6吨,6月份刚好完成计划指标,7月份超额生产5吨.请你设计一个表格,用所学知识表示这6个月的生产情况.参考答案1.B 2.C 3.A 4.B 5.B6.B7.B8.-209.指针逆时针旋转5圈10.-211.-6厘米,-1厘米,0厘米12.运出45千克大米13.67,4,1.3,3.14,π-15,-0.02,-171,-21314.(答案不唯一)(1)飞机下降200米(2)铝球的质量高于标准质量2克(3)木材公司售出木材2000立方米15.15 516.答案不唯一,如20 ℃[解析] 只要是大于或等于18 ℃且小于或等于22 ℃的温度都正确.17.解:小明家:+20%,小刚家:-15%,小兰家:+18%,小颖家:0;小明家和小兰家的旅游费用增长了,小刚家的旅游费用减少了;小明家的旅游费用的增长率最高;无法比较各个家庭的旅游费用.18.解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.19.解:由表格可知15日运进粮食82 t,16日运出粮食17 t,17日运出粮食30 t,18日运进粮食68 t,19日既没有运进粮食也没有运出粮食.20.解:“±30 mL”表示产品的实际容量比500 mL最多多30 mL,最少少30 mL.抽查的5瓶产品容量都在(500-30)mL和(500+30)mL之间,所以抽查的产品的容量都是合格的.21.解:规定500吨为标准,超过的吨数记为正数,不足的吨数记为负数,则该化肥厂2~7月份的生产情况如下:。
人教版2020年七年级数学上册1.2.1《有理数》课后练习(含答案)
人教版2020年七年级数学上册1.2.1《有理数》课后练习1.下列说法中正确的是( )A .正数和负数统称为有理数B .0既不是整数,又不是分数C .0是最小的正数D .整数和分数统称为有理数2.把下列各数填入相应的括号内:11,-,6.5,-8,3,0,1,-1,-3.14.2312(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)正整数集合:{ …};(5)负整数集合:{ …};(6)分数集合:{ …};(7)正分数集合:{ …};(8)负分数集合:{ …};(9)有理数集合:{ …}.3.下列语句正确的是( )A .一个有理数不是正数就是负数B .一个有理数不是整数就是分数C .有理数就是整数D .有理数就是自然数和负数的统称4.下列说法中正确的是( )A .在有理数中,0的意义仅表示没有B .非正有理数即为负有理数C .正有理数和负有理数组成有理数集合D .0是自然数5.在0,,-,-8,+10,+19,+3,-3.4中,整数的个数是( )1215A .6B .5C .4D .36.下列各数中,既是分数又是负数的是( )A .-3.1B .-13C .0D .2.47.在0,1,,-2,-3.5这五个数中,是非负整数的有( )227A .0个B .1个C .2个D .3个8.在数-12,71,1.234…,0,-3.14,34%,-0.67,,0.,中,22713·· π2非负有理数有9.如图是数学果园里的一棵“有理数”知识树,请仔细辨别分类,把各类数填在它所属的横线上.10.在下表适当的空格里打“√”号.有理数整数分数正整数负分数非负整数2-3.14-15811.如图,把-,6,-6.5,0,-,3,-7,210,0.0,-43,-5%填入相应的集13712133· 合内.12.在如图所示的方格中,填入相应的数字,使它符合下列语句的要求:(1)5的正上方是一个负整数;(2)5的左上方是一个正分数;(3)一个既不是正数也不是负数的数在5的正下方;(4)5的左边是一个负分数;(5)剩下的四格请分别填上正数和负数使方格中正数与负数的个数相同.13.如图①,大、中、小三个圆圈分别表示有理数集合、整数集合、自然数集合,把这三个圆圈如图②所示叠放在一起,形成大圆环A 和小圆环B ,则小圆环B 表示的是负整数集合.请你把-20,0,3.14,-,5填入图②相应的位置中,并写出大圆环A 所表示集合227的名称.14.把下列各数填入相应的集合内:-,0.618,-3.14,260,-2001,,-1,-53%,0.1367参考答案1.D2.解:(1)正数集合:;{11,6.5,312,1,…}(2)负数集合:;{-23,-8,-1,-3.14,…}(3)整数集合:;{11,-8,0,1,-1,…}(4)正整数集合:;{11,1,…}(5)负整数集合:;{-8,-1,…}(6)分数集合:;{-23,6.5,312,-3.14,…}(7)正分数集合:;{6.5,312,…}(8)负分数集合:;{-23,-3.14,…}(9)有理数集合:{11,-,6.5,-8,3,0,1,-1,-3.14,…}.23123.B 4 D5.B 6.A 7.C 8.B 9.解:整数:0,2018,-2;分数:-,-3.14,;正整数:2018;负整数:-2;正3417分数:;负分数:-,-3.14.173410.解:如下表所示:有理数整数分数正整数负分数非负整数2√√√√-3.14√√√0√√√-158√√√11.解:如图所示:12.解:答案不唯一,示例:13.解:大圆环A表示的集合是分数集合.14.。
