小专题(三) 全等三角形性质与判定的综合应用

合集下载

人教版数学八年级上册12.2三角形全等的判定和性质综合应用教案

人教版数学八年级上册12.2三角形全等的判定和性质综合应用教案
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA、AAS这四个判定方法。对于难点部分,我会通过举例和比较来帮助大家理解,例如,为什么只有两边和一个角不能判定全等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺规作图来演示全等三角形的判定方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的判定方法和性质,以及它们在实际问题中的应用。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.解决实际问题,如测量不可到达的距离、确定物体位置等,运用三角形全等的判定和性质;
4.通过实际案例分析,培养学生运用数学知识解决实际问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过分析、归纳、总结全等三角形的判定方法和性质,形成严密的数学思维;
2.提高学生的空间想象力,运用全等三角形的性质解决实际问题,培养对几何图形的认知和操作能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形全等的判定方法。全等三角形是指在大小和形状上完全相同的两个三角形。掌握全等三角形的判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用SSS、SAS、ASA、AAS判定方法在实际中确定全等三角形,以及这些方法如何帮助我们解决问题。

初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图全等三角形”是八年级数学教材第十一章的重要内容,旨在让学生掌握全等三角形的概念和性质,以及五种判定全等的方法和角平分线的性质和判定方法,进而解决实际问题。

本单元共分三个专题,通过小组讨论和交流,引导学生进行探索、猜想、证明的过程,发展学生的推理意识和能力,课堂效果良好。

研究重点是全等三角形的性质和判定的综合运用,难点在于让学生理解证明的基本过程和用综合法证明的格式,并能灵活运用。

研究目标包括知识与技能、过程与方法、情感态度与价值观三个方面,旨在培养学生的空间观念、几何直觉、合作交流意识、大胆猜想和解决问题的能力。

本文介绍了数学中的两个重要概念:全等三角形和角平分线。

全等三角形的概念包括对应顶点、对应边和对应角等,掌握全等三角形的判定方法和证明格式是必要的。

角平分线的性质包括将一个角平分成两个相等的角,掌握角平分线的判定方法也是必要的。

在研究全等三角形时,需要掌握全等三角形的概念和性质,以及准确地辨认全等三角形中的对应元素。

通过观察、操作、想象、交流等教学活动,让学生经历理解全等三角形性质的过程。

同时,运用多媒体演示图形的位置变化,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。

在研究角平分线时,需要掌握角平分线的性质和判定方法。

角平分线将一个角平分成两个相等的角,可以通过作图来判定角平分线。

在教学中可以使用多媒体课件、几何画板课件、作图工具和纸笔等教学资源,让学生通过动手操作、分组讨论、归纳结论等方式来探究全等三角形和角平分线的概念和性质。

总之,掌握全等三角形和角平分线的概念、性质和判定方法对于研究数学和几何学都是必要的。

在教学中,可以通过多种方式来引导学生探究和理解这些概念和性质,培养学生动态研究几何图形的意识,激发学生热爱科学、勇于探索的精神。

提出问题:两个全等的三角形,能否任意摆放并重合?如何放置才能重合?活动二:探究全等三角形的性质1、提出问题:观察图中两个三角形的对应边和对应角有什么关系?2、让学生观察图形、动手操作、分组讨论得出结论。

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1.3 全等三角形-重难点题型【苏科版】【题型1 全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB【分析】由全等三角形的性质可得S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,∴S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠F AE=∠BAC,∴∠F AE﹣∠F AB=∠BAC﹣∠BAF,即∠BAE=∠F AC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2 利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3 利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .【分析】根据全等三角形的性质可得方程组{3x −2y =5x +2y =7,或{x +2y =53x −2y =7,解方程组可得答案. 【解答】解:由题意得{3x −2y =5x +2y =7,或{x +2y =53x −2y =7, 解得:{x =3y =2或{x =3y =1, x +y =5或x +y =4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4 与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC ≌△ADE ,点E 在边BC 上,求证:∠BED =∠BAD .【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC ≌△ADE ,∴∠C =∠AED ,∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠CAE =∠BAD ,∵∠AEB =∠AED +∠DEB =∠CAE +∠C ,∴∠CAE =∠BED ,∴∠BED =∠BAD .【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF ≌△DCE ,E 与F 是对应顶点.证明AF ∥DE .【分析】根据全等三角形的性质得出∠B =∠C ,∠BAF =∠CDE ,根据三角形外角性质求出∠AFE =∠DEF ,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5 与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6 与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QP A两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QP A时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt △ABC 中,∠C =90°,BC =9cm ,AC =12cm ,AB =15cm ,现有一动点P ,从点A 出发,沿着三角形的边AC →CB →BA 运动,回到点A 停止,速度为3cm /s ,设运动时间为ts .(1)如图(1),当t = 时,△APC 的面积等于△ABC 面积的一半;(2)如图(2),在△DEF 中,∠E =90°,DE =4cm ,DF =5cm ,∠D =∠A .在△ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB →BC →CA 运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,求点Q 的运动速度.【分析】(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P 在AC 上,AP =4,AQ =5,②当点P 在AB 上,AP =4,AQ =5,分别求出P 移动的距离和时间,进而求出Q 的移动速度.【解答】解:(1)①当点P 在BC 上时,如图①﹣1,若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒, ②当点P 在BA 上时,如图①﹣2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm ,移动的时间为:572÷3=192秒, 故答案为:112或192;(2)△APQ ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②﹣1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm /s ,②当点P 在AB 上,如图②﹣2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15﹣4=32cm ,点Q 移动的距离为9+12+15﹣5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm /s , 综上所述,两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,点Q 的运动速为154cm /s 或9332cm /s .【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。

2020中考数学 专题突破:全等三角形的判定与性质(解析版)

2020中考数学 专题突破:全等三角形的判定与性质(解析版)

2020中考数学专题突破:全等三角形的判定与性质(解析版)【例题1】如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF,使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可求证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF均可.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例题2】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是 ①④ (填写所有正确结论的序号)【分析】①证明△ABC ≌△ADC ,可作判断;②③由于AB 与BC 不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC 和△ADC 中,∵,∴△ABC ≌△ADC (SSS ),∴∠ABC=∠ADC ,故①结论正确;②∵△ABC ≌△ADC ,∴∠BAC=∠DAC ,∵AB=AD ,∴OB=OD ,AC ⊥BD ,而AB 与BC 不一定相等,所以AO 与OC 不一定相等,故②结论不正确;③由②可知:AC 平分四边形ABCD 的∠BAD 、∠BCD ,而AB 与BC 不一定相等,所以BD 不一定平分四边形ABCD 的对角;故③结论不正确;④∵AC ⊥BD ,∴四边形ABCD 的面积S=S △ABD +S △BCD =BD•AO +BD•CO=BD•(AO +CO )=AC•BD . 故④结论正确;所以正确的有:①④;故答案为:①④. 【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决.【例题3】如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【例题4】如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;【解答】解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2))△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米.∴PC=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t==秒,∴V Q===厘米/秒.巩固练习一、选择题:1.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D【分析】根据所给条件可知,应加一对对应边相等才可证明这两个三角形全等,AB和EF是对应边,因此应加AB=FE.【解答】解:A、加上AB=DE,不能证明这两个三角形全等,故此选项错误;B、加上BC=EF,不能证明这两个三角形全等,故此选项错误;C、加上AB=FE,可用ASA证明两个三角形全等,故此选项正确;D、加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选:C.2.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()A.2对 B.3 对C.4对 D.5对【分析】根据SAS推出△ABD≌△ACD,求出∠B=∠C,BE=CF,根据全等三角形的判定推出△BDE≌△CDF,△AED≌△AFD,△AFB≌△AEC即可.【解答】解:全等三角形有:△ABD≌△ACD,△BDE≌△CDF,△AED≌△AFD,△AFB ≌△AEC,共4对,故选C3.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.2【分析】根据全等三角形的对应边相等可得AB=AC,AE=AD,再由CD=AC﹣AD即可求出其长度.【解答】解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选D.4.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充【分析】根据平行线的性质得出∠B=∠D,求出BC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠B=∠D,∵BF=DC,∴BC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.5.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS【分析】熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【解答】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.二、填空题:6.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF,使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF 或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,故答案为AB=DE或BC=EF或AC=DF均可.7.如图,AC=DC,BC=EC,请你添加一个适当的条件:CE=BC,使得△ABC≌△DEC.【分析】本题要判定△ABC≌△DEC,已知AC=DC,BC=EC,具备了两组边对应相等,利用SSS即可判定两三角形全等了.【解答】解:添加条件是:CE=BC,在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:CE=BC.本题答案不唯一.8.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF 或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).9.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.10. AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有.【分析】根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出②正确.【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故④正确∴CE=BF,∠F=∠CED,故①正确,∴BF∥CE,故③正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故②正确,综上所述,正确的是①②③④.故答案为:①②③④.三、解答题:1.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.2.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等.。

