人教版七年级数学下册教学课件-5.1.2垂线20
合集下载
人教版七年级下册《5.1.2垂线》课件(共26张PPT)
回忆两条直线相交这部分知识,并问:你们能够把 它们画成一个知识结构图吗?
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.7.621.7.6T uesday, July 06, 2021
•
10、低头要有勇气,抬头要有低气。* **7/6/2021 5:19:19 PM
•
11、人总是珍惜为得到。21.7.6**Jul-216-Jul- 21
•
11、人总是珍惜为得到。2021/7/62021/7/62021/7/6Jul-216-J ul-21
•
12、人乱于心,不宽余请。2021/7/62021/7/62021/7/6Tuesday, July 06, 2021
•
13、生气是拿别人做错的事来惩罚自 己。2021/7/62021/7/62021/7/62021/7/67/6/2021
(2).城市A,B到大河l的距离.
拓展应用1
如图:在铁路旁边有
张庄
一张庄,现在要建一火车
站,为了使张庄人乘火车
最方便(即距离最近),
请你在铁路上选一点来建
火车站,并说明理由。
垂线段最短
拓 展 应 用2
如图:要把水渠中的水引到水池C 中,在渠岸的什么地方开沟,水沟的 长度才能最短? 请画出图来,并说明理由。
A
B
O
记作:AB⊥CD(或CD⊥AB),
垂足为O
D
日常生活中,两条直线互相垂直的情形很 常见,说出图5.1-6中的一些互相垂直的线条.
你能再举出其他例子吗?
生活中的垂直
生活中的垂直
3.垂直的书写形式:
如图,当直线AB与CD A
D
相交于O点,∠AOD=90°时,
AB⊥CD,垂足为O。 书写形式:
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.7.621.7.6T uesday, July 06, 2021
•
10、低头要有勇气,抬头要有低气。* **7/6/2021 5:19:19 PM
•
11、人总是珍惜为得到。21.7.6**Jul-216-Jul- 21
•
11、人总是珍惜为得到。2021/7/62021/7/62021/7/6Jul-216-J ul-21
•
12、人乱于心,不宽余请。2021/7/62021/7/62021/7/6Tuesday, July 06, 2021
•
13、生气是拿别人做错的事来惩罚自 己。2021/7/62021/7/62021/7/62021/7/67/6/2021
(2).城市A,B到大河l的距离.
拓展应用1
如图:在铁路旁边有
张庄
一张庄,现在要建一火车
站,为了使张庄人乘火车
最方便(即距离最近),
请你在铁路上选一点来建
火车站,并说明理由。
垂线段最短
拓 展 应 用2
如图:要把水渠中的水引到水池C 中,在渠岸的什么地方开沟,水沟的 长度才能最短? 请画出图来,并说明理由。
A
B
O
记作:AB⊥CD(或CD⊥AB),
垂足为O
D
日常生活中,两条直线互相垂直的情形很 常见,说出图5.1-6中的一些互相垂直的线条.
你能再举出其他例子吗?
生活中的垂直
生活中的垂直
3.垂直的书写形式:
如图,当直线AB与CD A
D
相交于O点,∠AOD=90°时,
AB⊥CD,垂足为O。 书写形式:
5.1.2 垂线 课件(21张PPT)人教版数学七年级下册
B.4cm
C.6cm
D.不少于6cm
4.如图, AC⊥BC, ∠C=90° ,线段AC、BC、CD中最短的是 ( C )
A. AC
B. BC
C
C. CD
D. 不能确定
A
D
B
5.如图,∠BAC=90°,AD⊥BC,则下列结论中,正确的有( D )
①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段 AD是点A到BC的垂线段;④线段BD是点B到AD的垂线段。
第五章 相交线与平行线 5.1 相交线 5.1.2 垂线
学习目标
1.了解垂直的概念,能说出垂线的性质. 2.会用三角尺或量角器过一点画一条直线的垂线. 3.了解垂直是相交的特殊情况,体会点到直线的距离的 意义,会度量点到直线的距离,灵活运用定义解决问题。
复习导入
奥运会十米跳台比赛中运动员入水时健美的身姿往往让我们 赞叹,下图是三位跳水运动员入水前的精彩瞬间,如何判断哪位 运动员跳得直 (“直”是指什么)呢?如果用一条水平直线a表 示水面,你能用另一条直线b表示出不同选手入水的示意图吗?
