轴对称图形和对称图形的区别是什么
苏科版八年级上册 轴对称图形 知识点总结讲解
轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称;注意:其中这条直线叫对称轴;两个图形的对应点叫对称点;轴对称图形:如果把一个图形沿一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形;注意:轴对称图形也有对称轴和对称点;轴对称和轴对称图形的区别于联系:区别:1、轴对称是指两个图形折叠重合。
轴对称图形是指本身折叠重合,2、轴对称对称点在两个图形上;轴对称图形对称点在一个图形上;3、轴对称只有一条对称轴;轴对称图形至少有一条对称轴;联系:若把成轴对称的两个图形看作一个整体,那么这个整体是一个轴对称图形; 若把一个轴对称图形位于对称轴的两部分看作两个图形,那么这两个图形 就成轴对称。
图文解释:△ABC 和△DEF 关于直线MN 对称, △ABC 关于直线MN 对称 MN 是对称轴,我们称这两个三角形关于 MN 为对称轴,我们称 直线MN 成轴对称,点C 点F 为对称点, △ABC 为轴对称图形。
点B 点E 为对称点,点A 点D 为对称点。
CABMNFEDMNAB C轴对称的性质:1、成轴对称的两个图形全等;2、成轴对称的两个图形,对应点的连线被对称轴垂直平分;垂直平分线:作点关于直线的对称点,连接这两点的线段。
我们定义:垂直并且平分一条线段的直线,叫作这条线段的垂直平分线。
又称“中垂线”注意:判断一条直线是否是线段的垂直平分线,必须满足两个条件。
1、这条直线过线段的中点;2、这条直线垂直于线段;通过研究线段或者某个图形关于直线的对称:轴对称还有如下的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
注意:这个性质其实告诉如何确定对称轴:即成轴对称的两个图形,对称轴是对应点连线的垂直平分线。
画一个图形关于一条直线对称的图形步骤:首先我们要明白一个事实:点构成线,线构成面。
1、关键是确定某些点关于这条直线的对称点。
轴对称--知识讲解(提高)
轴对称—知识讲解(提高)【学习目标】1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形;2.理解轴对称图形的性质,会画一些简单的关于某直线对称的图形;3.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线;4.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.【要点梳理】要点一、轴对称与轴对称图形1.轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.2.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等. (后边学习全等)3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.4.轴对称、轴对称图形的性质轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等;如果一个图形是轴对称图形,那么连结对称点的线段的垂直平分线就是该图形的对称轴.要点二、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件. (后边学习全等)三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.(外心以后学习)要点三、对称轴、轴对称图形的作法1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.3.用坐标表示轴对称点(x ,y )关于x 轴对称的点的坐标为(x ,-y );点(x ,y )关于y 轴对称的点的坐标为(-x ,y );点(x ,y )关于原点对称的点的坐标为(-x ,-y ). 要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.【典型例题】类型一、作轴对称图形1、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.(1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案】(1)如图;(2)∠''BOB =2α;【解析】(1)如图所示;(2)∵△ABC 和△'''A B C 关于直线MN 对称, △'''A B C 和△''''''A B C 关于直线EF 对称.∴∠BOM =∠'B OM ,∠'B OE =∠''B OE ,∵∠'B OM +∠'B OE =α∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.举一反三:【变式】在下图中,画出△ABC 关于直线MN 的对称图形.【答案】△'''A B C 为所求.类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短.【思路点拨】通过轴对称变换,将MP转化为M'P,QN转化为Q N',要使总路程MP+PQ+QN最短,就是指M'P+PQ+Q N'最短,而这三条线段在一条直线上的时候最短.【答案与解析】见下图作点M关于OA的对称点M',作点N关于OB的对称点N',连接M N''交OA于P、交OB于Q,则M→P→Q→N为最短路线.【总结升华】本题主要是通过作对称点的方法得出结论,并利用了对称线段相等,三角形两边之和大于第三边的性质推得所作的图形符合条件,这是道综合性的应用问题.举一反三:【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.【答案】作点M 关于OA 的对称点M ',过M '作OB 的垂线交OA 于P 、交OB 于Q ,则M →P →Q 为最短路线.如图:3、将军要检阅一队士兵,要求(如图所示):队伍长为a ,沿河OB 排开(从点P 到点Q);将军从马棚M 出发到达队头P ,从P 至Q 检阅队伍后再赶到校场N .请问:在什么位置列队(即选择点P 和Q),可以使得将军走的总路程MP +PQ +QN 最短?【答案与解析】见下图作法:作N 关于OB 的对称点N ',再作N N '''∥BO 且N N '''=a (N ''在N '的左侧); 连接MN ''交OB 于点P ,再在OB 上取点Q 使得PQ =a (Q 在P 的右侧),此时,MP +PQ +QN 最小.【总结升华】MP +PQ +QN 最小,其中PQ 是定值a ,问题转化为MP +QN 最小.因为将军要沿河走一段线段a ,如果能把这段a 提前走掉就可以转化为熟悉的问题了,于是考虑从'N 沿平行的方向走a 至''N ,连接''MN 即可.类型三、用坐标表示轴对称4、若点M (2,a )和点N (a b +,3)关于y 轴对称,则a = ,b = .【思路点拨】已知P 点坐标,则它关于x 轴的对称点的坐标为,关于y 轴对称点的坐标为. 【答案】 3,-5 ;【解析】点M 和点N 关于y 轴对称,则横坐标互为相反数,纵坐标相等.∴20a b ++=, 3a =,解得b =-5.【总结升华】要掌握点关于x 轴,y 轴,原点等对称的点的坐标变化规律.举一反三:【变式1】已知点A (2,3-)关于x 轴对称的点的坐标为点B (2m ,m n +),则m n -的值为( ).A . 5-B . 1-C . 1D . 5【答案】B ;提示:2m =2,m +n =3, 解得n =2, m =1,选B.【变式2】如图,ΔABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),点B 的坐标为(3,1),如果要使ΔABD 与ΔABC 全等,求点D 的坐标.【答案】共3个满足条件的点:1D (4,-1),2D (-1,3),3D (-1,-1).。
轴对称的定义和性质
轴对称的定义和性质一、轴对称的定义和性质1、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
这时,我们也说这个图形关于这条直线(成轴)对称。
3、轴对称与轴对称图形的区别和联系区别轴对称为两个图形之间的对称关系,并且只有一条对称轴。
轴对称图形为一个图形,且不一定只有一条对称轴。
联系轴对称:(1)沿对称轴折叠,两个图形重合;(2)如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
轴对称图形:(1)沿对称轴折叠,图形的两部分重合;(2)如果把轴对称图形的两部分看作两个图形,那么这两个图形成轴对称。
4、图形轴对称的性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(3)两个图形关于某条直线对称,如果它们的对应线段或对应线段的延长线相交,那么交点在对称轴上。
5、画图形的对称轴如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。
因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴。
同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、画轴对称图形(1)由一个平面图形可以得到与它关于一条直线$l$对称的图形,这个图形与原图形的形状、大小完全相同。
新图形上的每一点都是原图形上的某一点关于直线$l$的对称点。
连接任意一对对应点的线段被对称轴垂直平分。
(2)画一个图形的轴对称图形的方法找——在原图形上找特殊点(如线段的端点)。
作——作各个特殊点关于对称轴的对称点。
连——依次连接各对称点。
轴对称与轴对称图形的区别与联系
轴对称与轴对称图形的区别与联系说明”轴对称图形”和”轴对称”是两个不同的概念,它们的区别与联系如下:区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.下面是一些概念和定理,希望能帮到你。
【轴对称】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
说明:(1)轴对称是指两个图形之间形状个位置的关系,包含两层意思:一是两个图形,能够完全重合,即形状大小都相同;二是对重合的方式有限制,也就是它们的位置关系必须满足一个条件,即把它们沿某一条直线对折后能够重合,因此,全等的图形不一定是轴对称的,而轴对称图形一定是全等的.(2)对称轴是指一条直线.【关于轴对称的定理】定理1 关于某条直线对称的两个图形是全等形.定理2 如果两个图形关于某直线对称.那么对称轴是对应点连线的垂直平分线.(逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.)定理3 两个图形关于某直线对称.如果它们的对应线段或延长线相交,那么交点在对称轴上. 说明(1)定理1实际上是轴对称定义的一部分.为了突出这一点,教材把它作为一个定理.(2)定理1,2,3都是轴对称的性质,而逆定理是轴对称的判定定理.由于定义是根据图形翻折后是否重合来判定两个图形是否对称,实际操作很困难,所以该逆定理就是判定轴对称的主要依据.(3)如果A,B两点的对称点是A‘,B‘,那么线段AB的对称图形必是线段A‘B‘,因此对于直线形,如线段,三角形,折线等等.要求它们的对称图形,只需把它们的顶点的对称点确定,然后只要将线段按相同关系连结即可,而不必去找图形上每个点的对称点.【轴对称图形】如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.如果两个图形关于某条直线成轴对称,那么对称轴是(对称点的中点的连线,即垂直平分线)轴对称图形的对称轴是(对折重合的折痕线)。
轴对称与轴对称图形--知识讲解(基础)
轴对称与轴对称图形--知识讲解(基础)【学习目标】1.通过具体实例了解两个图形成轴对称的概念,能找出对称轴和对称点.2.了解两个图形关于某直线成轴对称和轴对称图形的联系与区别,理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应用和文化价值.4. 理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.5.通过学习,体验数学的对称美,激发学习数学的兴趣.【要点梳理】要点一、轴对称与轴对称图形1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴. 折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点二、轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等.要点三、线段的垂直平分线定义:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.类型二、轴对称的应用2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就找能到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;3、(2015春·启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO 的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB=BC,∴∠A=∠C=70°,∠B=40°又∵ΔABC沿DE折叠后,点A落在BC边上的A'处,点D为AB边的中点,∴BD=D A',∠B=∠D A'B=40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°; 类型三、轴对称的作图4、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. (1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案与解析】(1)如图;(2)∠''BOB =2α;(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称. ∴∠BOM =∠'B OM ,∠'B OE =∠''B OE , ∵∠'B OM +∠'B OE =α ∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上. 举一反三:【变式】(2015· 聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.【答案】 解:(1)如图所示:△A 1B 1C 1,即为所求;点B 1坐标为:(﹣2,﹣1);(2)如图所示:△A 2B 2C 2,即为所求,点C 2的坐标为:(1,1).。
轴对称与轴对称图形的区别与联系
轴对称与轴对称图形的区别与联系
1、等腰三角形是轴对称图形,它的对称轴是()
A、过顶点的直线;
B、底边上的高;
C、顶角平分线所在的直线;
D、腰上的高所在的直线;
2、下面四个图形中,不是轴对称图形的是()
A、有一个内角为45度的直角三角形;
B、有一个内角为60度的等腰三角形;
C、有一个内角为30度的直角三角形;
D、两个内角分别为36度和72度的三角形;
3、下列4个图形中,不是轴对称图形的是()
A、有2个内角相等的三角形;
B、线段;
C、2个内角分别为30度和120度的三角形;
D、1个内角为30度的直角三角形;
4、下列图形中,不一定是轴对称图形的是()
A、三角形;
B、射线;
C、角;
D、相交的两条直线;
5、下列图形中,不一定是轴对称图形的是()
A等腰三角形; B等边三角形; C直角三角形 D等腰直角三角形
6、角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()
A、4个;B、5个;C、6个;D、3个;
7、等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A、3个;B、4个;C、5个;D、2个;
8、下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A、5;B、4;C、6;D、7;
9、有两条或两条以上对称轴的轴对称图形是()
A、等腰三角形;B、角;C、等边三角形;D、锐角三角形;。
初中数学 轴对称图形和对称图形有什么区别
初中数学轴对称图形和对称图形有什么区别在初中数学中,轴对称图形和对称图形是两个相关但略有不同的概念。
下面将详细介绍轴对称图形和对称图形之间的区别:1. 轴对称图形:轴对称图形是指图形中存在一个轴对称线,使得图形的每个点关于这个轴对称线对称。
换句话说,如果我们将图形沿着轴对称线对折,两侧被对折的部分完全重合。
轴对称图形具有以下特点:-轴对称图形可以从一个侧面镜像到另一个侧面。
-轴对称图形的每个点都与轴对称线上的点关于轴对称线对称。
2. 对称图形:对称图形是指图形中存在一个或多个对称中心,使得图形的每个点关于这些对称中心对称。
换句话说,如果我们将图形绕着对称中心旋转一定角度,旋转后的图形与原图形完全重合。
对称图形具有以下特点:-对称图形可以旋转到相同的位置。
-对称图形的每个点都与对称中心关于对称中心对称。
3. 区别:尽管轴对称图形和对称图形都涉及图形的对称性,但它们之间存在一些区别:-对称中心的数量不同:轴对称图形只有一个轴对称线,而对称图形可以有一个或多个对称中心。
-对称方式不同:轴对称图形是通过对折来实现对称,而对称图形是通过旋转来实现对称。
-对称性质不同:轴对称图形的每个点关于轴对称线对称,而对称图形的每个点关于对称中心对称。
需要注意的是,轴对称图形是对称图形的一种特殊情况。
具有轴对称性质的图形也是对称图形,但对称图形不一定是轴对称的。
总之,轴对称图形和对称图形在数学中有一些区别。
轴对称图形具有一个轴对称线,通过对折实现对称;对称图形可以有一个或多个对称中心,通过旋转实现对称。
希望以上内容能够帮助你理解轴对称图形和对称图形之间的区别。
如果你还有其他问题,请随时提问。
轴对称图形和中心对称图形
轴对称图形在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对轴对称图形2 示例称图形.圆有无数条对称轴,都是经过圆心的直线。
要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。
大写字母A、B、C、D、E、H等等性质编辑1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
5.图形对称。
定理定理1:关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
生活作用1、为了美观。
比如天安门,对称就显的美观漂亮。
2、保持平衡。
比如飞机的两翼。
3、特殊工作的需要。
比如五角星,剪纸。
对称方法编辑方法1、找出所给图形的关键点。
2、找出图形关键点到对称轴的距离。
3、找关键点的对称点。
4、按照所给图形的顺序连接各点。
画法1、找出图形的一对对称点。
2、连接对称点。
3、过这条线段的中点作这条线段的垂线。
区别区分这两个概念要注意:轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
认识对称图形:什么是对称图形?举例说明。
对称图形是几何学中的一个重要概念,其特点是图形的一部分可以通过对称操作与另一部分重合。
这种对称性不仅为图形带来了独特的审美价值,还在自然界和日常生活中广泛存在,如建筑、艺术和工程等领域。
一、对称图形的定义与性质对称图形是指如果一个图形沿着一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做对称图形。
这条直线叫做对称轴。
对称图形可以分为轴对称图形和中心对称图形两种。
1. 轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2. 中心对称图形:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形。
这个点叫做对称中心。
对称图形具有许多独特的性质。
首先,它们具有高度的美观性和平衡感,因此常被用于艺术和建筑设计中。
其次,对称图形在数学和物理学中具有重要的应用价值,如在几何学和晶体学中。
此外,对称图形还具有一些独特的数学性质,如对称性、稳定性和不变性等。
二、对称图形的分类与实例1. 轴对称图形:轴对称图形在生活中非常常见,如蝴蝶、人脸和汽车等。
蝴蝶的翅膀沿着中心线对折后可以完全重合,显示出典型的轴对称特征。
人脸也具有类似的对称性,从眉毛到下巴的中心线可以将面部划分为两个对称的部分。
汽车的设计也常采用轴对称,以确保车辆的稳定性和美观性。
在数学中,轴对称图形也具有重要作用。
例如,正方形、长方形、圆形等都是典型的轴对称图形。
正方形有4条对称轴,长方形有2条对称轴,圆形有无数条对称轴。
这些图形的对称性为我们在几何问题中的推理和计算提供了便利。
2. 中心对称图形:中心对称图形同样在生活中广泛存在。
例如,车轮、旋转门等都是中心对称图形的代表。
车轮的设计需要保证在旋转过程中保持平衡和稳定,因此其形状需要满足中心对称的条件。
旋转门则通过中心轴的旋转实现开关功能,也体现了中心对称的思想。
在数学领域,中心对称图形同样具有重要意义。
2020中考数学专题复习:图形和变换(轴对称、轴对称图形)(共29张PPT)
3- 2
例题6.
A O
Q
F
B E
综合提优
①求证:DQ=AE;②推断:GF:AE的值;
D
G
C
综合提优
A
D BC:AB=k(k为常数).探究GF与AE之间的数量
关系,并说明理由;
MO
F
B
E
G P
C
A
5X
O2 10 F 3 10 x
4X 5X
拓展应用:在(2)的条件下,连接CP,当k= 2 D 时,若tan∠CGP= 3 ,GF=2 10 ,求CP的长.3
2. 下列图形中,为轴对称图形的是( D )
基础训练
3.(2017黑龙江哈尔滨)下列图形中,既是轴对称图形
又是中心对称图形的是 ( D )
基础训练
4.如图所示,在Rt△ABC中,
∠C= 90°,以顶点A为圆心,适当
长为半径画弧,分别交AC,AB
于点M、N,再分别以点M,N为
圆心,大于0.5MN的长为半径画
例题讲解
∵以△ADE、△AD′E,关于直线AE 成轴对称图形∴AD=AD′, ∵在△ABD和△ACD′中
∴△ABD≌△ACD′(sss)
(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′, ∴∠BAC=∠DAD′=120°, ∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形 △AD′E, ∴∠DAE=∠D′AE= ∠DAD′=60°,即∠DAE=60°
E是边CD上一点,连接AE.折叠该纸片,使点A落在AE
上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.
若DE=5,则GE的长为
.
例题讲解
12
由折叠及轴对称的性质可知, △ABF≌△GBF,BF垂直平分AG,
《轴对称与轴对称图形》知识点总结
轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
lA B⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
初中数学 什么是对称图形和轴对称
初中数学什么是对称图形和轴对称对称图形和轴对称是初中数学中重要的概念,它们是几何学中的基本内容。
对称图形指的是图形中存在某种对称性,使得图形的某些部分可以通过某个中心点或中心线对称得到另一部分。
而轴对称是对称图形的一种特殊情况,它是指图形关于某条直线对称后重合的情况。
在本文中,我们将详细讨论对称图形和轴对称的概念、性质和应用。
一、对称图形对称图形是指存在某种对称性质的图形。
对称性质是指一种变换,使得图形的某些部分在变换后与原来的部分完全重合。
对称性质可以分为以下几类:1. 点对称:指图形中存在一个中心点,使得图形中的任意一点关于这个中心点对称后重合。
这个中心点称为对称中心,对称中心到图形上任意一点的距离相等。
2. 中心对称:指图形中存在一条中心线,使得图形中的任意一点在中心线上对称后重合。
这条中心线称为对称轴,对称轴把图形分成两个完全对称的部分。
3. 旋转对称:指图形可以绕着一个点旋转一定角度后,与原来的图形完全重合。
这个点称为旋转中心,旋转中心到图形上任意一点的距离相等。
对称图形有许多有趣的性质。
首先,对称图形中的任何一条线段或角度都可以通过对称关系得到另外一个相等的线段或角度。
其次,对称图形的面积相等。
这个性质被称为对称性质,它在几何学中有着广泛的应用。
二、轴对称轴对称是对称图形的一种特殊情况,它是指图形关于某条直线对称后重合的情况。
这条直线称为轴对称线,或简称对称轴。
具体来说,对于任意给定的图形,如果存在一条直线l,使得图形中的任意一点P关于l对称得到的点P'在图形中,那么这个图形就是轴对称图形。
轴对称具有一些特殊的性质。
首先,轴对称可以把图形分成两个对称的部分,这两个部分在对称轴上完全重合。
其次,轴对称图形中的任意一条线段或角度都可以通过轴对称得到另外一个相等的线段或角度。
这个性质被称为轴对称性质,它在解决几何问题和设计对称图案时非常有用。
轴对称图形还有一些特殊的例子,比如正方形、矩形、等腰直角三角形等。
什么是中心对称图形和轴对称图形
几何部分一直都是数学学习的重点,一些图形是考试的常考问题。
那么,什么是什么是中心对称图形?什么是轴对称图形?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
需要注意中心对称和中心对称图形不是一个概念。
中心对称是在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称
轴对称图形
数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
中心对称图形和轴对称图形区别
轴对称图形关键抓两点:一是沿某直线折叠,二是两部分互相重合;
中心对称图形关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
常见的图形归类
既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
以上就是一些中心对称图形与轴对称图形的相关信息,供大家参考。
轴对称图形-对称轴-对称点
(2) 如果把成轴对称的两个图形看成一个 整体,那么这个整体的图形就是轴对 称图形; 如果把一个轴对称图形沿着对称轴分 成的两部分看成两个图形,那么这两 个图形是轴对称的
1.
B册 P44
2. 一课一练 P65 一、填空题
二、选择题
练习:
一、判断 1. 轴对称图形必有对称轴
是
1条 一条底的中垂线
下列(1) (2)两个图形有什么区别?
(1)
(2)
两个图形 轴对称
一个图形 轴对称图形
二、轴对称和对称点的定义:
1. 平面上的两个图形,将其中一个图 形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形
关于这条直线对称, 简称轴对称,这条直线 叫对称轴
△ABC△ A ’ B ’ C ’关于直线l对称。 点A和点A ’,点B和点B ’ ,点C ’和点C ’分别是关于直线l的对称点
区别:
“轴对称图形”是指同一个图形的两部 分 沿某直线翻折时,两部分重合的图形。
“轴对称”是指两个图形分别位于某条 直 线的两侧,且沿这条直线翻折时,两个
图形重合 。
联系:
(D)一个图形沿某直线翻折,直线两旁的部分能够 互相重合
(1)
(2)
(1)
(2)
(3)
(4)
特征: 沿某一条直线翻折后,直线两旁的两个部分能完全重
一、 轴对称图形和对称轴的定义:
1. 把一个图形沿着某一条直线翻折, 如果直线两旁的部分能够互相重合,这个
图形就是轴对称图形
2. 这条直线是这个图形的对称轴
(1) 我们学过的线段和角是不是轴对称图形?
(a)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形和对称图形的区别是什么
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
对称图形包含轴对称图形,对称图形所包括的范围广,而轴对称图形属于对称图形的一种。
对称图形包括中心对称图形,轴对称图形,旋转对称图形。
中心对称图形
中心对称图形上每一对对称点所连成的线段都被对称中心平分。
如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。
轴对称图形而这个中心点,叫做中心对称点。
中心对称图形上每一对对称点所连成的线段都被对称中心平分。
在平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和另一个图形完全重合,那么就说这两个图形
成中心对称。
这个点叫做对称中心。
常见的中心对称图形有矩形,菱形,正方形,平行四边形,圆,某些不规则图形等.
正偶边形是中心对称图形
正奇边形不是中心对称图形
如:正三角形不是中心对称图形
补充:等腰梯形也不是中心对称图形。
对称轴是一条直线!
垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。
线段垂直平分线上的点到线段两端的距离相等。
在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
对称轴两边的面积是相等的。
轴对称的图形是全等的。
轴对称图形如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
旋转对称图形
旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重
合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角..
常见的旋转对称图形有:线段、正多边形、平行四边形、圆等。
注:所有的中心对称图形,都是旋转对称图形。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。