2020七年级数学上册第1章有理数1.5.2有理数的除法第1课时有理数的除法练习【含答案】
1.5.2 有理数的除法第1课时有理数的除法要点感知1 同号两数相除得____,异号两数相除得____,并把它们的绝对值相除;0除以任何一个不等于0的数都得_____.预习练习1-1 (-4)÷(-2)=_____,(-72)÷8=______.要点感知2 一般地,如果两个数的____等于1,我们把其中一个数叫做另一个数的倒数,______没有倒数.预习练习2-1 (1)+3的倒数是____;(2)-1的倒数是____;(3)-47的倒数是_____;(4)-112的倒数是_____;(5)0.2的倒数是______;(6)-1.2的倒数是______.要点感知3 除以一个不等于零的数等于乘这个数的______.即a÷b=a×1b(b______).预习练习3-1 计算:(1)3÷(-32); (2)(-23)÷(-125).知识点1 倒数1.(随州)与-3互为倒数的是( )A.-13B.-3C.13D.32.下列各对数中互为倒数的是( )A.-1与1B.0与0C.-12与2 D.-1.5与-233.倒数等于本身的数为_________.4.写出下列各数的倒数:3,-1,0.3,-23,14,-312.知识点2 有理数的除法法则5.(南通)计算6÷(-3)的结果是( )A.-12B.-2C.-3D.-186.两个数的商为正数,则两个数( )A.都为正B.都为负C.同号D.异号7.(-57)÷(-212)的计算过程正确的是( )A.(-57)÷(-212)=(-57)×(-52) B.(-57)÷(-212)=(-57)×(-52)C.(-57)÷(-212)=(-57)×(-25) D.(-57)÷(-212)=(-57)×(-25)8.如图,数轴上a,b两点所表示的两数的商为( )A.1B.-1C.0D.29.用“>”“<”或“=”号填空:b>0 b<0 b=0a>0 ab____0,ba_____0ab_____0ba_____0ab____0,ba_____0a<0 ab____0,ba_____0ab____0,ba_____0ab_____0,ba_____010.计算:(1)(-6.5)÷(-0.5); (2)4÷(-2);(3)0÷(-1 000); (4)(-2.5)÷58.11.(2013·永州)-12013的倒数为( )A.12013B.-12013C.2 013D.-2 01312.下列计算正确的是( )A.(-18)÷6=3B.(-24)÷(-2)=-12C.75÷(-15)=5D.(-15)÷0.5=-3013.下列说法:①任何有理数都有倒数;②一个数的倒数一定小于这个数;③0除以任何数都得0.其中正确的个数有( )A.0个B.1个C.2个D.3个14.如果x×(-6)=-23,那么x等于( )A.-4B.4C.19D.915.-223的倒数与13的相反数的积是( )A.8B.- 8C.18D.-1816.若a>0,则aa=______;若a<0,则aa=______.17.计算:(1)(-8)÷2; (2)(-6)÷34; (3)(-54)÷(-45); (4)(+513)÷(-313); (5)(-338)÷(-2.25).18.用简便方法计算: (1)(-2467)÷(-6); (2)99989÷(-119).19.求下列各数的倒数,并用“<”把它们的倒数连接起来. -12,-(-2.5),-|-5|,-313.挑战自我20.若a ,b 都是非零的有理数,则a a +b b +ab ab 的值是多少?答案课前预习要点感知1 正数 负数 0预习练习1-1 2 -9要点感知2 乘积 0预习练习2-1 (1)31 (2)-1 (3)-47 (4)-32 (5)5 (6)-65 要点感知3 倒数 ≠0 预习练习3-1 (1)原式=3×(-32)=-2. (2)原式=32÷152=32×75=1210. 当堂训练1.A2.D3.±14.各数的倒数分别为:31,-1,310,-23,4,-72. 5.B 6.C 7.D 8.B9.> > < < = = < < > > = =10.(1)原式=13.(2)原式=-2.(3)原式=0.(4)原式=(-25)×58=-4. 课后作业11.D 12.D 13.A 14.C 15.C 16.1 -117.(1)原式=-4.(2)原式=-6×34=-8. (3)原式=45÷54=45×45=1625. (4)原式=316×(-103)=-58. (5)原式=827×94=23. 