例如:如图,PA⊥l于点A ,垂线段PA的长度叫 做点P到直线l的距离。
例:如图,是一个同学跳远的位置跳远成绩怎么
A
表示?
解:过P点作PA⊥l于点A ,垂线段PA的长度就是
P
该同学的跳远成绩。
l
l A
例题讲解
例1 过点P向线段AB所在直线引垂线,正确的是( C ).
P
P 垂直概念:两条
P
直线相交所成的
两条直线相交所构成的四个角中有一个是90°(直角)时称这两条直线互相垂直。 其中的一条直线叫做另一条直线的垂线。 它们的交点叫做垂足。垂直是相交的一种特殊情况。
人教版数学七年级下册垂线(第2课时)教学课件
人教版 数学(shùxué) 七年级 下册
5.1 相交 线 (xiāngjiāo) 5.1.2 垂线(第2课时)
第一页,共二十一页。
导入新知
在灌溉时,要把河里的水引到农田里的P处,如何(rúhé)挖渠能使渠 道最短呢?
第二页,共二十一页。
素养目标
3. 掌握垂线段最短的性质,并会利用所学知识解决简 单的实际问题.
第四页,共二十一页。
探究新知
P
垂线(chuíxiàn)段最短
斜线段
垂线段
AB C
Dm
连接直线(zhíxiàn)外一点与直线(zhíxiàn)上各点的所有线段中,
垂线段最短.
简单说成:垂线段最短. 垂线的性质2 ∵PB⊥m于B, ∴PB<PC.
第五页,共二十一页。
探究新知
特别强调:
垂线段是垂线上的一部分,它是线段,一端(yīduān)是一个点, 另一端(yīduān)是垂足.
第二十一页,共二十一页。
第十三页,共二十一页。
课堂检测
基础巩固题
1.如图,下列说法正确的是( D) A.线段(xiànduàn)AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
AD
B
C
第十四页,共二十一页。
课堂检测
第十九页,共二十一页。
课堂小结
相两 交条
直 线
(yībān) (zhíxiàn)
情一 况般
对顶角:相等 邻补角:互补
特殊 情况
相交成 直角
垂 线
第二十页,共二十一页。
垂线的存在 性和唯一性
5.1 相交 线 (xiāngjiāo) 5.1.2 垂线(第2课时)
第一页,共二十一页。
导入新知
在灌溉时,要把河里的水引到农田里的P处,如何(rúhé)挖渠能使渠 道最短呢?
第二页,共二十一页。
素养目标
3. 掌握垂线段最短的性质,并会利用所学知识解决简 单的实际问题.
第四页,共二十一页。
探究新知
P
垂线(chuíxiàn)段最短
斜线段
垂线段
AB C
Dm
连接直线(zhíxiàn)外一点与直线(zhíxiàn)上各点的所有线段中,
垂线段最短.
简单说成:垂线段最短. 垂线的性质2 ∵PB⊥m于B, ∴PB<PC.
第五页,共二十一页。
探究新知
特别强调:
垂线段是垂线上的一部分,它是线段,一端(yīduān)是一个点, 另一端(yīduān)是垂足.
第二十一页,共二十一页。
第十三页,共二十一页。
课堂检测
基础巩固题
1.如图,下列说法正确的是( D) A.线段(xiànduàn)AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
AD
B
C
第十四页,共二十一页。
课堂检测
第十九页,共二十一页。
课堂小结
相两 交条
直 线
(yībān) (zhíxiàn)
情一 况般
对顶角:相等 邻补角:互补
特殊 情况
相交成 直角
垂 线
第二十页,共二十一页。
垂线的存在 性和唯一性
人教版七年级下册数学 5.1.2 垂线-课件(共25张PPT)
新知讲解
练习2:如图,在铁路旁有一李庄,现要建一火车站,为了 使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建 在( A )
A.A 点 B.B 点 C.C 点 D.D 点
课堂练习
1、过点P画出射线AB 或线段AB 的垂线.
AP B
P B A
课堂练习
2、如图所示, AC⊥BC, C 为垂足, CD⊥AB, D 为垂足,BC =8, CD=4.8, BD=6.4, AD=3.6, AC=6, 那么:
(1)点C 到AB 的距离是__4__.8____, (2)点A 到BC 的距离是____6____, (3)点B 到CD 的距离____6_._4____.
