(完整版)八年级下册一次函数压轴题

合集下载

一次函数压轴题(含答案)

一次函数压轴题(含答案)

一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。

$x$ 轴分别交于$A$。

$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。

1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。

2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。

3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。

考点:一次函数综合题。

分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。

解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。

因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。

又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

一次函数提高练习与常考题和培优难题压轴题(含解析) 一.选择题(共9小题)1.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠32.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个B.4个C.3个D.2个3.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<104.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k= .11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x 1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x 轴向右平移m个单位.当点A落在MN上时,则m= .19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB =S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A 1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S= ;当x=4时,S= ;当x=10时,S= .(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C 两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO= ;AD= ;OC= ;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P 是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S=,求此时点P的坐标.△PBE34.在平面直角坐标系xoy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|x 1﹣x 2|; 若|x 1﹣x 2|<|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|y 1﹣y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1﹣3|<|2﹣5|,所以点P 1与点P 2的“非常距离”为|2﹣5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y轴的直线P 1Q与垂直于x轴的直线P 2Q的交点).(1)已知点A (﹣,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线y=x+3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.35.对于两个已知图形G 1、G 2,在G 1上任取一点P ,在G 2上任取一点Q ,当线段PQ 的长度最小时,我们称这个最小的长度为图形G 1、G 2的“密距”;当线段PQ 的长度最大值时,我们称这个最大的长度为图形G 1、G 2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点 A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春•重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016春•南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个B.4个C.3个D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.(2016春•农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.4.(2012秋•镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.5.(2016春•重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春•浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春•无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋•盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋•西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春•邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k= ﹣3 .【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春•南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春•大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a <b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春•建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是 3 .【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春•天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD 是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春•宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋•靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春•盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…An(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.18.(2016春•泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m= 3 .【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春•武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。

(完整版)一次函数压轴题经典.docx

(完整版)一次函数压轴题经典.docx

一次函数压轴题训练典型例题题型一、 A 卷压轴题一、 A 卷中涉及到的面积问题例 1、如图,在平面直角坐标系xOy 中,一次函数 y 12x 2 与 x 轴、 y 轴分别相交于点3A 和点B ,直线 y 2 kx b (k0) 经过点 C ( 1,0)且与线段 AB 交于点 P ,并把△ ABO 分成两部分.( 1)求△ ABO 的面积;( 2)若△ ABO 被直线 CP 分成的两部分的面积相等,求点 P 的坐标及直线CP 的函数表达式。

yy 1B PO CAxy 2练习 1、如图,直线 l 1 过点 A ( 0, 4),点 D ( 4, 0),直线 l 2 : y1x 1与 x 轴交于点 C ,2两直线 l 1 , l 2 相交于点 B 。

l 1y(1)、求直线 l 1 的解析式和点 AB 的坐标;l 2(2)、求△ ABC 的面积。

BCODx二、 A 卷中涉及到的平移问题例 2、正方形 ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且 A 点的坐标是(1, 0)。

4 8①直线 y=3x- 3经过点 C,且与 x 轴交与点E,求四边形AECD的面积;②若直线 l 经过点E且将正方形ABCD分成面积相等的两部分求直线l 的解析式,③若直线 l1经过点F3 .0 且与直线y=3x平行,将②中直线l沿着y轴向上平移2个单位23交 x 轴于点M , 交直线l1于点N , 求NMF 的面积.练习 1、如图,在平面直角坐标系中,直线l1: y4x 与直线 l2: y kx b 相交于3点 A,点 A 的横坐标为 3,直线l2交y轴于点 B,且OA 1OB 。

2(1)试求直线l 2函数表达式。

(6分)(2)若将直线l 1沿着x轴向左平移3个单位,交y 轴y 于点 C,交直线l2于点 D;试求△ BCD的面积。

(4分)。

L 2l 1A1x题型二、 B 卷压轴题一、一次函数与特殊四边形例 1、如图,在平面直角坐标系中,点A、B 分别在 x 轴、y 轴上,线段OA、 OB的长 (0A<OB)2x y2x 与直线是方程组的解,点 C是直线y3x y6AB的交点,点 D 在线段 OC上, OD=25(1)求点 C 的坐标;(2)求直线 AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以 0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习 1、. 如图 , 在平面直角坐标系xOy 中,已知直线PA是一次函数y=x+m( m>0)的图象,直线 PB是一次函数y3x n(n > m )的图象,点P是两直线的交点, 点 A、B、C、Q分别是两条直线与坐标轴的交点。

2020年人教版八年级数学下册培优复习 一次函数压轴题(含答案)

2020年人教版八年级数学下册培优复习 一次函数压轴题(含答案)
第 6 页 共 12 页
参考答案 1.解: (1)∵一次函数 y=﹣2x+8 的图象与 x 轴,y 轴分别交于点 A,点 C, ∴A(4,0),C(0,8),∴OA=4,OC=8, ∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形, ∴AB=OC=8,BC=OA=4,
(3)将正方形 OBDE 沿 x 轴正方向平移得到正方形 O1B1D1E1,其中点 O,B,D,E 的对应点分别为点 O1,B1,D1,E1,连接 CD,CE,设点 E 的坐标为(a,0),其中 a≠2,△CD1E1 的面积为 S. ①当 1<a<2 时,请直接写出 S 与 a 之间的函数表达式;
②在平移过程中,当 S= 时,请直接写出 a 的值.
5.如图,在平面直角坐标系 xOy 中,矩形 ABCD 的 AB 边在 x 轴上,AB=3,AD=2,经过点 C 的直线 y=x ﹣2 与 x 轴、y 轴分别交于点 E、F. (1)求:①点 D 的坐标;②经过点 D,且与直线 FC 平行的直线的函数表达式; (2)直线 y=x﹣2 上是否存在点 P,使得△PDC 为等腰直角三角形?若存在,求出点 P 的坐标;若 不存在,请说明理由. (3)在平面直角坐标系内确定点 M,使得以点 M、D、C、E 为顶点的四边形是平行四边形,请直 接写出点 M 的坐标.
线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1))当点P在什么位置时,△APQ≌△CBP,说明理由。
(3)当△PQB为等腰三角形时,求点P的坐标.
3.如图,直线 y=2x+m(m>0)与 x 轴交于点 A(-2,0)直线 y=-x+n(n>0)与 x 轴、y 轴分别交于 B、C 两点,并与直线 y=2x+m(m>0)相交于点 D,若 AB=4. (1)求点 D 的坐标; (2)求出四边形 AOCD 的面积; (3)若 E 为 x 轴上一点,且△ACE 为等腰三角形,直接写出点 E 的坐标.

人教版八年级下册数学 第19章 一次函数 综合(压轴题)示范

人教版八年级下册数学    第19章   一次函数   综合(压轴题)示范

人教版八年级下册数学第19章 一次函数 综合(压轴题)示范1.如图,直线l 1的解析式为y =12x+1,且l 1与x 轴交于点D ,直线l 2经过定点A 、B ,直线l 1与l 2交于点C .(1)求直线的解析式; (2)求△ADC 的面积;(3)在x 轴上是否存在一点E ,使△BCE 的周长最短?若存在,请求出点E 的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可直接求得l 2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C 的坐标,然后利用三角形的面积公式即可求解; (3)求得C 关于y 轴的对称点,然后求得经过这个点和B 点的直线解析式,直线与x 轴的交点就是E . 【解析】(1)设l 2的解析式是y =kx+b ,根据题意得:{4k +b =0−k +b =5,解得{k =−1b =4,则函数的解析式是:y =﹣x+4;(2)在y =12x+1中令y =0,即y =12x+1=0,解得:x =﹣2,则D 的坐标是(﹣2,0). 解方程组{y =−x +4y =12x +1,解得{x =2y =2,则C 的坐标是(2,2).则S △ADC =12×AD ×y C =12×6×2=6;(3)存在,理由:设C (2,2)关于y 轴的对称点C ′(2,﹣2),连接BC ′交x 轴于点E ,则点E 为所求点, △BCE 的周长=BC+BE+CE =BC+BE+C ′E =BC+BC ′为最小,设经过(2,﹣2)和B 的函数解析式是y =mx+n ,则{2m +n =−2−m +m =5,解得:{m =−73n =83, 则直线的解析式是y =−73x +83,令y =0,则y =−73x +83=0,解得:x =87.则E 的坐标是(87,0).【小结】本题考查了待定系数法求一次函数的解析式,以及对称的性质,正确确定E 的位置是本题的关键. 2、矩形ABCD 在如图所示的平面直角坐标系中,点A 的坐标为(0,3),BC =2AB ,直线经过点B ,交AD 边于点P 1,此时直线l 的函数表达式是y =2x +1. (1)求BC ,AP 1的长;(2)沿y 轴负方向平移直线l ,分别交AD ,BC 边于点P ,E . ①当四边形BEPP 1是菱形时,求平移的距离;②设AP =m ,当直线l 把矩形ABCD 分成两部分的面积之比为3:5时,求m 的值.解:(1)∵直线y =2x +1经过y 轴上的B 点,∴B (0,1),又∵A 的坐 标为(0,3);∴AB=2;BC=2AB=4;P 1(1,3);AP 1=1;(2)①当四边形BEPP 1是菱形时,BP 1=BE=5;∴E (5,1);设平移之后的直线解析式为:y =2x +b ,将点E 代入;b=1-25; 与y 轴的交点B ’(0,1-25),∴沿y 轴负方向平移距离为25;②∵AP=m ;AP 1=1;PP 1=BE=m-1;而S 梯形ABEP =83S 矩形ABCD 或S 梯形ABEP =85S 矩形ABCD ; ∴53m 1-m 221或)(=+⨯;m=2或3. 3、如图,一次函数y 1=54x+n 与x 轴交于点B ,一次函数y 2=−34x+m 与y 轴交于点C ,且它们的图象都经过点D (1,−74).(1)则点B 的坐标为 ,点C 的坐标为 ;(2)在x 轴上有一点P (t ,0),且t >125,如果△BDP 和△CDP 的面积相等,求t 的值;(3)在(2)的条件下,在y 轴的右侧,以CP 为腰作等腰直角△CPM ,直接写出满足条件的点M 的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y =0和x =0,可得B 、C 点坐标; (2)根据面积的和差,可得关于t 的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y 轴的右侧,有三个符合条件的点M ,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M 的坐标.【解析】(1)将D (1,−74)代入y =54x+n ,解得n =﹣3,即y =54x ﹣3,当y =0时,54x ﹣3=0.解得x =125,即B 点坐标为(125,0); 将(1,−74)代入y =−34x+m ,解得m =﹣1,即y =−34x ﹣1,当x =0时,y =﹣1.即C 坐标为(0,﹣1); (2)如图1,S △BDP =12(t −125)×|−74|=78t −2110,当y =0时,−34x ﹣1=0,解得x =−43,即E 点坐标为(−43,0), S △CDP =S △DPE ﹣S △CPE =12(t +43)×74−12×(t +43)×|﹣1|=38t +12,由△BDP 和△CDP 的面积相等,得:78t −2110=38t +12,解得t =5.2;(3)以CP 为腰作等腰直角△CPM ,有以下两种情况: ①如图2,当以点C 为直角顶点,CP 为腰时,点M 1在y 轴的左侧,不符合题意,过M 2作M 2A ⊥y 轴于A , ∵∠PCM 2=∠PCO+∠ACM 2=∠PCO+∠OPC =90°,∴∠ACM 2=∠OPC ,∵∠POC =∠CAM 2,PC =CM 2,∴△POC ≌△CAM 2(AAS ),∴PO =AC =5.2,OC =AM 2=1, ∴M 2(1,﹣6.2);②如图3,当以点P 为直角顶点,CP 为腰时,过M 4作M 4E ⊥x 轴于E ,同理得△COP ≌△PEM 4,∴OC =EP =1,OP =M 4E =5.2,∴M 4(6.2,﹣5.2), 同理得M 3(4.2,5.2);综上所述,满足条件的点M 的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).【小结】本题考查了一次函数综合题,利用待定系数法求函数解析式;利用面积的和差得出关于t 的方程是解题关键;利用全等三角形的判定与性质得出对应边相等是解题关键.4、如图,已知直线y =2x+2与y 轴、x 轴分别交于A 、B 两点,点C 的坐标为(﹣3,1). (1)直接写出点A 的坐标 ,点B 的坐标 . (2)求证△ABC 是等腰直角三角形.(3)若直线AC 交x 轴于点M ,点P (−52,k )是线段BC 上一点,在线段BM 上是否存在一点N ,使直线PN 平分△BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)作CD ⊥x 轴于点D ,证明△CDB ≌△BOA (SAS )即可解决问题. (3)求出点P 的坐标,利用面积法求出BN 的长即可解决问题.【解答】(1)对于直线y =2x+2,令x =0,得到y =2,令y =0,得到x =﹣1,∴A (0,2),B (﹣1,0). (2)证明:作CD ⊥x 轴于点D ,由题意可得CD =1,OD =3,OB =1,OA =2,∴CD =OB =1,BD =OA =2, ∵∠CDB =∠AOB =90˚,∴△CDB ≌△BOA (SAS ),∴BC =BA ,∠CBD =∠BAO ,∵∠ABO+∠BAO =90˚,∴∠ABO+∠CBD =90˚,即∠ABC =90˚,∴△ABC 是等腰直角三角形. (3)∵P (−52,k )在直线BC :y =−12x −12上,∴P (−52,34),∵直线AC :y =13x +2交x 轴于M ,∴M (﹣6,0),∵S △BCM =12×5×1=52,假设存在点N ,使直线PN 平分△BCM 的面积,则S △BPN =12⋅BN ⋅34=12×52,∴BN =103,∴ON =BN+OB =103+1=133,∴N(−133,0).【小结】本题考查属于一次函数综合题,考查了一次函数的性质,等腰直角三角形的判定,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、如图1,在平面直角坐标系xOy 中,直线y =kx+8分别交x 轴,y 轴于A 、B 两点,已知A 点坐标(6,0),点C 在直线AB 上,横坐标为3,点D 是x 轴正半轴上的一个动点,连结CD ,以CD 为直角边在右侧构造一个等腰Rt △CDE ,且∠CDE =90°.(1)求直线AB 的解析式以及C 点坐标;(2)设点D 的横坐标为m ,试用含m 的代数式表示点E 的坐标;(3)如图2,连结OC ,OE ,请直接写出使得△OCE 周长最小时,点E 的坐标. 【分析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,即可求解; (2)证明△CDF ≌△DEG (AAS ),则CF =DG =4,DF =EG =3﹣m ,OG =4+m ,则E (4+m ,m ﹣3); (3)过点O 作直线l 的对称点O ′,连接CO ′交直线l 于点E ′,则点E ′为所求点,即可求解. 【解析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,∴y =−43x +8,把x =3代入,得y =4,∴C (3,4); (2)作CF ⊥x 轴于点F ,EG ⊥x 轴于点G ,∵△CDE 是等腰直角三角形,∴CD =DE ,∠CDE =90°, ∴∠CDF =90°﹣∠EDG =∠DEG ,且∠CFD =∠DGE =90°,∴△CDF ≌△DEG (AAS )∴CF =DG =4,DF =EG =3﹣m ,∴OG =4+m ,∴E (4+m ,m ﹣3); (3)点E (4+m ,m ﹣3),则点E 在直线l :y =x ﹣7上,设:直线l 交y 轴于点H (0,﹣7),过点O 作直线l 的对称点O ′, ∵直线l 的倾斜角为45°,则HO ′∥x 轴,则点O ′(7,﹣7), 连接CO ′交直线l 于点E ′,则点E ′为所求点,OC 是常数,△OCE 周长=OC+CE+OE =OC+OE ′+CE ′=OC+CE ′+O ′E ′=OC+CO ′为最小,由点C 、O ′的坐标得,直线CO ′的表达式为:y =−114x +494联立{y =x −7y =−114x +494,解得:{x =7715y =−2815,故:E(7715,−2815). 【小结】本题考查的是一次函数综合运用,涉及到一次函数的性质、等腰直角三角形的性质、点的对称性等,综合性很强,难度较大.6.如图①,直线y =x +1交x 轴于点A ,交y 轴于点C ,OB =30A ,M 在直线AC 上,AC =CM . (1)求直线BM 的解析式;(2)如图①,点N 在MB 的延长线上,BN =AC ,连CN 交x 轴于点P ,求点P 的坐标;(3)如图②,连接OM ,在直线BM 上是否存在点K ,使得∠MOK =45°,若存在,求点K 的坐标,若不存在,说明理由.解:(1)利用A(-1,0);C (0,1);AC=AM;∴M (1,2);B (3,0);∴BM :y =-x +3.(2)过C 作CS ∥MN 交x 轴与S 点,可证△PCS ≌△PNB ,可证P 为BS 的中点,可证OA=OS=1; 则BS=2;则P (2,0)。

专题12 一次函数解答题压轴训练(解析版)八年级数学下学期(人教版)

专题12 一次函数解答题压轴训练(解析版)八年级数学下学期(人教版)