18.(1)原式=2476×61=(24+76)×61=4+71=471. (2)原式=(1 000-91)×(-109)=1 000×(-109)-91×(-109)=-900+101=-899109. 19.-21的倒数是-2;-(-2.5)=2.5,它的倒数是52;-|-5|=-5,它的倒数是-51;-331的倒数是103.所以-2<-103<-51<52. 20.当a>0,b>0时,原式=a a +b b +ab ab =a a +b b +abab =1+1+1=3; 当a>0,b<0时,原式=a a +b b +ab ab =a a +b b -+ab ab -=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a a +b b +ab ab =a a -+b b +abab -=-1+1+(-1)=-1; 当a<0,b<0时,原式=a a +b b +ab ab =a a -+b b -+ab ab =-1+(-1)+1=-1. 即原式的值为3或-1.。
七年级数学有理数的加法课课练1
七年级数学有理数的加法课课练1
学习目标
1. 探究有理数的加法法则: , , , 。
2.明白得有理数加法的意义,并能准确地进行有理数的加法运算.
预习内容:认真阅读课本第35页到37页,依照课本“试验”完成尝试题一:
1. 依照要求列式运算:若规定收入为正,支出为负,求最终盈余或透支情形:
(1) 收入51元,支出27元。
(2) 支出51元,收入27元。
(3) 收入51元,收入27元。
(4) 支出51元,支出27元。
利用加法法则(请将学习目标中法则添加完整)依照课本例1完成尝试题二:
2. 运算:
(1) (+5)+(-21) (2) (+12)+(+78)
(3) (-31)+(-5
2) (4) (+2.1)+(-1.2)
(5) (-0.5)+︱-3.5︱ (6) 5+(-5) (7)0+(-3)
3. 若︱x ︱=5,︱y ︱=2,求x+y 的植
4. 填空:
(1) +11=27 (2)7+ =4 (3)(-9)+ =9
(4)12+ =0 (5)(-8)+ = -15 (6) +(-13)= -6
5. 土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均温度是多少度?。
_第一章 有理数1.1 正数和负数 课后练习2021——2022学年 人教版七年级数学上册
2021——2022学年度人教版七年级数学上册 第一章 有理数1.1 正数和负数 课后练习一、选择题1.低于正常水位0.16米记为﹣0.16,高于正常水位0.02米记作( )A .+0.02B .﹣0.02C .+0.18D .﹣0.142.如果把向东走4km 记作+4km ,那么﹣2km 表示的实际意义是( )A .向东走2kmB .向西走2kmC .向南走2kmD .向北走2km3.下列各组数中,不是互为相反意义的量的是( )A .收入200元与支出20元B .超过0.05mm 与不足0.03mmC .增加2L 与减少2kgD .上升10m 与下降7m4.规定一个物体向上移动 1 m ,记作 +1 m ,则这个物体向下移动了 5 m ,可记作( )A .mB .5mC .3mD .1m5.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果支出3元记作+3,那么收入5元,记为:( )A .-5B .-3C .+5D .+36.如果+3 吨表示运入仓库大米的吨数,那么运出大米 7 吨表示为( )A .-7 吨B .+7 吨C .-3 吨D .+3 吨7.一次社会调查中,某小组了解到某种品牌的薯片包装上注明净含量为605g ±,则下列同类产品中净含量不符合标准的是( )A .56gB .60gC .64gD .68g8.国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最符合标准的是( )A .+0.3毫米B .-0.6毫米C .0.5毫米D .-0.2毫米9.某交警在违规多发地段沿东西方向巡逻.若规定向东行走为正方向,该交警从出发点开始所走的路程(单位:m )分别为500m ,360m -,210m ,100m -,130m -,则最后该交警距离出发点( )A .1300mB .580mC .120mD .300m10.某药品说明书上标明药品保存的温度是(202)±℃,则该药品保存的温度范围是( )A .2022~℃B .1820~℃C .1822~℃D .2024~℃二、填空题11.如果电梯上升5米,记作+5米,那么-3米表示 _______________________________ .12.如果向东走2km 记作2km +,那么3km -表示______.13.