课堂练习
3、如图,直线AB、CD 相交于点O,OE⊥AB,∠AOC=75°, 求∠EOD 的度数.
解:∵ AB⊥OE (已知), ∴ ∠EOB=90°(垂直的定义).
符号语言:
∵AB ⊥CD
90º
∴ ∠AOC=90º
新知讲解
练习1:如图,直线AB、CD相交于点O, OE⊥AB,∠AOD= 125°, 求∠COE 的度数.
解:∵ ∠AOD=∠BOC ∴ ∠BOC=∠AOD=125° ∵ OE⊥AB ∴ ∠BOE=90°, ∴ ∠COE= ∠BOC- ∠BOE
= 125°- 90° = 35°
CE
∵∠BOD=∠AOC=75°(对顶角相等)
A
∴∠EOD=∠EOB+∠BOD
=90°+75°
=165°
O
B
D
拓展提高
将一副三角板的两个直角顶点O重合在一起,按如图位置放置.
(1)如图①,若∠BOC=50°,求∠AOD的度数; 解:∵∠AOB=90°,∠BOC=50°,
5.1.2-垂线课件
5பைடு நூலகம்1.2 垂线
第3页问题1: 取两根木条a、b,将它们钉在一起,固定 木条a,转动木条b. (1)当a与b所成锐角α为35º 时,其余的角分别为多少? 35º , 145º , 145º (2)当a与b所成角α为90 º 时,其余角的分别为多少? 均为90º
问题1: 取两根木条a、b,将它们钉在一起,固定木 条a,转动木条b.
问题2: (1)两条直线垂直和相交是什么关系?
垂直是相交的特殊情况
(2)能否认为在同一平面内,两条直线的位置关系 有3种:相交,平行,垂直?
不能,因为垂直是相交的特殊情况
第4页探究
A
B
o
第5页垂线性质1:在同一平面内,过一点有且只有 一条直线与已知直线垂直.
练习:1. 当两条直线相交所成的四个角都相等时,着两条 直线有什么位置关系,为什么?
垂线性质2:连接直线外一点与直线上各点的所 有线段中,垂线段最短. 简单说成:垂线段最短. 点到直线的距离:直线外一点到这条直线的垂线 段的长度,叫点到直线的距离.
思考: (5)如果图中的比例尺为1:1000000,水渠大 概要挖多长? (6)你能列举生活中类似的实例吗?
归纳小结
1.什么是垂直?垂直和相交有什么关系? 我们是如何刻画两直线垂直的位置关系的? 2.垂线有哪些性质?
(3)在木条b的转动过程中,什么量也随之发生改变? a与b所成的角也随之发生改变 (4)木条b与a成90º 的位置有几个?此时,木条b与a 所在的直线有什么位置关系? a与b垂直
第4 页
35 55
垂直的两种含义: 因为 ∠AOC=90°, 所以 AB⊥CD. 反之, 因为 AB ⊥CD, 所以 ∠AO C=90°.
布置作业
第3页问题1: 取两根木条a、b,将它们钉在一起,固定 木条a,转动木条b. (1)当a与b所成锐角α为35º 时,其余的角分别为多少? 35º , 145º , 145º (2)当a与b所成角α为90 º 时,其余角的分别为多少? 均为90º
问题1: 取两根木条a、b,将它们钉在一起,固定木 条a,转动木条b.
问题2: (1)两条直线垂直和相交是什么关系?
垂直是相交的特殊情况
(2)能否认为在同一平面内,两条直线的位置关系 有3种:相交,平行,垂直?
不能,因为垂直是相交的特殊情况
第4页探究
A
B
o
第5页垂线性质1:在同一平面内,过一点有且只有 一条直线与已知直线垂直.
练习:1. 当两条直线相交所成的四个角都相等时,着两条 直线有什么位置关系,为什么?
垂线性质2:连接直线外一点与直线上各点的所 有线段中,垂线段最短. 简单说成:垂线段最短. 点到直线的距离:直线外一点到这条直线的垂线 段的长度,叫点到直线的距离.
思考: (5)如果图中的比例尺为1:1000000,水渠大 概要挖多长? (6)你能列举生活中类似的实例吗?
归纳小结
1.什么是垂直?垂直和相交有什么关系? 我们是如何刻画两直线垂直的位置关系的? 2.垂线有哪些性质?
