第五次 光纤传感器的位移测量,转速测量
光纤传感器的位移特性实验(精)
光纤传感器的位移特性实验
一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成Y 型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦即探头,它与被测体相距X,由光源发出的光通过光纤传到端部射出后再经被测体反射回来,由另一束光纤接收反射光信号再由光电转换器转换成电压量,而光电转换器转换的电压量大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源±15V 、反射面。
四、实验步骤:
1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。
其内部已和发光管D及光电转换管T 相接。
图9-1 光纤传感器安装示意图
2、将光纤实验模板输出端V 01与数显单元相连,见图9-2。
图9-2 光纤传感器位移实验接线图
3、调节测微头,使探头与反射平板轻微接触。
4、实验模板接入±15V电源,合上主控箱电源开关,调R W使数显表显示为零。
5、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表9-1。
表9-1光纤位移传感器输出电压与位移数据
6、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。
五、思考题:
光纤位移传感器测位移时对被测体的表面有些什么要求?。
光纤传感器-位移测量
实验四光纤传感器————位移测量实验目的1、光纤位移传感器的结构与工作原理。
2、光纤传感器的输出特性曲线。
实验原理反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
图2所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图1 反射式位移传感器原理图2 反射式光纤位移传感器的输出特性实验所需部件:光纤(光电转换器)、光电传感器模块、{光纤光电传感器实验模块}、支架、电压表示波器、螺旋测微仪、反射镜片实验步骤:1、观察光纤结构:本实验仪所配的光纤探头为半圆型结构,由数百根导光纤维组成,一半为光源光纤,一半为接收光纤。
2、连接主机与实验模块电源线及光纤变换器探头接口,光纤探头装上通用支架(原装电涡流探头),{探头支架},探头垂直对准反射片中央(镀铬圆铁片),螺旋测微仪装上支架,以带动反射镜片位移。
端接电压表,首先旋动测微仪使探头紧贴反射镜片(如3、开启主机电源,光电变换器V输出≈0,然后旋动测微仪,两表面不平行可稍许扳动光纤探头角度使两平面吻合),此时V使反射镜片离开探头,每隔0.2mm记录一数值并记入下表:位移距离如再加大,就可观察到光纤传感器输出特性曲线的前坡与后坡波形,作出V-X 曲线,通常测量用的是线性较好的前坡范围。
光纤传感器位移和转速测量研究
光 纤 传 感 器 位 移 和 转 速 测 量 研 究
刘 玉 燕
( 华 北 电力 大 学 , 北京 1 0 2 2 0 6 )
摘
要: 介绍 光纤传感器 的测量原理 , 并对位移 和转速测 量进行研究 , 利用 m a t l a b软件对位移 测量
结果进行 曲线 拟合 , 且将 光纤 传感器和 电涡流传感器 的转速 测量 结果进行 比较 , 最后得 出利用光纤 传感
( 2 ) : 3 8 — 3 9 .
通 过光 纤 传感 器 的位 移和转 速 实验 结果 可 以 得出 : 测量 结果 可靠 、 实 用 方便 、 结 构简单 、 可 以实 现 光路 弯 曲等 优点 。并 且 由转 速测 量实 验 还可 以
启 发学 生观 察 电机 转动 两 个 叶片 的抖动 现 象 。利
第 2 7卷
第 3期
大
学
物
理
实
验
Vo 1 . 2 7 No . 3
J u n. 2 01 4
2 0 1 4年 6月
PHYS I CAL EXPERI M ENT OF C0U J EGE
文章编 号 : 1 0 0 7 — 2 9 3 4 ( 2 0 1 4 ) 0 3 — 0 0 6 5 - 0 3
实验07(光纤传感器的位移测量及数值误差分析实验)实验报告
实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
传感器实验指导书
实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW2使数显表显示为零。