在数学知识抢答赛中,如果用10+分表示得10分,那么扣20分表示为__________.14.如果支出30元,记作-30元,那么收入60元,应记作______元.15.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第一位学生的实际得分为______分.三、解答题16.一次体育课,老师对七年级女生进行了仰卧起坐的测试,以做36个为标准,超过的次数用正数表示,不足的次数用负数表示,第一小组8人的成绩如下:2,-3,4,0,1,-1,-5,0(1)这8名同学实际各做了多少次仰卧起坐?(2)这个小组的达标率是多少?17.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,油箱中有10升油摩托车能否最后返回岗亭?18.某班抽查了10名同学的期末成绩,以90分为基准,超出的记为正数,不足的记为负数,记录结果如下:+7,﹣3,+10,﹣7,﹣9,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于90分的所占的是多少?(3)10名同学的平均成绩是多少?19.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负.一天中七次行驶记录如下.(单位:km)-4,+7,-9,+8,+6,-5,-2(1)求收工时距A地多远?在A地的什么方向?(2)在第几次记录时离A地最远,并求出最远距离.(3)若每千米耗油0.3升.问共耗油多少升?20.眉山市东坡区出租车司机老刘某天下午营运全是在东西走向的长江路上进行,如果规定向东正,向西为负,他这天下午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6(1)将第几名乘客送到目的地时,老刘刚好回到下午出发点?(2)将最后一名乘客送到目的地时,老刘距下午出发点多远?(3)若汽车耗油量为0.4L/km,这天下午老刘耗油多少升?【参考答案】1.A 2.B 3.C 4.A 5.A 6.A 7.D 8.D 9.C 10.C11.电梯下降3米12.向西走3km13.-20分14.+6015.94.16.(1)这8名同学实际做仰卧起坐的次数分别为:38,33,40,36,37,35,31,36;(2)62.5% 17.(1)A在岗亭南方,距岗亭13千米处;(2)能返回18.(1)100分,81分;(2)50%;(3)89.8分19.(1)收工时距A地1km,在A地东边;(2)第五次记录时离A地最远,距离A地8km;(3)耗油12.3升20.(1)老刘将第六个客送到目的地时;(2)老刘据下午出发点东边1km处;(3)22L。
21--22学年北师大版七年级上册 2、1-2、3:有理数、数轴与绝对值 一课一练(含答案)
《有理数、数轴与绝对值 》习题2一、选择题1.在0,1-,3,12,﹣0.1,0.08中,负数的个数是( ) A .1 B .2 C .3 D .42.在下列数﹣56,+1,6.7,﹣15,0,722,﹣1,25%中,属于整数的有( ) A .2个 B .3个 C .4个 D .5个3.下列各数:78,1.010010001,,0,, 2.626626662,0.12,433π---其中有理数的个数是 ( )A .3B .4C .5D .64.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b5.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<6.a 、b 两数在数轴上位置如图所示,将a 、b 、﹣a 、﹣b 用“<”连接,其中正确的是( )A .a <﹣a <b <﹣bB .﹣b <a <﹣a <bC .﹣a <b <﹣b <aD .﹣b <a <b <﹣a7.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <8.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。
设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数。
给出下列结论:①33x =;②51x =;③108104x x <;④20182019x x >。