(3)在木条b的转动过程中,什么量也随之发生改变? a与b所成的角也随之发生改变 (4)木条b与a成90º 的位置有几个?此时,木条b与a 所在的直线有什么位置关系? a与b垂直
第4 页
35 55
垂直的两种含义: 因为 ∠AOC=90°, 所以 AB⊥CD. 反之, 因为 AB ⊥CD, 所以 ∠AO C=90°.
布置作业
人教版数学七年级下册5.1.2垂线 课件
感悟新知
例 1 如图5.1-11,直线AB,CD 相交于点O,OE ⊥ AB 于 点O,且∠ COE=40°,求∠ BOD 的度数. 解题秘方:利用垂直的定 义及对顶角的性质,将要 求的角向已知角转化.
感悟新知
解:因为OE ⊥ AB, 所以∠ AOE=90°. 又因为∠ AOE= ∠ AOC+ ∠ COE,∠ COE=40°, 所以∠ AOC=90°-40°=50°. 所以∠ BOD= ∠ AOC=50°
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
感悟新知
(2)点P 为直线m 外一点,点A,B,C 为直线m 上的三点,
PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线m 的距
离( D )
A. 等于4 cm
B. 等于2 cm
C. 小于2 cm
D. 不大于2 cm
感悟新知
解题秘方:根据点到直线的距离的定义,找出垂线段. 解:点到直线的距离是该点到这条直线的垂线段的 长度,而垂线段是该点与直线上各点的连线中最短 的. 从条件看,PC是三条线段中最短的,但不一定 是所有连线中最短的,所以点P 到直线m 的距离应 该是不大于2 cm.
感悟新知
1-1. [中考·河南] 如图,直线AB,CD相交于点O,EO⊥ CD,垂足为O,若∠ 1=54°,则∠ 2 的度数为( B ) A. 26° B. 36° C. 44° D.54°
感悟新知
例2 将一张长方形纸片按如图5.1-12 所示方式折叠,EF, EG 为折痕,判断EF 与EG 的位置关系. 解题秘方:利用折叠的性 质求出两线的夹角,根据 夹角是90°判断两条直线 的位置关系.
1. 垂线段:
特别解读 垂线、垂直与垂线段之间的区别与联系: 1. 区别:垂线是一条与已知直线垂直的直线;垂
【数学课件】5.1.2《垂线》ppt课件
3 4 5 6 7 8 9 10
折一折
根据图示能折出互相垂直的直线,您不妨试 试看!
结论
垂直的表示
图中,直线AB与直线CD垂直, 记作:AB⊥CD;
n A O
C
B m D
ห้องสมุดไป่ตู้
直线 m 与直线 n 垂直,
记作:m⊥n ; 互相垂直的两条直线的交点叫做垂足. 注意:“⊥”是“垂直”的记号, 而“
” 是图形中“垂直(直角)” 的标记.
A.36° B.54° C.64°
)
D.72°
【解析】选B.因为OC⊥OD,所以 ∠COD=90°,又因为∠AOB=180°, 所以∠DOB=∠AOB-∠COD- ∠COA=180°-90°-36°=54°.
3.如图所示,直线AB⊥CD,垂足为O,射线OP在∠AOD的内
部,且∠POA=4∠POD,则∠COP︰∠BOP的值为( C A B )
∠BOP=∠BOD+∠POD=90°+18°=108°.
所以∠COP︰∠BOP=162°︰108°= 3︰2.
4.点P是直线l外一点,点A,B,C是直线l上的三点,且 PA=10,PB=8,PC=6,那么点P到直线l的距离为( A.6 C.大于6的数 B.8 D.不大于6的数 )
【解析】选D.根据“垂线段最短”,垂线段的长度一定小
角时,其他三个角也都成为直角,此时,直线AB,CD互
相垂直.
做一做 (1)你能用三角尺在白纸上画两条互相垂直的直线吗? (2)你能用量角器在白纸上画两条互相垂直的直线吗? (3)如果只有直尺,你能在方格纸上画出两条互相垂直的 直线吗?
用三角尺作两条互相垂直的直线
0 1 2
0
1
人教版七年级数学下册课件5.1.2垂线
们(2)的判交断点ODO与叫A做B_的__位__置_关.系,并说明理由.
活动5 课堂小结
1.垂线的相关概念. 2.垂线的画法. 3.垂线的性质. 4.点到直线的距离.
