材料力学3-截面几何特性要点

合集下载

材料力学附录

材料力学附录

图A.6
A.3设圆的直径为 d(见图 A.6),试求图形对其形心的积惯性矩、对形心轴
的惯性矩及惯性半径值。 解图中
代入公式 (A.7a),因为图形对称,y,z 为对称轴,得
因为图形对称,y,z 为对称轴,所以 Iy=Iz。据公式(A.8),对坐标原点的
极惯性矩为
据公式(A.10)惯性半径为
A.3惯性矩、惯性积的平行移轴公式
几何特性,因此称它们为截面图形的几何性质。 A.1静矩和形心
A.1.1截面图形的静矩
设有一任意截面图形如图 A.1 所示,其面积为 A。选取直角坐标系为yOz ,在坐标值为 (y,z) 处取一微小面积 dA,定义微面积 dA 乘以到 y 轴的
距离z,沿整个截面的积分为图形对 y 轴的静矩Sy,其数学表达式
而改变的规律。将式 (A.13) 的前两式相加,可得
这说明截面图形对正交轴系的惯性矩之和为一常数。
现在我们来研究 (A.13) 的第三式。Iy1z1随 α而改变,当Iy1z1=0时,相 应的坐标轴为主惯性轴,用y0,z0表示,即
由此求得
式(A.14)中的α0和α0+π2表示了主轴y0,z0的方位角。
工程实际中,有些构件的截面形状比较复杂,可将这些复杂的截面形状看成 是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的。对于这样的组合截面
图形,计算静矩 (Sz,Sy) 与形心坐标 (yC,zC) 时,图A.2可用以下公式
式中Ai,yi,zi——分别表示第i个简单图形的面积及其形心坐标值;
n——组成组合图形的简单图形的个数。
附 录
附录A截面图形的几何性质
任何受力构件的承载能力不仅与材料性能和加载方式有关,而且与构件截面
的几何形状和尺寸有关。如计算杆的拉伸与压缩变形时用到截面面积 A , 计算圆轴扭转变形时用到横截面的极惯性矩Ip等,计算弯曲应力时所用到的

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:qdxdQ;QdxdM应力几何方面变形现象:平面假设:应变规律:dxld常数变形现象:平面假设:应变规律:dxd弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:y应力公式ANPITtWTmaxZIM yZWMmaxbIQSbIQSzzzmaxmax*应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系E(单向应力状态)G(纯剪应力状态)强度条件nANumaxmax塑材:su脆材:bumaxmaxtWT弯曲正应力1.ctmax2.ctccmactt max弯曲剪应力bISQzmaxmaxmax轴向拉压扭转弯曲刚度条件max180PGIT注意:单位统一yy maxmax变形EAN dxl d ;EANL LEA —抗拉压刚度ZGIT dx d PGITL GI p —抗扭刚度EIx M x )()(1EIx M y)(''EI —抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bh 6;1223bh W bhI ZZ实心圆A=42d 16;3234dW dI tP32;6434dW dI ZZ空心圆)1(422DA)1(16)1(324344dW d I tP)1(6444dI Z )1(3243dW Z其它公式(1)'(2))1(2E G剪切(1)强度条件:AQ A —剪切面积(2)挤压条件:bsJbsbsA P A j —挤压面积矩形:A Q23max圆形:A Q 34max环形:AQ 2maxmax均发生在中性轴上二、还有:(1)外力偶矩:)(9549m N n N m N —千瓦;n —转/分(2)薄壁圆管扭转剪应力:tr T 22(3)矩形截面杆扭转剪应力:hb G T hb T32max;三、截面几何性质(1)平行移轴公式:;2A a I I ZCZ abAI I cc Y Z YZ(2)组合截面:1.形心:ni ini ci i cA y A y 11;ni ini cii cA z A z 112.静矩:ci i Zy A S ;cii y z A S 3. 惯性矩:iZ ZI I )(;iy yI I )(四、应力分析:(1)二向应力状态(解析法、图解法)a .解析法:b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”2sin 2cos 22xyx y x 2cos 2sin 2xyxyxxtg 2222minmax22xy x y xc :适用条件:平衡状态(2)三向应力圆:1m a x;3min ;231maxxyxnD'DAcB(3)广义虎克定律:)(13211E )(1zy xxE )(11322E )(1xz y y E )(12133E)(1yx z z E*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:1,02,32.一种常见的二向应力状态:2231222234r 2243r 五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主要因素单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件b1smaxfsfuu 强度条件131适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:r11r ,313r ,][212132322214r 13x六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标bs,塑性指标,Etg拉压扭低碳钢断口垂直轴线剪断s b铸铁拉断断口垂直轴线b剪断拉断断口与轴夹角45o b七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式)sincos(yZ IzIyMWMAP][4223r][3224r][4)(223NMr][3)(224NMr强度条件)sincos(maxmaxyZ WWM][WMAP maxmaxmax][圆截面][223ZWTMr][75.0224ZWTMr22)(4)(3tZ WTANWMr][22)(4)(4tZ WTANWMr][中性轴tgIIZytgyZyZyZeiAeIy2*bsαe4545o中性轴ZαMp滑移线与轴线45,剪断只有s,无b八、压杆稳定欧拉公式:2min2)(l EI P cr,22Ecr,应用范围:线弹性范围,cr <p ,>p柔度:iul ;E;ba s,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22Ecro <<p ——中柔度杆:cr=a-b <0——小柔度杆:cr =s稳定校核:安全系数法:w Icr n P P n ,折减系数法:][AP 提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。

截面几何性质(材料力学)

截面几何性质(材料力学)

§-4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
1.惯性矩和惯性积的转轴公式
y
bh3 Iz 12
C z
bh3 Iz' 12
h
b
y
注意: 1. 两个座标系的原点 必须重合; 2. 两轴惯性矩之和为常量
z
O
I y1 I
z1
I y I I p z
I z1 I y1
4)解法四 y1 I z I z1
I z0 I z0 1 I z0 2 I z0 3 I z0 4
A3 y
d 4
64
2 I y 2 I z0 3 I z0 3
d4
64 Iy
2
A2 z0
d
4
128
I z I z1 I z0 3 OC
d
2
d4 Iy 128 18
1) 极惯性矩、惯性矩和惯性积均与所取的坐标系有关, 2) 惯性积可正可负 3) 单位m4 或 mm4
y dA
4. 惯性半径
Iy iy A
Iz iz A
y
(单位m 或 mm)
O
z z

试计算图示矩形截面对于其对称轴x和y的惯性矩。
y dy
解: 取平行于x轴的狭长条, 则 dA=b dy
h
1 2

I zc I yc

2
4 I 2c zc 321104 mm4 y
I yc 0 I min
I zc I yc 2
1 2

I zc I yc

2
4 I 2c zc 57.4 104 mm 4 y

AutoCAD中的截面几何特性计算

AutoCAD中的截面几何特性计算

工程上的各种结构构件 (如桥梁的墩台 、涵洞 、 梁 、柱等) 的截面形状各不相同 ,且大多比较复杂. 这就意味着在工程设计计算中 , 各种截面几何特 性[1 ]的计算将是一项繁琐而枯燥的工作. 本文通过 AutoCAD 中面域的特性 , 使用截面特性计算工具 (Mass Properties) ,使此项工作得以程序化 ,从而大 大减少工程设计人员的计算工作 ,提高工作效率.
Y 2. 0000 X Y 1. 5000
X 1. 2247
关于形心的 X 轴方向和 Y 轴方向的主矩
Y 0. 8165 I 0. 4325 along [ 0. 4242 - 0. 9056 ] J 1. 7342 along [ 0. 9056 0. 4242 ]
第6期
张丽萍等 :AutoCAD 中的截面几何特性计算
[ 1 ] 孙训方 ,方孝淑 ,关来泰. 材料力学[ M ] . 北京 :高等教 育出版社 ,1987.
[ 2 ] 王小鹏等. AuБайду номын сангаасoCAD 2000 基础教程[ M ] . 北京 :电子工 业出版社 ,2000.
[3 ] 刘 晖 ,王 军等. AutoCAD R14 使用技术与实例 [ M ] . 成都 :电子科技大学出版社 ,1999.
Calculating Geometric Properties in AutoCAD
ZHAN G Li2ping
( Depart ment of Basic Science. Lanzhou Railway University ,Lanzhou 730070 ,China )
Abstract : The paper int roduces a computing met hod for calculating geomet ric properties of a specified section by using tools named Region and Mass properties in AutoCAD. A related example for calculating section properties about 3 different axis is also listed. By t he met hod , section properties in engineering design can be obtained di2 rectly and conveniently in AutoCAD drawings . Key words : Geomet ric property ; Region ; CAD

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学 3 截面的几何性质

材料力学 3 截面的几何性质

大小:正,负,0。
y
量纲:[长度]3
二、截面的形心 几何形心=等厚均质薄片重心 z 形心坐标公式:
yc
C
zc
yc zc
y dA A z dA
A
A
Sz A Sy A
O
A
y
S y A zc
S z A yc
结论: 若 S z 0 yc 0 z 轴通过形心。反之,亦成立。
转轴公式
sin 2 I yz cos2
I y1 I z1 I y I z
二、形心主轴和形心主惯性矩 1、主轴和主惯性矩:坐标旋转到= 0 时,
Ix y
0 0
Ix I y 2
sin20 I xy cos 20 0
tan 2 0
2 I xy Ix Iy
z1
I yzc y1 z1 dA
A
a
O
z
yc
I z A y 2dA A (b y1 )2 dA
2 A ( y1 2by1 b 2 )dA
y
zc 为形心轴, S zc Ayc 0
I zc 2bS zc b 2 A
I zc b 2 A
2


a
2677710 .52 cm 4
平 衡 项 惯 性 矩 6686481 . 857.8 单 个 形 心 惯 性 矩 779.53
组合截面可以大大提高截面惯性矩。
I y Iz 2 cos2 I yz sin 2 cos2 I yz sin 2
I y Iz 2
I y Iz 2
当=0时,
dI y1 d

材料力学教案-截面的几何性质

材料力学教案-截面的几何性质

Iy
2
Iz
1 2
(I y
§1-1 截面的静矩和形心 (The first moment of the area & centroid of
an area)
一、静矩(The first moment of the area )
截面对 y , z 轴的静矩为
z
S y
zdA
A
Sz
ydA
A
dA z
静矩可正,可负,也可能等于零.
形心主惯性矩( Centroidal principal moment of inertia) :截面对 形心主惯性轴的惯性矩.
(Properties of Plane Areas)
(1)主惯性轴的位置 设 为主惯性轴与原坐标轴之间的夹角
则有
Iy
2
Iz
sin
2 0
I
yz
cos 2 0
0
由此
tg2 0
z
负面积
C2 C1
C1(0,0) C2(5,5)
y
y yi Ai y1 A1 y2 A2
A
A1 A2
5 (80 110) 22 120 90 80110
图(b)
(Properties of Plane Areas)
§1-2 极惯性矩、惯性矩、惯性积
(Polar moment of inertia、Moment of
§1-4 转轴公式 (Rotation of axes)
一 、转轴公式 (Rotation of axes)
yOz为过截面上的任 一点建立的坐标系
y1Oz1为yOz 转过 角后形成的新坐标系
逆時针转取为 + 号

第四章 材料力学 截面的几何性质

第四章   材料力学 截面的几何性质

其他如表4.1.
*惯性半径(回转半径)的概念: • 如以r表示某一截面对某轴的惯性半径,定义
y
A
ry
o
rz2 ⋅ A = Iz
z
Iz rz = A
rz
r ⋅ A = Iy
2 y
ry =
Iy A
y
例4—3中的矩形截面:
Iz rz = = A
bh3
h 12 = h = = 0.289h 12 2 3 b⋅ h
I z = ∫ A y dA
2
θ
z
d
= ∫ ∫o 2 ρ2 sin 2 θ ⋅ ρdρ ⋅ dθ
2π o
d 2 = ∫o 2 ρ3dρ ⋅ ∫oπ sin 2 θdθ
d
1 = ρ4 4
2π 1 (1− cos 2θ )dθ = π d = π d 4 ⋅ ∫ 0 2 4 2 64 0
• 对组合图形:
∑zci ⋅ Ai z = i c ∑Ai i ∑ yci ⋅ Ai yc = i ∑ Ai i
Sy = ∑zci Ai;
i
sz = ∑ yci A i
i
A −第 个 图 的 积 i 分 形 面 ; i zci、 ci −第 个 图 的 心 标 y i 分 形 形 坐 ;
第四章 截面的几何性质
概述: 讨论的问题:介绍与截面形状和尺寸有关的几何量 (静矩、惯性矩、惯性积)的定义及计算方法;平行移轴 公式,转轴公式等。 在实际工程中发现,同样的材料,同截面积,由于 横截面的形状不同,构件的强度、刚度有明显不同,如 一张纸(或作业本),两端放在铅笔上,明显弯曲,更 不能承载东西了.但把同一张纸折成波浪状(象石棉瓦 状) ,这时纸的两端再搁在铅笔上,不仅不弯曲,再放 上一支铅笔,也不弯曲.可见,材料截面的几何形状对强度、 刚度是有一定影响的,研究截面几何性质的目的就是解

材料力学--附录A截面的几何性质

材料力学--附录A截面的几何性质

y
A
其中: 为截面面积 为截面面积, 、 其中:A为截面面积,x、 y轴为形心轴, x1、 y1为 轴为形心轴, 轴为形心轴 分别与x、 轴平行的轴 轴平行的轴, 分别与 、y轴平行的轴, a、b分别为相应平行轴之 、 分别为相应平行轴之 间的距离。 间的距离。
O a O1 b
z
附录A 附录
截面的几何性质
附录A 附录
截面的几何性质
静矩、 g 静矩、形心及其相互关系 惯性矩、极惯性矩、惯性积、 g 惯性矩、极惯性矩、惯性积、惯性半径 g 惯性矩与惯性积的平行移轴定理 g 惯性矩与惯性积的转轴定理 主轴与形心主轴、 g 主轴与形心主轴、主惯性矩与形心主惯性矩 组合图形形心、 g 组合图形形心、形心主轴和形心主矩的计算
试确定等腰梯形面积的形心和对底边的静矩。 试确定等腰梯形面积的形心和对底边的静矩。
y
【解】 截面对底边的静矩
Sz = A y1 + A y2 1 2
b C1
h
1 2 1 h = bh⋅ h + ah⋅ 2 3 2 3
C C2
=
h (a+2b) 6
2
O a
z
形心位置
zC = 0
Sz h a +2b yC = = ⋅ A 3 a +b
120
C1(0,0) 负面积 C2(5,5) C2 C1 C
10 80
z
yC = −20.3mm
形心C坐标为( 形心 坐标为(-20.3, -20.3)。 坐标为 , )。
这两种方法所得到的形心坐标不同 是由于选择不同的坐标系引起的。 是由于选择不同的坐标系引起的。
附录A 附录 【例2】 】
截面的几何性质

材料力学习题解答[第三章]

材料力学习题解答[第三章]

3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。

解a):MPaMPa1004001040050400102033231=⨯==-=⨯-=σσσ 题3-1a)图 解b):MPa MPaMPa2540010105050400102032231=⨯=-=-=⨯-=右左σσσ MPa MPa 125400105025333=⨯==右左σσ 题3-1b)图3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。

解a ):MPaMPa MPa10040010407.663001020502001010333231=⨯=-=⨯-==⨯=σσσ题3-2a)图解b):MPaMPa 7540010303.333001010033321-=⨯-==⨯==σσσ题3-2b)图30kN3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。

试求各杆横截面上的应力。

解:(1)约束反力:kNF F kN F F kN F F AXAY Dy 2001504315043======(2)各杆轴力)(250150200)(150)(200)(1502222压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图(3)各杆的正应力)(3.8330010250,)(5030010150)(7.6630010200,)(50300101503333压压拉拉MPa MPa MPa MPa AC CDAC AB -=⨯-=-=⨯-==⨯==⨯=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。

已知F=10kN ,求钢杆横截面上的正应力。

解:)(7.112204104.3544.3545cos 1)5.11(232拉MPa d F kNF F NCD CD oNCD =⨯⨯===⨯+=ππσ 题3-4图3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

材料力学第四章截面的几何性质

材料力学第四章截面的几何性质

I y A z 2dA I z A y2dA
n
I y
I yi
i 1
n
I z
I zi
i 1
n
I p
I pi
i 1
z
I p A2dA
y
A1 A2

dA
An
z
y o
【例题 4】试计算图示圆环对其形心轴的惯性 矩和极惯性矩。
z
Iy
Iz
D4 64
d 4 64
y
C
D4 d 4
I p 32 32
0 23.7 0 23.7 90
zo z zc
1 cm
Iyc = 279 cm4
Izc = 100 cm4
Iyczc = -97 cm4
yo
12 cm
0
yc
c
o
8 cm
1 cm y
Imax
m in
I yc
I zc 2
I yc
2
I zc
2
I2 yc zc
Iyc = 279 cm4 Izc = 100 cm4 Iyczc = -97 cm4
0
o
y1
u
y
证明:设通过截面 O 点的y、z 轴为主轴,u、v 为另一对 主轴,其中o不是 /2 的整数倍,由转轴公式:
I uv
Iy
Iz 2
sin 20
I yz cos 20
0
而:I yz 0 sin 20 0 I y Iz
从而:
I y1z1
Iy
2
Iz
sin
2
I yz
cos 2
0
故过O点的任何一对正 交轴都是主轴,定理得证。

材料力学 截面的几何性质

材料力学  截面的几何性质

O1 O 2
O
x
O3
x 1
C
课堂练习
I.
&
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
B
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 在图示开口薄壁截面图形中,当( 为一对主轴。
y
)时,y-z轴始终保持
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
y b C 1x C 2x O a x
æ 1 öæ 2 ö æ 1 öæ h ö = ç bh ÷ç h ÷ + ç ah ÷ç ÷ è 2 øè 3 ø è 2 øè 3 ø
h 2 = (a + 2 b ) 6
形心位置
h
x = 0
h 2 (a + 2 b ) h a + 2 b S x y = = பைடு நூலகம்· = 6 A h 3 a + b (a + b ) 2
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
课堂练习
I.
&
在下列关于平面图形的结论中,(
)是错误的。
A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴必为对称轴。 在平面图形的几何性质中,(
y
dA y
ü2、惯性矩和极惯矩永远为正,
惯性积可能为正、为负、为零。
x 1
ü3、任何平面图形对于通过其形

材料力学附录(截面特性)

材料力学附录(截面特性)



为形心坐标,则根据合力之矩定理
(A-2) 或
页码,3/14
(A-3)
这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为 正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的
,
(A-12) (A-13)
式中,D为圆环外径;d为内径。 4.根据惯性矩的定义式(A-6)、(A-7),注意微面积的取法(图A-3所示),不难求得矩形对于平 行其边界的轴的惯性矩:
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,6/14
(A-18)
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,8/14
此即关于图形对于平行轴惯性矩与惯性积之间关系的移轴定理。其中,式(A-18)表明: 1.图形对任意轴的惯性矩,等于图形对于与该轴平行的形心轴的惯性矩,加上图形面积与两平 行轴间距离平方的乘积。
之间的关系。
根据转轴时的坐标变换:
于是有
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,9/14
将积分记号内各项展开,得
改写后,得
(A-19)
上述式(A-19)和(A-20)即为转轴时惯性矩与惯性积之间的关系。
(A-20)
若将上述

材料力学 截面性质

材料力学    截面性质

(Ai 和xi , yi分别为第i个简单图形的面积及其形心坐标)
5. 组合截面的形心坐标公式
n
将 S y Ai xi i1
n
S x Ai yi i1
代入 S y A x Sx A y
解得组合截面的形心坐标公式为:
n
Ai xi
x
i 1 n
Ai
i 1
n
Ai yi
y
i 1 n
Ai
i 1
(注:被“减去”部分图形的面积应代入负值)
例 试计算图示三角形截面对x轴的静矩。
y
dy
h
b(y)
y
O
b
x
解:取平行于x轴的狭长条,易求 b( y) b (h y)
因此 d A b (h y) d y
ห้องสมุดไป่ตู้
h
所以对x轴的静矩为
h hb
bh2
S x
y d A (h y)y d y
A
0h
6
2
4
I2 xc yc
x
I x1 A y12 d A
y
Ix1
cos2
y2 d A sin2
A
x2 d A
A
2sin cos A xy d A
I x cos2 I y sin2 2I xy sin cos
利用二倍角函数代入上式,得转轴公式 :
I x1
Ix
2
Iy
Ix
Iy 2
cos2
I xy sin 2
n
Ix
i1
I
xi
n
Iy
i1
I
yi
n
I xy I i1 xyi

材料力学-截面几何特性

材料力学-截面几何特性
IxC1 (70mm)3 10mm/12 28.58104 mm4 I yC1 70mm(10mm)3 /12 0.58104 mm4
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700

材料力学截面图形的性质课件

材料力学截面图形的性质课件

(
I
y
A
A
A
由于 x 轴过形心
同理
ydA Sx 0
A
I y I y b2 A
I x I x a2 A
I xy I xy abA
平行移轴定理 ( parallel-axis theorem )
y
y
x dA
b
y x
c
a
x
重要公式
Ix Ix a2 A
Iy Iy b2 A
Ixy Ixy abA
1. 两种坐标的转换
y
y
Q
Q O
K
P x
R Sx
P
x OP y OQ
x OP y OQ
x OP OR RP OR PS
OP cos PK sin x cos y sin
y PK SK SP SK PR
PK cos OPsin xsin y cos
x x cos y sin
惯性积 ( product of inertia )
Ixy xy dA A
极惯性矩 ( polar moment of inertia )
IP (x2 y2 )dA r2dA
A
A
例 求如图三角形对 x 轴的惯性矩。
y b
斜边的方程为 y h x b
h dA
x
Ix
y2dA
i
i
组合图形形心计 算中的负面积法
Sy Sy1 Sy2
A A1 A2
xy
S y1 A1
Sy2 A2
例 求如图截面的形心位置。 例 求如图截面的形心位置。
3a a
7a/ 2
5a/ 2
3a 3a/ 2

应变与截面关系-概述说明以及解释

应变与截面关系-概述说明以及解释

应变与截面关系-概述说明以及解释1.引言1.1 概述概述部分的内容:引言部分是一篇文章的开始,它通过对主题的简要介绍和论文结构的概述来引导读者进入全文的内容。

在本篇文章中,我们将探讨应变与截面之间的关系。

应变是一个物体在力的作用下发生变形的程度的量度。

它描述了物体由于外部力的作用而产生的形状和尺寸的变化。

应变的定义和分类是本文的第二章的重点。

截面是一个物体或结构的横截面形状。

它描述了物体在某个截面上的形状和尺寸。

截面的定义和分类也是本文的第二章的重点。

本文的目的是探讨应变与截面之间的关系,并介绍应变与截面在实际应用中的具体应用。

我们将在第三章中详细讨论这些内容。

通过深入研究应变与截面的关系,我们可以更好地理解物体的变形特性,为工程设计和结构分析提供有效的方法和依据。

同时,对应变与截面的应用的了解也能够帮助我们解决实际工程问题,并提高工程的可靠性和安全性。

在接下来的章节中,我们将对应变和截面进行详细的定义和分类,并讨论它们之间的关系和应用。

最后,我们将总结本文的主要观点和结论。

通过本文的阅读,读者将能够全面了解应变与截面之间的关系,并将其运用到实际工程和设计中。

本文的内容将为读者提供宝贵的知识和理论基础,帮助他们在相关领域取得更好的成果。

接下来,让我们开始探索应变与截面之间的关系,并了解它们在实际应用中的重要性和作用。

1.2 文章结构文章结构部分的内容应该包括对整篇文章的结构和各个章节的简要介绍。

在这篇文章中,共有三个大的章节,分别是引言、正文和结论。

引言部分包括概述、文章结构和目的三个小节。

在概述部分,可以简要介绍应变和截面的基本概念和重要性。

在文章结构部分,可以说明本文的组织结构和各部分的主要内容。

在目的部分,可以介绍撰写本文的目的和意义,以及读者阅读本文可以得到的收获。

正文部分分为两个小节,分别是应变的定义与分类和截面的定义与分类。

在应变的定义与分类部分,可以详细介绍应变的概念和定义,并根据应变的不同特征进行分类。

材料力学课件之截面几何性质

材料力学课件之截面几何性质

d
2 2
16 43 416 (5.53 2)2 12
4123 412 (10.57 6)2 12
2416.76mm4
y
C2 C
z
C1
646 (单位mm)
y1
y2
29
Ai yi Ai Ai zi Ai
Ai yi
A
Ai zi
A
o Z1
z
Z2
使用上述公式时,对于挖掉部分的面积应取负值。
6
例2 求图示矩形截面abcd 部分对z 轴的静矩。
y
C3
C1
C2
o 2
4
6
12
123
Ai 144 72 -16
yi 6 4 6
z
zi 6 16 4
(单位:cm)
解:
yC
404
402
(mm)
402 )
12
64
4
23034100.7mm4
17
截面图形的的几何性质------形心和惯性矩
1,简单截面
1、有对称轴的截面,记忆或直接判断 教材353页附录Ⅱ
2、型钢,查表。教材356页附录Ⅲ
2,组合截面,组合法。
§Ⅰ.5惯性矩和惯性积的转轴公式,主惯性轴
一:已知 Iy、Iz、Iyz、(逆时针为正),求 Iy1、Iz1、Iy1z1
cos 2
0
C
z
方形截面
Iz'
Iz
Iy 2
Iz
Iy 2
cos 2
I yz sin 2
Iz
Iy 2
Iz
I
y'
Iz
2
其中:
I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档