其中,正确的结论的序号是( )A .①③B .②③C .①②③D .①②④9.一个点从数轴上的原点开始,先向右移动3个单位,再向左移动7个单位长度,这时点所对应的数是( )A .3B .1C .﹣2D .﹣410.下列各组数中,互为相反数的是( )A .﹣2与|﹣2|B .﹣2与﹣|﹣2|C .﹣2与﹣12 D .2与|﹣2|11.如图,数轴上有 A ,B ,C ,D 四个点,其中到原点距离相等的两个点是( )A .点B 与点 D B .点 A 与点C C .点 A 与点D D .点 B 与点 C12.下列各组数中,互为相反数的是( )A .(2)--和2B .(5)--和(5)+-C .12和2- D .(6)+-和(6)-+13.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D14.下列各组数中,互为相反数的一组是( )A .3-和-3B .3和13C .-3和13 D .3-和315.数轴上点A ,B 表示的数分别是5,-2,它们之间的距离可以表示为() A .|25|-- B .25-- C .25+- D .||25+-16.若x 与3的绝对值相等,则x ﹣1等于( )A .2B .﹣2C .﹣4D .2或﹣417.数轴上有A 、B 、C 、D 四个点,其中绝对值等于2的点是( )A .点AB .点BC .点CD .点D18.已知下列说法:①符号相反的两个数互为相反数;②符号相反且绝对值相等的两个数互为相反数;③一个数的绝对值越大,表示它的点在数轴上越靠右;④一个数的绝对值越大,表示它的点在数轴上离原点越远;⑤一个数的绝对值等于它的相反数,则这个数一定是负数.其中正确的说法有( )个.A .1B .2C .3D .419.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,那么这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q20.如图,数轴上A ,B ,C ,D 四个点所表示的实数分别为a ,b ,c ,d 在这四个数中绝对值最小的数是( )A .aB .bC .cD .d21.设x 为有理数,若|x|=x ,则( )A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数22.若|x+2|+|y ﹣3|=0,则|x+y|的值为( )A .1B .﹣1C .1或﹣1D .以上都不对23.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A .﹣12或﹣2B .﹣2或12C .12或2D .2或﹣1224.已知15a -=,则a 的值为( )A .6B .-4C .6或-4D .-6或425.若3,a =5b =,则a b -=( )A .2B .78C .8-D .2或8二、填空题1.如图,在数轴上有三个点A 、B 、C ,请回答下列问题.(1)A 、B 、C 三点分别表示 、 、 ;(2)将点B 向左移动3个单位长度后,点B 所表示的数是 ;(3)将点A 向右移动4个单位长度后,点A 所表示的数是 .2.|﹣34|的相反数是_____. 3.已知2x+4与3x ﹣2互为相反数,则x=_____.4.已知a 与b 的和为2,b 与c 互为相反数,若c =1,则a=__________.5.33x x -=-,则x 的取值范围是______.6.若210x y -++=,则2x y -的值为_______________.7.已知()2231a b +++取最小值,则a ab b+=____________。
有理数的减法 课后练习 2021-2022学年人教版七年级数学上册
第一章 有理数 1.3.2有理数的减法 课后练习一、选择题(共10小题).1.计算(-25)-(-16)+2的结果是( )A .7B .-7C .8D .-82.把(-2.4)+(+3.4)-(-4.7)-(+0.5)+(-3.5)写成省略加号的和的形式应是( )A .-2.4+3.4-4.7-0.5-3.5B .-2.4+3.4+4.7+0.5-3.5C .-2.4+3.4+4.7-0.5-3.5D .-2.4+3.4+4.7-0.5+3.53.在下列算式中,正确的算式有( )①2-(-2)=0;②(-3)-(+3)=0;③(-3)+|-3|=0;④0-(-1)=0.A .1个B .2个C .3个D .4个 4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( ).A .-1B .0C .1D .25.已知蚂蚁沿数轴从表示数3.5的点A 处先向左爬行2.5个单位长度,再向右爬行2.2个单位长度,最后向左爬行了1个单位长度到达点B ,则点B 落在( )A .段③B .段①C .段④D .段②6.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +->7.一天早晨气温为4C -︒,中午上升了7C ︒,半夜又下降了8C ︒,则半夜的气温是( )A .16C -︒B .4C -︒ C .4C ︒D .5C -︒8.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分9.电子虫落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3向右跳4个单位到K 4…,按以上规律跳了100步时,电子虫落在数轴上的点K 100所表示的数恰是19.94,则K 0表示的数是( )A .﹣19.94B .30.06C .19.94D .﹣30.0610.在某航展上,一架“20J -”飞机在某一高度开始进行10min 的特技表演,然后每隔2min 记录一次该飞机高度变化,5次记录数据如下:(注:正号表示比前一次记录高,负号表示比前一次记录低)1.5, 3.2,0.5,2,4km km km km km +-+-+.在上述5次记录时,飞机的实际高度最低是哪次( )A .第2次B .第3次C .第4次D .第5次二、填空题 11.有理数-5,+2的和比它们的绝对值的和小________.12.计算:1111111111 (2324398109)-+-+-+-+-=_________. 13.计算1(2)3(4)5(6)99(100)101+-++-++-+⋅⋅⋅⋅⋅⋅++-+=________.14.东京与北京的时差为1+,巴黎与北京的时差为7-.假如现在是北京时间7:00,那么东京时间是______,巴黎时间是________.15.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000高空的气温是23-℃,则地面气温约为_______.三、解答题16.计算题(1)5+(-6)+(+3)+(-4)(2)-3-4+19-10(3)-2.4+133+(-116)+(-1.6) (4)1131130.25 3.75 4.5244-+--- (5)|-3 | +(-5)-|-4| + 3 + |-(+5)|(5)()21112 2.75524⎛⎫---+-- ⎪⎝⎭17.已知a 、b 互为相反数,n 的绝对值是2,m 是最大的负整数,求m a b n -++的值.18.(1)列式计算:﹣3、7、﹣8这三数之和比它们绝对值的和小多少?(2)已知:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,求a ﹣b +c 的值.19.甲城市与乙城市的时差为两城市同一时刻的时数之差,如当北京时间为8:00时,东京时间为9:00,巴黎时间为1:00,那么,东京与北京的时差为()981h -=+(1)任务一:请你计算巴黎与东京的时差.(2)任务二:已知纽约与北京的时差为13h -.那么李伯伯在北京乘坐早晨8:00的航班飞行约20h 到达时纽约时间是几点?20.出租车司机小张某天下午营运全是南北方向的魏武大道上行驶的,如果规定向南为正,向北为负,这天下午行车里程如下:(单位:千米)12+,1-,15+,13-,10+,11-,6+,14-(1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的营运额为2元,这天下午的营业额为多少?(3)若成本为0.5元/千米,出租车司机小张这天下午盈利多少元?21.某仓库原有某种货物库存200千克,现规定运入为正,运出为负;一天中七次出入如下(单位:千克)(1)在第________次纪录时库存最多.(2)求最终这一天库存增加或减少了多少?(3)若货物装卸费用为每千克0.3元,问这一天需装卸费用多少元?22.某路公交车从起点经过A,B,C,D站到达终点,各站上下乘客的人数如下(上车为正,下车为负):起点(20,0),(12,4),(8,9),(6,4),(2,7)A B C D----,终点()0,____.(1)在横线上填写适当的数,并说明该数的实际意义;(2)行驶在哪两站之间时,车上的乘客最多?(3)若乘坐该车的票价为每人2元,则这一趟公交车能收入多少钱?23.学校为了备战校园足球联赛,利用体育课让学生进行足球训练,为了训练学生快速抢断转身,体育老师设计了折返跑训练.老师在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+45,﹣25,+25,﹣35,+15,﹣28,+16,﹣18.(1)学生最后到达的地方在出发点的哪个方向?距出发点多远?(2)学生训练过程中,最远处离出发点多远?(3)学生在一组练习过程中,跑了多少米?【参考答案】1.B 2.C 3.A 4.D 5.D 6.D 7.D 8.D 9.D 10.C11.1012.9 1013.5114.8:00 0:00.15.37℃16.(1)-2;(2)2;(3)116-;(4)92-;(5)2;(6)3517.1或-3.18.(1)22;(2)219.(1)8h-;(2)到达时纽约时间是15点.20.(1)在出发点的东边,距离出发点的距离为3千米;(2)164元;(3)123元.21.(1)四;(2)增加了55千克;(3)109.5元22.(1)−24;(2)公交车行驶在C站和D站之间车上的乘客最多;(3)9623.(1)在出发点的正西方向,距出发点5米;(2)最远处离出发点55米;(3)跑了277米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数集合: ﹛ 整数集合: ﹛