四、作业布置与教学反思 1.作业布置
(1)教材P8 习题5.1第3,4,5,6题;
2.教学反思
A
C OD B 图5.1-5
2.教材P4 探究. 提出问题: (1)如何利用三角板过一点作已知直线的垂线? (2)通过画图,你认为过一点作已知直线的垂线,能作几条?
3.教材P5 探究. 提出问题: (1)观察图5.19,你能用哪些方法说明线段PO最短? (2)你从中能得出什么结论? (3)垂线段和点到直线的距离有哪些区别和联系?
1
1
∴∠FOC+∠EOC= =
2
1 2
∠AOC+ 2 ∠BOC (∠AOC+∠BOC)=
1 2
×180°=90°
即∠EOF=90°,
∴OE⊥OF.
练习
1.教材P5 练习第1,2题. 2.教材P6 练习. 3.下列选项中,过点P画AB的垂线,三角尺放法正确的是( C )
练习
4.如图,O为直线AB上一点,∠AOC= ∠13 BOC,OC是∠AOD的平分线. (1)求∠COD的度数; (2)判断OD与AB的位置关系,并说明理由.
__垂__线__段___最短.简单说成:__垂__线__段__最__短__.
3.直线外一点到这条直线的_垂__线__段__的__长____,叫做点到
直线的距离.
度
活动4 例题与练习
例1 (1)如图①,过点P画AB的垂线; (2)如图②,过点P分别画OA,OB的垂线; (3)如图③,过点A画BC的垂线.
又解∵:∠(1A)O∵C∠+AO∠CB=OC=∠1B8O0C°,, 例反1过来(1,)如如图果①AB,⊥过C点DP,画那A么B的∠A垂O线C等;于多少度? (垂2)直你定从义中、能垂得直出公什理么的结理论解?与运用.
活动5 课堂小结
1.垂线的相关概念. 2.垂线的画法. 3.垂线的性质. 4.点到直线的距离.
四、作业布置与教学反思 1.作业布置
(1)教材P8 习题5.1第3,4,5,6题;
2.教学反思
A
C OD B 图5.1-5
2.教材P4 探究. 提出问题: (1)如何利用三角板过一点作已知直线的垂线? (2)通过画图,你认为过一点作已知直线的垂线,能作几条?
3.教材P5 探究. 提出问题: (1)观察图5.19,你能用哪些方法说明线段PO最短? (2)你从中能得出什么结论? (3)垂线段和点到直线的距离有哪些区别和联系?
1
1
∴∠FOC+∠EOC= =
2
1 2
∠AOC+ 2 ∠BOC (∠AOC+∠BOC)=
1 2
×180°=90°
即∠EOF=90°,
∴OE⊥OF.
练习
1.教材P5 练习第1,2题. 2.教材P6 练习. 3.下列选项中,过点P画AB的垂线,三角尺放法正确的是( C )
练习
4.如图,O为直线AB上一点,∠AOC= ∠13 BOC,OC是∠AOD的平分线. (1)求∠COD的度数; (2)判断OD与AB的位置关系,并说明理由.
__垂__线__段___最短.简单说成:__垂__线__段__最__短__.
3.直线外一点到这条直线的_垂__线__段__的__长____,叫做点到
直线的距离.
度
活动4 例题与练习
例1 (1)如图①,过点P画AB的垂线; (2)如图②,过点P分别画OA,OB的垂线; (3)如图③,过点A画BC的垂线.
又解∵:∠(1A)O∵C∠+AO∠CB=OC=∠1B8O0C°,, 例反1过来(1,)如如图果①AB,⊥过C点DP,画那A么B的∠A垂O线C等;于多少度? (垂2)直你定从义中、能垂得直出公什理么的结理论解?与运用.
人教版七年级数学下册全册5.1.2垂线PPT课件
画几条?
.B
.A l
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
如图,已知直线 l,作l的垂线.
A
O
1.放 2.靠 3.画
l
0 1 2 3 4 5 6 7 8 9 1 0 1 1
孝 感 市 文 昌 中 学 学 生 专 用 尺
例2 如图,直线BC与MN相交于点O,AO⊥BC, ∠BOE=∠NOE,若∠EON=20°,求∠AOM和 ∠NOC的度数.