4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。
光纤传感器在位移测量中的应用
光纤传感器在位移测量中的应用一、实验目的:了解光纤传感器在位移测量中的应用。
二、实验内容:光纤传感器是利用光纤对光的传播作用,即由光纤信息传输回路与光检测元件组成测量系统的CSY系列传感器系统综合实验仪,该仪器光纤采用Y型结构,如图4所示。
图4 光纤位移传感器工作原理图5 光纤位移传感器X-V关系曲线通过光源光纤的传输,光射到被测物体时,由于入射光的散射作用被反射体反射进入接收光纤的光强减弱了,输出的光强与反射体(即被测物体)与光纤探头的距离ΔX有关,光电转换器将接收到的光能转换为电压信号在一定范围内,其输出电压与位移是线性关系,曲线如图5所示(ΔX<2时)。
这种传感器已被用于非接触式微小位移量和表面粗糙度测量等方面。
三、实验要求:1.光纤传感器接线要牢靠。
2.光纤勿折成锐角曲折。
3.光纤不可互换,光纤传感器与综合试验仪相互对号配合使用。
四、实验装置:同实验一。
五、实验步骤:1.取下原来安装在传感器支架上的电涡流激励线圈,在该支架上装好光纤探头,探头对准镀铬反射片(即电涡流传感器试验中使用过的圆形金属片)。
2.建立振动台与测微头的磁性联结,光电变换器Vo与电压表IN相接,开启电源。
转动测微头,使光纤探头端面紧贴反射镜面,此时Vo输出为最小(由于仪器精度问题不一定为零)。
然后旋动测微头,使光纤探头向离开反射镜面的方向移动,每移动0.25mm读取光电变换器的输出Vo电压值填入表内。
六、实验数据及处理:1.使用实验仪实时采集实验数据并绘制光纤位移传感器的X-V关系曲线2.分析光纤位移测量系统的X—V曲线,选择该曲线的适宜区域作为位移检测的工作曲线,并计算出本光纤位移测量系统的灵敏度解:在区间(0,1)内线性度较好,适合作为位移检测工作曲线在区间(0,1)内,灵敏度S=0.630V/mmV=0.63X+2.2873.给出本光纤位移测量系统的推荐量程解:因为曲线在区间(0,1)内线性度较好,且灵敏度高所以推荐量成为(0,1)单位:mm七、思考题:该位移测量系统中使用的光纤传感器属于功能型光纤传感器吗?为什么?答:不是,因为功能型光纤传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。
实验五光电转速传感器测速实验(5篇)
实验五光电转速传感器测速实验(5篇)第一篇:实验五光电转速传感器测速实验实验五光电转速传感器测速实验一、实验目的了解光电转速传感器测量转速的原理及方法。
二、基本原理光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数处理即可得到转速值。
三、需用器件与单元传感器实验模块四、实验步骤1.光电转速传感器已经安装在传感器实模块上。
2.将+5V直流稳压电源接到光电转速传感器的“+5V输入”端。
3.将光电转速传感器的输出接“频率/转速表”输入端。
4.将面板上的0~30V稳压电源调节到小于24V,接到传感器实验模块“0~24V转动电源”输入端。
5.调节0~30V直流稳压电源输出电压(+24V以下),使转盘的转速发生变化,观察频率/转速表显示的变化,并用虚拟示波器观察光电转速传感器输出波形。
五、注意事项1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。
2.转动源的输入电压不可超过24V,否则容易烧毁电机。
3.光电转速传感器中+5V电源不能接错,否则会烧毁光电传感器.六、思考题根据上面实验观察到的波形,分析为什么方波的高电平比低电平要宽。
第二篇:传感器实验五传感器实验报告五姓名江璐学号 1315212017 班级电子二班时间 2015.12.2 实验题目 CC2530基础实验一:实验设备1.硬件:教学实验箱、PC机。
2.软件:PC机操作系统Windows 98(2000、XP)+IAR开发环境。
二:实验(一)光照传感器采集实验1.实验目的(1)掌握光照传感器的操作方法。
(2)掌握光照传感器采集程序的编程方法。
2.实验内容在IAR集成开发环境中编写光照传感器采集程序。
3.相关电路图4.程序5.实验现象(二)人体感应传感器采集实验1.实验目的(1)掌握人体感应传感器的操作方法。
光纤传感器的位移特性实验报告
光纤传感器的位移特性实验报告
本文将分析光纤传感器的位移特性实验,介绍器件本身的特性、参数设置、实验方法,测试数据以及实验结果。
光纤传感器是一种新兴的技术,它主要利用光纤的光学特性和检测技术来检测运动物体的物理位移,以及其他物理变化。
它具有小尺寸、低功耗、设备安装方便、非接触式等优点,可用于检测、控制和监视过程中的各种参数,在机器人技术、航空航天技术、发动机控制系统、安全监测、绿色能源等领域中有广泛的应用。
本实验使用的特定型号的光纤传感器器件是由XXX公司生产的,采用高精度表面贴装工艺,结构小巧,反应迅速,适合作为精密机械设备中的传感器使用。
此款器件采用单模光纤非接触式测量,最大位移量可达到±100mm,分辨率为1m以下,误差低于1%。
为了测试光纤传感器的位移特性,设计了一个由钢丝和支架组成的测试装置,将光纤传感器的光路安装在测试装置的两个固定点上,模拟了实际工作环境中的物理位移,测试装置还具有一定的可调性,可以满足不同的测试要求。
根据实验设计,将光纤传感器安装在协调测试装置上,通过实验室校验系统调节设备参数,如增益和温度,以保证测量结果的准确性,将器件设置为双轴平行模式,然后选择不同增益,模拟不同物理位移。
在每组测试中,模拟的位移值为10mm,20mm,30mm,40mm,50mm,60mm,70mm,80mm,90mm,100mm;每组测试都重复进行了三次,以获得有效的测量结果。
根据测量结果,绘制出光纤传感器的位移特性
图,将量测到的位移值与模拟的位移值进行比较,以确定光纤传感器的准确度。
实验结果表明,在测量范围内,光纤传感器的实测位移与模拟位移之间的误差在1μm以内,无论是在纵轴还是横轴方向,测量精度均达到了预期的要求。
光纤传感器实验
实验5—5 光纤传感器实验人类进人21世纪,信息传递的方式也在悄然改变。
从两根电线传输一路电话到一根光纤传输几十、几百路电话,从海底电缆到欧亚光缆,光纤传递光信息的优点是显而易见的。
光在光纤中不断地被全反射传输,免受大气的干扰、散射,衰减大大减少,从而实现上百公里的远距离传输而不需要中间放大器。
光纤在信息传输中的应用已为人们所熟知,但将光纤用作传感器却了解不多,该实验将介绍反射式光纤位移传感器,增强对光纤传感器的了解。
光纤传感器是一种新型传感器,随着其技术的日益发展,应用越来越广泛。
光纤传感器的机理是外界物理量的变化导致光纤参数的相应改变,例如应力或温度变化时,会引起光纤长度和折射率的变化,从而形成光纤应变或温度传感器。
光纤传感器具有许多优点:重量轻、灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;耐高温、耐化学腐蚀、耐水性好,还能高速率和大容量传输测得的信息,便于测试自动化和远距离传输;光纤传感器可以用于高压、电气、噪音、高温、腐蚀或其他的恶劣环境,并可实现非破坏和非接触测量,而且具有与光纤遥感技术的内在相容性。
目前,正在研制中的光纤传感器有磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和压变等类型的光纤传感器。
【实验目的】1.了解光纤、光纤传感器的基本概念。
2.了解反射式光纤位移传感器的基本原理。
3.测量并绘出输出电压与位移特性曲线。
4.了解利用反射式光纤位移传感器测量转盘转速和振动频率的工作原理。
【实验原理】Array1.光纤的基本知识1)光纤的基本结构光纤(Optic Fiber)是光导纤维的简称,一般由纤芯、包层、涂敷层与护套构成,是一种多层介质结构的对称性柱体光学纤维。
光纤的一般结构如图5-5-1所示。
纤芯和包层为光纤结构的主体,对光波的传播起着决定性作用,其中纤芯是光密媒质,包层是光疏媒质。
涂敷层与护套则主要用于隔离杂散光,提高光纤强度,保护光纤。
光纤传感器的位移测量与及数值误差分析实验
实验报告:实验07(光纤传感器的位移测量与及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
光纤传感器的位移测量与及数值误差分析实验
光纤传感器的位移测量与及数值误差分析实验一、实验原理1.光纤传感器工作原理2.实验仪器和材料(1)光纤传感器:包括光源、探头和电子控制单元。
(2)被测物体:选择一个具有一定位移范围的物体,如斜坡或弹簧。
(3)信号处理器:用于采集和处理光纤传感器的输出信号。
3.实验步骤(1)将光纤传感器的探头安装在被测物体上,并将光源和电子控制单元连接好。
(2)调整光纤传感器的位置和方向,使其能够正确地检测到被测物体的位移。
(3)通过信号处理器采集光纤传感器的输出信号,并进行相应的数据处理。
(4)对被测物体进行一系列的位移变化,记录光纤传感器的输出信号,并计算位移值。
(5)分析和比较测量结果,评估光纤传感器的测量精度和可靠性。
二、数值误差分析1.线性度误差线性度误差是指光纤传感器在测量范围内的输出与被测物体实际位移之间的偏差。
通过在不同位移范围内进行测量,可以绘制出光纤传感器的输入输出曲线,并通过拟合得到线性度误差。
2.灵敏度误差灵敏度误差是指光纤传感器输出信号的增益与被测物体位移之间的偏差。
通过改变被测物体的位移步长,可以测量得到不同位移值下的输出信号,并计算灵敏度误差。
3.常数误差常数误差是指光纤传感器输出信号在零位移点上的固有偏移。
可以通过将被测物体置于零位移点附近,记录测量结果,并计算常数误差。
4.稳定性误差稳定性误差是指光纤传感器在长时间测量过程中输出信号的波动。
通过对输出信号进行连续测量,并统计其标准差,可以评估光纤传感器的稳定性。
5.总误差估计将上述各项误差进行合并,可以得到光纤传感器的总体误差估计。
同时,也可以根据具体的应用需求,确定误差允许范围,评估光纤传感器的适用性。
通过以上实验步骤和数值误差分析,可以深入了解光纤传感器的位移测量原理,并评估其测量精度和可靠性。
同时,针对实验结果中的误差,可以进一步优化光纤传感器的设计和应用。
第五次 光纤传感器的位移测量,转速测量
第五次光纤传感器的位移测量,光电传感器测速
一、实验目的
1.学习和掌握光芯位移传感器的工作原理和应用
2.了解光电开关的原理和应用
二、实验原理
光学原理、红外光发射、接收
三、实验原理
1.光纤传感器
1)位移测量(实线)
(1)紧贴调整使Vo最小时,记下Xo,Vo
(2)每隔记录V值
2)振动实验(虚线)
(1)移开测微头,使振动台处于自由状态
(2)根据前面的V-X曲线,选取前坡中点,固定光纤探头
(3)低频振荡器频率,幅值适中(振动不碰触探头,f=8Hz时振动最强)
激励开关“I”
(4)用示波器观察光纤输出波形
3)应用(电机叶片平整度及特性测量)
(1)光纤探头旋转对准叶片,其高度为前坡中点处
(2)电机旋转观察示波器波形
(3)转速测量
四、实验报告要求
1.作出光纤传感器的V-X曲线,分析出现峰值的原因,应用时选取曲线那段为宜;
2.光纤、光电测速的环境条件、性能。
优缺点。
实验五 光纤传感器位移测量
实验五光纤传感器位移测量一、目的1 .熟悉反射式强度外调制光纤位移传感器的工作原理。
2 .掌握光纤位移传感器测量位移的方法。
二、实验设备光纤(光电转换器〉、光纤光电传感器实验模块、电压表、示波器、螺旋微仪、反射镜片三、实验原理1 .光纤导光的基本原理。
光是一种电磁波,一般采用波动理论来分析导光的基本原理。
然而根据光学理论:当所研究对象的几何尺寸(指光纤的芯径)远大于所用光波的波长,而光波又处在折射率变化缓慢的空间时可用“光线”即几何光学这一直观又容易理解的方法来分析光波的传播现象。
根据折射定律:光由光密媒质n0 射向光疏媒质n1时,折射角大于入射角,当入射角增至某一临界角ϕc时,出射光线沿两媒质的分界面传播,当入射角继续增大,ϕ0 >ϕc时,入射光线将不能穿过分界面而被完全反射回光密媒质中,这就是全反射。
光纤是由折射率较高(光密介质)的纤芯和折射率较低(光疏介质)的包层构成的双层同心圆柱结构。
能在光纤中传输的光线是满足全反射条件的子午光线(过光纤的轴心线,传播路径始终在一个平面内。
)和斜光线(不经过光纤轴心,不在一个平面内,它是一空间曲线)这两种光线称为受导光线。
在此只简要说明子午光线入射光纤的情况。
当光线与光纤光轴成θ角入射时,在纤芯内部将以ϕ0入射到纤芯的侧壁。
由于ϕ0>ϕc和n0> n1 ,则光在侧壁上产生连续向前的全反射,光在纤芯内成“之”字形传导,直至由终端射出。
如果入射角θ过大致使ϕ0角不能满足全反射的临界要求,即ϕ0< ϕc,光线会穿过纤芯的侧壁而逸出,产生漏光。
因此,最大入射角θ不能超过下式所要求的值式中,n为光纤所在环境的折射率(若为空气,则n=1),n sin 定义为数值孔径,记作NA,它是衡量光纤集光性能的主要参数。
它表示,无论光源发射功率多大,只有2θ张角内的光才能被光纤接收、传播(全反射),NA愈大,光纤的集光能力愈强。
2.光纤中光波的调制和相关的反射机制。
传感器实验报告--光纤位移传感器的动态测量
传感器实验报告--光纤位移传感器的动态测量北京XX大学实验报告课程(项目)名称:实验五光纤传感器动态测量学院:自动化专业:班级:学号:姓名:成绩:2019年12月10日光纤位移传感器的动态测量一一、任务与目的了解光纤位移传感器的动态应用。
二、原理(条件)光电传感器是一种广泛应用的传感器,它把输入的光信号转换成电信号输出。
光纤是一种光电式传感器。
反射式光纤位移传感器采用Y型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起到传输信号的作用,当发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接收到的光转换为电信号。
其输出的光强取决于反射体距光纤探头的距离,通过对光强的检测而得到位移量。
三、内容与步骤(1) 了解激振线圈在实验仪上所在位置及激振线圈的符号。
(2) 在实验(三十一)中的电路中接入低通滤波器和示波器,如图32接线。
图32(3)将测微头与振动台面脱离,测微头远离振动台。
将光纤探头与振动台反射纸的距离调整在光纤传感器工作点即线性段中点上(利用静态特性实验中得到的特性曲线,选择线性中点的距离为工作点,目测振动台上的反射纸与光纤探头端面之间的相对距离即线性区ΔX的中点)。
(4) 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频率与幅度旋钮,使振动台振动且振动幅度适中;(5) 保持低频振荡器输出的Vp-p幅值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的Vp-p值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮使Vp-p相同),将频率和示波器上所测的峰峰值(此时的峰峰值Vp-p是指经低通后的Vp-p)填入表格记录,并作出幅频特性图。
(6)关闭主、副电源,把所有旋钮复原到原始最小位置。
四、数据处理(现象分析)光纤位移传感器的动态测量二一、任务与目的了解光纤位移传感器的测速运用。
二、原理(条件)电机转速n等于脉冲信号的频率f除以电机上反光片的数目N。
光纤传感器测量转速实验
光纤传感器测量转速实验光纤传感器是一种利用光纤的光学性质来测量物理量的传感器。
它的工作原理是利用光纤的全反射特性,在光纤内部传输光信号,通过光纤与外部物体的互动,将外部物体的物理量转换成光信号的变化,最终将光信号变成电信号,实现对物理量的测量。
在实际应用中,光纤传感器被广泛用于加速度、压力、温度、湿度、流量等物理量的测量。
本文将介绍如何使用光纤传感器测量转速。
实验原理:传统的转速测量方法通常是使用机械式传感器测量导致转速的感应符号,但机械式传感器易受到环境的影响,导致测量结果不准确。
幸运的是,我们可以利用光纤传感器进行非接触式的转速测量。
转速测量的原理就是通过光纤传送信号,依靠转动物体自身的特性产生光的折射变化,测过折射角差就能够知道物体的转速了。
物体的转速越快,它的折射角度变化也就越大,所以可以通过光纤传感器来测量转速。
实验步骤:1.准备实验所需的器材和耗材,包括转速测量装置、激光光源、光纤传感器、计算机等。
2.将激光光源连接到转速测量装置上,将光纤传感器的头部固定到转速测量装置上。
控制好它们之间的距离,调整好位置和角度。
3.启动计算机,并将数据采集软件连接到转速测量装置上。
4.将待测物体置于传感器与激光之间,并进行校准,保证测量的可靠性和准确性。
6.根据采集的数据,计算出物体的转速。
实验注意事项:1.在进行测量时,必须保持光纤传感器与待测物体之间的距离始终不变,且距离不能太远或太近,否则会影响测量结果。
2.不同类型的物体对光线的反射和折射能力不同,对测量结果也会产生影响,因此在进行实验时需要根据不同的样品进行调整和校准。
3.了解和掌握好光纤传感器测量方法的基本技术,并进行正确和谨慎的操作,以避免意外事故的发生。
总之,光纤传感器利用其高精度的测量能力,在工业、计量、科学研究等领域中都有广泛的应用,其测量原理简单,操作方便,具有非常高的效率和准确性,可以提高测量数据的可靠性,是高效测量和实验研究的必备工具之一。
光纤传感器测量转速原理
光纤传感器测量转速原理光纤传感器是利用光的传输来实现测量的一种传感器。
它的应用范围非常广泛,譬如机电加工、医疗器械、农业生产等等,由于它有很多的优点,所以其使用越来越广泛。
一、光纤传感器的构成光纤传感器主要分为三部分,分别是光纤、光源和光接收器。
首先是光源,它可以是LED、激光等光源,其作用是将光引入到光纤中。
其次是光接收器,它可以是光电二极管或是光纤仪器来进行光的接收。
最后是光纤,光纤是传感器的灵魂所在,它起到传输光的作用,传输的过程中对应着一种反射关系,而这种反射关系也是光纤传感器测量转速原理的基础。
二、光纤传感器测量转速的原理光纤传感器的工作原理是利用光纤中的反射关系来实现测量转速。
当被测物体是圆形的时候,可以将光纤缠绕在被测物体上,当物体旋转时,激光通过光纤中的反射,当反射光进入光接收器时,通过反射点数来计算被测物体的转速。
三、光纤传感器测量转速的优势光纤传感器测量转速的具体优势有以下几个方面:(1)精度高。
使用光纤传感器进行转速测量的工作过程和结果是非常准确的。
(2)安全性高。
光纤传感器测量转速不需要直接接触物体,所以可以避免在测量过程中受到伤害的风险。
(3)稳定性高。
光纤传感器的构成非常简单,内部没有机械部件,操作起来相比其他测量方法更稳定。
(4)易于操作。
光纤传感器的操作简单,需要的设备也比较简单,只需要一个光纤和接收器,不需要额外的组件。
总之,光纤传感器是一种非常有用的技术,而它在测量转速方面的应用也非常广泛。
通过上文的介绍,我们可以发现光纤传感器测量转速的原理是非常简单的,但是却可以提供非常精确和可靠的结果,因此适用范围非常广泛。
希望大家能够认真学习和应用这一技术,以便彻底掌握它的工作原理和应用方法,为实际工作中的需要带来更多的创新和发展。
光纤传感器测速实验
光纤传感器测速实验
一、实验目的:了解光纤位移传感器用于测量转速的方法。
二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元测转速档、直流源±15V、转速调节2-24V,转动源单元。
四、实验步骤:
1、将光纤传感器按下图装于传感器支架上,使光纤探头与电机转盘平台中反射点对准。
2、按下图将光纤传感器实验模板输出V 01与数显电压表V I 端相接,接上实验模板上±15V 电源,数显表的切换开关选择开关拨到2V 档。
①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节R W 使数显表显示接近零(≥0)。
②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的压差值最大,再将V01与转速/频率数显表
F in 输入端相接,数显表的波段开关拨到转速档。
3、将转速调节2-24V,接入转动电源24V 插孔上,使电机转动,逐渐加大转速源电压。
使电机转速盘加快,固定某一转速观察并记下数显表上读数n1。
4、固定转速电压不变,将选择开关拨到频率测量档,测量频率记下频率读数,根据转盘上的测速点数折算成转速值n2。
5、将实验步骤4与实验步骤3比较,以转速n1作为真值计算二种方法的测速误差(相对误差),相对误差r=((n1-n2)/n1)×100%。
五、思考题:测量转速时转速盘上反射 (或吸收点)的多少与测速精度有否影响,你可以用实验来验证比较转盘上是一个黑点的情况。
《传感器及检测技术》实验5 光纤传感器位移特性及测速实验
实验五光纤传感器位移特性及测速实验一、实验目的了解反射式光纤位移传感器的原理与应用。
了解光纤位移传感器用于测转速的方法。
二、实验仪器Y 型光纤传感器、测微头、反射面、差动放大器、电压放大器、数显电压表、频率/转速表、转动源、示波器、直流稳压电源。
三、实验原理反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图5-1 所示,光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图5-1 反射式光纤位移传感器原理图5-2 光纤位移传感器安装示意图在测速时,需利用光纤位移传感器探头对旋转被测物反射光的明显变化产生电脉冲,经电路处理即可测量转速。
四、实验内容与步骤(1)光纤传感器位移特性实验1.光纤传感器的安装如图5-2 所示,将Y 型光纤结合处安装在传感器固定支架上,光纤分叉两端插入“光纤插座”中。
探头对准镀铬反射板(铁质材料圆盘),固定在测微头上。
按图5-3接线,电压放大器的输出接直流电压表。
2.将测微头起始位置调到10cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。
3.将“差动变压器”与“电压放大器”的增益调节旋钮调到中间位置。
打开直流电源开关。
4.将“电压放大器”输出端接到直流电压表(20V档),仔细调节调零电位器使电压表显示为零。
5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.2mm读出一次输出电压U值,图5-3 光纤位移传感器接线图(2)光纤传感器测速实验1.将光纤传感器安装在传感器升降架上,使光纤探头对准转动盘边缘的反射点,探头距离反射点1mm左右(在光纤传感器的线性区域内)。
光纤位移传感器-位移测试实验.
3 光纤探头安装于位移平台的支架 上用紧定螺丝固定,电机叶片对准 光纤探头。 4 尽量降低室内光照,移动位移平 台使光纤探头紧贴反射面,此时 变换电路输出电压Vo应约等于零。 5 旋动螺旋测微仪带动位移平台使 光纤端面离开反ห้องสมุดไป่ตู้叶片,每旋转 一圈(0.5毫米)记录Vo值,并将记录 结果填入表格,做出距离X与电压值 mV的关系曲线。
实验五
光纤位移传感器-位移测试实验 (验证性)
实验所需部件: 光纤、光电变换器、放大 稳幅电路、近红外发射及 检测电路(光纤变换电路 内)、反射物(电机叶 面)、电压表
光纤位移传感器工作原理图
实验步骤
• 1、观察光纤结构:一支发射、另一支为接 收的多模光纤,两端合并处为半圆形结构, 光纤质量的优劣可通过对光照射观察光通 量的大小而得出结论。 • 2、光电传感器内发射光源是近红外光,接收 电路接收近红外信号后经稳幅及放大输出。
光纤传感器在转速测量中的应用
实验四:光纤传感器在转速测量中的应用
一、实验目的:了解结构型光纤传感器在转速测量中的应用。
二、实验内容:实验原理基本同于光纤传感器在移测量中的应用(A)。
当光纤探头与反射面的相对位置发生周期性变化时,光电变换器输出电量也发生相应的变化,经V /F 电路变换成方波频率信号输出,这样,就可以根据方波频率信号计算出反射面转动物体的转速。
三、实验要求:
1.光纤探头要保持与转盘平行,切不可相擦,以免使光纤受损。
2.实验时应避免强光直射转盘上面,以免造成测量误差。
3.实验开始前,转动电机开关应置于“关”一侧,以保证稳压电源正常工作。
四、实验装置:
同实验一。
五、实验步骤:
1.将光纤探头转向置于测速电机转盘的上方,并调整探头高度使探头距转盘顶面2~3mm ,光纤探头以对准转盘边缘内侧3~5mm 处为宜。
2.光纤探头接光电变换器,输出F o 端接电压\频率表2KHZ 档。
开启电机开关,使转盘旋转起来。
3.在转盘的有效转速范围内选用高,中,低三种不同的转速,用频率表读出光电变换器的输出频率f 。
六、实验数据及处理:
1.依据光电变换器的输出频率f 计算转盘转速 (转/分)
答:转速公式: n =
2
0P ×60 ,实验中观测的3个输出频率分别为: 14Hz ; 50Hz ; 76Hz
答: 方波曲线由实验软件绘制,见下页附表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五次光纤传感器的位移测量,转速测量,光电传感器测速
一、实验目的
1.学习和掌握光芯位移传感器的工作原理和应用
2.了解光电开关的原理和应用
二、实验原理
光学原理、红外光发射、接收
三、实验原理
1.光纤传感器
1)位移测量(实线)
(1)紧贴调整使Vo最小时,记下Xo,Vo
(2)每隔0.25mm 记录V值
2)振动实验(虚线)
(1)移开测微头,使振动台处于自由状态
(2)根据前面的V-X曲线,选取前坡中点,固定光纤探头
(3)低频振荡器频率,幅值适中(振动不碰触探头,f=8Hz时振动最强)激励开关“I”
(4)用示波器观察光纤输出波形
3)应用(电机叶片平整度及特性测量)
(1)光纤探头旋转对准叶片,其高度为前坡中点处
(2)电机旋转观察示波器波形
(3)转速测量
四、实验报告要求
1.作出光纤传感器的V-X曲线,分析出现峰值的原因,应用时选取曲线那段为宜;
2.光纤、光电测速的环境条件、性能。
优缺点。