专题12 一次函数解答题压轴训练(时间:60分钟 总分:120) 班级 姓名 得分一、解答题1.在平面直角坐标系xOy 中,对于任意两点()()1122,,,M x y N x y ,定义如下:点M 与点N 的“直角距离”为1212x x y y -+-,记作MN d .例如:点()1,5M 与()7,2N 的“直角距离”17529MN d =-+-=.(1)已知点1234311111(1,0),,,,,,222422P P P P ⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则在这四个点中,与原点O 的“直角距离”等于1的点是__________;(2)如图,已知点()()1,0,0,1A B ,根据定义可知线段AB 上的任意一点与原点O 的“直角距离”都等于1.若点P 与原点O 的“直角距离”1OP d =.请在图中将所有满足条件的点P 组成的图形补全; (3)已知直线2y kx =+,点(),0C t 是x 轴上的一个动点.①当3t =时,若直线2y kx =+上存在点D ,满足1CD d =,求k 的取值范围;①当2k =-时,直线2y kx =+与x 轴,y 轴分别交于点E ,F .若线段EF 上任意一点H 都满足14CH d ≤≤,直接写出t 的取值范围.【答案】(1)P 1,P 4;(2)见解析;(3)①-1≤k ≤13-;①-2≤t≤0或t=2 【分析】(1)根据“直角距离”分别计算四个点到原点的距离,即可判断;(2)根据“直角距离”的定义得|x |+|y |=1,分四种情况可得四个函数关系式,分别画出即可; (3)①先根据题意可得点C 的坐标为(3,0),根据d CD =1,并由(2)可得:点D 在正方形EFMN 边上,如图2,通过观察图2可得:k 的最大值是过点E 的直线,k 的最小值是过F ,M 的直线,代入可得结论;①根据k =-2可得直线EF 的解析式为:y =-2x +2,计算点E 和F 的坐标,设H (m ,-2m +2),根据点H 在线段EF 上,可得0≤m ≤1,根据“直角距离”的定义列式得d CH =|t -m |+|-2m +2|=|t -m |-2m +2,列不等式后分两种情况进行讨论可得结论. 【详解】解:(1)①点1234311111(1,0),,,,,,222422P P P P ⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①d P 1O =|-1|+0=1,d P 2O =31222-+=,d P 3O =113244-+-=,d P 4O =11122-+-=, ①与原点O 的“直角距离”等于1的点是P 1,P 4; 故答案为:P 1,P 4; (2)设P (x ,y ),①点P 与原点O 的“直角距离”d OP =1, ①|x |+|y |=1,当x >0,y >0时,x +y =1,即y =-x +1, 当x >0,y <0时,x -y =1,即y =x -1, 当x <0,y >0时,-x +y =1,即y =x +1, 当x <0,y <0时,-x -y =1,即y =-x -1, 如图1所示,(3)①当t =3时,点C 的坐标为(3,0),由(2)可得:d CD =1,则点D 在正方形EFMN 边上,如图2,①F(2,0),E(3,1),M(3,-1),N(4,0),又①点D在直线y=kx+2,又直线y=kx+2过点(0,2),由图2可知:当直线y=kx+b过点E时,通过观察图2可得:k的最大值是过点E的直线,k 的最小值是过F,M的直线,把点E的坐标(3,1)代入y=kx+2中,3k+2=1,k=13 -,把点F的坐标(2,0)代入y=kx+2中,2k+2=0,k=-1,故k的取值范围是:-1≤k≤13 -,①当k=-2时,直线的解析式为:y=-2x+2,当x=0时,y=2,当y=0时,x=1,①E(1,0),F(0,2),设H(m,-2m+2)(0≤m≤1),d CH=|t-m|+|-2m+2|=|t-m|-2m+2,①1≤d CH≤4,即1≤|t-m|-2m+2≤4,又0≤-2m+2≤2,即-1≤|m-t|≤4,当t≤m时,有-1≤m-t≤4,①0≤m≤1,①-4≤t≤2,又t≤m,①-4≤t≤1,当t>m时,有-1≤t-m≤4,①0≤m≤1,①-1≤t ≤5, 又t >m , ①1≤t ≤5,当-4≤t <-2时,d CH >4,不符合题意, 当0<t <2时,d CH <1,不符合题意, 当2<t≤5时,d CH >4,不符合题意, 综上,t 的取值范围为:-2≤t≤0或t=2. 【点睛】本题属于新定义与一次函数相结合的综合压轴题,读懂定义,紧扣定义解题,熟练掌握“直角距离”的定义是解答此题的关键.2.在平面直角坐标系xOy 中,O 为坐标原点,四边形OABC 的顶点A 在x 轴的正半轴上,4OA =,2OC =,点P ,点Q 分别是边BC ,边AB 上的点,连结AC ,PQ ,点B 1是点B 关于PQ 的对称点.(1)若四边形OABC 为长方形,如图1,①若点P ,点Q 分别是边BC ,边AB 上中点,求直线PQ 的解析式; ①若BQ BP =,且点1B 落在AC 上,求点1B 的坐标;(2)若四边形OABC 为平行四边形,如图2,且OC AC ⊥,过点1B 作1//B F x 轴,与对角线AC ,边OC 分别交于点E ,点F .若11:1:3B E B F =,点1B 的横坐标为m ,求点1B 的纵坐标(用含m 的代数式表示)【答案】(1)①132y x =-+;①8(3,2)3;(2)5或2 【分析】(1)①根据A 、C 坐标和中点的定义得到P 、Q 坐标,再利用待定系数法求解. ①求出直线AC 的解析式,利用待定系数法即可解决问题.(2)分两种情形:①当点1B 在线段FE 的延长线上时,如图2,延长1B F 与y 轴交于点G ,①当点1B 在线段FE (除点E ,F 外)上时,如图3,延长1B F 与y 轴交于点G ,分别求解即可解决问题. 【详解】 解:(1)①4=OA ,2OC =,四边形OABC 是矩形,①BC =4,AB =2, ①B (4,2),又点P 和点Q 是BC 和AB 中点,①P (2,2),Q (4,1),设PQ 的解析式为y kx b =+,则2214k b k b =+⎧⎨=+⎩,解得:123k b ⎧=-⎪⎨⎪=⎩,①PQ 的解析式为132y x =-+; ①设BP BQ a ==,则1(4,2)B a a --,如图1,设直线AC 的解析式是12y k x =+,把(4,0)A 代入,得1042k =+,解得112k =-,∴直线AC 的解析式是122y x =-+, 把1(4,2)B a a --代入上式,得12(4)22a a -=--+,解得43a =.18(3B ∴,2)3;(2)4=OA ,2OC =,OC AC ⊥,30OAC ∴∠=︒,C .11:1:3B E B F =,∴有以下两种情况:①当点1B 在线段FE 的延长线上时,如图2,延长1B F 与y 轴交于点G ,由题意可知1(0)B G m m =>,设GF b =,则OG =,2OF b =, 22CF b ∴=-,2(22)44FE b b =-=-,11222B E EF b ∴==-,(44)(22)b b b m ∴+-+-=,解得65mb -=.∴点1B①当点1B 在线段FE (除点E ,F 外)上时,如图3,延长1B F 与y 轴交于点G ,同理可求得1B综上所述,满足条件的1B 的纵坐标为5或2.【点睛】本题属于四边形综合题,考查了矩形的性质,一次函数的应用,待定系数法等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 3.已知:在平面直角坐标系中,点O 为坐标原点,直线y =kx +3与x 轴、y 轴分别交于点A 、点B ,且ABO 的面积为9.(1)如图1,求k 的值;(2)如图2,若点P 是线段AO 上的一动点,过点P 作PC ①AB ,交y 轴于点C ,设点P 的横坐标为t ,线段BC 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点D 为线段AB 的延长线上一点,连接DO ,DO 与PC的延长线交于点E ,若①BPC =2①BOD ,BP ﹣PE ,求点D 的坐标. 【答案】(1)k =12;(2)d =12t +3;(3)(1,72) 【分析】(1)根据题意先求出点A ,B 的坐标,依据三角形面积列方程求解即可;(2)先根据两直线平行时,其解析式一次项系数相等,求出直线PC 的解析式,进而求出点C 的坐标,即可得到答案;(3)在y 轴的负半轴上取一点F ,使FO =BO =3,连接PF ,延长DO 交PF 于点G ,过点B 作BH //PF 交OD 于H ,证明①BHD 和①FGO ,过点D 作DT ①y 轴于T ,设D (m ,12m +3),根据题意建立方程求解. 【详解】解:(1)①直线y =kx +3与x 轴、y 轴分别交于点A 、点B ,①A(﹣3k,0),B(0,3),①OA=|﹣3k|,OB=3,①S①ABO=12•OA•OB=12×|﹣3k|×3=92|1k|,①S①ABO=9,①92|1k|=9,解得:k=±12,①由题图知k>0,①k=12;(2)①PC//AB,P(t,0),设直线PC的解析式为y=12x+n,则0=12t+n,①n=-12t,①直线PC的解析式为y=12x﹣12t,令x=0,得y=﹣12t,①C(0,﹣12 t),①BC=3﹣(﹣12t)=12t+3,①线段BC的长为d,①d=12t+3;(3)如图3,在y轴的负半轴上取一点F,使FO=BO=3,连接PF,延长DO交PF于点G,①BF ①PO ,FO =BO , ①BP =PF ,设①BOD =α,①PBO =β, ①①BPC =2①BOD ,①①BPC =2α,①OFG =①PBO =β,①GOF =①BOD =α, ①PGE =①PFO +①GOF =α+β,①①BCE =①PBO +①BPC =①BOD +①PEO , ①β+2α=α+①PEO , ①①PEO =α+β, ①①PEO =①PGE , ①PE =PG ,过点B 作BH //PF 交OD 于H , ①①BHD =①PGE ,①BHO =①FGO , ①PC //AB , ①①BHD =①PEO , ①①BHD =①BDH , ①BD =BH ,在①BHO 和①FGO 中,BOH FOG BHO FGO BO FO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①BHO 和①FGO (AAS ),①GF =BH =BD ,①BP ﹣PE ,BP =PF ,PE =PG ,①PF ﹣PG ,即GF ,①BD ,过点D 作DT ①y 轴于T ,设D (m ,12m +3),且m >0,则TD =m , TB =TO ﹣BO =12m +3﹣3=12m , 在Rt ①BTD 中,TD 2+BT 2=BD 2,即m 2+(12m )2)2, 解得:m 1=1,m 2=﹣1, 当m =1时,12m +3=12×1+3=72, ①D (1,72). 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、全等三角形的判定与性质及勾股定理的应用.4.一次函数y x +2的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内作等边①ABC .(1)求C 点的坐标;(2)在第二象限内有一点M (m ,1),使S ①ABM =S ①ABC ,求M 点的坐标;(3)将①ABC 沿着直线AB 翻折,点C 落在点E 处;再将①ABE 绕点E 顺时针方向旋转15°,点B 落在点F 处,过点F 作FG ①y 轴于G .求①EFG 的面积.【答案】(1)(-4);(2)(-1);(3)2【分析】(1)先求得A 、B 的坐标,然后可得到30BAO ∠=︒,依据含30直角三角形的性质可得到24AB OB ==,则90CAO ∠=︒,然后依据勾股定理求得AB 的长,从而可得到点C 的坐标;(2)过点C 作//CM AB ,则ABM ABC S S ∆∆=.设直线CM 的解析式为3y x b =+,将点C 的坐标代入求得b 的值,然后将1y =代入MC 的解析式可求得点M 的横坐标;(3)先求出30FHG ∠=︒,进而表示出FG ,EG ,用勾股定理建立方程求出2a ,最后用面积公式即可得出结论.【详解】解:(1)当0x =时,2y =,(0,2)B ∴.当0y =时,x =-(A ∴-,0).2OB ∴=,=OA30BAO ∴∠=︒,24AB OB ==.ABC ∆为等边三角形,60ACB ∠=︒∴.90CAO ∴∠=︒.(C ∴-4).(2)如图,过点C 作//CM AB .//CM AB ,ABM ABC S S ∆∆∴=.设直线CM 的解析式为3y x b =+,将点C (4b -+=,解得6b =.∴直线CM 的解析式为6y x =+.将1y =代入MC 的解析式得:16x =+,解得:x =-,(M ∴-1). (3)如图,由(1)知(A -0),(0,2)B ,4AB ∴=,ABC ∆为等边三角形,4BC AB ∴==,由折叠知,4BE BC ==,由旋转知,4EF BE ==,15BEF ∠=︒,取EG 上取一点H 使,EH FH =,连接FH ,30FHG ∴∠=︒,设FG a =,HG ∴=,2FH a =,2EH a ∴=,2(2EG EH HG a a ∴=+==,在Rt EFG △中,根据勾股定理得,22[(2]16a a +=,2a ∴=211(2222EFG S EG FG a a ∆∴=⨯=+⨯== 【点睛】本题是一次函数的综合题,主要应用了待定系数法求一次函数的解析式、三角形的面积、轴对称路径最短问题,构造出特殊直角三角形是解本题的关键.5.如图①,在矩形ABCD 中,AB =8,AD =4.点P 从点A 出发,沿A →D →C →D 运动,速度为每秒2个单位长度;点Q 从点 A 出发向点B 运动,速度为每秒1个单位长度. P 、Q 两点同时出发,点Q 运动到点B 时,两点同时停止运动,设点Q 的运动时间为t (秒).连结PQ 、AC 、CP 、CQ .(1)点P 到点C 时,t = ; 当点Q 到终点时,点P 的运动路程为 ; (2)用含t 的代数式表示PD 的长;(3)设①CPQ 的面积为s ,求s 与t 之间的函数关系式;(4)如图①,当点P 在线段DC 上运动时,将①APQ 沿PQ 折叠,点A 落在平面内的点A ′ 处,PQ 与AC 交于点E .当QA '与①ACD 的边DC 、AC 平行时,直接写出t 的值.【答案】(1)6,16(2)当0<t ≤2时,PD = 4-2t ,当2<t ≤6时PD = 2t -4,当6<t ≤8时,PD = 20 -2t ;(3)当0<t ≤2时,s t t =-+210,当2<t ≤6时,s t =-+424,当6<t ≤8时,s t =-424;(4),,t t t t ===-=+12342041243【分析】(1)计算AC 的长,除以速度即可;计算点Q 的运算时间AB ÷速度,得到的时间乘以点P 的速度即可;(2)根据t 的运动特点,分0<t ≤2,2<t ≤6,6<t ≤8三种情形计算;(3)根据(2)的情形,对应计算三角形的面积即可;(4)在2<t ≤6,6<t ≤8两种情形下,分别计算QA '∥DC 和QA '∥AC 计算.【详解】解:(1)当点P 到点C 时 , t =122=6, ①点Q 的运动时间为:8÷1=8,故答案为:6,16;①点P 的运动路程为2×8=16(2)当0<t ≤2时,①P A =2t ,P A +PD =AD =4,①PD = 4-2t ;当2<t ≤6时,①P A =2t ,AD +PD =P A ,AD =4,①PD = 2t -4;当6<t ≤8时, ①2t =AD +CD +PC ,PC +PD =CD ,AD =4,①PD =8-(2t -12)= 20 -2t ;(3)当0<t ≤2时,s =111482(42)8(8)4222t t t t ⨯-⨯⨯--⨯--⨯ 210t t =-+;当2<t ≤6时,1(122)44242s t t =-⨯=-+; 当6<t ≤8时, 1(212)44242s t t =-⨯=-; (4)当2<t ≤6,且QA '∥AC 时,如图1,根据折叠的意义,得①AQP =①A 'QP ,①四边形ABCD 是矩形,①AB∥CD ,①①AQP =①CPE ,①QA '∥AC ,①①A 'QP =①CEP ,①①AEQ=①CEP,①①AQP=①CPE=①A'QP =①CEP=①AEQ,①AE=AQ,CP=CE,①四边形ABCD是矩形,AB=8,AD=4①BC=4,①ABC=90°,AC=设点Q运动时间为t,则P A=2t,AQ=t,①CP=12-P A=12-2t,①AE+EC=AC,①AQ+PC=AC,①12-2t+t=①t=12-当2<t≤6,且QA'∥DC时,如图2,根据折叠的意义,得①AQP=①A'QP=90°,①四边形ABCD是矩形,①①DAQ=90°,①AD∥PQ,①四边形AQPD是矩形,①PD=AQ,设点Q运动时间为t,则P A=2t,AQ=t,①PD=2t-4,①2t-4=t,①t=4;当6<t≤8,且QA'∥AC时,如图3,根据前面的证明,得到AC=CP=CE,AQ=AE,设点Q运动时间为t,则AQ=t, CP=2t-12,①AE+EC=AC,①AQ+PC=AC,①2t-12+t=①t=4+;3当6<t≤8,且QA'∥DC时,如图4,根据前面的证明,得到AQ=PD,设点Q运动时间为t,则AQ=t, DP=20-2t,①20-2t =t ,①t =203;综上所得,t 的值为,,t t t t ===-=+12342041243 【点睛】 本题考查了矩形的性质,折叠的性质,等腰三角形的判定与性质,平行线的性质,勾股定理,函数的表达式,分类思想,灵活运用分类思想,适当分割图形表示面积是解题的关键. 6.某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元. (1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的14,求甲种树苗数量的取值范围. (3)在(2)的条件下,如何购买树苗才能使总费用最低?【答案】(1)购买的甲种树苗的单价是60元,乙种树苗的单价是100元;(2)200400a ≤≤;(3)购买的甲种树苗400棵,购买乙种树苗100棵,总费用最低【分析】(1)设甲种树苗每棵x 元,乙种树苗每棵y 元,根据:“购买50棵甲种树苗和20棵乙种树苗共需5000元,购买30棵甲种树苗和10棵乙种树苗共需2800元”列方程组求解可得; (2)设购买的甲种树苗a 棵,则购买乙种树苗()500a -棵,由题意列出一元一次不等式组,则可得出答案;(3)设购买的甲种树苗a 棵,则购买乙种树苗()500a -棵,总费用为W ,即可得出W 关于a 的函数关系,再根据一次函数的性质可解决最值问题.【详解】解:(1)设购买的甲种树苗的单价为x 元,乙种树苗的单价为y 元.依题意得: 5020500030102800x y x y +=⎧⎨+=⎩, 解这个方程组得:x 60y 100=⎧⎨=⎩, 答:购买的甲种树苗的单价是60元,乙种树苗的单价是100元;(2)设购买的甲种树苗a 棵,则购买乙种树苗()500a -棵,由题意得,60100(500)4200015004a a a a +-≤⎧⎪⎨-≥⎪⎩, 解得,200400a ≤≤.①甲种树苗数量a 的取值范围是200400a ≤≤.(3)设购买的甲种树苗a 棵,则购买乙种树苗()500a -棵,总费用为W ,①60100(500)5000040W a a a =+-=-.①400-<,①W 值随a 值的增大而减小,①200400a ≤≤,①当400a =时,W 取最小值,最小值为500004040034000-⨯=元.即购买的甲种树苗400棵,购买乙种树苗100棵,总费用最低.【点睛】本题考查了二元一次方程组,一元一次不等式组,一次函数的增减性,熟练掌握方程组,不等式组的解法,灵活运用一次函数的增减性是解题的关键.7.如图,四边形OABC 是张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OC =,点E 在边BC 上.(1)若点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M ,将纸片沿直线OE 折叠,顶点C 恰好落在MN 上,并与MN 上的点G 重合.①求点G 、点E 的坐标;①若直线:l y mx n =+平行于直线OE ,且与长方形ABMN 有公共点,请直接写出n的取值范围.(2)若点E 为BC 上的一动点,点C 关于直线OE 的对称点为G ,连接BG ,请求出线段BG 的最小值.【答案】(1)①G (3,4),E (53,5);①-15≤n ≤-4;(2)5 【分析】(1)①根据折叠的性质求出OG ,根据勾股定理计算求出GN ,得到点G 的坐标,设CE =x ,根据勾股定理求出x ,求出点E 的坐标;①利用待定系数法求出OE 所在直线的解析式,根据平行的性质求出m ,分别把点M 、点A 的坐标代入解析式求出n ,得到答案;(2)连接OB ,OG ,求出BC =OC =OG =5,推出当O 、B 、G 三点共线时,BG 取得最小值,从而计算.【详解】解:(1)由折叠的性质可知,OG =OC =5,由勾股定理得,GN 4=,①点G 的坐标为(3,4);设CE =x ,则EM =3-x ,由折叠的性质可知:EG =CE =x ,①GN =4,①GM =5-4=1,在Rt ①EMG 中,222EG EM MG =+,即()22231x x =-+, 解得:x =53, ①点E 的坐标为(53,5); 设OE 所在直线的解析式为:y =kx , 则53k =5, 解得,k =3,①OE 所在直线的解析式为:y =3x ,①直线l :y =mx +n 平行于直线OE ,①m =3,即直线l 的解析式为y =3x +n ,当直线l 经过点M (3,5)时,5=3×3+n ,解得,n =-4,当直线l 经过点A (5,0)时,0=3×5+n ,解得,n =-15,①直线l 与长方形ABMN 有公共点时,-15≤n ≤-4;(3)连接OB ,OG ,①OC =BC =5,①OCB =90°,①BC =①点C 关于直线OE 的对称点为点G ,①OC =OG =5,①BG ≥OB -OG ,①当O 、B 、G 三点共线时,BG 取得最小值,①BG 的最小值为5.【点睛】本题考查的是一次函数的知识、折叠的性质、最短路径问题,掌握待定系数法求正比例函数解析式的一般步骤,得到O 、B 、G 三点共线时,BG 取得最小值是解题的关键. 8.如图,正方形ABCD 边长10AB =cm ,点E 在边AD 上,且4AE =cm ,点N 从点A 出发,以5cm/s 的速度在A 、B 之间往返匀速运动,同时,点M 从点E 出发,以2cm/s 的速度沿路径E D C →→匀速运动,当点M 运动到点C 时,两点都停止运动,设运动时间为t (单位:s ).在运动过程中AMN 的面积S (单位:2cm )随运动时间t 的变化而变化.(1)当点N 运动到点B 时,求t 值及此时AMN ∆的面积.(2)在整个运动过程中,求S 与t 的关系式.【答案】(1)t =2,此时AMN ∆的面积=402cm ;(2)见解析【分析】(1)先根据点N 的运动速度得出时间,再得出AM 的长,再根据三角形的面积公式即可得出答案;(2)分①当0<t ≤2时,①当2<t ≤3时,①当3<t ≤4时,①当4<t ≤6时,①当6<t ≤8时,五种情况进行讨论即可.【详解】解:(1)①当点N 运动到点B 时,10AB =cm ,点N 的速度为5cm /s , ①t=2s 5=AB , ①点M 的速度为2cm /s ,①EM =2×2=4cm ,①AM =AE +EM =4+4=8,①AMN ∆的面积=21181040cm 22⨯⨯=⨯⨯=AM AB . (2)①当点M 运动到点C 时,两点都停止运动, ①20-4t=8s 2=, ①当0<t ≤2时,AN =5t ,AM =4+2t ,AMN ∆的面积=()2115t 4+2t 5t +10t 22⨯⨯=⨯⨯=AM AN ; ①当2<t ≤3时,AN =20-5t ,AM =4+2t ,AMN ∆的面积=()()21120-5t 4+2t -5t +10t+4022⨯⨯=⨯=AM AN ; ①当3<t ≤4时,AN =20-5t ,AMN ∆的高为10cm ,AMN ∆的面积=()110520-5t -25t+1002⨯⨯=⨯=AN ; ①当4<t ≤6时,AN =5t -20,AMN ∆的高为10cm ,AMN ∆的面积=()11055t-2025t-1002⨯⨯=⨯=AN ; ①当6<t ≤8时,AN =40-5t ,AMN ∆的高为10cm ,AMN ∆的面积=()110540-5t 25t+2002⨯⨯=⨯=-AN ; 【点睛】本题主要考查了正方形的性质和三角形的面积计算,分类讨论的数学思想,确定点M 、N 所在的位置,是解决本题的关键.9.如图1,在平面直角坐标系中,直线AB 与x 轴、y 轴相交于()6,0A 、()0,2B 两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90︒得到CD ,此时点D 恰好落在直线AB 上时,过点D 作DE x ⊥轴于点E .(1)求证:BOC CED ≌;(2)求经过A 、B 两点的一次函数表达式.如图2,将BCD △沿x 轴正方向平移得B C D '''∠,当直线B C ''经过点D 时,求点D 的坐标及B C D '''∠的面积;(3)在x 轴上是否存在点P ,使得以C 、D 、P 为顶点的三角形是等腰三角形?若存在,请写出P 点的坐标.【答案】(1)证明见解析;(2)123y x=-+,()3,1D,2.5;(3)存在,)1,0P,)1,0P,()5,0P.【分析】(1)由“”AAS即可证明Rt BOC Rt CED≅;(2)由B C D'''∠的面积BCD=∆的面积2BCOBOEDS S=-梯形,即可求解;(3)分PC PD=、PC CD=、PD CD=三种情况,分别求解即可.【详解】解:()190BOC BCD CED∠=∠=∠=︒,①90OCB DCE∠+∠=︒,90DCE CDE∠+∠=︒,①BCO CDE∠=∠,BC CD=,①()Rt BOC Rt CED AAS≅;()2设直线AB解析式为y kx b=+,把()6,0A,()0,2B代入上式得062k bb=+⎧⎨=⎩,解得132kb⎧=-⎪⎨⎪=⎩,故直线AB的解析式为123y x=-+,由BOC CED≅得:CO DE=,设CO DE m==,而2OB CE==,()2,D m m∴+,点D在直线123y x=-+上,把()2,D m m+代入上式并解得1m=,()3,1D ∴,点()1,0C ,B C D '''∠的面积BCD =∆的面积()112123221 2.522BCO BOED S S =-=⨯+⨯-⨯⨯⨯=梯形; ()3存在,理由:设点P 的坐标为(,0)t ,而点C 、D 的坐标分别为()1,0、()3,1,由点P 、C 、D 的坐标得:22(1)PC t =-,22(3)+1PD t =-,22215CD =+=,当PC PD =时,则22(1)(3)1t t -=-+, 解得:94t =, 当PC CD =时,则2(1)5t -=,解得:1t =当PD CD =时,则2(3)15t -+=,解得:1t =(舍去)或5,故点P 的坐标为9,04⎛⎫⎪⎝⎭或)1,0或()1或()5,0. 【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、三角形全等和面积的计算等,其中(3)要注意分类求解,避免遗漏.10.已知小明的家、体育场、文化宫在同一直线上,下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家,图中x 表示时间(单位是分钟),y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题:(1)填表:(2)填空:①小明在文化宫停留了________min ;①小明从家到体育场的速度为________km/min ;①小明从文化宫回家的平均速度为_________km/min ;①当小明距家的距离为0.6km 时,他离开家的时间为_______min .(3)当045x ≤≤时,请直接写出y 关于x 的函数解析式. 【答案】(1)23,1,0.5;(2)①25;①115;①160①9或42;(3)1(015)151(1530)12(3045)30x x y x x x ⎧≤≤⎪⎪=<≤⎨⎪⎪-+<≤⎩ 【分析】(1)由图可知,前15min 小明离家的距离y 与小明离开家的时间x 成正比例函数,利用待定系数法解得该正比例函数,再依次代入x =10,x =15解题,从图中可知,当小明离开家的时间为45min 时,小明离家的距离为0.5km ,据此计算填表;(2)①从图中可知,小明离家为45min 时,到达文化馆,小明离家时间为70min 时,离开文化馆,将二者时间相减即可解题;①从图中可知,小明离家时间为15min 时,到达1km 的体育馆,根据速度公式解题;①从图中可知,小明离家时间为70min 时,离开距家0.5km 的文化馆,小明离家时间为100min 时,根据速度公式解题;①从图中可知,小明距家的距离有两次为0.6km ,分别在0min 到15min 和30min 到45min 之间,满足1,(015)15y x x =≤≤令0.6y =,解得他离开家的时间为9min ,由图可知,在30min 到45min 之间小明离家的距离y 与小明离开家的时间x 成一次函数,利用待定系数法解得此函数,再计算当0.6y =时,x 的值即可解题;(3)由(1)(2)中的解析式解题.【详解】解:(1)由图可知,前15min 小明离家的距离y 与小明离开家的时间x 成正比例函数, 设小明离家的距离y 与小明离开家的时间x 的关系式为:(0,015)y kx k x =≠≤≤ 把(15,1)代入得,115k = 1(015)15y x x ∴=≤≤ 当x =10时,1210153y =⨯=, 当x =15时,115115y =⨯=, 从图中可知,当小明离开家的时间为45min 时,小明离家的距离为0.5km , 故答案为:23;1;0.5; (2)①从图中可知,小明离家为45min 时,到达文化馆,小明离家时间为70min 时,离开文化馆,故小明在文化馆停留了:70-45=25min ;①从图中可知,小明离家时间为15min 时,到达1km 的体育馆,则速度为:11/min 15min 15km km =; ①从图中可知,小明离家时间为70min 时,离开距家0.5km 的文化馆,小明离家时间为100min 时,回到家中,则速度为:0.51/min (10070)min 60km km =-; ①从图中可知,小明距家的距离有两次为0.6km ,分别在0min 到15min 和30min 到45min 之间,满足1,(015)15y x x =≤≤当0.6y =时,即10.615x =, 9x ∴=,则小明第一次距家的距离为0.6km 时,他离开家的时间为9min ,由图可知,在30min 到45min 之间小明离家的距离y 与小明离开家的时间x 成一次函数, 则设小明离家的距离y 与小明离开家的时间x 的函数关系式为:(0,3045)y kx b k x =+≠≤≤将(30,1),(45,0.5)代入得,301450.5k b k b +=⎧⎨+=⎩ 1302k b ⎧=-⎪∴⎨⎪=⎩12(3045)30y x x ∴=-+≤≤ 则当0.6y =时,即120.630x -+= 42x ∴=则小明第二次距家的距离为0.6km 时,他离开家的时间为42min ,故答案为:①25;①115;①160①9或42; (3)由图可知,在15min 到30min 之间小明离家的距离不变1km,由(1)(2)1,(015)15y x x =≤≤和12(3045)30y x x =-+≤≤知, 当045x ≤≤时,1(015)151(1530)12(3045)30x x y x x x ⎧≤≤⎪⎪=<≤⎨⎪⎪-+<≤⎩.【点睛】本题考查函数的图象与性质、待定系数法解一次函数等知识,是重要考点,难度较易,掌握相关知识是解题关键.11.2020年江苏开通了多条省内高铁,其中一条可以从南京——镇江——扬州——淮安的高铁线路如图①所示,本线路高铁最高速度不超过每分钟5千米.现有甲、乙两车按以下方式营运,甲车从南京匀速行驶去淮安,在镇江和扬州两站都停靠5分钟;乙车从南京匀速行驶直达淮安,乙车比甲车晚出发20分钟.设甲车出发x分钟后行驶的路程为y1千米,图①中的折线O—A—B—C—D—E表示在整个行驶过程中y1与x的函数图像.(1)甲车速度为千米/分;(2)若乙车行驶1小时到达淮安,则乙车出发多久后与甲车相遇?(3)若乙车行驶的过程中不得与甲车在镇江站与扬州站的站台内相遇,并要在甲之前到达淮安,则乙车速度v乙的范围为.【答案】(1)3;(2)乙车出发30分钟后与甲相遇;(3)307<v乙<5或278<v乙<154【分析】(1)根据线段OA段然后利用速度=路程÷时间求解即可;(2)首先求出乙车的速度,然后表示出乙车行驶的路程,然后根据甲乙的路程相等即可求出时间;(3)分别求出三种临界状态:①甲、乙两车在镇江站之前相遇;①甲、乙两车在镇江站和扬州站之间相遇,则恰好离开镇江站时速度最大,到达扬州站时速度最小;①甲、乙两车在扬州站和镇江扬州站之间相遇,则恰好离开扬州站时速度最大,到达镇江站时速度最小,然后即可得出乙车的速度的范围.【详解】解:(1)根据线段OA段,30分钟行驶了90千米,①甲车的速度为90303÷=千米/分;(2)①乙车行驶1小时到达淮安,①乙车的速度为27060 4.5÷=千米/分,①y乙=4.5(x-20),y BC=90+3(x-35),当y乙=y BC时,4.5(x-20)=90+3(x-35)解得:x=50,50-20=30.所以,乙车出发30分钟后与甲相遇.(3)①甲、乙两车在镇江站之前相遇,则恰好到镇江站时速度最小,则v乙909 3020>=-,由题意得v乙5≤,故不符合题意;①甲、乙两车在镇江站和扬州站之间相遇,则恰好离开镇江站时速度最大,到达扬州站时速度最小,则150 5520<-v乙903520<-,即307<v乙6<,①v乙5≤,①307<v乙6<①甲、乙两车在扬州站和镇江扬州站之间相遇,则恰好离开扬州站时速度最大,到达镇江站时速度最小,则270 10020<-v乙1506020<-,即278<v乙154<,综上所述,307<v乙<5或278<v乙<154.【点睛】本题主要考查一次函数与行程问题,利用方程的思想解题是关键.12.问题提出(1)如图①,在Rt①ABC中,①A=90°,AB=3,AC=4,在BC上找一点D,使得AD将①ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图①,点A、B在直线a上,点M、N在直线b上,且a①b,连接AN、BM交于点O,连接AM、BN,试判断①AOM与①BON的面积关系,并说明你的理由;解决问题(3)如图①,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【答案】(1)图见解析,52;(2)S①AOM=S①BON,理由见解析;(3)存在,549y x=-+【分析】(1)当点D是BC的中点时,AD将①ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出①AOM与①BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,连接BF,交OA于点G,则①OBG的面积等于①AFG的面积,则四边形OACB的面积转化为①BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【详解】(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt①ABC中,①BAC=90°,AB=3,AC=4,①BC25AC+=,①点D为BC的中点,①AD=12BC=52.(2)S①AOM=S①BON,理由如下:由图可知,S①AOM=S①ABM﹣S①AOB,S①BON=S①ABN﹣S①AOB,如图①,过点M作MD①AB于点D,过点N作NE①AB于点E,①MD①NE,①MDE=90°,又①MN①DE,①四边形MDEN是矩形,①MD=NE,①S①ABM=12AB MD⋅⋅,S①ABN=12AB NE⋅⋅,①S①ABM=S①ABN,①S①AOM=S①BON.(3)存在,直线BP的表达式为:y=59-x+4.如图①,连接AB,过点O作OF①AB,交CA的延长线于点F,连接BF,交OA于点G,由(2)的结论可知,S ①OBG =S ①AFG ,①S 四边形OACB =S ①BCF ,取CF 的中点P ,作直线BP ,直线BP 即为所求.①A (4,0),B (0,4),C (6,6),①线段AB 所在直线表达式为:y =﹣x +4,线段AC 所在直线的表达式为:y =3x ﹣12,①OF ①AB ,且直线OF 过原点,①直线OF 的表达式为:y =﹣x ,联立312y x y x =-⎧⎨=-⎩,解得33x y =⎧⎨=-⎩, ①F (3,﹣3),①点P 是CF 的中点,①P 93(,)22,①直线BP 的表达式为:y =59-x +4. 【点睛】本题主要考查了勾股定理、三角形一边上的中线的性质以及待定系数法求一次函数解析式等内容,作出辅助线并进行面积转化是解决本题第三问的关键.13.某中学为筹备校庆,准备印制一批纪念册.该纪念册每册需要10张纸,其中4张彩色页,6张黑白页.印刷该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为2200元,印刷费与印数的关系见表.05a <(1)若印制2千册,则共需多少元?(2)该校先印制了x 千册纪念册,后发现统计失误,补印了y (5y )千册纪念册,且补印时无需再次缴纳制版费,学校发现补印的单册造价便宜了,但两次缴纳费用恰好相同. ①用含x 的代数式表示y .①若该校没有统计错误,一次性打印全部纪念册,最少需要多少钱?【答案】(1)28600元;(2)①()()1.20.2450.25y x x y x x ⎧=+≤<⎪⎨=+≥⎪⎩;①101200元. 【分析】(1)先根据印制的册数确定彩色页和黑白页的单价,然后计算出彩色页和黑白页的总页数,最后计算需要的钱数即可得到答案.(2)①分05x <≤和5x ≥两种情况进行讨论,根据两次缴纳的费用相同列等量关系即可得到答案;①先算出总册数,然后算出相应的彩色页和黑白页的单价和页数,最后进行计算即可.【详解】解:(1)①印制的册数为2千册,①彩色页的单价为2.1元每张,彩色页的页数=2000×4=8000页,黑白页的单价为0.8元每张,黑白页的页数=2000×6=12000页,①需要的费用=2200+2.1×8000+0.8×12000=28600(元),故一共需要28600元;(2)①第一种情况当05x <≤时, 2.1410000.86100022002410000.561000x x y y ⨯⨯+⨯⨯+=⨯⨯+⨯⨯,13200220011000x y +=,即 1.20.2y x =+,①5y ≥,①1.20.25x +≥即45x ≤<;第二种情况当5x ≥时,2410000.56100022002410000.561000x x y y ⨯⨯+⨯⨯+=⨯⨯+⨯⨯,11000220011000x y +=即0.2y x =+,①()()1.20.2450.25y x x y x x ⎧=+≤<⎪⎨=+≥⎪⎩, ①设两次一共需要印刷的册数为m ,需要的钱数为W ,则m x y =+,()()2410000.5610002200W x y x y =⨯⨯++⨯⨯++,①()110002200W x y =++,①()()()()11000 1.20.2220045110000.222005x x x W x x x ⎧+++≤<⎪=⎨+++≥⎪⎩, ①()()()()11000 1.20.2220045110000.222005x x x W x x x ⎧+++≤<⎪=⎨+++≥⎪⎩, ①()()242004400452200044005x x W x x ⎧+≤<⎪=⎨+≥⎪⎩, 故()()24200444001012004522000544001144005x W x ⎧⨯+=≤<⎪=⎨⨯+=≥⎪⎩最小, 故当4x =,5y =时所需要的的钱数最少为101200元.【点睛】本题主要考查了一次函数与实际问题的应用,解题的关键在于分类讨论各种情况进行分析求解.14.太湖龙之梦动物世界车行区全程总长7200米,某一时刻一辆私家车和一辆观光车同时驶入车行区,行驶过程中均为匀速行驶,私家车在最后一站骆驼观赏区停车投喂后快速离开.如图,已知在平面直角坐标系xOy 中,线段OA 和折线O B C A ---分别为观光车,私家车行驶的路程12,y y (米)和行驶时间x (分)的函数关系的图象.请结合图象解答下列问题:。

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)

人教版2020-2021年八年级下册期末复习(一次函数压轴题)一.解答题(共15小题)1.在平面直角坐标系中,A (0,8),点B 是直线y =x ﹣8与x 轴的交点.(1)写出点B 的坐标( , );(2)点C 是x 轴正半轴上一动点,且不与点B 重合,∠ACD =90°,且CD 交直线y =x ﹣8于D 点,求证:AC =CD ;(3)在第(2)问的条件下,连接AD ,点E 是AD 的中点,当点C 在x 轴正半轴上运动时,点E 随之而运动,点E 到BD 的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.2.已知,如图:在正方形OABC 中,A (0,1),B (1,1),C (1,0),D 为OB 延长线上的一动点,以AD 为一边在直线AD 下方作正方形ADEF ,AF 交OC 于点G .(1)若S △AOD =1,求D 点的坐标;(2)①求证:点E 始终落在x 轴上;②若S 四边形ABCG =a •S △ABE ,1<a <2,利用a 表示此时直线AF 的解析式.3.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (0,4)、B (﹣2,0)、C (23,0),点D 是边AC 上的一点,DE ⊥BC 于点E .点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称.连接DF ,EF .设点D 的横坐标为m ,EF 2为l ,请解决下列问题:(1)若一次函数的图象经过A 、C 两点,则此一次函数的表达式为 ;(2)若以EF 为边长的正方形面积为S ,请你求出S 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值;(3)△BEF 能否成为直角三角形.若能,求出m 的值;若不能,说明理由.4.如图,在平面直角坐标系中,一次函数12x 512-y +=的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF ⊥x 轴于点F ,交BD 于点E ,连接AE .(1)求线段AB 的长;(2)求点C 的坐标(3)求证:AD 平分∠EAF ;(4)求△AEF 的周长5.如图1,已知直线y =kx +1交x 轴于点A 、交y 轴于点B ,且OA :OB =4:3.(1)求直线AB 的解析式(2)如图2,直线y =31x +2与x 轴、y 轴分别交于点C 、D ,与直线AB 交于点P . ①若点E 在线段P A 上且满足S △CDE =S △CDO ,求点E 的坐标;②若点M是位于点B上方的y轴上一点,点Q在直线AB上,点N为第一象限内直线CD上一动点,是否存在点N,使得以点B、M、N、Q为顶点的四边形是菱形?若存在,求出点N坐标;若不存在,请说明理由.6.如图,直线y=﹣x+1与y轴、x轴分别交于A、B两点,点C在线段AB上从A向B运动,另一动点P从B出发,沿直线x=1运动,记AC的长为t,P的坐标为(1,b),分析此图后,对下列问题作出探究:(1)当t=且b=时,△AOC≌△BCP;(2)当OC与CP垂直时,①判断线段OC和CP的数量关系?并证明你得到的结论;②试写出b关于t的函数关系式和变量t的取值范围.③求出当△PBC为等腰三角形时点P的坐标.7.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+6分别交x轴,y轴于点A,B,已知点A的坐标为(6,0).(1)求k的值;(2)点C是线段OA上一点(不与点O,A重合),点D是OB的延长线上一点,连接CD交AB于点E,且CE=DE,设OC的长为t,BD的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E 作EF ⊥CD 交y 轴于点F ,点G 在线段DE 上,且EG =EF ,连接BG 并延长交FE 的延长线于点H ,若BF =d 43-29,求点E 的坐标.8.平面直角坐标系中,O 为坐标原点,直线b x 3y +=交y 轴于A ,x 轴于B ,S △AOB =83.(1)求b 的值;(2)点C 为射线BA 上一动点,连接OC ,以C 为边作等边△OCD ,点D 在OC 的右侧,求点D 的纵坐标;(3)在(2)的条件下,连接AD 、BD ,△BOC 的面积是△ACD 的面积的2倍,M 是x 轴上一点,连接DM ,若∠DMB ﹣∠DBM =90°,求点M 坐标.9.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D ,它们同时到达终点,若点Q 的运动路程x 与线段BP 的长y 满足y =8x 74-+,BD 与PQ 交于点E . (1)求AB ,BC 的长. (2)如图2,当点Q 在CD 上时,求DE BE . (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连接EF ,当EF 所在直线与△BCD的一边垂直时,求BP的长.10.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.11.如图,在平面直角坐标系中,直线y=kx+b与x轴,y轴分别相交于点A(4,0),点B(0,3),点C是线段OB的中点,动点P从点B开始以每秒1个单位长度的速度沿路线B→A向终点A匀速运动,设运动的时间为t秒,连接CP.(1)求直线AB的函数解析式;(2)请直接写出点P的坐标;(用含t的代数式表示)(3)①当S△BCP:S四边形AOCP=1:4时,求t的值;②将△BCP沿CP翻折,使点B落在点B′处,当PB′平行于坐标轴时,请直接写出t的值.12.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA =45°,求满足条件的点Q 的坐标;(3)如图2,在x 轴的负半轴上是否存在点Q ,使得以BQ 为边作正方形BQMN 时,点M 恰好落在直线l 上,且正方形BQMN 的面积被x 轴分成了1:2的两部分?若存在,请求出点Q 的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)经过点A (6,0)和点B (0,9),其图象与直线y =x 43交于点C .(1)求一次函数y =kx +b (k ≠0)的表达式;(2)点P 是线段OA 上的一个动点(点P 不与点O ,A 重合),过点P 作平行于y 轴的直线l ,分别交直线AB ,OC 于点M ,N ,设点P 的横坐标为m .①线段PM 的长为 ;(用含m 的代数式表示)②当点P ,M ,N 三点中有一个点是另两个点构成线段的中点时,请直接写出m 的值; ③直线l 上有一点Q ,当∠PQA 与∠AOC 互余,且△PQA 的周长为227时,请直接写出点Q 的坐标.14.如图1,已知直线y =﹣2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第一象限内作等腰Rt △ABC .(1)A ( );B ( );(2)求BC 所在直线的函数关系式;(3)如图2,直线BC 交y 轴于点D ,在直线BC 上取一点E ,使AE =AC ,AE 与x 轴相交于点F .①求证:BD =ED ;②在直线AE 上是否存在一点P ,使△ABP 的面积等于△ABD 的面积?若存在,直接写出点P 的坐标;若不存在,说明理由.15.在平面直角坐标系中,直线y =32x ﹣6与x 轴交于点A ,与y 轴交于点B ,点D 在直线AB 上,点D 的横坐标为3,点C (﹣6,0),动点F 从C 出发,沿x 轴正方向运动,速度为每秒1个单位长度,到达终点A 停止运动,设运动时间为t (t >0).(1)如图1①求点A 、B 的坐标;②当t =3时,求证DF =DA . (2)过点B 作BE ∥OA ,当BE =ED 时,连接ED 并延长交x 轴于点Q①点Q 的坐标为 ;②当∠FDE =3∠QFD 时,t 的值为 .。

初二数学一次函数压轴难题专题汇总(含解析)(含解析)

初二数学一次函数压轴难题专题汇总(含解析)(含解析)

初二数学一次函数压轴难题专题汇总(含解析)一.选择题(共12小题)1.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.8.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B.C.D.二.填空题(共11小题)13.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.14.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=.三.解答题(共17小题)24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.31.已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB 为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P 不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)36.已知正比例函数y=kx的图象经过点P(1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C(0,﹣1),与x轴交于点D,过点B作BE⊥CD,垂足为E.(1)求直线CD的解析式;(2)求S△BEC.38.(1)点(0,7)向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.(2)直线y=2x+7向右平移2个单位后的解析式是.(3)如图,已知点C(a,3)为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:(1)求线段AB的解析式;(2)求此人回家用了多长时间?40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2015春•昌平区期末)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±2【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故选A.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.(2016春•昌江县校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.(2016春•河东区期末)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.(2016春•十堰期末)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).5.(2015秋•柘城县期末)已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.【点评】主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.(2015春•澧县期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(2014秋•深圳期末)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.(2014春•临沂期末)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】根据一次函数的定义求解.【解答】解:(1)y=3πx (2)y=8x﹣6 (4)y=﹣8x是一次函数,因为它们符合一次函数的定义;(3)y=,自变量次数不为1,而为﹣1,不是一次函数,(5)y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉(1)y=3πx,它也是一次函数.9.(2015秋•西安校级期末)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k 的图象只能是图中的()A.B.C.D.【分析】根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.(2015春•高密市期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.(2015秋•招远市期末)函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解此题的关键.12.(2015春•柘城县期末)当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B.C.D.【分析】利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.【解答】解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.【点评】此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题(共11小题)13.(2016秋•兴化市期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.(2016春•罗平县期末)若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.15.(2011秋•青田县期末)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n.【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.(2013秋•姜堰市校级期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b <0时,函数y=kx+b的图象经过第二、三、四象限.17.(2015春•上海校级期末)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2.【分析】根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【解答】解:∵矩形ABCD中,B(3,2),∴C(0,2),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.(2013秋•长丰县校级期末)一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0.【分析】直接根据一次函数的图象即可得出结论.【解答】解:由函数图象可知,当y<5时,x>0.故答案为:x>0.【点评】本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.(2016春•简阳市校级期中)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.【点评】本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a﹣b、c﹣d的因式的形式,然后求值.20.(2014秋•源城区校级期末)如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2.【分析】根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.【解答】解:设该直线方程是:y=kx+b(k>0).根据图象知,该直线经过点(﹣1,0)、(0,2),则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.【点评】本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.(2015秋•郓城县期末)若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.(2015秋•滨海县期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.(2015春•淮南期末)一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=1或9.【分析】因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.【解答】解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.【点评】本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题(共17小题)24.(2016春•新疆期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.(2015春•大石桥市校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b 中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【分析】(1)根据三角形的面积公式S△OPA=OA•y,然后把y转换成x,即可求得△OPA的面积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.(2014春•高安市期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【分析】当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.(1)过点P作PF⊥y轴于点F,则PF=2.求出S△COP和S△COA,即OA×2=4,【分析】则A(﹣4,0),则|p|=3,由点P在第一象限,得p=3;(2)根据S△BOP=S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+b(k≠0),求得k,b.得出直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP=6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP=S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.(2016春•费县期末)在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.【分析】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x ﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【解答】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【点评】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.(2015春•监利县期末)已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.【分析】用待定系数法求出函数的关系式,再把点(a,2)代入即可求得a的值.【解答】解:(1)∵y与x+2成正比例∴可设y=k(x+2),把当x=1时,y=﹣6.代入得﹣6=k(1+2).解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.(2)把点(a,2)代入得:2=﹣2a﹣4,解得:a=﹣3【点评】本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.(2015春•闵行区期末)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.【分析】(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.【解答】解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.【点评】此题主要考查了一次函数图象与几何变换以及一次函数与坐标轴交点求法,得出各边长是解题关键.32.(2016春•海珠区期末)如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?。

一次函数压轴题(初二)

一次函数压轴题(初二)

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

专题10 一次函数的三种压轴应用问题-2023年初中数学8年级下册同步压轴题(学生版)

专题10 一次函数的三种压轴应用问题-2023年初中数学8年级下册同步压轴题(学生版)

专题10 一次函数的三种压轴应用问题类型一、分配方案问题例.某水果超市欲购进甲,乙两种水果进行销售.甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为26元/千克.设水果超市购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)a=____(2)求y与x之间的函数关系式;(3)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W(元)最少?【变式训练1】为了净化空气,美化校园环境,某学校计划种植A,B两种树木.已知购买20棵A种树木和15棵B种树木共花费2680元;购买10棵A种树木和20棵B种树木共花费2240元.(1)求A,B两种树木的单价分别为多少元.(2)如果购买A种树木有优惠,优惠方案是:购买A种树木超过20棵时,超出部分可以享受八折优惠.若该学校购买m(m>0,且m为整数)棵A种树木花费w元,求w与m之间的函数关系式.(3)在(2)的条件下,该学校决定在A,B两种树木中购买其中一种,且数量超过20棵,请你帮助该学校判断选择购买哪种树木更省钱.【变式训练2】我校为了丰富校园活动,计划购买乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若购买两种球拍刚好用去8000元,则购买两种球拍各多少副?(2)若购买羽毛球拍的数量不少于乒乓球拍的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【变式训练3】某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.(1)现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元,该公司有哪几种进货方案?(2)在第(1)小题的条件下,该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用第(2)小题中所求得的最大利润再次进货,请直接写出获得最大利润的进货方案.类型二、最大利润问题例.某书店计划同时购进A,B两类图书,已知购进3本A类图书和4本B类图书共需288元;购进6本A 类图书和2本B类图书共需306元,(1)A,B两类图书每本的进价各是多少元?(2)该书店计划用4500元全部购进两类图书,设购进A类x本,B类y本.①求y关于x的关系式;②进货时,A类图书的购进数量不少于60本,已知A类图书每本的售价为38元,B类图书每本的售价为50元,若书店全部售完可获利W元,求W关于x的关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?【变式训练1】为了防范疫情,顺利复学,某市教育局决定从甲、乙两地用汽车向A、B两校运送口罩,甲、乙两地分别可提供口罩40万个、10万个;A、B两校分别需要口罩30万个、20万个两地到A、B两校的路程如表(每万个口罩每千米运费为2元).设甲地运往A校x万个口罩:(1)根据题意,在答题卡中填该表:(2)设总运费为W元,求W与x的函数关系式;当甲地运往A校多少万个口罩时总运费最少?最少的运费是多少元?【变式训练2】为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.【变式训练3】某扶贫小组实施产业扶贫,帮助贫困农户进行盆景的培植和销售,在第一期培植销售完成后,统计发现,若2盆A种盆景和1盆B种盆景共获利润340元;如果3盆A种盆景和2盆B种盆景共获利润560元.(1)每盆A种盆景、B种盆景的利润各是多少元?(2)为更好服务于农户,扶贫小组决定进行二期盆景培植,培植A种、B种盆景的总数量100盆,若要求第二期A种盆景的数量不超过B种盆景数量的3倍,当A种、B种盆景各多少盆时,总利润最高,最高利润是多少?类型三、几何问题例.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船海里;(2)求出l1和l2的解析式;(3)求公安快艇追上走私船的时间.【变式训练1】为发展旅游经济,某景区对门票采用灵活的售票方法吸引游客.设某旅游团路人数为x人,非节假日购票款为1y (元),节假日购票款为2y (元),1y 、2y 与x 之间的函数图像如图所示.(1)非节假日门票定价为______元/人.(2)求当10x 时,2y 与x 之间的函数关系式。

八年级数学下册专题11一次函数几何压轴训练(原卷版)

八年级数学下册专题11一次函数几何压轴训练(原卷版)

专题11 一次函数几何压轴训练1.(2023秋•东阳市期末)如图,在平面直角坐标系中,直线分别交x轴,y轴于点B,A,直线OC⊥AB,垂足为点C,D为线段OA上一点(不与端点重合),过点D 作直线l∥x轴,交直线AB于点E,交直线OC点F.(1)求线段OC的长;(2)当DE=EF时,求点D的坐标;(3)若直线l过点C,点M为线段OC上一点,N为直线l上的点,已知OM=CN,连结AN,AM,求线段AN+AM的最小值.2.(2023秋•和平县期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C (2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE 交x轴于点F,若△DEF为直角三角形,求点D坐标.3.(2023秋•槐荫区期末)如图,直线和直线l2与x轴分别相交于A,B两点,且两直线相交于点C,直线l2与y轴相交于点D(0,﹣4),OA=2OB.(1)求出直线l2的函数表达式;(2)E是x轴上一点,若S△ABC=2S△BCE,求点E的坐标;(3)若F是直线l1上方且位于y轴上一点,∠ACF=2∠CAO,判断△BCF的形状并说明理由.4.(2023秋•巴中期末)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A、B,直线BC与x轴负半轴交于点C,且CO=2AO.(1)求线段AC的长;(2)动点P从点C出发沿射线CA以每秒1个单位的速度运动,连接BP,设点P的运动时间为t(秒),△BPO的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在线段BC上是否存在点D,连接DP,使得△BDP是以BP为直角边的等腰直角三角形,若存在,请求出t的值,若不存在,请说明理由.5.(2023秋•金牛区期末)如图1,在平面直角坐标系中,直线y=2x+b与x轴、y轴分别交于点A、点B,S△AOB=4,点C(3,m)是直线AB上一点,在直线AB左侧过点C的直线交y轴于点D,交x轴于点E.(1)求m和b的值;(2)当∠ACD=45°时,求直线CD的解析式;(3)如图2,在(2)的条件下,过C作CM⊥x轴,在直线AC上一点P,直线CD上一点Q,直线CM上一点H,当四边形AHQP为菱形时,求P点的坐标.6.(2023秋•咸阳期末)如图,已知一次函数y=kx+b(k、b为常数,且k≠0)的图象与x 轴交于点A(﹣6,0),与y轴交于点B(0,8).(1)求该一次函数的表达式;(2)点C为点B上方y轴上的点,在该一次函数的图象上是否存在点P,使得以点P、B、C为顶点的三角形与△OAB全等?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.7.(2023秋•历城区期末)如图1,直线AB:y=﹣x+b分别与x,y轴交于A(3,0),B两点,点A沿x轴向右平移3个单位得到点D.(1)分别求直线AB和BD的函数表达式.(2)在线段BD上是否存在点E,使△ABE的面积为,若存在,求出点E坐标;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K.当点P运动时,点K的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.8.(2023秋•江门期末)如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足+(a﹣4)2=0.(1)a=,b=;(2)如图1,若点C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(3)如图2,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过点D作DN⊥DM交x轴于点N,当点M在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求出该式子的值.9.(2023秋•简阳市期末)如图,在平面直角坐标系xOy中,一次函数y=﹣x+8分别与x 轴、y轴交于A、B两点,过点B作BC⊥AB交x轴于点C.(1)求点C的坐标;(2)点D为直线AB上一点,且∠DCA=∠DAC,求直线CD的解析式;(3)若点Q是x轴上一点,连接BQ,将△ABQ沿着BQ所在直线折叠,当点A落在y 轴上时,求点Q的坐标.10.(2023秋•天桥区期末)如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)请写出点A坐标,点B坐标,直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点Q的坐标;②点M在线段AC上,连接BM,如图2,若∠BMP=∠BAC,直接写出P的坐标.11.(2023秋•万州区期末)如图1,在平面直角坐标系中,一次函数y=2x+4的图象与x轴,y轴分别交于A、B两点,点C是OB的中点.(1)求直线AC的解析式;(2)如图2,若点M是直线AC上的一动点,当S△ABM=2S△AOC时,求点M的坐标;(3)将直线AB向右平移3个单位长度得到直线l,若点E为平移后直线l上的一点,在平面直角坐标系中是否存在点F,使以点A、C、E、F为顶点,AE为边的四边形为菱形,若存在,请直接写出所有满足条件的点F的坐标;若不存在,请说明理由.12.(2023秋•盐都区期末)如图,直线AB:y=x+b分别与x、y轴交于A,B两点,点A的坐标为(−4,0),过点B的直线交x轴正半轴于点C,且OB:OC=4:3.(1)求直线BC的函数表达式;(2)在x轴上方是否存在点D,使以点A,B,D为顶点的三角形与△ABC全等.若存在,画出△ABD,并求出点D的坐标,若不存在,请说明理由;(3)点P是y轴上的一点,连接CP,将△BCP沿直线CP翻折,当点B的对应点B′恰好落在x轴上时,请直接写出此时直线CP的函数表达式.13.(2023春•阳江期末)如图,在平面直角坐标系中,直线l1:y=﹣x+5与y轴交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)和点C,且与直线l1交于点D(2,m).(1)求直线l2的解析式;(2)若点E为线段BC上一个动点,过点E作EF⊥x轴,垂足为F,且与直线l1交于点G,当EG=6时,求点G的坐标;(3)若在平面上存在点H,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点H的坐标.14.(2023春•潮阳区期末)如图,直线y=x﹣3交x轴于A,交y轴于B,(1)求A,B的坐标和AB的长(直接写出答案);(2)点C是y轴上一点,若AC=BC,求点C的坐标;(3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.15.(2023春•武穴市期末)如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S△ACE=S△ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与△APD 全等,求点F的坐标.16.(2023春•淅川县期末)如图,已知直线y=kx+b经过A(6,0)、B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若C是线段OA上一点,将线段CB绕点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上.①求点C和点D的坐标;②若点P在y轴上,Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q坐标,否则说明理由.17.(2023春•拜泉县期末)综合与探究.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线,点B的坐标为B(2a,a).(1)A,C.(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的解析式(问题(1)中的结论可直接使用).(3)若点M在y轴上,则在平面直角坐标系中的x轴及x轴的下方,是否存在这样的点N,使得以A、D、N、M为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.(2023春•唐县期末)(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.19.(2023春•新罗区期末)数形结合作为一种数学思想方法,数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.例如:在我们学习数轴的时候,数轴上任意两点,A表示的数为a,B表示的数为b,则A,B两点的距离可用式子|a﹣b|表示.研一研:如图,在平面直角坐标系中,直线AB分别与x轴正半轴、y轴正半轴交于点A(a,0)、点B(0,b),且a、b满足(a﹣6)2+|b﹣4|=0.(1)直接写出以下点的坐标:A(,0),B(0,).(2)若点P、点Q分别是y轴正半轴(不与B点重合)、x轴负半轴上的动点,过Q作QC∥AB,连接PQ.已知∠BAO=34°,请探索∠BPQ与∠PQC之间的数量关系,并说明理由.(3)已知点D(3,2)是线段AB的中点,若点H为y轴上一点,且,求S△AHD=S△AOB,求点H的坐标.20.(2023春•红安县期末)如图,在平面直角坐标系中,直线l1:y=kx+8分别交x轴,y 轴于点A,B,点A(8,0).直线l2:经过线段AB的中点Q,分别交x轴,y 轴于点C,D.(1)请直接写出k的值;(2)请求出直线l2的解析式;(3)点P(t,0)为x轴上一动点,过点P作PE∥y轴交l1,l2于点E,F;①当EF=2EP时,求t的值.②连接BC,当∠OBC=∠ABF时,求t的值.21.(2023春•樊城区期末)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与x轴,y轴交于A,B;与直线y2=kx交于P(2,1),且PO=P A.(1)求点A的坐标;(2)求函数y1,y2的解析式;(3)点D为直线y1=ax+b上一动点,其横坐标为t(t<2),DF⊥x轴于点F,交y2=kx于点E,且DF=2EF,求点D的坐标;(4)在(3)的条件下,如果点D在第一象限内,过点P的直线y=mx+n将四边形OBDE 分为两部分,两部分的面积分别设为S1,S2.若≤2,直接写出m的取值范围.22.(2023春•松北区期末)如图,直线y=x+10交x轴于点A,交y轴于点B,直线y=kx+b 过点A,交y轴于点C,且C为线段OB的中点.(i)求k、b的值;(2)点P为线段AC延长线上一点,连接PB,设点P的横坐标为t,△P AB的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点D在线段AO的延长线上,连接CD、PD,且,点E在AD上,且∠DPE=45°,过点C作CF∥PE,交x轴于点F,若AF=DE,求P点的坐标.23.(2023春•碑林区校级期末)如图,在平面直角坐标系中,直线y=﹣2x+b与x轴,y轴分别交于A、B两点.直线交线段AB于点C(1,m),且S△AOB=2S△BOC.(1)求b的值;(2)若点D是y轴上一点,点E为平面上一点,是否存在以点A,B,D,E为顶点的四边形是矩形?若存在,请求出点E的坐标,若不存在请说明理由.24.(2023春•台江区期末)已知直线与x轴交于点A,与y轴交于点B,P为直线AB上的一个动点,过点P分别作PF⊥x轴于点F,PE⊥y轴于点E,如图所示.(1)若点P为线段AB的中点,求OP的长;(2)若四边形PEOF为正方形时,求点P的坐标;(3)点P在AB上运动过程中,EF的长是否有最小值,若有,求出这个最小值;若没有,请说明理由.25.(2023春•舞阳县期末)如图,在平面直角坐标系中,直线y=﹣x+6与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣3),与直线CD交于点A(m,3).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F.若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2023秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x ﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.27.(2023秋•金华期末)如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)直线l1的表达式为,点D的坐标为;(2)设P(2,m),当点P在点D的下方时,求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C 的坐标.28.(2023秋•新都区校级期末)如图,已知直线y=x﹣2分别与x轴,y轴交于A,B两点,直线OG:y=kx(k<0)交AB于点D.(1)求A,B两点的坐标;(2)如图1,点E是线段OB的中点,连接AE,点F是射线OG上一点,当OG⊥AE,且OF=AE时,在x轴上找一点P,当PE+PD的值最小时,求出△APE的面积;(3)如图2,若k=﹣2,过B点BC∥OG,交x轴于点C,此时在x轴上是否存在点M,使∠OBM+∠OBC=45°,若存在,求出点M的坐标;若不存在,请说明理由.29.(2023春•巴中期末)如图,在平面直角坐标系中,直线y=2x+10与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于点C,且△ABC面积为60.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,直线AM把△ABC的面积分成两部分,这两部分的面积之比为1:2,求M的坐标;(3)当△ABM的面积为20时,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.30.(2023春•湘潭县期末)如图,长方形OABC,是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,在AB上取一点M使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.(1)求B'点的坐标;(2)求折痕CM所在直线的表达式;(3)求折痕CM上是否存在一点P,使PO+PB'最小?若存在,请求出最小值,若不存在,请说出理由.。

八年级函数下学期压轴题

八年级函数下学期压轴题

1.如图,一次函数y kx b =+的图象与x 轴和y 轴分别交于点()4,0A 和点B ,正比例函数34y x =的图象与一次函数y kx b =+的图象交于点()2,D n .(1)求直线AB 的解析式;(2)求OD 的长;(3)设P 是x 轴上一动点,若使PAB 是等腰三角形,请直接写出符合条件的点P 的坐标. 2.如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.(3)如果在y 轴上存在一点P ,使得OAP △为等腰三角形,求P 点的坐标.1.如图,直线y kx b =+与x 轴交于点()4,0A ,与y 轴交于点()0,2B ,P 是x 轴上的动点.(1)求k 的值.(2)连结PB ,当90PBA ∠=︒时,求OP 的长.(3)过点P 作AB 的平行线,交y 轴于点M ,点Q 在直线2x =上.是否存在点Q ,使得PMQ 是等腰直角三角形?若存在,请直接写出所有符合条件的点Q 的坐标,若不存在,请说明理由.2.如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点()0,1B -,与x 轴以及1y x =+的图象分别交于点C ,D ,且点D 的坐标为()1,n .(1)则k = ,b = ,n = ;(2)求四边形AOCD 的面积;(3)在x 轴上是否存在点P ,使得以点P ,C ,D 为顶点的三角形是直角三角形,请求出点P 的坐标.1.如图,在平面直角坐标系中,直线142y x=-+交x轴于点A,交y轴于点B.点C为OB的中点,点D在线段OA上,OD3AD=,点E为线段AB上一动点,连接CD、CE、DE.(1)求线段CD的长;(2)若CDE的面积为4,求点E的坐标;(3)在(2)的条件下,点P在y轴上,点Q在直线CD上,是否存在以D、E、P、Q为顶点的四边形为平行四边形.若存在,直接写出点Q坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=52x+5与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于C,且△ABC面积为15.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,且△ABM的面积等于△AOB的面积,求M的坐标;(3)在(2)的条件下,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.1.如图,将一个矩形纸片OABC 放置在平面直角坐标系xOy 内,点A 在x 轴正半轴上,点C 在y 轴正半轴上,点P 是线段BC 的中点,ABP 沿AP 翻折得到AB P ',过点C 、B '的直线443y x =-+交x 轴于点D .(1)判断OD 与AD 的数量关系?并证明;(2)求点B 的坐标;(3)求线段CB '的长.2.已知矩形OABC 在平面直角坐标系xoy 中的位置如图所示,()8,0A ,()0,4C ,将矩形OABC 沿直线EF 折叠,使点A 与点C 重合,点B 的对应点为点D .(1)求点F 坐标;(2)求线段EF 的长度;(3)直接写出直线EF 和CD 的解析式.1.如图,直线443y x=-+与x轴、y轴分别交于点A,B,点C是线段AB上一点,四边形OADC是菱形,求OD的长.2.直线132y x=-+与x轴、y轴、直线y x=分别交于点A、B、C 三点,E为x轴正半轴上一点,O为坐标原点.(1)求出C点的坐标;(2)若过C、E的直线把三角形AOB的面积平分,求直线CE对应的函数关系式;(3)在平面内是否存在点F,使得以O、C、E、F为顶点的四边形为菱形?若存在,请求出点F的坐标,若不存在,请说明理由.一次函数与将军饮马1.如图,在平面直角坐标系中,点()0,A a 在y 轴正半轴上,点(),0B b 在x 轴正半轴上,AB AD ⊥且AB AD =.()2430a b -+-=.(1)求AB ;(2)在y 轴上是否存在一点P ,使得PB PD +最小?若存在,请求出PB PD +的最小值;(3)在x 轴上是否存在一点M ,使MAB △是以AB 为腰的等腰三角形?若存在,请直接写出M 点坐标.2.在平面直角坐标系xOy 中,点A 、B 分别在y 轴和x 轴上,已知点A (0,4).以AB 为直角边在AB 左侧作等腰直角△ABC ,△CAB =90°.(1)当点B 在x 轴正半轴上,且AB =8时①求AB 解析式;②求C 点坐标;(2)当点B 在x 轴上运动时,连接OC ,求AC +OC 的最小值及此时B 点坐标.x+2交x轴于点A,交y轴于点B,1.如图,已知直线y=12(1)求A,B两点的坐标;S△AOB时,求直线OC的解析式.(2)已知点C是线段AB上的一点,当S△AOC= 122.如图,直线1l的解析表达式为:y=-3x+3,且1l与x轴交于点D,直线2l经过点A,B,直线1l,2l交于点C.(1)求点D的坐标;(2)求直线2l的解析表达式;(3)求△ADC的面积;l上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐(4)在直线2标.1.如图,在平面直角坐标系中,直线43y x b=-+与x轴,y轴分别交于(6,0)A,B两点,点D在y轴的负半轴上,若将DAB沿直线AD折叠,则点B恰好落在x轴正半轴上的点C 处.(1)求AB的长;(2)求点C,D的坐标;(3)在y轴上是否存在一点P,使得14PAB OCDS S=若存在,求出点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,3)、B(4,0),点C为x轴正半轴上一点,连接AC,将△ABC沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的关系式;(2)求出点C的坐标;(3)点P为直线AB上的点,请求出点P的坐标使94COPS∆=.一次函数应用之方案分配问题1.疫情期间,全国各地的爱心蔬菜驰援湖北,现从A,B两个蔬菜村向湖北甲,乙两地运送爱心蔬菜,A,B两个蔬菜村各有蔬菜80吨,60吨,其中甲地需要蔬菜65吨,乙地需要蔬菜75吨,从A运往甲地运费为50元/吨,运往乙地运费为30元/吨;从B运往甲地运费为60元/吨,运往乙地运费为45元/吨.(1)设从A地到甲地运送蔬菜x吨,请完成下表:(2)怎样调运蔬菜才能使总运费w最少?(3)若A村运往乙地的蔬菜不低于A村运往甲地的蔬菜量的九倍,并且A蔬菜村改变运往甲地的运输路线,每吨蔬菜的运费会下降m元(2<m<8),其他费用不变,若总费用的最小值为6059元,求m的值.2.某公司在甲、乙两个生产基地分别生产了同一种型号的检测设备15台、17台,现要把这些设备全部运往A、B两市.A市需要19台,B市需要13台.且运往A、B两市的运费如下表:设从甲基地运往A市的设备为x台,从甲基地运往两市的总运费为1y元,从乙基地运往两市的总运费为2y元.(1)分别写出1y、2y与x之间的函数关系式(不要求写自变量的取值范围);(2)试比较甲、乙两基地总运费的大小;(3)若乙基地的总运费不得超过11300元,怎样调运,使两基地总运费的和最小?并求出最小值.一次函数应用之几何图形1.如图,在平面直角坐标系中,边长为3的正方形ABCD在第一象限内,AB△x轴,点A 的坐标为(5,4)经过点O、点C作直线l,将直线l沿y轴上下平移.(1)当直线l与正方形ABCD只有一个公共点时,求直线l的解析式;(2)当直线l在平移过程中恰好平分正方形ABCD的面积时,直线l分别与x轴、y轴相交于点E、点F,连接BE、BF,求△BEF的面积.一次函数应用之利润问题1.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:(1)若商店计划销售完这批商品后能获利1680元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.2.某商店销售A型和B型电脑,每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150元, 该商店计划购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x 台,这100台电脑的销售总利润为y元,(1)求该商店购进A型、B型各多少台,才能使销售利润最大?(2)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持两种电脑的售价不变,设计出使这100台电脑销售总利润最大的进货方案.3.某工厂以每千克200元的价格购进甲种原料360千克,用于生产A、B两种产品,生产1件A产品或1件B产品所需甲、乙两种原料的千克数如下表:乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完,设生产A产品x件,B产品m件,公司获得的总利润为y元.(1)写出m与x的关系式;(2)求y与x的关系式;(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?。

【常考压轴题】一次函数实际应用压轴—2023-2024学年八年级数学下册(人教版)(解析版)

【常考压轴题】一次函数实际应用压轴—2023-2024学年八年级数学下册(人教版)(解析版)

一次函数实际应用压轴题型1:利用一次函数解决方案问题题型2:利用一次函数解决销售利润问题题型3:利用一次函数解决行程问题题型4:利用一次函数解决运输问题题型1:利用一次函数解决方案问题【典例1】我校将举办一年一度的秋季运动会,需要采购一批某品牌的乒乓球拍和配套的乒乓球,一副球拍标价80元,一盒球标价25元.体育商店提供了两种优惠方案,具体如下:方案甲:买一副乒乓球拍送一盒乒乓球,其余乒乓球按原价出售;方案乙:按购买金额打9折付款.学校欲购买这种乒乓球拍10副,乒乓球x(x≥10)盒.(1)请直接写出两种优惠办法实际付款金额y甲(元),y乙(元)与x(盒)之间的函数关系式.(2)如果学校需要购买15盒乒乓球,哪种优惠方案更省钱?(3)如果学校提供经费为1800元,选择哪个方案能购买更多乒乓球?【答案】(1)y甲=25x+550,y乙=22.5x+720;(2)方案甲更省钱;(3)学校提供经费为1800元,选择方案甲能购买更多乒乓球.【解答】解:(1)由题意得:y甲=10×80+25(x﹣10)=25x+550,y乙=25×0.9x+80×0.9×10=22.5x+720,(2)根据(1)中解析式,y甲=25x+550,y乙=22.5x+720,当x=15时y甲=25×15+550=925(元),y乙=22.5×15+720=1057.5(元),∵925<1057.5,∴方案甲更省钱;(3)根据(1)中解析式,y甲=25x+550,y乙=22.5x+720,当y甲=1800元时,1800=25x+550,解得:x=50,当y乙=1800元时,1800=22.5x+720,解得:x=48,∵50>48,∴学校提供经费为1800元,选择方案甲能购买更多乒乓球.【变式1-1】已知用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型和B型车辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.共有几种租车方案,哪种方案租车费用最少?【答案】(1)1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨;(2)该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.【解答】解:(1)设1辆A型车载满货物一次可运货x吨,1辆B型车载满货物一次可运货y吨,依题意,得:,解得:.答:1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.(2)设A型车租a辆,B型车租b辆,依题意,得:3a+4b=34,∴a=.∵a,b均为非负整数,∴,,,∴该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.方案1所需租金:100×10+120×1=1120(元),方案2所需租金:100×6+120×4=1080(元),方案3所需租金:100×2+120×7=1040(元).∵1120>1080>1040,∴方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.【变式1-2】2022年秋,郑州新冠疫情牵动全国,社会各界筹集的医用,建设等物资不断从各地向郑州汇集.这期间,恰逢春节承运资源短缺,紧急情况下,多家物流企业纷纷开通特别通道,驰援郑州,为生产药品,口罩,医疗器械等紧急物资的企业提供全方位支持.已知用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨,某物流公司计划租用这两种车辆运输物资.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)若A型车每辆需租金90元/次,B型车每辆需租金110元/次.物流公司计划共租用8辆车,请写出总租车费用w A型车数量a(辆)的函数关系式.(3)如果汽车租赁公司的A型车只剩了6辆,B型车还有很多.在(2)的条件下,请选出最省钱的租车车方案,并求出最少租车费用.【答案】(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)w=﹣20a+880;(3)租6辆A型车,2辆B型车,租车费用最少,最少费用为760元.【解答】解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨,由题意得:,解得,∴1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意可得:w=90a+110(8﹣a)=﹣20a+880;(3)在一次函数w=﹣20a+880中,∵﹣20<0,∴w随a的增大而小;由题意知:a≤6,则当a=6时,总租车费用最少,最少费用为:w=﹣20×6+880=760.8﹣6=2.∴最省钱的租车方案为租6辆A型车,2辆B型车,租车费用最少,最少费用为760元.题型2:利用一次函数解决销售利润问题【典例2】2023年第一届全国学生(青年)运动会在南宁市某中学初中部举行火炬传递仪式,有幸参与该盛事的学校的九年级1000名学生将在火炬传递经过的校道两边为火炬手摇旗呐喊,年级制定的活动经费初步方案是采购一些手摇式小国旗,每面小国旗售价为0.8元.经过进一步商讨之后,年级决定再补购印有运动会吉祥物“壮壮”和“美美”的头戴式小彩旗若干个.询问甲、乙两家吉祥物特许经销商,他们考虑到学校情况给出了不同的销售方案.甲经销商的销售方案是每个头戴式小彩旗卖2.2元.乙经销商的方案是:购买不超过200个头戴式小彩旗,每个售价2.5元;若超过200个,则超过部分每个售价2元.(1)设向乙经销商购买x个头戴式小彩旗,所需费用为y元,求出y关于x的函数关系式;(2)年级最终决定必须要买1000面小国旗及若干个头戴式小彩旗,最终总费用不低于1600元,不超过2000元.若向甲、乙两家经销商中的一家购买头戴式小彩旗,年级该向哪一家购买头戴式小彩旗最合算?【答案】(1)y=;(2)当总费用大于或等于1600而小于1900元时,向甲经销商购买最合算;当购买小彩旗费用为1900元时,两家一样合算;当购买总费用大于1900元而小于或等于2000元时,向乙经销商购买最合适.【解答】解:(1)当0≤x≤200时,y=2.5x;当x>200时,y=200×2.5+2(x﹣200)=2x+100;综上,y关于x的函数关系式为y=.(2)设在甲、乙两家经销商购买x个头戴式小彩旗所需费用分别为y1元、y2元,则y1=2.2x.由(1)得,y2=.它们的函数图象如图所示:∵最终总费用不低于1600元,不超过2000元,购买1000面小国旗的费用是1000×0.8=800(元),∴购买头戴式小彩旗的费用最少800元,最多1200元,即800≤y1≤1200,800≤y2≤1200.当y1=y2时,2.2x=2x+100x=500,此时y1=y2=1100.由图象可知,当购买头戴式小彩旗的费用低于1100元时,向甲经销商购买最合算;当购买头戴式小彩旗费用为1100元时,两家一样合算;当购买头戴式小彩旗费用大于1100元时,向乙经销商购买最合适.综上,当总费用大于或等于1600而小于1900元时,向甲经销商购买最合算;当购买小彩旗费用为1900元时,两家一样合算;当购买总费用大于1900元而小于或等于2000元时,向乙经销商购买最合适.【变式2-1】“互联网+”让我国经济更具活力.牡丹花会期间,某网店直接从工厂购进A、B两款花会纪念钥匙扣进行销售,进货价和销售价如表:(1)网店第一次用1100元购进A、B两款钥匙扣共50件,求两款钥匙扣分别购进的件数;(2)第一次购进的花会纪念钥匙扣售完后,该网店计划再次购进A、B两款钥匙扣共240件(进货价和销售价都不变),且第二次进货总价不高于5800元.网店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?【答案】(1)购进A款钥匙扣30件,B款钥匙扣20件;(2)当购进40件A款钥匙扣,200件B款钥匙扣时,才能获得最大销售利润,最大销售利润是2800元.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,根据题意得:答:购进A款钥匙扣30件,B款钥匙扣20件;(2)设购进m件A款钥匙扣,则购进(240﹣m)件B款钥匙扣,根据题意得:20m+25(240﹣m)≤5800,解得:m≥40.设再次购进的A、B两款钥匙扣全部售出后获得的总利润为w元,则w=(30﹣20)m+(37﹣25)(240﹣m)=﹣2m+2880.∵﹣2<0,∴w随m的增大而减小,∴当m=40时,w取得最大值,最大值=﹣2×40+2880=2800(元),此时240﹣40=200(元).答:当购进40件A款钥匙扣,200件B款钥匙扣时,才能获得最大销售利润,最大销售利润是2800元.【变式2-2】2023年杭州亚运会期间,吉祥物徽章受到了众多人的喜爱.某网店直接从工厂购进A款礼盒120盒,B款礼盒50盒,两款礼盒全部售完.两款礼盒的进货价和销售价如下表:(1)求该网店销售这两款礼盒所获得的总利润.(2)网店计划用第一次所获的销售利润再次去购买A、B两款礼盒共80盒.该如何设计进货方案,使网店获得最大的销售利润?最大销售利润是多少?【答案】(1)该网店销售这两款礼盒所获得的总利润为2200元;(2)该网店购进A款礼盒和B款礼盒各40盒网店获得最大的销售利润,最大利润为920元.【解答】解:(1)120×(45﹣30)+50(33﹣25)=1800+400=2200(元),答:该网店销售这两款礼盒所获得的总利润为2200元;(2)设购进x盒A款礼盒,则购进(80﹣x)盒B款礼盒,网店所获利润为y元,根据题意得:y=(45﹣30)x+(33﹣25)(80﹣x)=7x+640,又∵30x+25(80﹣x)≤2200,∴x≤40,∵7>0,∴y随x的增大而增大,∴当x=40时,y有最大值,最大值为920,∴该网店购进A款礼盒和B款礼盒各40盒网店获得最大的销售利润,最大利润为920元.【变式2-3】“书香中国,读领未来”,4月23日是世界读书日,我市某书店同时购进A,B 两类图书,已知购进3本A类图书和4本B类图书共需160元;购进6本A类图书和2本B类图书共需170元.(1)A,B两类图书每本的进价各是多少元?(2)该书店计划用2000元购进这两类图书,设购进A类x本,B类y本.①求y关于x的关系式;②进货时,A类图书的购进数量不少于50本,已知A类图书每本的售价为28元,B类图书每本的售价为40元,如何进货才能使书店所获利润最大?最大利润为多少元?【答案】(1)A类图书每本的进价是20元,B类图书每本的进价是25元;(2)①;②购进A类图书50本,B类图书40本时,才能使书店所获利润最大,最大利润为1000元.【解答】解:(1)设A类图书每本的进价是a元,B类图书每本的进价是b元,根据题意得:,解得:,答:A类图书每本的进价是20元,B类图书每本的进价是25元;(2)①根据题意得:20x+25y=2000,∴y关于x的关系式为;②设书店所获利润为w元,根据题意得:W=(28﹣20)x+(40﹣25)y=8x+15y==﹣4x+1200∵﹣2<0,∴W随x的增大而减小,∵A类图书的购进数量不少于50本,∴x≥50,∴当x=50时,W4×50+1200=1000,此时,答:购进A类图书50本,B类图书40本时,才能使书店所获利润最大,最大利润为1000元.【变式2-4】为迎接新春佳节的到来,一水果店计划购进甲、乙两种新出产的水果共160千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?【答案】(1)甲种水果购进110千克,则乙种水果购进50千克;(2)安排购买甲种水果40kg,乙种水果120千克,才能使水果店在销售完这批水果时获利最多,此时利润为600元.【解答】解:(1)设甲种水果购进x千克,则乙种水果购进(160﹣x)千克,由题意可得:5x+9(160﹣x)=1000,解得x=110,∴160﹣x=50,答:甲种水果购进110千克,则乙种水果购进50千克;(2)设购进甲种水果m千克,则乙种水果购进(160﹣m)千克,获得的利润为w元,由题意可得:w=(8﹣5)m+(13﹣9)(160﹣m)=﹣m+640,∴w随m的增大而减小,∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴160﹣m≤3m,解得m≥40,∴当m=40时,w取得最大值,此时w=600,160﹣m=120,答:安排购买甲种水果40kg,乙种水果120千克,才能使水果店在销售完这批水果时获利最多,此时利润为600元.【变式2-5】随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?【答案】见试题解答内容【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【变式2-6】新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10的车辆都不少于2辆,根据下表提供的信息,解答以下问题:(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围(2)用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w 的最大值.【答案】见试题解答内容【解答】解:(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,则运香梨的车辆(10﹣x﹣y)辆.7x+6y+5(10﹣x﹣y)=60,∴y=﹣2x+10(2≤x≤4);(2)w=7×0.15x+6×0.2(﹣2x+10)+5×0.1[10﹣x﹣(﹣2x+10)],即w=﹣0.85x+12,∵﹣0.85<0,∴w随x的增大而减小,∴当x=2时,w有最大值10.3万元,∴装运苹果的车辆2辆,装运芦柑的车辆6辆,运香梨的车辆2辆时,此次销售获利最大,最大利润为10.3万元.【变式2-7】商店销售1台A型和2台B型电脑的利润为400元,销售2台A型和1台B 型电脑的利润为350元,该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润y 元.(1)①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(2)实际进货时,厂家对A型电脑出厂价下调了m(0<m≤50)元,且限定商店最多的进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出售这100台电脑销售总利润最大的进货方案.【答案】(1)①y=﹣50x+15000,②商店购进34台A型电脑和66台B型电脑的销售利润最大.(2)①当0<m<50时,商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得:,解得∴y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(2)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润.【变式2-8】某水果种植基地为响应政府号召,大力种植优质水果.某超市看好甲、乙两种优质水果的市场价值,决定开始销售这两种水果.已知该超市购进甲种水果10千克和乙种水果3千克共需要197元;若购进甲种水果15千克和乙种水果6千克,则共需要324元.(1)求甲、乙两种水果每千克的进价分别是多少元?(2100千克进行销售,甲种水果的售价为20元/千克,乙种水果的售价为24元/千克.其中甲种水果的数量不少于20千克,但不超过60千克.若超市当天购进的水果当天售完(运输和销售过程中水果的损耗忽略不计),写出每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式,并求出a为何值时能获得最大利润?最大利润是多少元?【答案】(1)甲种水果每千克的进价是14元,乙种水果每千克的进价是19元;(2)每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式为w=a+500;当a=60时,能获得最大利润,最大利润是560元.【解答】解:(1)设甲种水果每千克的进价是x元,乙种水果每千克的进价是y元,根据题意得:,解得,答:甲种水果每千克的进价是14元,乙种水果每千克的进价是19元;(2)由题意得:w=(20﹣14)a+(24﹣19)(100﹣a)=6a+5(100﹣a)=a+500,∵1>0,20≤a≤60,∴当a=60时,w最大,最大值为560,∴每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式为w=a+500;当a=60时,能获得最大利润,最大利润是560元.【变式2-9】某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?最大利润是多少?【答案】见试题解答内容【解答】解:(1)由题意可得,A型电脑的总利润为:120x,B型电脑的总利润为:140(100﹣x),∴A、B电脑的总利润:y=120x+140(100﹣x)=﹣20x+14000,∴y与x的函数关系式为:y=﹣20x+14000,又B型电脑的进货量不超过A型电脑的3倍,∴100﹣x≤3x,解得:x≥25,∴自变量x的取值范围为:25≤x≤100,且x为正整数,∴y=﹣20x+14000(25≤x≤100,且x为正整数);(2)∵y=﹣20x+14000,且﹣20<0,∴y随x的增大而减小,∵25≤x≤100,且x为正整数,∴x=25时,y有最大值为:﹣20×25+14000=13500,∴A型电脑进货25台,B型电脑进货75台,销售利润最大为13500元.【变式2-10】在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?最大值是多少?【答案】(1)每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大,总利润最大为375元.【解答】解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000),∵﹣0.05<0,∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值为375元,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大为375元.【变式2-11】第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A,B两种杭州亚运会吉祥物礼盒进行销售.A种礼盒每个进价160元,售价220元;B种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A种礼盒不少于60个.设购进A种礼盒x个,两种礼盒全部售完,该专卖店获利y元.(1)求y与x之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A种礼盒以每个优惠m(0<m<20)元的价格进行优惠促销活动,B种礼盒每个进价减少n元,售价不变,且m﹣n=4,若最大利润为4900元,请直接写出m的值.【答案】(1)y与x之间的函数关系式为y=20x+4000;(2)最大利润为5500元;(3)m=10.【解答】解:(1)由题意得:y=(220﹣160)x+(160﹣120)×(100﹣x)=20x+4000,∴y与x之间的函数关系式为y=20x+4000;(2)由题意得:,∴60≤x≤75,∵y=20x+4000中,20>0,∴y随x的增大而增大,∴当x=75时,y有最大值,最大值=20×75+4000=5500(元),∴最大利润为5500元;(3)∵m﹣n=4,∴n=m﹣4,由题意得:y=(220﹣160﹣m)x+(160﹣120+n)(100﹣x)=(60﹣m)x+(40+n)×100﹣(40+n)x=(24﹣2m)x+100m+3600.∵60≤x≤75,0<m<20,∴当0<m<12时,24﹣2m>0,∴y随x的增大而增大,∴当x=75时,y最大=(24﹣2m)×75+100m+3600=4900,∴m=10,符合题意;当m=12时,y=100×12+3600=4800≠4950,不合题意;当12<m<20时,24﹣2m<0,∴y随x的增大而减小.∴当x=60时,y最大=(24﹣2m)×60+100m+3600=4900,∴m=7,不合题意,舍去.综上,m=10.题型3:利用一次函数解决行程问题【典例3】2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?【答案】(1)1.5h;(2)s=100t﹣150(1.5≤t≤4.8);(3)轿车比货车早1.2h到达灾区.【解答】解:(1)∵货车的速度是60km/h,∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150),设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得,∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h),∴货车到达乙地需6h,∵s=100t﹣150,s=330,解得t=4.8,∴两车相差时间为6﹣4.8=1.2(h),∴货车还需要1.2h才能到达,即轿车比货车早1.2h到达灾区.【变式3-1】我市莲池区开展了“阳光体育,强身健体”系列活动,小明积极参与,他每周末和哥哥一起练习赛跑.哥哥先让小明跑若干米,哥哥追上小明后,小明的速度降为原来的一半,已知他们所跑的路程y(m)与哥哥跑步的时间x(s)之间的函数图象如图.(1)哥哥的速度是m/s,哥哥让小明先跑了米,小明后来的速度为m/s.(2)哥哥跑几秒时,哥哥追上小明?(3)求哥哥跑几秒时,两人相距10米?【答案】(1)8,14,3;(2)7;(3)2或9.【解答】解:(1)根据图象可知,哥哥的速度是24÷3=8(m/s),哥哥让小明先跑了14m;在哥哥追上小明之前,小明的速度为(32﹣14)÷3=6(m/s),∴在哥哥追上小明之后,小明的速度为6÷2=3(m/s),故答案为:8,14,3.(2)设哥哥跑t秒时,哥哥追上小明.14+6t=8t,解得t=7,∴哥哥跑7秒时,哥哥追上小明.(3)设哥哥所跑的路程y与哥哥跑步的时间x之间的函数关系式为y=kx(k为常数,且k≠0).将x=3,y=24代入y=kx,得3k=24,解得k=8,∴y=8x;小明所跑的路程y与哥哥跑步的时间x之间的函数关系式:当哥哥追上小明时,哥哥所跑的路程为8×7=56(m),∴图象交点坐标为(7,56).当0≤x<7时,设y=k1x+b1(k1、b1为常数,且k1≠0).将x=0,y=14和x=7,y=56代入y=k1x+b1,得,解得,∴y=6x+14(0≤x<7);哥哥出发后8s时,小明跑的总路程为56+(8﹣7)×3=59(m),∴坐标(8,59)对应的点在图象l3上.当x≥7时,设y=k2x+b2(k2、b2为常数,且k2≠0).将x=7,y=56和x=8,y=59代入y=k2x+b2,得,解得,∴y=3x+35(x≥7);综上,y=.两人相距10米时:当0≤x<7时,|6x+14﹣8x|=10,整理得|x﹣7|=5,解得x=2或12(不符合题意,舍去);当x>7时,|3x+35﹣8x|=10,整理得|x﹣7|=2,解得x=5(不符合题意,舍去)或9;∴哥哥跑2秒或910米.【变式3-2】一辆汽车和一辆摩托车分别从A,B两地去同一城市C,它们离A地的路程随时间变化的图象如图所示,已知汽车的速度为60km/h,摩托车比汽车晚1个小时到达城市C.(1)求摩托车到达城市C所用的时间;(2)求摩托车离A地的路程y(km)关于时间x(h)的函数表达式;(3)当x为何值时,摩托车和汽车相距30km.【答案】(1)4小时;(2)y=40x+20;(3)或小时.【解答】解:(1)根据图象信息,得到A到C点的距离为180千米,∵汽车的速度为60km/h,∴汽车到达中点的用时,∵摩托车比汽车晚1个小时到达城市C,∴摩托车到达城市C的时间为4小时.(2)设解析式为y=kx+b,把(0,20),(4,180)分别代入解析式得:,解得,故摩托车离A地的路程y(km)关于时间x(h)的函数表达式为y=40x+20.(3)根据题意,得到汽车的函数解析式为y=60x,根据题意,得:60x﹣(40x+20)=30,解得,40x+20+30=180,x=,故经过或小时,摩托车和汽车相距30km.【变式3-3】已知A,B两港口相距150海里,甲船从A港行驶到B港后,休息一段时间,速度不变,沿原航线返回,同时,乙船从A港出发驶向B港,甲、乙两船离A港的距离s(海里)与甲船行驶时间t(小时)之间的函数关系如图所示,当两船相遇时,两船到A 港的距离为90海里,乙船在行驶过程中,速度不变.(假设甲、乙两船沿同一航线航行)(1)直接写出M点的坐标;(2)分别求线段DM、EF的表达式;(3)甲船行驶多少小时后两船在甲船返航过程中相距30海里?【答案】(1)(13,0);(2)s=﹣30t+390(8≤t≤13),;(3)9.6小时或10.4小时.【解答】解:(1)∵甲船返回时速度不变,∴返回时间为5小时,8+5=13,所以,点M的坐标为(13,0),故答案为:(13,0);(2)由图可知:点D(8,150),设DM所在直线的解析式为:s=kt+b,把点D(8,150),点M(13,0)分别代入解析式,得:,解得,故线段DM的表达式为:s=﹣30t+390(8≤t≤13);甲船的速度=150÷5=30(海里/时),(150﹣90)÷30=2(小时),∴乙船的速度为:90÷2=45(海里/时),∴乙船行驶的时间为:(小时),此时,故点G(10,90),由图可知:点E(8,0),设直线EF的表达式为s=mt+n,把点G(10,90),点E(8,0)分别代入解析式,得:,解得,故线段EF的表达式为:;(3)设甲船行驶x小时后两船相距30海里,①若相遇前相距30海里,则(30+45)×(x﹣8)=150﹣30,解得x=9.6,②若相遇后再相距30海里,则(30+45)×(x﹣8)=150+30,解得x=10.4,所以,甲船行驶9.6小时或10.4小时后,两船相距30海里.【变式3-4】甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?【答案】(1)A、B两城之间距离是300千米;(2)甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)乙车出发1.5小时追上甲车;(4)分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.【解答】解:(1)由图象可知A、B两城之间距离是300千米;(2)由图象可知,甲的速度==60(千米/小时),乙的速度==100(千米/小时),∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)设乙车出发x小时追上甲车,由题意:60(x+1)=100x,解得:x=1.5,∴乙车出发1.5小时追上甲车;(4)设乙车出发后到甲车到达B城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m小时,①当甲车在乙车前时,得:60m﹣100(m﹣1)=40,解得:m=1.5,。