解:∵∠BOE=∠NOE, ∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON
=180°-40°=140°, ∠MOC=∠BON=40°. ∵AO⊥BC, ∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
作,你能得
1.放
出什么结论
2.靠
A
3.移
4.画
l
B
0 1 2 3 4 5 6 7 8 9 1 0 1 1
孝 感 市 文 昌 中 学 学 生 专 用 尺
C m
问题:这样画l的垂线可以画几条? 一条
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
C A
F
E B
D
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.如图,AO⊥FD,OD为∠BOC的平分线,OE 为射线OB的反向延长线,若∠AOB=40°,求 ∠EOF、∠COE的度数.
人教版七年级数学下册第五章《垂 线》优质课课件
变式训练1-1:点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大 小为( B ) (A)36°(B)54°(C)64°(D)72° 解析:根据OC⊥OD, 得出∠COD=90°, 根据∠AOC+∠COD+∠DOB=180°, 得∠DOB=180°-∠AOC-∠COD=180°-36°-90°=54°. 故选B.
。超
过
了
自
己
的
智
力
,
You made my day!
我们,还在路上……
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置 时,距离村庄D最近,请在公路AB上作出C′、D′的位置; 【导学探究】 连接直线外一点与直线上各点的所有线段中 垂线段 最短.
解:(1)如图所示. 过点 C 作 AB 的垂线,垂足为 C′, 过点 D 作 AB 的垂线,垂足为 D′.
5.1.2 垂 线
1.了解垂直的概念,掌握垂线的性质. 2.会过一点用三角板或量角器画已知直线的垂线.
1.垂直 两条直线相交所成的四个角中的任意一个角是 90° 时,我们说这两条直线互 相垂直. 如图:(1)直线AB、CD相交于点O,若∠AOC=90°,则 AB⊥CD .
(2)若AB⊥CD时,则∠COB= 90° . 2.垂线 垂直是相交的一种特殊情况,两直线 互相垂直 ,其中的一条直线叫做另一 条直线的垂线,它们的交点叫做垂足 .如图:AB⊥CD,垂足为O.
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄 D越来越近?(只叙述结论,不必说明理由)
解: (2)在线段C′D′这段路上,距离村庄C越来越远,而离村庄D越来越近. 点到直线的距离是指直线外一点到这条直线的垂线段的长
新人教版七年级下册数学5.1.2垂线优质课件
新人教版七年级下册数学 5.1.2 垂线 优质课件
科 目:数学 适用版本:新人教版 适用范围:【教师教学】
第五章 相交线与平行线
5.1 相交线
第2课时 垂线
第一页,共三十六页。
1 课时讲解 2 课时流程
垂直的定义 垂线的画法
垂线的性质
逐点 导讲练
课堂 小结
作业提 升
第二页,共三十六页。
如图所示是北京天安门 广场庄严隆重的升国旗仪式, 是亿万中国人民特别关注的 活动.众所周知,1949年10 月1日,毛泽东主席在天安门城楼 上用洪亮的声音向全世界宣告中 华人民共和国诞生,亲手升起了 第一面五星红旗.
A.35°
C
B.45°
C.55°
D.65°
第十八页,共三十六页。
6. 已知在同一平面内:
知1-练
①两条直线相交成直角;
②两条直线互相垂直;
③一条直线是另一条直线的垂线.
那么下列因果关系:①→②③;②→①③;③→①②
中,正确的有( )
A.0个 B.1个 CD.2个 D.3个
第十九页,共三十六页。
知识点 2 垂线的画法
第十四页,共三十六页。
2. 如图,已知点O在直线AB上,CO⊥DO于点O,若∠1 =145°,则∠3的度数为( ) C A.35°
B.45°
C.55° D.65°
知1-练
第十五页,共三十六页。
3. 【中考·德宏州】如图,三条直线相交于点O, 若CO⊥AB,∠1=56°,则∠2等于( ) B A.30° B.34° C.45° D.56°
导引: 要判断OE,OF是什么位置关 系,其实质是说明OE,OF是 否垂直,即要看∠EOF是否为 90°;要让∠EOF=90°,需说明∠EOF= ∠AOC或∠EOF=∠BOC都可,这样就把问题 转化为说明∠AOE=∠COF(已知)了.
科 目:数学 适用版本:新人教版 适用范围:【教师教学】
第五章 相交线与平行线
5.1 相交线
第2课时 垂线
第一页,共三十六页。
1 课时讲解 2 课时流程
垂直的定义 垂线的画法
垂线的性质
逐点 导讲练
课堂 小结
作业提 升
第二页,共三十六页。
如图所示是北京天安门 广场庄严隆重的升国旗仪式, 是亿万中国人民特别关注的 活动.众所周知,1949年10 月1日,毛泽东主席在天安门城楼 上用洪亮的声音向全世界宣告中 华人民共和国诞生,亲手升起了 第一面五星红旗.