专题研究:全等三角形证明方法归纳及典型例题

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

《全等三角形》讲义(完整版)

《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。

(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。

(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。

人教版八年级数学上册专题(三) 全等三角形判定与性质的综合运用

人教版八年级数学上册专题(三) 全等三角形判定与性质的综合运用
Rt△ODE≌Rt△OCE(AAS),∴DE=CE
类型三:证明两直线平行
4.如图,AC和BD相交于点O,OA=OC,OB=OD.求证:AB∥CD.
解:在△DOC 与△BOA 中,O∠CD=OOC= A,∠BOA, OD=OB,
∴△DOC≌△BOA(SAS),∴∠D=∠B,∴AB∥CD
类型四:证明两直线互相垂直 5.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点, 将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别 与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证 明你的猜想. 解:BE=EC,BE⊥EC,证明:∵AC=2AB,D是AC的中点,∴AB= AD=CD,∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°,∵EA= ED,∴△EAB≌△EDC(SAS),∴∠AEB=∠DEC,EB=EC,∴∠BED+ ∠DEC=∠BED+∠AEB=90°,∴BE⊥EC
3.如图,AC⊥AD,BC⊥BD,OE⊥CDபைடு நூலகம்AC=BD.求证:DE=CE.
解:∵AC⊥AD,BC⊥BD,∴∠A=∠B=90°,在 Rt△ADC 和 Rt△BCD 中,DACC==CBDD,,∴Rt△ADC≌Rt△BCD(HL),∴∠ACD
=∠BDC,在 Rt△ODE 和 Rt△OCE 中,∠∠OOEDDE==∠∠OOECCE=,90°,∴ OE=OE,
∴∠A=∠D
类型二:证明两线段相等 2.如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC, CE⊥BD于点E.求证:AD=BE. 解:∵AD∥BC,∴∠ADB=∠DBC,又CE⊥BD,∴∠BEC=90°, 又∵∠A=90°,∴∠A=∠BEC,又BD=CB,∴△ABD≌△ECB(AAS), ∴AD=BE

7.与三角形有关的计算与证明(解答题)

7.与三角形有关的计算与证明(解答题)
8 / 13
滚动小专题(七)与三角形有关的计算与证明(解答题)
9 / 13
(2019·山西)
滚动小专题(七)与三角形有关的计算与证明(解答题)
(2019·泸州)如图,AB∥CD,AD 和 BC 相交于点 O,OA=OD.求证:OB=OC. (2019·苏州)
10 / 13
滚动小专题(七)与三角形有关的计算与证明(解答题)
在 DBC与ECB中
O C
BD CE DBC ECB BC CB ∴ DBC ECB .
(2)由(1)知, DBC ECB ,∴∠DCB=∠EBC.
∴OB=OC.
(2019· 乐山)如图10 ,线段 AC 、 BD 相交于点 E , AE DE , BE CE .求证: B C .
证明:在 AEB 和 DEC 中, AE DE , BE CE , AEB DEC , AEB ≌ DEC . 故 B C . (2019·广州)如图 8,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB,求证: ADE CFE .
11 / 13
(201算与证明(解答题)
12 / 13
滚动小专题(七)与三角形有关的计算与证明(解答题) 类型 2 相似三角形性质与判定的综合运用 (2019·凉山州)
类型 3 全等三角形、相似三角形的综合运用
13 / 13
滚动小专题(七)与三角形有关的计算与证明(解答题)
滚动小专题(七)与三角形有关的计算与证明(解答题)
类型 1 全等三角形性质与判定的综合运用 类型 2 相似三角形性质与判定的综合运用 类型 3 全等三角形、相似三角形的综合运用
类型 1 全等三角形性质与判定的综合运用 (2019·云南)

专题06 全等三角形的性质与判定篇(解析版)

专题06 全等三角形的性质与判定篇(解析版)

专题06 全等三角形的判定与性质1. 三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

2. 三角形的内角和定理:三角形的三个内角之和等于180°。

3. 三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。

大于它不相邻的任意一个内角。

4. 全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。

5. 全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。

②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。

③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。

④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。

⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。

全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。

在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。

1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC是等腰三角形,∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS可得△ABC≌△ADC;(2)由(1)△ABC ≌△ADC ,得BC =CD =3,S △ABC =S △ADC ,求出S △ABC =AB •BC =6,即可得四边形ABCD 的面积是12.【解答】(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC (AAS );(2)解:由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =AB •BC =×4×3=6,∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12,答:四边形ABCD 的面积是12.5.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【分析】利用平行线的性质得∠EDC =∠B ,再利用ASA 证明△CDE ≌△ABC ,可得结论.【解答】证明:∵DE ∥AB ,∴∠EDC =∠B ,在△CDE 和△ABC 中,,∴△CDE ≌△ABC (ASA ),∴DE =BC .6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC 于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ =∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号) (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是 (填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC DEF.求证:AB∥DE.【分析】(1)根据SSS即可证明△ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED=45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC=5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,=BC•DE=×5×4=10,∴S△BCD∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B=90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S=123,则BC= ,BF= .△ABC【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S=12,△ABC∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=PA+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠PAF=60°,∴△AFP是等边三角形,∴PF=PA,∴PB=BF+PF=PC+PA;(3)PC=PA+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠PAM=60°,∴△AMP是等边三角形,∴PM=PA,∴PC=PM+CM=PA+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG.。

浙教版-学年初中数学八年级上学期期末复习专题3 全等三角形的性质、判定与应用 解析版

浙教版-学年初中数学八年级上学期期末复习专题3 全等三角形的性质、判定与应用 解析版

浙教版2019-2020学年初中数学八年级上学期期末复习专题3 全等三角形的性质、判定与应用一、单选题1.下列图形是全等图形的是()A. B. C. D.2.下列选项中表示两个全等的图形的是( )A. 形状相同的两个图形B. 周长相等的两个图形C. 面积相等的两个图形D. 能够完全重合的两个图形3.下列不是利用三角形的稳定性的是()A. 伸缩晾衣架B. 三角形房架C. 自行车的三角形车架D. 矩形门框的斜拉条4.如右图,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为()A. 4B. 5C. 6D. 不能确定5.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS6.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是( )A. 1B. 2C. 3D. 47.在下列条件中,不能说明△ABC≌△A′B′C'的是( )A. ∠A=∠A′,∠C=∠C′,AC=A'C'B. ∠B=∠B′,∠C=∠C′,AB=A′B'C. ∠A=∠A′,AB=A′B′,BC=B'C'D. AB=A′B′,BC=B'C,AC=A′C'8.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E,B,D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )A. 50B. 44C. 38D. 329.如图,有A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A. 在AC,BC两边高线的交点处B. 在AC,BC两边中线的交点处C. 在AC,BC两边垂直平分线的交点处D. 在∠A,∠B内角平分线的交点处10.如图,AD是∆ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7 ,DE=2,AB=4,则AC的长是()A. 3B. 4C. 5D. 6二、填空题11.如图,已知△ABC≌△DEC,∠E=40°,∠ACB=110°,则∠D的度数为________.12.如图,已知AB∥CF,点E为DF的中点,若AB=9 cm,CF=5 cm,则BD=________cm.13.如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于________时,ΔABC和ΔPQA 全等.14.如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则与△DEF全等的格点(顶点在每个小格的顶点上)三角形能画________个.15.如图,△ABC中∠ABC=∠ACB,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=________16.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB的距离是________.三、解答题17.如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得PA+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.18.如图所示,已知点P是△ABC三条角平分线的交点,PD⊥AB,若PD=5,△ABC的周长为20,求△ABC的面积.19.已知,如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E;试猜测线段DE、AD、BE之间的数量关系,并说明理由.20.如图,已知AB∥CF,DE=EF(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.21.如图:在△ABC中,己知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M连接MD,过点D作DN⊥MD,交BM于点N.(1)求证:△DBN≌△DCM;(2)设CD与BM相交于点E,若点E是CD的中点,试探究线段NE、ME、CM之间的数量关系,并证明你的结论.22.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;(2)设,.①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.23.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为________;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.24.如图(1)如图①,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图②,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图③,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.答案解析部分一、单选题1. C解:A、两个圆不一样大,不是全等图形,不符合题意;B、两个三角形最大角分别是直角和钝角,不符合题意;C、两个图形放置的方位不一致,但图形的大小一样,形状相同,是全等图形,符合题意;D、两个正方形的大小不一样,不是全等图形;故答案为:C .【分析】只有形状相同,大小相等的两个图形才全等, 据此分别分析和判断.2.D解:A、形状相同的两个图形大小不一定相等,所以,不是全等图形,不符合题意;B、周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,不符合题意;C、面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,不符合题意;D、能够完全重合的两个图形是全等图形,符合题意.故答案为:D【分析】全等形的定义,能够完全重合的两个图形是全等形。