10、画出数轴,并用数轴上的点表示下列各数:-
1 ,+5,0,+3.5 2
11、比较下列个数的大小,并用“>”把它们连接起来。 -6
1 1 ,9.2,0, ,-6.5 7 3
12、在 3,0,6,-2 这四个数中,最大的数是( A.0 B.6 C.-2 D.3
)
13、数轴上的一个点先向左移动 3 个单位长度,再向右移动 7 个单位长度,终点表示的数是-1,那么原来的点表示的 数是( A.-6 ) B.-5 C.5 D.6 )
1 2
D. -
1 1 ,- ,-2,-1 这四个数中,最大的数是( 2 3 1 1 A. B. C.-2 D. -1 2 3
24、如果一个有理数的绝对值等于他本身,那么这个数一定是( A. 负数 B. 负数或 0 C.正数或 0 。 ) C.5 ) D. D. D. 正数
)
25、绝对值等于 8 的数是 26、-5 的绝对值是( A. -
第二章 有理数(一)练习题
1、下列说法错误的是( A.-0.5 是负分数 B.零不是正数也不是负数 C.整数与分数统称为有理数 D.正有理数与负有理数组成全体有理数 2、如果用+0.02g 表示一个乒乓球质量超出标准质量 0.02g,那么一个乒乓球质量低于标准质量 0.02g,记作( A.+0.02g B. -0.02g C.0g D.+0.04g ) )
2 ∣ 3
1 )∣ 2
(4)∣-(-7.5)∣
18、某车间生产一批原型机器零件,从中抽取 6 件进行检验,比规定直径长的毫米数记作正数,比规定直径短的毫米
数记作负数。检查记录如下: 1 +0.2 2 -0.3 3 -0.2 4 +0.3 5 +0.4 6 -0.1
指出第几个零件好些?用学过的绝对值只是来说明什么样的零件好些? 19、 (1)已知∣a∣=
8、东西两个相反方向,如果-4m 表示一个物体向西运动 4m,那么+2m 表示什么?物体原地不动记作什么?
9、把下列各数分别填在相应的集合内。 -9
1 6 ,-9,34,-0.25, ,-0.01,0.6,0,-2014,987,70%,π . 7 7
, · · ·﹜;分数集合:﹛ , · · ·﹜;负数集合:﹛ , · · ·﹜; , · · ·﹜。
3、按规律写出后面的 3 个数,并指出第 199 个数是什么。 (1)1,-
1 1 1 , ,- , 3 5 7
, ,
, ,
,第 199 个数是 ,第 199 个数是
; ,。
(2)2,-1,3,-1,4,-1,
4、 (1)观察下面按次序排列的每一列数,研究它们各自的变化规律,并接着填出后面的两个数: ①2,-4,6,-8,10, ② , , ; 。
14、下列四个数中,最小的数是( A.-2 B.0 C.-
1 3
D.5
15、在数轴上把下列各数表示出来,并比较它们的大小,用“<”号将它们连接起来: 6,-3.5,0,
3 ,-4 2
) ∣∣
16、如果 a 的相反数是 2,那么 a 等于( A.-2 B.2 C.
1 2
D.-
1 2
17、化简: (1)-∣(2)+∣-24∣ (3)∣-(+3
1 2 3 4 5 , ,- ,- , , 2 3 4 5 6
(2)你能分别说出①②各列数中的第 99 个数、第 100 个数是什么吗?
5、 (1)如果收入 60 元记作+60 元,那么支出 20 元记作
,-70 元表示什么 。
。
(2)如果“嫦娥三号”发射前 3s 记作+3s,那么“嫦娥三号”发射后 5s 记作 6、判断 (1)零是正数; (2)零是整数; (3)不是正数的数一定是负数; (4)零是非负数; (5)零是偶数。 7、在数 0,2,-3,-1.2 中,属于负整数的是( A.0 B.2 C.-3 D.-1.2 )
1 5
B. -5
1 5
27、∣-2∣的相反数是( A.2 B.-2 C.
1 2
1 2
28、若∣x∣<4,且 x 为整数,求 x 的值。 29、计算: (1)∣-3∣+∣-(-5)∣-∣-4∣ (2)∣-2∣×5-∣-7∣÷7-∣-6∣ (3) (∣-3
4 4 1 1 ∣-∣ ∣+∣-3 ∣)÷∣- ∣ 5 5 2 2
3 9 ,∣b∣= ,且 b<a,试求-a,-b 的值; 7 20
(2)已知 a<0,b>0, ∣a∣>∣b∣,试用“<”号将 a,b,-a,-b 连接起来。 20、-6 的相反数是( A.-6 B. C.)
1 6
D.
1 6 4 ,0,-7.8,21 9 1 2
)
21、求下列个数的绝对值:-21, 22、-2 的绝对值是( A.2 23、在B.-2 C. )