A.35°
C
B.45°
C.55°
D.65°
第十八页,共三十六页。
6. 已知在同一平面内:
知1-练
①两条直线相交成直角;
②两条直线互相垂直;
③一条直线是另一条直线的垂线.
那么下列因果关系:①→②③;②→①③;③→①②
中,正确的有( )
A.0个 B.1个 CD.2个 D.3个
第十九页,共三十六页。
知识点 2 垂线的画法
第十四页,共三十六页。
2. 如图,已知点O在直线AB上,CO⊥DO于点O,若∠1 =145°,则∠3的度数为( ) C A.35°
B.45°
C.55° D.65°
知1-练
第十五页,共三十六页。
3. 【中考·德宏州】如图,三条直线相交于点O, 若CO⊥AB,∠1=56°,则∠2等于( ) B A.30° B.34° C.45° D.56°
导引: 要判断OE,OF是什么位置关 系,其实质是说明OE,OF是 否垂直,即要看∠EOF是否为 90°;要让∠EOF=90°,需说明∠EOF= ∠AOC或∠EOF=∠BOC都可,这样就把问题 转化为说明∠AOE=∠COF(已知)了.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、用几何语言表示:
方式⑴ ∵ ∠AOC=90°
A
∴ AB__⊥___CD,垂足是__O___
方式⑵ ∵ AB⊥CD于O ∴ ∠AOC=___9_0_°_
C
O
D
B
三、研读课文
知识点一
练一练
1、如图所示,直线AB与CD的位置关系是垂直, 记作 AB⊥CD,此时,∠AOD= ∠COA = ∠DOB = ∠BOC =90°
3、已知点O,画和点O的距离是3厘米的直线 可以画( D ) A、1条 B、2条 C、3条 D、无数条
五、强化训练
4、如图,在线段AB、AC、AD、AE、AF中AD最短.
小明说垂线段最短, 因此线段AD的长是点A到BF的距 离,对小明的说法,你认为__小_明__的_说__法_是__错_误__的__.
二、学习目标
1 进一步发展空间观念,用几何语言准 确表达能力。
2 了解垂线段的概念,了解垂线段最短的 性质,体会点到直线的距离的意义, 并 会度量点到直线的距离.
三、研读课文
垂线段及性质 1、从直线外一点引一条直线的
垂
线,这点和 垂足 之间的
线段叫做垂线段。
①如图,连接直线L外一点P与直线L上各点O,A1,A2,
2、如右图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,
BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么
(1)点C到AB的距离是___4_._8__,
C
(2)点A到BC的距离是____6____,
(3)点B到CD 的距离__6_.4_,
B
DA
四、归纳小结
从直线外一点引一条直线的 垂 线,这点和 直线 之 1、垂线段: 间的线段叫做垂线段
• 垂线是一条 直 线; • 垂线段是一条 线段 ,是图形; • 点到直线的距离是垂线段的 长度 ,是
一个数量,不能说垂线段是距离。
三、研读课文
知识点二
练一练
1、直线AB外一点P到直线AB的距离指的是( B )
A.从P点到AB的垂线段 B.从P点到AB的垂线段的长度 C.从P点到AB的垂线 D.从P点到AB的垂线长
2 了解垂直概念,能说出垂线的性质。
3 会用三角尺或量角器过一点画一条 直线的垂线.
三、研读课文
垂线定义 1、两条直线相交,所成四个角中有一个角是直__角_时, 我们称这两条直线__互__相__垂__直__,其中一条直线是 另一条直线的垂__线___,他们的交点叫做_垂__足__。
知识点一
2、垂直用符号 ⊥来表示,若“直线AB垂直于直线 CD,垂足为O”,则记为_A__B_⊥__C_D_于__O____并在图中 任意一个角处作上直角记号。
∠BOD=____6_0_°__.