全等三角形性质与判定综合应用【精品】

全等三角形性质与判定综合应用【精品】

全等三角形的性质与判定综合应用
1.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.
2.
如图,∠BAC=
∠DAE,∠ABD=∠ACE,BD=CE,试判断AB与AC的大小关系,并说明理由.
3.如图,已知AB=AC,AD=AE,BD=CE,且B、D、E三点共线,求证:∠3=∠1+∠2.
4.如图,已知AB⊥DC于点B,AB=DB,点E在AB上,BE=BC,延长DE,交AC于点F,求证:DE=AC,DE⊥AC.
5.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE 于点D.
求证:DE=AD-BE .
6.如图,已知AD∥BC,点E为CD上一点,AE、BE分别平分∠DAB、∠CBA,BE的延长线交AD的延长线于点F.(1)求证:△ABE≌△A FE;(2)求证:AD+BC=AB.
7.如图所示,Rt△ABC中,∠ABC=90°,BD⊥AC,且AE平分∠BAC,AF=AB,求证:EF∥BC。

8.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM =CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN
的度数.
9.如图,已知AB=AE,BC=ED,CF=FD,AC=AD.求证:∠BAF=∠EAF.
10.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.
求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC。

小专题(三) 构造全等三角形的常用方法

小专题(三)  构造全等三角形的常用方法
证明:在BC上截取BF=AB,连接EF. ∵BE平分∠ABC,CE平分∠BCD, ∴∠ABE=∠FBE,∠FCE=∠DCE. 在△ABE和△FBE中,
AB=FB, ∠ABE=∠FBE, BE=BE,
∴△ABE≌△FBE(SAS). ∴∠A=∠BFE.
∵AB∥CD, ∴∠A+∠D=180°. ∴∠BFE+∠D=180°. ∵∠BFE+∠CFE=180°, ∴∠CFE=∠D. 在△FCE和△DCE中,
方法2 利用“截长补短法”构造全等三角形
截长补短法的具体做法:在某一条线段上截取一条线 段与特定线段相等,或将某条线段延长,使之与特定线段 相等,再利用三角形全等的有关性质加以说明.这种方法 适用于证明线段的和、差、倍、分等题目.
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点 E在AD上,求证:BC=AB+CD.
∠CFE=∠D, ∠FCE=∠DCE, CE=CE,
∴△FCE≌△DCE(AAS). ∴CF=CD. ∴BC=BF+CF=AB+CD.
3.(德州中考)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°, ∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且 ∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. (1)小王同学探究此问题的方法是:延长FD到点G,使 DG=BE,连接AG.先证明△ABE≌△ADG,再证明 △AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF;
(2) 如图 2,若在四边形 ABCD 中,AB=AD, ∠B+∠D=180°.E,F 分别是 BC,CD 上的点,
且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由. 解:EF=BE+DF仍然成立. 理由:延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG. 在△ABE和△ADG中,

全等三角形及其应用(含解答)

全等三角形及其应用(含解答)

全等三角形及其应用专题辅导1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常需要借助全等三角形的知识。

专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练

专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练

浙教版数学(八上)期中复习专题三全等三角形一、选择题1. 下列命题中:①形状相同的两个三角形是全等形;①在两个全等三角形中,相等的角是对应角相等的边是对应边;①全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命的个数为( )。

A.3个B.2个C.1个D.0个【答案】C2. 在下列的条件中,不能说明①ABC①①AB'C'的是( )。

A.①A=①A',①C=①C',AC=A'CB.①A=①A',AB=A'B',BC=B′C′C.①B=①B',①C=①C',AB=A'B′D. AB=A′B′,BC=B′C′,AC=A′C′【答案】B3. 有下列说法:①有一个外角是钝角的三角形是锐角三角形;①有两条边和一个角对应相等的两个三角形全等;①若三条线段ab,满足a≥b≥c,且a<b+C,则这三条线段必能组成一个三角形;①有两个角和一条边彼此相等的两个三角形全等。

其中正确的个数是( )。

A.4个B.3个C.2个D.1个【答案】D4.用尺规作一个角的平分线的示意图如图所示,则能说明①AOC=①BOC的依据是( )。

A. SSSB. ASAC. AASD.角平分线上的点到角两边距离相等【答案】A5.如图所示,点B、C、E在同一条直线上,①ABC与①CDE都是等边三角形则下列结论不一定成立的是( )。

A.①ACE①①BCDB.①BGC①①AFCC.①DCG①①ECFD.①ADB①①CEA【答案】D6.如图,已知①1=①2,则不一定能使①ABD①①ACD的条件是( )。

A. AB=ACB. BD=CDC.①B=①CD.①BDA=①CDA7. 要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明①EDC①①ABC,得ED=AB,因此测得ED的长就是AB的长,判定①EDC①①ABC最恰当的理由是( )。

初二数学(人教版)全等三角形的性质与判定的综合运用(第一课时) 教学设计

初二数学(人教版)全等三角形的性质与判定的综合运用(第一课时) 教学设计

同学们好,在前面的学习中,我们一起学习、探究了三角形全等的性质及判定的方法,今天,我们将综合运用三角形全等的知识解决一些几何问题.我们首先回顾全等三角形的判定方法.问题判定两个三角形全等的方法有哪些?三边对应相等的两个三角形全等 .(简写成“边边边”或“SSS”).两边和它们夹角对应相等的两个三角形全等.(简写成“边角边”或“SAS”).两角和它们的夹边对应相等的两个三角形全等.(简写成“角边角”或“ASA”).两个角和其中一个角的对边对应相等的两个三角形全等.(简写成“角角边”或“AAS”).或以上是一般三角形全等的判定方法,特殊的直角三角形,除了以上判定方法外,还有直角三角形全等特有的判定方法,即:斜边和一条直角边对应相等的两个三角形全等,(简写为“斜边、直角边”或“HL”).或AB C DE FCBAFEDABCDEFABCDEF问题要判定两个三角形全等,至少要几组条件?至少需要三组条件,并且三组条件中至少有一组边相等的关系.复习总结:以上是我们学习的三角形判定定理,解决问题时,选用哪条判定定理,需要我们同学根据题目条件和图形特点,具体问题,具体分析.下面让我们通过一组基础练习,熟悉三角形全等的判定方法.即EB=BD ,此时用的判定定理是HL ,或EA=BC 此时用的判定定理是SAS.还可以找任一组角相等的条件,即∠AEB=∠CBD ,此时用的判定定理是AAS ,或∠EBA=∠BDC ,此时用的判定定理是ASA.通过以上分析,本题可以添加的条件有:EB=BD ,EA=BC ,∠AEB=∠CBD ,∠EBA=∠BDC.通过例题和练习,我们知道,要添加的条件使两个三角形全等,首先明确已知条件,根据判定定理确定要添加的条件,特别注意的是,添加方法可能不唯一.例 如图3所示,已知AD=AB , 要使△ABC ≌△ADC ,现在已有的条件够不够用?需要添加几个条件?有几种添加的方法?分析:已知AD=AB ,仔细观察图形不难发现还有一个隐含条件:AC=AC ,知道两组边相等的关系之后,现在已有的条件不够用,至少需要添加一个条件,我们来看需要添加哪些条件可以判断两个三角形全等.EDC B A EDCB AA BC DEA B CDE图3⎪⎩⎪⎨⎧︒=∠=∠→∠=∠→=→90B D BAC DAC BC DC 找直角找两边夹角找第三边已知两边: 通过以上分析,我们知道本题有三种添加条件的方法,DC =BC 或∠DAC =∠BAC 或∠D =∠B =90°.遇到这类题目我们应特别注意挖掘隐含条件. 练习 如图4所示,AB=AC ,AD=AE 求证: BE=CD .分析:已知AB=AC ,AD=AE ,有公共角∠A ,并且公共角是两边的夹角.根据题干标图,由三角形全等判定定理SAS 可得△ABE ≌△ACD ,进而得出∠B=∠C. 解:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AE AD A A CA BA ∴ △ABE ≌△ACD (SAS) . ∴ BE =CD .小结:证明三角形全等是证明两线段、两个角相等的重要方法,遇到此类问题时,需要明确具体证明哪两个三角形全等,特别注意的是公共角一定是对应角,公共边一定是对应边.HL.SSS. SAS.图4例.如图5所示,点B ,E ,C ,F 在一条直线上,AB=DE,AC=DF , BE=CF,求证∠A =∠D ..分析:根据题干标图要证∠A =∠D ,需证△ABC ≌△DEF ,根据已知条件很容易证得 △ABC ≌△DEF.证明:∵BE=CF ,∴BE +EC =CF +EC . 即BC =EF .在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===,,,EF BC DF AC DE AB ∴△ABC ≌△DEF (SSS ).∴∠A =∠D .例4.如图6所示,在△ABC 和△ADE 中,∠BAC=∠DAE ,AD=AE .连接BD ,CE , ∠ABD=∠ACE .求证AB=AC .分析:根据题干标图图5图6要证AB=AC需证△BAD ≌△CAE∠BAC-∠CAD=∠DAE-∠CAD 又知AD=AE ,∠ABD=∠ACE .已知∠BAC=∠DAE ,..--CAE BAD DAC DAE DAC BAC DAE BAC ∠=∠∠∠=∠∠∴∠=∠即,在△BAD 和△CAE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,AE AD CAE BAD ACE ABD ∴ △BAD ≌△CAE (AAS) . ∴ AB=AC .证明三角形全等时需要准备边相等和角相等的条件,除了公共边、公共角相等,等量相加结果相等、等量相减结果相等也是求两条边、两个角相等经常用到的方法.通过以上例题和练习,你运用三角形全等知识解决问题的能力有没有提升呢?让我们通过一道练习验证一下吧!练习.如图7所示,B ,F ,C ,E 在一条直线上BF=CE ,AC=DF .图7(1) 在下列条件①∠B=∠E ;②∠ACB=∠DFE ;③AB=DE ;④AC ∥DF 中,只添加一个条件就可以证得△ABC ≌△DEF ,则所有正确条件的序号是 ______________________.(2) 根据已知及(1)中添加的一个条件证明∠A=∠D . 分析:(1)根据题干标图由BF=CE 得EF+FC=CE+FC ,即:BC=EF ,又知AC=DF ,如果添加①∠B=∠E此时,SSA 不能判定两个三角形全等;如果添加②∠ACB=∠DFE此时,SAS 能判定△ABC ≌△DEF ;如果添加③AB=DEFEDCBAEDBAFC此时,SSS 能判定△ABC ≌△DEF ;如果添加④AC ∥DF可得到∠ACB=∠DFE ,所以正确条件的序号是②③④ .(2)选择一种证明即可,我们这里以添加②∠ACB=∠DFE 为例证明. 证明:FCEDBAEDBAFC从结论入手,结合已知,双向推理.1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:(1)AD=AE; (2)BD=CE.2.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.。

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

全等三角形的判定及性质课时目标1. 理解全等三角形的概念及性质,并灵活运用;2. 掌握全等三角形的判定方法,并熟练应用于证明题.知识精要1. 全等形能够重合的两个图形叫做全等形.2. 全等三角形(1)两个三角形是全等形,就说它们是全等三角形.(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角.注:(1)全等三角形不一定是两个图形之间的关系,还可能是多个图形之间的关系. (2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形;反过来说,两个全等图形经过这样的变换一定能够重合.3. 全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;4. 确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小.5. 全等三角形的判定判定1:在两个三角形中,如果有两条边及它们的夹角对应相等地,那么这两个三角形全等.(两边及其夹角对应相等的两个三角形全等SAS)判定2:在两个三角形中,如果有两个角及它们的夹边对应相等地,那么这两个三角形全等.(两角及其夹边对应相等的两个三角形全等ASA)判定3:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(两角及其中一角的对边相等的两个三角形全等AAS)DBEDB判定4:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(三边对应相等的两个三角形全等SSS )热身练习1. AC 与BD 交于点O ,且AB ∥CD ,AO=CO ,OB=OD ,AB=CD. 求证:△ABD ≌△ACE. 证明:在△ABD 和△ACE 中,⎪⎩⎪⎨⎧===)()()(已知已知已知CD AB OD OB CO AO∴△ABD ≌△ACE (SSS )2. 已知△ABD ≌△ACE ,AD=3cm ,BD=1cm ,BC=6cm ,求△ADE 的周长. 解:∵△ABD ≌△ACE∴AE=AD=3cm ,CE=BD=1cm 又∵BC=6cm ∴DE=4cm ∴ADE C ∆=10cm3. 已知△ABC ≌△DBC ,如果∠ABC=72°,∠ACB=45° (1)求∠D 的度数. (2)求∠ABD 的度数. 解:∠A=180°-72°-45°=63°∵△ABC ≌△DBC∴∠D=∠A=63°(全等三角形的对应角相等) 同理:∠DBC=∠ACB=45° ∴∠ABD=72°-45°=27°4. 在水平桌面上放置了一块三角形木块,∠A=30°,∠B=90°,AC=2cm ,经过AECBDBEDBDCA运动后△ABC 到A B C '''∆的位置. (1)求ACB '∆的度数.(2)点A 的运动路线是什么图形?求出它的长度. 解:(1)60°(2)运动路线是圆弧:ππ342231=⋅⋅=l5. 已知AD=AE ,∠ADB=∠AEC ,BE=DC (1)试说明:△ABE ≌△ACD. (2)AB 与AC 相等吗?为什么? 证明: 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC BE AEC ADB AEAD∴△ABE ≌△ACD (SAS) ∴AB=AC(全等三角形的对应边相等)6. 已知AC ∥BE 且AC=BE ,点B 是AD 的中点,试说明△ABC ≌△BDF. 证明:∵AC ∥BE ∴∠A=∠EBD ∵AC=BE ,AB=BD ∴△ABC ≌△BDF (SAS )7. 已知AD=AE ,∠ADC=∠AEBCBDA (1)△ADC 和△AEB 全等吗?为什么? (2)BD 与CE 相等吗?为什么? 解:(1)△ADC ≌△AEB 全等, 证明略(ASA ) (2)∵△ADC ≌△AEB ∴AB=AC∴AB -AD=AC -AE即 BD=CE精解名题例1 △ABC ≌△DEF ,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC 的长.解:∵△ABC ≌△DEF∴∠DEF=∠ACB=180°-30°-50°=100° EC=BF=2例2 P 为∠AOB 的平分线OC 上任意一点,PE ⊥OA 于E ,PF ⊥OB 于F ,求证:OP 是EF 的垂直平分线. 证明:易证 △OEP ≌△OFP (AAS ) ∴OE=OF∴△OME ≌△OMF ∴EM=FM ,∠OME=90° ∴OP 是EF 的垂直平分线例3 在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,求证:BC=AC+AD. 证明:在BC 上截取EC=ACFBO∵CD 是∠ACB 的平分线 ∴∠DCB=∠DCA易证△DEC ≌△ACD (SAS ) ∴∠A=∠DEC=2∠B ,AD=DE ∴∠BDE=∠B ∴BE=DE=AD ∴BC=AC+AD例4 △ABC 是边长为1的等边三角形,△BDC 是顶角为∠BDC=120°的等腰三角形,以D 为顶点作一个60°,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形面一个△AMN ,求△AMN 的周长. 解:延长NC 到L ,使CL=BM ,连接DL先证BDM DCL ≅V V (SAS ) DMN DLN ≅V V (SAS ) ∴MN NL NC CL NC BM ==+=+ ∴AMN C AM AN MN =++V AM BM AN NC =+++= 2巩固练习1. 如图,△ABC ≌△ DEF ,这两个三角形的对应边是 AB 与 AC , BC 与 DE , CA 与 FE .ACDBA(1题图)2. △ABC≌△DEF,那么∠A=∠D3. △ABC以点B为旋转中心,A旋转到E,CDA B D CB(3题图) (4题图)4. AD,BE,CF是△ABC的高,沿AD翻折,点F与点E,点B与点C重合,那么图中全等的三角形有( D )A. 3对B. 5对C. 6对D. 7对5. 给定一个三角形的六个元素中的下列条件画三角形,所画的三角形的大小形状可能不唯一确定的是( D )A. 两角及夹边B. 两角及其中一个角的对边C. 两边及夹角D. 两边及其中一条边的对角6. 下列判断错误的是( A )A. 全等三角形的所有边都相等B. 全等形的周长、面积一定对应相等C. 已知三角形的两条边及其中一条边的对角,所画的三角形不一定是唯一的D.确定一个三角形至少要有一个元素是边7. 下列判断中错误的是( C )A. 成轴对称的两个图形全等B. 成中心对称的两个图形全等C.两个正方形一定是全等形 D. 运动后能重合的两个三角形全等8. 已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,EEBAED CB求∠DFB 和∠DGB 的度数. 解:∠DFB =90°,∠DGB =65°9. 已知:△ABD ≌△ACE.求证:∠EBO ≌∠DCO. 证明:∵△ABD ≌△ACE ∴∠D=∠E ,DC=BE ∵∠DOC=∠BOE ∴∠EBO ≌∠DCO (AAS )10. 已知BE=CD ,∠ADE=∠AED ,∠B=∠C 解:∵BE=CD∴BD=EC ∵∠ADE=∠AED ∴∠ADB=∠AEC 又∵∠B=∠C∴△ABD ≌△ACE (ASA )自我测试1. 如图1,已知△ABC ≌ △CDA ,则对应边是 AB 和CD ,BC 和DA , AC 和CA , 对应角是 ∠ABC 和∠CDA ,∠BCA 和∠DAC , ∠BAC 和∠DCA .DC图2 图32. 已知ABC∆≌'''CBA∆,A与'A,B与'B是对应顶点,ABC∆的周长为10cm,AB =3cm,BC =4cm.则''BA= 3 cm,''CB= 4cm,''CA= 3 cm.3. 已知ABC∆≌DEF∆,A与D,B与E分别是对应顶点,︒=∠52A,︒=∠67B,BC =15cm,则F∠= 61°,FE = 15 cm.4. 填空题:(1)如图2,已知AC =DB,要使ABC∆≌DCB∆,需增加一个条件是AB=CD等. (2)如图3,已知ABC∆中,090=∠C,AM平分CAB∠,CM =20cm那么M到AB的距离是20cm.(3)如图4,AB =EB,∠1=∠2,∠ADE =120°,AE、BD相交于F,则∠3的度数为30°.(4)如图5,已知:∠1 =∠2,∠3 =∠4,要证BD =CD,需先证△AEB ≌△AEC,根据是ASA ,再证△BDE ≌△BCE ,根据是SAS .(5)如图6,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC =AE.若AB = 5,则AD = 5 .5. 如图,D在AB上,E在AC上,AB=AC,B=C∠∠,求证:AD=AE.证明:先证△AEB ≌△ADC(ASA)∴AD=AE(全等三角形的对应边相等)图1E图5 图6图4AACDFEAB6. 如图,DF=AE ,AE ⊥BC ,DF ⊥BC ,CE=BF.求证:∠A=∠D. 证明:先证△CDF ≌△BAE (SAS)∴∠A=∠D(全等三角形的对应角相等)7. 如图,已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:△ABE ≌△FCE. 证明:∵AB//CD∴∠FCE=∠B ,∠F=∠EAB 又E 是BC 的中点 ∴CE=BE∴△ABE ≌△FCE (AAS)8. 求证:△ABE ≌△FCE 如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,求证:BE=CD. 证明:∵BE ⊥CE ,AD ⊥CE ∴∠E=∠CDA=90°EFDCBA∴∠BCE+∠EBC=90°∵∠ACB=90°∴∠BCE+∠ACD=90°∴∠EBC=∠ACD∴△CBE≌△ACD(AAS)∴BE=CD(全等三角形的对应边相等)9. 已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上.求证:(1)△ACD≌△BCE (2)CF=CG (3)△FCG是等边三角形证明:(1)△ACD≌△BCE (SAS)(2)∵△ACD≌△BCE∴∠ADC=∠BEC∴△CDG≌△CEF(ASA)∴CF=CG(3)∵CF=CG,∠ACE=60°∴△FCG是等边三角形G F。

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理复习目标1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;考点梳理一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.特别提醒:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).例1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP△AQ.【答案】证明:(1)△BD、CE分别是△ABC的边AC和AB上的高,△△1+△CAE=90°,△2+△CAE=90°.△△1=△2,△在△AQC和△PAB中,△△AQC△△PAB.△ AP=AQ.(2)△ AP=AQ,△QAC=△P,△△PAD+△P=90°,△△PAD+△QAC=90°,即△PAQ=90°.△AP△AQ.二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例2.如图,已知AD为△ABC的中线,且△1=△2,△3=△4,求证:BE+CF>EF.【答案】证明:延长ED至M,使DM=DE,连接CM,MF,在△BDE和△CDM中,△△BDE△△CDM(SAS).△BE=CM.又△△1=△2,△3=△4 ,△1+△2+△3+△4=180°,△△3+△2=90°,即△EDF=90°,△△FDM=△EDF =90°.在△EDF和△MDF中△△EDF△△MDF(SAS),△EF=MF (全等三角形对应边相等),△在△CMF中,CF+CM>MF(三角形两边之和大于第三边),△BE+CF>EF.三、常见的几种辅助线添加△遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;△遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;△遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;△过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;△截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.例3.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,△ D为BC中点,△ BD=DC,在△ADC和△HDB中,△ △ADC△△HDB(SAS),△ AC=BH, △H=△HAC,△ EA=EF,△ △HAE=△AFE,又△ △BFH=△AFE,△ BH=BF,△ BF=AC.综合训练1.(2022·长沙市雅礼实验中学九年级月考)如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SSA C.ASA D.SAS【答案】C【分析】根据全等三角形的判定方法解答即可.【详解】解:画一个三角形A′B′C′,使△A′=△A,A′B′=AB,△B′=△B,符合全等三角形的判定定理ASA,故选:C.2.(2022·全国九年级专题练习)如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于F点,则△AED 的面积:四边形ADGF的面积=()A.1:2B.2:1C.2:3D.3:2【答案】D【分析】根据重心的概念得出D,F分别是三角形边的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF 的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE△△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【详解】解:设三角形ABC的面积是2,△三角形BCD的面积和三角形BCF的面积都是1,△BG:GF=CG:GD=2,△三角形CGF的面积是13,△四边形ADGF的面积是2−1−13=23,△//l BC,△EAD CBD∠=∠,△,=∠=∠,BD AD ADE BDC△△ADE△△BDC(ASA)△△ADE的面积是1△△AED的面积:四边形ADGF的面积=1:2=3:2.3故选:D.3.(2022·重庆实验外国语学校九年级月考)如图,在正方形ABCD中,210AB=﹐E,F分别为BC,CD的中点,连接AE、BF,AE交BF于点G,将BCF△沿BF△的面积是()翻折得到BPF△,延长FP交BA延长线于点Q,连接QG,则QGFA.25B.25C.20D.15 2【答案】D【分析】由已知可求QF=QB,在Rt△BPQ中,由勾股定理求得QB,可求出S△BQF=25,再证明△ABE△△BCF(SAS),△BGE△△BCF,由此得BF,GE,BG,过点G作GN△AB交AB于N,可证明△ANG△△ABE,再由GA=AE-GE,可求得GN,根据S△QGF=S△BQF-S△BQG即可求解.【详解】解:将BCF△,△沿BF翻折得到BPF∴PF =FC ,△PFB =△CFB ,四边形ABCD 是正方形∴△FPB =90°,CD △AB ,,90AB BC ABE BCF =∠=∠=︒△△CFB =△ABF , △△ABF =△PFB , △QF =QB ,△PF =FC =12CD 12AB =PB =AB 在Rt △BPQ 中,222QB BP PQ =+,△222(QB QB =+,△QB△S△BQF =1252=,△AB =BC ,BE =CF ,△ABE =△BCF =90°, △△ABE △△BCF (SAS ), △△AEB =△BFC , 又△△EBG =△CBF , △△BGE △△BCF ,GE BG BECF BC BF∴==, △CF,BC △BF△GEBG , 过点G 作GN △AB 交AB 于N ,△△GAN=△EAB,△ANG=△ABE=90°,△△ANG△△ABE,△GN GABE EA=△GA=AE-GE =42△GN=4105△S△BQG=12×QB×GN=1510410225⨯⨯=10,△S△QGF=S△BQF-S△BQG=25-10=15,故选:D.4.(2022·四川省宜宾市第二中学校九年级一模)如图,以ABC的三边为边分别作等边ACD△、ABE△、BCF△,则下列结论正确的是()A.EBF DFC≌B.四边形ADFE为矩形C.四边形ADFE为菱形D .当AB AC =,120BAC ∠=︒时,四边形ADFE 是正方形【答案】A【分析】利用SAS 得到△EBF 与△DFC 全等,利用全等三角形对应边相等得到EF =AC ,再由△ADC 为等边三角形得到三边相等,等量代换得到EF =AD ,AE =DF ,利用对边相等的四边形为平行四边形得到AEFD 为平行四边形,若AB =AC ,△BAC =120°,只能得到AEFD 为菱形,不能为正方形,即可得到正确的选项.【详解】解:△△ABE 、△BCF 为等边三角形,△AB =BE =AE ,BC =CF =FB ,△ABE =△CBF =60°,△△ABE −△ABF =△FBC −△ABF ,即△CBA =△FBE ,在△ABC 和△EBF 中,AB EB CBA FBE BC BF =⎧⎪∠=∠⎨⎪=⎩, △△ABC △△EBF (SAS ),△EF =AC ,又△△ADC 为等边三角形,△CD =AD =AC ,△EF =AD =DC ,同理可得△ABC △△DFC ,△DF =AB =AE =DF ,△四边形AEFD 是平行四边形,故B 、C 选项错误;△△FEA =△ADF ,△△FEA +△AEB =△ADF +△ADC ,即△FEB =△CDF ,在△FEB 和△CDF 中,EF DC FEB CDF EB FD =⎧⎪∠=∠⎨⎪=⎩. △△FEB △△CDF (SAS ),故选项A 正确;若AB =AC ,△BAC =120°,则有AE =AD ,△EAD =120°,此时AEFD 为菱形,选项D 错误故选A .5.(2022·重庆实验外国语学校九年级开学考试)如图在四边形ABEC 中,BEC ∠和BAC ∠都是直角,且AB AC =.现将BEC ∆沿BC 翻折,点E 的对应点为E ',BE '与AC 边相交于D 点,恰好BE '是ABC ∠的角平分线,若1CE =,则BD 的长为( )A .1.5B 2C .2D 3【答案】C【分析】 如图,延长CE '和BA 相交于点F ,根据翻折的性质可以证明△BE′C △△BE′F ,可得CF =2,再证明△FCA △△DBA ,可得BD =CF =2.【详解】解:如图,延长CE '和BA 相交于点F ,由翻折可知:90BE C E ∠'=∠=︒,1CE CE '==,BE '是ABC ∠的角平分线,CBE FBE ∴∠'=∠',BE BE '=',∴()BE C BE F ASA '≅',1E F CE ∴'='=,2CF ∴=,90FCA F ∠+∠=︒,90DBA F ∠+∠=︒,FCA DBA ∴∠=∠,90FAC DAB ∠=∠=︒,AB AC =,()FCA DBA ASA ∴≅,2BD CF ∴==.故选:C .6.(2022·长沙市开福区青竹湖湘一外国语学校九年级三模)如图,在Rt ABC 中,90A ∠=︒,利用尺规在BA ,BC 上分别截取BD ,BE ,使BD BE =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在ABC ∠内交于点F ;作射线BF 交AC于点H.若2HA=,P为BC上一动点,则HP的最小值是()A.12B.2C.1D.无法确定【答案】B【分析】根据作图过程可得BH平分△ABC,当HP△BC时,HP最小,根据角平分线的性质即可得HP的最小值.【详解】解:根据作图过程可知:BH平分△ABC,当HP△BC时,HP最小,△HP=HA=2.故选:B.7.(2022·长沙市雅礼实验中学九年级月考)如图,在Rt ABC中,90C∠=︒,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于12MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若54B∠=︒,则CDA∠=______度.【答案】72°利用三角形内角和180°,解得36CAB ∠=︒,由角平分线性质解得18CAD ∠=︒的度数,最后根据三角形外角性质解题即可.【详解】解:90,54C B ∠=︒∠=︒905436CAB ∴∠=︒-︒=︒ AD 平分CAB ∠ 1182CAD DAB CAB ∴∠=∠=∠=︒ 185472CDA DAB B ∴∠=∠+∠=︒+︒=︒故答案为:72.8.(2022·广东深圳市南山外国语学校九年级二模)如图,在平面直角坐标系中,矩形OABC 中,3OA =,6OC =,将ABC 沿对角线AC 翻折,使点B 落在B '处,AB '与y 轴交于点D ,则点D 的坐标为______.【答案】9(0,)4-【分析】设OD m =,则6CD m =-,由题意可以求证AOD CB D '△≌△,从而得到6AD CD m ==-,再根据勾股定理即可求解.解:由题意可知:3OA BC B C '===,6OC AB ==,90B B AOD '∠=∠=∠=︒ 设OD m =,则6CD m =-,又△B DC ADO '∠=∠△()AOD CB D AAS '△≌△△6AD CD m ==-在Rt AOD △中,222AD AO OD =+,即222(6)3m m -=+ 解得:94m =△点D 的坐标为9(0,)4-故答案为9(0,)4-9.(2022·广东实验中学九年级三模)已知,ABC DCB ∠=∠,ACB DBC ∠=∠,求证:ABC DCB △≌△.【答案】证明见解析【分析】由条件△ABC =△DCB ,△ACB =△DBC ,根据ASA 证明△ABC △△DCB 即可.【详解】证明:在△ABC 和△DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABC △△DCB (ASA );10.(2022·厦门市湖滨中学)如图,在△ABE 和△CDF 中,点C 、E 、F 、B 在同一直线上,BF =CE ,若AB △CD ,△A =△D .求证:AB =CD .【答案】见解析【分析】根据平行线的性质可得△B =△C ,根据已知条件可得BE =CD ,结合已知条件△A =△D ,即可证明△ABE △△DCF ,进而即可得证AB =CD .【详解】解:△AB △CD ,△△B =△C .△BF =CE ,△BF +EF =CE +EF ,即BE =CF .△△A =△D ,△B =△C ,BE =CF△△ABE △△DCF (AAS ).△AB =CD .。

12-2-4 三角形全等的判定AAS(解析版)

12-2-4 三角形全等的判定AAS(解析版)

12.2.4三角形全等的判定AAS知识点管理归类探究用AAS判定三角形全等概念两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)【注】:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.题型一:通过添加条件利用AAS,判定三角形全等【例1】(2020·江苏盐城·八年级期中)如图,AC,BD相交于点O,AO=DO,请你补充一个条件,能直接利用AAS证全等,使得△AOB△△DOC.你补充的条件是_____________________________.【答案】∠B=∠C【分析】线段AC、BD相交于点O,且AO=DO,有一对对顶角∠AOB与∠DOC,添加∠B=∠C,能证出∠AOB∠∠DOC.【详解】解:∠AO=DO,∠AOB=∠DOC,∠B=∠C,∠∠ABO∠∠DOC(AAS).故答案为:∠B=∠C.【点睛】本题考查三角形全等的判定方法AAS.根据已知结合图形,找到已经有的条件,然后结合判定方法选择条件是正确解答本题的关键.特别注意题目要求利用AAS判定全等,需要的是两个角和其中一个角的对边对应相等.【变式1-1】(2020·江苏苏州市·八年级期末)如图,点B 在AE 上,∠CAB =∠DAB ,要利用AAS 使ABC ABD △≌△,可补充的一个条件是:______.【答案】C D ∠=∠,【详解】补充:C D ∠=∠,结合,CAB DAB AB AB ∠=∠=, 利用角角边定理可得ABC ABD △≌△,从而可得答案.【变式1-2】(2019·江苏镇江市·八年级月考)如图,∠BAC=∠DAC ,若要以AAS 证明∠ABC∠∠ADC ,要补充的一个条件是_________ 【答案】∠B=∠D【详解】添加AB =AD ,再加上条件∠BAC =∠DAC ,公共边AC ,可利用AAS 定理判定∠ABC ∠∠ADC .【变式1-3】(2019·江苏南京市·八年级期中)如图,已知AB =DC ,∠A =∠D ,则补充条件_____可使∠ACE∠∠DBF (填写你认为合理的一个条件). 【答案】∠E =∠F (答案不唯一)【详解】根据等式的性质可由AB=DC 得到AC=BD ,若利用AAS 定理判定∠ACE∠∠DBF ,则还需要添加一组角对应相等即可.题型二:直接利用AAS 证明三角形全等【例题2】(2021·广东广州市·九年级二模)如图,已知AD AE =,B C ∠=∠.求证:ACD ABE △△≌. 【分析】利用AAS 定理即可得证. 【详解】证明:在ACD △和ABE △中,A AC B AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACD ABE AAS ∴≅.【点睛】AAS 证明全等需要三个条件,在此类简单的证明题中往往题目中给出两个明显的条件,第三个条件可能隐藏在公共边、公共角、对顶角等;也可能第三个需要通过角度的和差或者线段的和差得到;此外还可能需要寻找题目中已知条件或者图形中隐含条件通过等量代换达到证明全等的目的.【变式2-1】(2021·北京九年级专题练习)如图,已知Rt ABD ∆中,90A ∠=︒,将斜边BC 绕点B 顺时针方向旋转至BD ,使//BD AC ,过点D 作DE BC ⊥于点E . 求证:ABC EDB ∆≅∆;【分析】根据AAS 证明∠ABC ∠∠EDB 即可. 【详解】(1)证明:DE BC ⊥,90DEB ∴∠=︒, //AC BD ,90A ABD DEB ∴∠=∠=∠=︒,90ABC CBD ∠+∠=︒, 90CBD BDE ∴∠+∠=︒, ABC BDE ∴∠=∠,BC BD =,()ABC EDB AAS ∴∆≅∆.【变式2-2】(2021·全国七年级课时练习)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则∠__≅∠___. 【答案】ACD AED 【详解】 证明:AD 平分BAC ∠,CAD EAD ∴∠=∠,又DE AB ⊥,90C =∠AED C ∴∠=∠,在Rt ADC 和Rt AED △中,{CAD EAD C AED AD AD∠=∠∠=∠=, ()Rt ACD Rt AED AAS ≅.AAS 证明全等的应用题型三:全等三角形性质与AAS 判定的综合运用【例题3】(2021·广东广州市·九年级一模)如图,∠B =∠E ,∠1=∠2,BC =EC . 求证:AB =DE .【分析】先证出∠ACB =∠DCE ,再根据AAS 证明 ∠ABC ∠∠DEC ,即可得出AB =DE ; 【详解】证明:∠∠1=∠2 , ∠∠ACB =∠DCE , 在∠ABC 和∠DCE 中,=B EACB DCE BC EC ⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠ABC ∠∠DEC (AAS ), ∠AB =DE .【点睛】方法总结:证明线段相等或角相等可以通过证明三角形全等而得到,所以可以根据题目给出的已知条件,考虑证明三角形全等,还需要什么条件这些条件怎样可以得到.由对应边角相等的条件边得到三角形全等,这是全等三角形的判定;由三角形全等得到对应的边角相等,这是全等三角形的性质. 变式训练【变式3-1】(2021·山西一模)如图,,,//AD BF EC AB DE ∠∠==.求证:AC DF =. 【分析】由已知//AB DE ,可得∠B =∠E ,由BF =EC ,可得BC =EF ,易证ABC DEF △≌△,即可得出AC =DF .【详解】证明:∠//AB DE ,,B E ∴∠∠= ,BF CE =,BC EF ∴=在ABC 和DEF 中,,A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC DEF AAS ∴≌(),AC DF ∴=.【点睛】本题主要考查了全等三角形的判定及性质,解题的关键是证出ABC DEF △≌△【变式3-2】(2020·浙江八年级期末)如图,在ABC 中,90C ∠=︒,点D 是AB 边上的一点,DE AB ⊥于D ,交AC 于M ,且ED AC =,过点E 作//EF BC 分别交,AB AC 于点,F N . (1)试说明:ABC EFD ≌△△; (2)若25A ∠=︒,求EMN ∠的度数. 【答案】(1)见解析;(2)65° 【分析】(1)根据平行线的性质求得∠B =∠EFD ,然后依据AAS 即可证得∠ABC ∠∠EFD ; (2)根据三角形内角和定理求得∠AMD ,然后根据对顶角相等即可求得. 【详解】解:(1)∠DE ∠AB 于D , ∠∠EDF =90°, ∠∠C =90°, ∠∠C =∠EDF , ∠EF ∠BC , ∠∠B =∠EFD , 在∠ABC 与∠EFD 中,C EDFB EFD AC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠EFD (AAS ); (2)∠∠EDF =90°, ∠∠ADM =180°-∠EDF =90°,在∠ADM 中,∠A +∠AMD +∠ADM =180°且∠A =25° ∠∠AMD =180°-∠A -∠ADM =65°, ∠∠EMN =∠AMD =65°.【变式3-3】(2021·湖北月考)如图,已知∠C =∠D ,∠CAB =∠DBA ,求证:AD =BC .【分析】根据全等三角形的判定方法判定∠ABC ∠∠BAD (AAS ),再根据全等三角形的对应边相等即可得到结论. 【详解】证明:在∠ABC 和∠BAD 中,C D CAB DBA AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABC ∠∠BAD (AAS ), ∠AD =BC .题型四:AAS 的实际应用【例题4】(2020·驻马店市第一高级中学分校七年级期中)如图,小明和小华两家位于A ,B 两处,隔河相望.要测得两家之间的距离,小明设计如下方案:从点B 出发沿河岸画一条射线BF ,在BF 上截取BC CD =,过点D 作DE //AB ,取点E 使E ,C ,A 在同一条直线上,则DE 的长就是A ,B 之间的距离,说明他设计的道理.【分析】根据两直线平行,内错角相等可得A E ∠=∠,然后利用“角角边”证明ABC 和EDC △全等,根据全等三角形对应边相等解答; 【详解】 解://DE AB ,A E ∴∠=∠,在ABC 和EDC △中,A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EDC AAS ∴≅,DE AB ∴=,即DE 的长就是A 、B 两点之间的距离.【点睛】此题型主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法. 变式训练【变式4-1】(2021·湖南湘西土家族苗族自治州·八年级期末)如图,小强学习全等三角形后,用10块高度都是5cm 的相同长方体积木,搭了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离. 【答案】两堵木墙之间的距离为50cm .【分析】根据题意可得AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明ADC CEB ∆∆≌即可,利用全等三角形的性质进行解答. 【详解】 解:由图可得, ∠ACB =90°,∴∠ACD+∠BCE =90°又∠ACD+∠CAD =90°∴∠CAD =∠BCE在ADC 和CEB △中,CAD BCEADC CEB AC BC ∠∠⎧⎪∠∠⎨⎪=⎩== AD C CEB ∴∆∆≌∴AD=CE=3×5=15cmBE=CD=7×5=35cm∴DE=CD+CE=35+15=50cm答:两堵木墙之间的距离是50cm .题型五:三垂直模型与AAS的综合运用【例题5】如图,在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m,CE∠直线m,垂足分别为D,E.(1)求证:∠ABD∠∠ACE;(2)若BD=2cm,CE=4cm,DE=cm.【答案】(1)见解析;(2)6【分析】(1)根据BD∠直线m,CE∠直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断∠ADB∠∠CEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE.【详解】证明:(1)∠BD∠直线m,CE∠直线m,∠∠BDA=∠CEA=90°,∠∠BAC=90°,∠∠BAD+∠CAE=90°,∠∠BAD+∠ABD=90°,∠∠CAE=∠ABD,∠在∠ABD和∠ACE中,ABD CAEBDA CEAAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(AAS),(2)∠∠ABD∠∠ACE,∠AE=BD,AD=CE,∠DE=AE+AD=BD+CE,∠BD=2cm,CE=4cm,∠DE=6cm;故答案为:6.变式训练【变式5-1】(2019·福建期中)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)∠ACD与∠CBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)【答案】(1)详见解析;(2)AD=BE-DE;【分析】(1)观察图形,结合已知条件,可知全等三角形为:∠ACD与∠CBE.根据AAS即可证明;(2)由(1)知∠ACD∠∠CBE,根据全等三角形的对应边相等,得出CD=BE,AD=CE,从而求出线段AD、BE、DE之间的关系.【详解】证明:(1)∠AD∠CD,BE∠CD,∠∠ADC=∠CEB=90°,又∠∠ACB=90°,∠∠ACD=∠CBE=90°-∠ECB.在∠ACD与∠CBE中,ADC CEBACD CBEAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ACD∠∠CBE(AAS);(2)AD=BE-DE,理由如下:∠∠ACD∠∠CBE,∠CD=BE,AD=CE,又∠CE=CD-DE,∠AD=BE-DE.【变式5-2】(2019·河南月考)(1)如图1,在∠ABC中,∠ACB=90°,AC=BC,直线l过点C,点A,B 在直线l同侧,BD∠l,AE∠l,垂足分别为D,E.求证:∠AEC∠∠CDB.(2)如图2,AE∠AB,且AE=AB,BC∠CD,且BC=CD,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.【答案】(1)见解析;(2)S= 50.【分析】(1)因为BD∠l,AE∠l,可得∠AEC=∠CDB,结合题意得到∠CAE=∠BCD,再根据AAS证明即可.(2)利用(1)中结论,根据全等三角形的性质进行计算即可解决问题.【详解】(1)如图1中,∠BD∠l,AE∠l,∠∠AEC=∠CDB=90°,∠∠CAE+∠ACE=90°,∠∠BCD+∠ACE=90°,∠∠CAE=∠BCD,在∠AEC和∠CDB中90AEC CDBCAE BCDAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∠∠AEC∠∠CDB(AAS).(2)如图2中,因为AE∠AB,且AE=AB,BC∠CD,且BC=CD,由(1)可知:∠EFA∠∠AGB,∠BGC∠∠CHD,∠EF=AG=6,AF=BG=CH=3,CG=DH=4,∠S=12(6+4)×16-18-12=50.故答案为50.【真题1】(2017·江苏常州市·中考真题)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D∠=∠,再加上BC CE=,可证得结论;()2根据90ACD AC CD∠=︒=,,得到145D∠=∠=︒,根据等腰三角形的性质得到3567.5∠=∠=︒,由平角的定义得到1805112.5DEC∠=︒-∠=︒.【详解】()1证明:90BCE ACD∠=∠=︒,2334,∴∠+∠=∠+∠24∴∠=∠,在∠ABC和∠DEC中,24BAC DBC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AASABC DEC∴≌,AC CD∴=;(2)∠∠ACD=90°,AC=CD,∠∠1=∠D=45°,∠AE=AC,∠∠3=∠5=67.5°,∠∠DEC=180°-∠5=112.5°.【拓展1】(2020·黑龙江齐齐哈尔市·八年级期中)探究:(1)如图∠,在∠ABC中,∠ACB=90°,CD∠AB 于点D,若∠B=28°,则∠ACD的度数是.拓展:(2)如图∠,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别存CM、CN上,分别过点A、B作AD∠CP、BE∠CP于点D、E,若AC=CB,则AD、DE、BE三者间的数量关系为.应用:(3)如图∠,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE、AE,且使∠MCN=∠ADP=∠BEP.当AC=BC时,∠∠∠;此时如果CD=2DE,且S∠CBE=6,则∠ACE的面积是.链接中考满分冲刺【答案】(1)28° (2)DE =AD ﹣BE ;理由见解析 (3)ACD ;CBE ;9 【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD =∠BCE ,进而判断出∠ACD∠∠CBE ,即可得出结论;(3)利用等式的性质判断出∠ADC =∠CEB ,进而判断出∠ACD∠∠CBE ,得出S ∠ACD =S ∠CBE ,再求出S ∠ADE =3,即可得出结论. 【详解】解:探究:∠CD∠AB , ∠∠CDB =90°, ∠∠B =28°,∠∠BCD =90°﹣∠B =68°, ∠∠ACB =90°,∠∠ACD =90°﹣∠BCD =28°, 故答案为:28°; 拓展:(2)∠∠MCN =90°, ∠∠ACD+∠BCE =90°, ∠AD∠CP ,BE∠CP , ∠∠ADC =∠BEC =90°, ∠∠ACD+∠CAD =90°, ∠∠CAD =∠BCE , 在∠ACD 和∠CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ACD∠∠CBE (AAS ), ∠CD =BE ,AD =CE , ∠DE =CE ﹣CD =AD ﹣BE , 故答案为:DE =AD ﹣BE ; 应用:(3)∠∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∠∠ADP =∠ACD+∠BCD , ∠∠ADP =∠ACD+∠CAD , ∠∠CAD =∠BCE , ∠∠ADP =∠BEP , ∠∠ADC =∠CEB , 在∠ACD 和∠CBE 中,ADC CEBCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ACD∠∠CBE (AAS ), ∠S ∠ACD =S ∠CBE , ∠S ∠CBE =6, ∠S ∠ACD =6, ∠CD =2DE , ∠S ∠ACD =2S ∠ADE , ∠S ∠ADE =12S ∠ACD =3, ∠S ∠ACE =S ∠ACD +S ∠ADE =9, 故答案为:ACD ,CBE ,9.【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出∠ACD∠∠CBE 是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小专题(三)全等三角形性质与判定的综合应用
全等三角形是证明线段相等和角相等的常用方法,在解题中要注意寻找全等三角形,探索三角形全等的条件是三角形的重点,又是进一步学习平面几何的基础.在具体应用三角形全等的判定方法时,要认真分析已知条件,仔细观察图形,弄清已具备了哪些条件,从中找出已知条件和所要说明的结论之间的内在联系,从而选择适当的说明方法.有些题目中既要用到证全等,又要用到全等的性质,二者相互联合应用.在解决问题时,要注意题目的特点,选择合适的方法和解题思路.
类型1全等三角形的判定
1.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,则P1,P2,P3,P4四个点中符合条件的点P有(C)
A.1个
B.2个
C.3个
D.4个
2.在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ABD≌△ACD的是①②④.(只填序号)
类型2四种判定全等方法的综合应用
3.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中
AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=1
AC;③
2
△ABD≌△CBD.其中正确的结论有(D)
A.0个
B.1个
C.2个
D.3个
类型3全等三角形判定的实际应用
4.有一块长方形的土地ABCD,分别被甲、乙两户承包,一条公路GEFH穿过这块地.为发展经济,决定将这条公路尽量修直,为不影响甲、乙两户土地面积,请你设计一种方案,来解决这个问题.
解:如图,取EF的中点M,连接GM并延长交FH于点N,GN就是修直后的道路.
类型4全等三角形性质与判定的综合应用
5.如图,在△ABC中,AB=AC=10 cm,∠B=∠C,BC=8 cm,D为AB的中点.如果点P在线段BC上以3 cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1 s后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?
解:(1)△BPD≌△CQP.
理由:因为t=1 s,所以BP=CQ=3×1=3(cm),
因为AB=10 cm,D为AB的中点,所以BD=5 cm.
又因为PC=BC-BP=8-3=5(cm),所以PC=BD.
又因为∠B=∠C,所以△BPD≌△CQP(SAS).
(2)因为v P≠v Q,所以BP≠CQ,
又因为△BPD与△CPQ全等,∠B=∠C,
所以BP=PC=4 cm,CQ=BD=5 cm,
所以点P,点Q运动的时间t=BP
3=4
3
(s),
所以v Q=CQ
t =54
3
=15
4
(cm/s).
答:当点Q的运动速度为15
4
cm/s时,△BPD与△CQP全等.。

相关文档
最新文档