八年级下册一次函数压轴题解析修订版

八年级下册一次函数压轴题解析修订版

八年级下册一次函数压轴题解析修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】八年级下册----一次函数压轴题一.选择题(共17小题)1.(2013?平塘县二模)如图,是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h与t的函数图象只可能是()A.B.C.D.2.(2014?河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.3.(2013秋?宁波期末)如图所示.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点A1在直线y=x+2上,△A1OB1记作第一个等腰三角形;然后过B1作平行于OA1的直线B1A2与直线y=x+2相交于点A2,再以B1A2为腰作等腰三角形A2B1B2,记作第二个等腰三角形;同样过B2作平行于OA1的直线B2A3与直钱y=x+2相交于点A3,再以B2A3为腰作等腰三角形A3B2B3,记作第三个等腰三角形;依此类推,则等腰三角形A10B9B10的面积为()A.3?48B.3?49C.3?410D.3?4114.(2014春?海曙区校级期中)如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P 是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4B.2≤m≤4C.0≤m≤D.0≤m≤35.(2013?北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP 的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.6.(2013?大城县校级模拟)如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A?B?C?D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为()A.B.C.D.7.(2013?河北模拟)如图,直线l是菱形ABCD和矩形EFGH的对称轴,C点在EF边上,若菱形ABCD沿直线l从左向右匀速运动,运动到C在GH边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S)与运动的路程(x)之间的函数关系的图象大致是()A.B.C.D.8.(2012?温岭市校级三模)如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1B.y=﹣x+2C.y=﹣3x﹣2D.y=﹣x+29.(2011?延庆县一模)如图:已知P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D在线段AB上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距离为y,则能表示y与P点移动的时间x之间函数关系的大致图象是()A.B.C.D.10.(2011?浙江二模)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w (吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时11.(2011?房山区一模)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是()A.B.C.D.12.(2011?黑龙江模拟)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或2B.1或﹣2C.﹣1或2D.﹣1或﹣213.(2011?东城区一模)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停止.设点R运动的路程为x,△EFR的面积为y,当y取到最大值时,点R应运动到()A.B C的中点处B.C点处C.C D的中点处D.D点处14.(2011?江西模拟)某人匀速上坡一段时间后,由于有急事,又以更快的速度匀速地沿原路返回;这一情境中,速度V与时间t的关系,用图象可大致表示为()A.B.C.D.15.(2011?江干区模拟)如图,直线l1:y=x+1与直线l2:相交于点P(﹣1,0).直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,Bn,An,…则当动点C到达An处时,运动的总路径的长为()A.n2B.2n﹣1C.2n﹣1+1D.2n+1﹣216.(2010?东阳市)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A.B.C.D.17.(2010?新城区校级模拟)甲、乙两人分别从相距25千米的A、B两地同时相向而行.甲步行,每小时行5千米,乙骑自行车,每小时行15千米,乙到达A地后立即原路返回,追上甲为止,他们所行时间x(小时),与离A地的距离y(千米)的函数图象大致是()A.B.C.D.二.选择题(共5小题)18.(2007?随州)在四边形ABCD中,AB边的长为4,设动点P沿折线B?C?D?A由点B向点A运动,设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是.(只填所有正确结论的序号例如①)19.(2007?衢州)一个水池有2个速度相同的进水口,1个出水口,单开一个进水口每小时可进水10立方米,单开一个出水口每小时可出水20立方米.某天0点到6点,该水池的蓄水量与时间的函数关系如图所示(至少打开一个进水口).给出以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水,(3)4点到6点不进水也不出水.则错误的论断是.(填序号)20.(2007?开封)已知函数y=,则x的取值范围是;若x 是整数,则此函数的最小值是.21.(2008?昌平区二模)当光线射到x轴的点C后进行反射,如果反射的路径经过点A (0,1)和点B(3,4),如图,则入射线所在直线的解析式为.22.(2009?萧山区模拟)当k取不同整数时,经过第一、二、四象限的所有直线y=(2k﹣1)x+k+2与坐标轴在第一象限围成一个多边形,这个多边形的面积等于.三.解答题(共8小题)23.(2015?建邺区二模)小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?24.(2015?峄城区校级模拟)甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.25.(2015?大连模拟)一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x(h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.26.(2015春?晋安区期末)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P 是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.27.(2014?天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ 时,试用含t的式子表示m.28.(2014?江阴市二模)如图,A、B两点分别在x轴和y轴上,且OA=OB=,动点P、Q分别在AB、OB上运动,运动时,始终保持∠OPQ=45°不变,设PA=x,OQ=y.(1)求y与x的函数关系式.(2)已知点M在坐标平面内,是否存在以P、Q、O、M为顶点的四边形是菱形?若存在,求出点M的坐标;若不存在,说明理由.(3)已知点D在AB上,且AD=,试探究:当点P从点A出发第一次运动到点D时,点Q 运动的路径长为多少?29.(2013?绥化)为了迎接“十?一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?30.(2013?常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?八年级下册----一次函数压轴题参考答案与试题解析一.选择题(共17小题)1.(2013?平塘县二模)如图,是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h与t的函数图象只可能是()A.B.C.D.考点:函数的图象.专题:计算题;压轴题.分析:本题需先根据容器下底小而上口大的特点得出容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢即可得出正确答案.解答:解:∵容器下底小而上口大,∴将水以恒速注入,则容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢∴h与t的函数图象只可能是D故选D点评:本题主要考查了函数的图象问题,在解题时要结合题意找出正确的函数图象是本题的关键.2.(2014?河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得 AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.3.(2013秋?宁波期末)如图所示.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点A1在直线y=x+2上,△A1OB1记作第一个等腰三角形;然后过B1作平行于OA1的直线B1A2与直线y=x+2相交于点A2,再以B1A2为腰作等腰三角形A2B1B2,记作第二个等腰三角形;同样过B2作平行于OA1的直线B2A3与直钱y=x+2相交于点A3,再以B2A3为腰作等腰三角形A3B2B3,记作第三个等腰三角形;依此类推,则等腰三角形A10B9B10的面积为()A.3?48B.3?49C.3?410D.3?411考点:一次函数综合题.专题:压轴题;规律型.分析:令x=0求解得到点A的坐标,然后求出OA的长,过点A1作A1C1⊥x轴于C1,根据等腰三角形三线合一的性质求出OC1,再根据直线解析式求出A1C1,然后判断出△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,根据相似三角形的性质用B1C2表示出A2C2,再根据A2在直线上列式求解得到第二个等腰三角形的底边与高,同理求出第三个等腰三角形的底边与高,然后根据规律判断出△A10B9B10的底边与高,再根据三角形的面积公式列式计算即可得解.解答:解:令x=0,则y=2,∴点A的坐标为(0,2),∴OA=2,∴OB1=OA=2,过点A1作A1C1⊥x轴于C1,则OC1=OB1=×2=1,∵A1在直线y=x+2上,∴A1C1=x+2=1+2=3,∴A1C1=3OC1,由题意得,△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,则A2C2=3B1C2,设B1C2=a,则A2C2=3a,∵A2在直线y=x+2上,∴A2C2=x+2=(2+a)+2=3a,解得a=2,∴B1B2=2×2=4,同理可得B2B3=8=23,A2C3=12=3×22,…,△A10B9B10的底边B9B10=210,高为3×29,∴△A10B9B10的面积=×210×3×29,=3?49.故选B.点评:本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征,求出等腰三角形底边上的高等于底边一半的3倍是解题的关键,也是本题的难点.4.(2014春?海曙区校级期中)如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P 是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A.3≤m≤4B.2≤m≤4C.0≤m≤D.0≤m≤3考点:一次函数综合题.专题:压轴题.分析:令y=0求出点B的坐标,过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,求出△OCD和△CPD相似,利用相似三角形对应边成比例列式表示出m,然后求出m的最小值,再根据点P在线段OB上判断出OC⊥AB时,点P、B重合,m最大,然后写出m的取值范围即可.解答:解:令y=0,则﹣x+3=0,解得x=4,所以,点B的坐标为(4,0),过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD?DP,∴(﹣a+3)2=a(m﹣a ),整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点(能与点O,B重合),∴OC⊥AB时,点P、B重合,m最大,∴m的取值范围是3≤m≤4.故选A.点评:本题是一次函数综合题型,主要利用了一次函数与坐标轴的交点的求法,相似三角形的判定与性质,难点在于列不等式求出m的最小值.5.(2013?北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP 的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B .C .D.动点问题的函数图象.考点:压轴题.专题:分作OC⊥AP,根据垂径定理得AC=AP=x,再根据勾股定理可计算出OC=,析:然后根据三角形面积公式得到y=x?(0≤x≤2),再根据解析式对四个图形进行判断.解解:作OC⊥AP,如图,则AC=AP=x,答:在Rt△AOC中,OA=1,OC===,所以y=OC?AP=x?(0≤x≤2),所以y与x的函数关系的图象为A选项.故选:A.排除法:很显然,并非二次函数,排除B选项;采用特殊位置法;当P点与A点重合时,此时AP=x=0,S△PAO=0;当P点与B点重合时,此时AP=x=2,S△PAO=0;当AP=x=1时,此时△APO为等边三角形,S△PAO=;排除B、C、D选项,故选:A.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.6.(2013?大城县校级模拟)如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A?B?C?D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为()A.B.C.D.考动点问题的函数图象.点:专压轴题;动点型.题:分别求出P在AB段,BC段,CD段的函数解析式或判断函数的类型,即可判断.分析:解解:点P在AB段时,函数解析式是:y=AP?AM=×2x=x,是正比例函数;答:点P在BC段时:y=2x﹣4;这段的直线的斜率大于AB段的斜率.故A,B选项错误;点P在CD段时,面积是梯形ABCM的面积加上△MCP面积,梯形ABCM的面积不变,而△MCP中CP边上的高一定,因而面积是CP长的一次函数,因而此段的面积是x的一次函数,应是线段.故C错误,正确的是D.故选D.点本题主要考查了函数的性质,注意分段讨论是解决本题的关键.评:7.(2013?河北模拟)如图,直线l是菱形ABCD和矩形EFGH的对称轴,C点在EF边上,若菱形ABCD沿直线l从左向右匀速运动,运动到C在GH边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S)与运动的路程(x)之间的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;分段函数.分析:要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中S随x变化的情况,解答:解:当0<x<2时,S=x2,当2≤x≤4时,S=×2×4﹣(4﹣x)×(4﹣x),=﹣x 2+4x﹣4,由分析可知,故选D.点评:本题以动态的形式考查了分类讨论的思想,函数的知识和等腰三角形,具有很强的综合性.8.(2012?温岭市校级三模)如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1B.y=﹣x+2C.y=﹣3x﹣2D.y=﹣x+2考点:一次函数综合题.专题:计算题;压轴题.分析:抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y 轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.解答:解:当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=2,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y 轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+2.故选D点评:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解本题的关键.9.(2011?延庆县一模)如图:已知P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D在线段AB上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距离为y,则能表示y与P点移动的时间x之间函数关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;数形结合.分析:分别延长AE,BF交于点H,则可证得四边形EPFH为平行四边形,利用平行四边形的性质:对角线相互平分,可得G为EF的中点,也是PH的中点,所以G的运动轨迹是三角形HCD的中位线,所以点G到直线AB的距离为y是一个定值,问题得解.解答:解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分,∴G为HP的中点,∵EF的中点为G,∴P从点C运动到点D时,G始终为PH的中点,∴G运动的轨迹是三角形HCD的中位线MN,又∵MN∥CD,∴G到直线AB的距离为一定值,∴y与P点移动的时间x之间函数关系的大致图象是一平行于x轴的射线(x≥0).故选D.点评:本题考查了动点问题的函数图象,利用到的是三角形的中位线定理:三角形的中位线平行且等于第三边的一半.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.10.(2011?浙江二模)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时考点:函数的图象.专题:应用题;压轴题.分析:通过分析题意和图象可求调进物资的速度,调出物资的速度;从而可计算最后调出物资20吨所花的时间.解答:解:调进物资的速度是50÷2=25(吨/时);当在第4小时时,库存物资应该有100吨,从图象上可知库存是20吨,所以调出速度是80÷2=40(吨/时),所以剩余的20吨完全调出需要20÷40=0.5(小时).故这批物资从开始调进到全部调出需要的时间是4+0.5=4.5(小时).故选A.点评:主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11.(2011?房山区一模)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;数形结合.分析:过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.解答:解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD 的边长是1,∴AC==,∵AP=x,∴PC=﹣x ,∴PF=FC=(﹣x)=1﹣x,∴BF=FE=1﹣FC=x ,∴S△PBE=BE?PF=x (1﹣x)=﹣x2+x,即y=﹣x2+x(0<x <),∴y是x的二次函数(0<x<),故选A.点评:本题考查了动点问题的函数图象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.12.(2011?黑龙江模拟)已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或2B .1或﹣2C.﹣1或2D.﹣1或﹣2考点:一次函数的性质.专题:压轴题;探究型.分析:首先根据四条直线的解析式画出示意图,从而发现四边形是梯形,求得梯形的四个顶点的坐标,再进一步根据梯形的面积公式进行计算.解答:解:如图所示,根据题意,得A(1,3),B(1,﹣1),C(,﹣1),D(,3).显然ABCD是梯形,且梯形的高是4,根据梯形的面积是12,则梯形的上下底的和是6,则有①当k<0时,1﹣+1﹣=6,∴2﹣=6,∴=﹣4,解得k=﹣2;②当k >0时,﹣1+﹣1=6,∴=8,解得k=1.综上所述,则k=﹣2或1.故选B.点评:此题考查了用图象法表示函数、两条直线的交点坐标和梯形的面积公式,注意此题的两种情况.13.(2011?东城区一模)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停止.设点R运动的路程为x,△EFR的面积为y,当y取到最大值时,点R应运动到()A.B C的中点处B.C点处C.C D的中点处D.D点处考点:一次函数的应用.专题:几何动点问题;压轴题.分析:根据题意,△EFR的面积=边EF×其对应的高,当△EFR的面积最大时,边EF对应的高最大,从而转化为求点R运动到何处时,到线段EF的距离最大.解答:解:根据题意,△EFR的面积=边EF×其对应的高,当△EFR的面积最大时,边EF对应的高最大,从而将问题转化为求点R运动到何处时,到线段EF的距离最大.由所给图形可以看出当点R运动到C点时,点R到线段EF的距离最大.故选B.点评:本题考查了一次函数的应用,难度不大,将问题适当的转化是解答该题的关键.14.(2011?江西模拟)某人匀速上坡一段时间后,由于有急事,又以更快的速度匀速地沿原路返回;这一情境中,速度V与时间t的关系,用图象可大致表示为()A.B.C.D.考点:函数的图象.专题:压轴题.分析:根据行驶速度是匀速,可知v在两段时间内分别不变,是一条平行于t轴的直线,可知匀速上坡后,又沿原路返回,所以路程是相等的,根据s=vt,由于返回是速度更快了,所以所用时间就短了.解答:解:∵某人匀速上坡一段时间,∴v在这段时间不变,是一条平行于t轴的直线,∵又以更快的速度匀速地沿原路返回,∴此时v增大,仍然是一条平行于t轴的直线,而且所用时间缩短,故选:A,点评:此题主要考查了实际问题与函数图象的结合,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.。

八年级数学下册第十九章一次函数压轴题

八年级数学下册第十九章一次函数压轴题

八年级数学下册第十九章一次函数压轴题1、下列计算正确的是 ( )A.B.答案B 解析2、下列图形中,既是轴对称图形又是中心对称图形的有(▲).A.4个B.3个C.2个D.1个答案B 解析3、如图(十三),扇形AOB中,=10, ETH;AOB=36°。

若固定B点,将此扇形依顺时针方向旋转,得答案D 解析考点:弧长的计算.分析:根据弧长公式,此题主要是得到∠OBO′的度数.根据等腰三角形的性质即可求解.解:根据题意,知OA=OB.又∵∠AOB=36°,∴∠OBA=72°.∴点旋转至O′点所经过的轨迹长度==4π.故选D.4、(2014?怀柔区一模)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A.B.答案C 解析试题分析:根据轴对称及旋转对称的定义,结合各选项进行判断即可.解:A、即运用了轴对称也利用了旋转对称,故本选项错误;B、即运用了轴对称也利用了旋转对称,故本选项错误;C、没有运用旋转,也没有运用轴对称,故本选项正确;D、利用了轴对称,故本选项错误;故选C.点评:本题考查了轴对称及旋转对称的知识,解答本题的关键是掌握轴对称及旋转对称的定义.5、如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美"相对的面上的汉字是答案C 解析6、小明从正面观察下图所示的两个物体,看到的是答案C 解析7、如图,已知边长为4的正方形中,为中点,为中点,为中点,交于连接则下列结论正确的是( 答案A 解析8、在下列四个图案中,既是轴对称图形,又是中心对称图形的是 ( 答案B 解析9、如果是方程的解,那么的值是()A.0 B.2 C.D.答案C 解析10、下列平面图形中,既是中心对称图形,又是轴对称图形的是A.等腰三角形 B.等边三角形C.等腰梯形D.菱形答案D 解析11、如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N.则DM+CN的答案C 解析12、(2014?鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退答案B 解析试题分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选:B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.13、-5的绝对值; 答案A 解析14、不等式组的解集是( )A.B.C.D.答案D 解析15、把分式中的、都扩大到原来的9倍,那么分式的值()A.扩大到原来的9倍B.答案D 解析16、如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于(答案A 解析17、下列物质间转化,能一步实现的是(;)答案C 解析18、下列各数:0.2,,,,,,,,其中无理数的个数是A.1个B.2个C.3个D.4个答案C 解析19、下列计算正确的是( )A.B.C.D.答案C 解析20、如图所示几何体的左视图是(m 答案A 解析21、如图3,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.A.6B答案B 解析解:过点D作DE⊥AB,∵AD平分∠BAC,C=90°∴CD=DE∵CD=2∴DE=2∴△ABD的面积=2×5÷2=522、已知,化简二次根式的正确结果是答案A 解析23、2011年,某地区有54310人参加中考,将54310用科学记数法(保留2个有效数字)表示为(答案C 解析24、已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有; (; 答案D 解析25、函数y1=kx+k,y2=在同一坐标中的图像大致是()答案C 解析26、计算+之值为何?()A.2B.答案D 解析27、已知下列命题:①若,则;②若,则;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命答案B 解析28、一个整式减去 -2a2的结果是a2-b2,则这个整式是A.-a2+b2B.a2+b2 C.3a2-b2D.-a2答案D 解析29、如图所示,从正面看下图,所能看到的结果是()答案B 解析30、-|2| 的相反数是A.2B.-答案A 解析31、不等式组的正整数解有:A.1个B.2个C.3个D.4个答案C 解析32、如图,,可以看作是由绕点顺时针旋转角度得到的.若点在上,则旋转角的大小可以是(; 答案C 解析33、(2014?兰山区一模)为了让返乡农民工尽快实现再就业,某区加强了对返乡农民工培训经费的投入.2008年投入30 答案A 解析试题分析:本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果这两年培训经费的年平均增长率为x,根据题意即可列出方程.解:∵增长后的量=增长前的量×(1+增长率),∴3000(1+x)2=5000故选A.点评:本题主要考查:复利公式:“a(1+x%)n=b”的应用,理解公式是解决本题的关键.34。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 如图所示,四边形OAB(是矩形,点A C的坐标分别为(3, 0), (0,1),点D是线段
_ 1
BC上的动点(与端点B、C不重合),过点D作直线y = —— x + b交折线OA旺点E.
2
(1 )记厶ODE勺面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OAB(关于直线DE的对称图形为四边形OABC,试探究OABC与矩形OABC勺重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由•
•x
2. 我们容易发现:反比例函数的图象是一个中心对称图形 如图,在同一直角坐标系中, 正比例函数的图象可以看作是: 将X 轴所在的直线绕着原点 0
B 、D ,已知点 A( m,0)、C(m,O) •
(2)①当点B 为(p,1)时,四边形ABCD 是矩形,试求p 、a 、和m 有值;
•你可以利用这一结论解决问题 逆时针旋转a 度角后的图形
.若它与反比例函数
的图象分别交于第 、三象限的点
(1 )直接判断并填写:不论a 取何值,四边形
ABCD 的形状一定是 ___________
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个? (不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能直接写出B点的坐标,若不能,说明理
3. 如图,在直角梯形ABCD中, AD// BC, / C= 90°, BC= 16, DC= 12, A» 21。

动点P 从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D, C同时出发,当点Q运动到点B时,点P随之停止运动。

设运动的时间为t (秒).
(1 )设厶BPQ的面积为S,求S与t之间的函数关系式
(2)当t为何值时,以B, P, Q三点为顶点的三角形是等腰三角形?
(3)当线段PQ与线段AB相交于点0,且2AO= 0B时,求t的值.
(4)是否存在时刻t,使得PQL BD?若存在,求出t的值;若不存在,请说明理由.
4. 如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA 0B的长(OA<OB)
是方程组2X y
的解,点C是直线y 2x与直线AB的交点,点D在线段0C上,3x y 6
0D=2 .. 5
(1)求点C的坐标;
(2)求直线AD的解析式;
⑶P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理'
B

由. \ ,
5. 如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+n(m>0的图象,直线PB是
一次函数y 3x n(n>m)的图象,点P是两直线的交点,点A B、C、Q分别是两条直线
与坐标轴的交点。

(1 )用m、n分别表示点A B P的坐标及/ PAB的度数;
11
(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB
2
的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A B P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由。

x
6. 如图,在平面直角坐标系中,函数y=2x+12的图象分别交x 轴,y轴于A, B两点过点A
的直线交y轴正半轴与点M且点M为线段0B的中点.
(1)求直线AM的函数解析式.
(2 )试在直线AM上找一点P,使得& ABP=SA AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A, B, M H
为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由
7. 已知直线y=x+4与x轴、y轴分别交于A B两点,/ ABC=60 , BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与 C A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△ APQ的面积为S, P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△ APQ的面积最大时,y轴上有一点M,平面内是否存在一点N, 使以A、Q M N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请
说明理由.
8. 如图,矩形OABC在平面直角坐标系内(0为坐标原点),点A在X轴上,点C在y轴上,点B
—1
的坐标为(-2, 2、3),点E是BC的中点,点H在0A上,且AH=_ ,过点H且平行于y轴的HG
2
与EB交于点G,现将矩形折叠,使顶点C落在HG上,并与HG上的点D重合,折痕为EF,点F 为折痕与y轴的交点•
(1)求/ CEF的度数和点D的坐标;(3分)
⑵求折痕EF所在直线的函数表达式;(2分)
(3)若点P在直线EF上,当厶PFD为等腰三角形时,试问满足条件的点P有几个,请求出点P
的坐标,并写出解答过程.(5分)。

相关文档
最新文档