A
C
B
O
(2)
D
五、强化训练
3、如图所示,直线AB⊥CD于点O,直线EF经过 点O,若∠1=26°,求∠2的度数. 解: ∵ ∠1=26°, ∠DOF= ∠1
∴ ∠DOF=26° ∵ AB⊥CD ∴ ∠AOD=90° ∴ ∠2= ∠AOD﹣ ∠DOF
=90°﹣26°=64°
五、强化训练
4、画一条线段或射线的垂线,就是画它们
所在直线的垂线。如图,请你过点P画出线
段AB或射线AB的垂线。
解:如图所示
.
P·
P·
B
A
PB A
A
B
(1)
(2)
(3)
垂 线(2)
一、新课引入
(1)两点之间, 线段 最短. (2)问题:要把河中的水引到农田P处, 如何挖渠能使渠
道最短?
怎么办呢?
________________________ ________________________ ________________________.
五、强化训练
1、当两条直线相交所成的四个角都相等时,这两 条直线位置关系是 ___互__相__垂_直____________
2、如图2,AO⊥BO,O为垂足,直线 CD过点O,且∠BOD=2∠AOC,则
A BCD
原因:虽然线段AD是在五个线段 中,长度是最短的,但是,题意 没有说明 线段AD 是 线段BF 的 垂线段,因此,无法断定 线段AD 的长是点A到BF的距离。
EFቤተ መጻሕፍቲ ባይዱ
离。
5、学习反思:
连接直线外一点与直线上各点的所有线段中,垂线 段最短。 简单说成: 垂线段最短
五、强化训练
1、画一条线段的垂线,垂足在( A ) A、线段上 B、线段的端点 C、线段的延长线上 D、以上都有可能
2、点到直线的距离是指这点到这条直线的
(D )
A、垂线段 B、垂线的长
C、长度
D、垂线段的长
练一练 1、如图所示,下列说法不正确的是( C )
A、点B到AC的垂线段是线段BC B、点A到BC的垂线段是线段AC C、线段CD是点D到线段AB的距离 D、线段BD是点B到线段CD的距离
C
知识点一
B
DA
知识点二
三、研读课文
垂线、垂线段与点到直线的距离的区别 垂线、垂线段与点到直线的距离,是三个 不同的概念,不能混淆。
知识点二
三、研读课文
(1)过直线L外一点A作直线a与
A
L垂直.
a
L
知识点二
(2)过直线L上一点B作直线b与L垂直. b
B L
四、归纳小结
1、两条直线相交,所成四个角中有一个角是直__角___时, 我们称这两条直线_互__相__垂__直___,其中一条直线是另 一条直线的__垂__线____,他们的交点叫做__垂__足_____。 垂2、直过用一符点号有_⊥_且__只来有表_示_一__条_____直线与已知直线垂直。 3、垂线的画法:—一—靠——,—二——过—点———,—三——画—线——— 4、学习反思:_______________________
垂线
一、新课引入
1.学生观察思考:固定木条a,转动木条b, 当b的位 置变化时,a、b所成的角也发生变化。当 =90°时,会有特殊情况出现,a、b所成的四个 角有什么特殊关系?
答:当 a =90°时, a、b所成的四个角相 等,都是90°
二、学习目标
1 经历观察、操作、想像、归纳概括、交流等 活动,培养用几何语言准确表达的能力。
A3,…,其中 PO⊥L(我们称 PO为点P到直线L的垂线段)。
②比较线段PO,PA1,PA2,PA3,…的长短,PO 最短。
③结论:连接直线外一点与直线上各点的所有线段中,垂线
段最短。
P
知识点一
A4 A3 A2 A1 O B1 B2
2、直线外一点到这条直线的 垂线段
的
长度,叫做点到直线的距离。
三、研读课文
2、点到直线的距离:直 做线点外到一直点线到的这距条离直。线的 垂线段 的长度,叫
3、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单 说成: 垂线段最短
4、垂线、垂线段与点到直线的距离的区别是 : 垂线是一条 直 线; 垂线段是一条 线段 ,是图形; 点到直线的距离是垂线段的 长度 ,是一个数量,不能说垂线段是距
A
C
D
O
B
知识点一
三、研读课文
2、如图所示,OA⊥OB,OC是一条射线,若 ∠AOC=120°,求∠BOC度数
解:∵ OA⊥OB ∴∠AOB=90° ∵ ∠AOC=120° ∴ ∠BOC=∠AOC﹣∠AOB =120 °﹣90°=30°
三、研读课文
垂线公理 在同一平面内,过一点有且只有 一条 直线与 已知直线垂直。 观察下图,分析探究作直线的垂线的方法,然 后作图: