3.2古典型概率
高中数学第3章概率3.2古典概型互动课堂学案苏教版必修3
3.2 古典概型互动课堂疏导引导根本领件是指在一次试验中可能出现每一个根本结果.假设在一次试验中,每个根本领件发生可能性一样,那么称这些根本领件为等可能根本领件.例如:在掷硬币试验中,必然事件由根本领件“正面朝上〞和“反面朝上〞组成;在掷骰子试验中,随机事件“出现偶数点〞可以由根本领件“2点〞“4点〞和“6点〞共同组成.案例1 从含有两件正品a 1,a 2和一件次品b 13件产品中每次任取1件,每次取出后不放回,连续取两次.〔1〕写出这个试验根本所有事件;〔2〕以下随机事件由哪些根本领件构成:事件A :取出两件产品都是正品;事件B :取出两件产品恰有1件次品.【探究】(1)根本领件〔a 1,a 2〕,(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)共有6个根本领件. 〔2〕事件A 包含2个根本领件〔a 1,a 2〕,(a 2,a 1).事件B 包含4个根本领件〔a 1,b 1〕,(b 1,a 1),(a 2,b 1)(b 1,a 2).规律总结 (1)在求根本领件时,一定要注意结果时机是均等,这样不会漏写.其次要按规律去写.〔2〕在这个试验中〔a 1,a 2〕和〔a 2,a 1〕,(a 1,b 1)和〔b 1,a 1〕,(a 2,b 1)和〔b 1,a 2〕是不同根本领件,在取第1件产品时,a 1,a 2,b 1被取到时机一样,假设第一次取出a 1,那么第2次取时,a 2,b 1时机也是一样.古典概型是指具有以下两个特点随机试验概率模型称为古典概型:〔1〕所有根本领件只有有限个;〔2〕每个根本领件发生都是等可能.疑难疏引 〔1〕一个试验是否为古典概型,在于这个试验是否具有古典概型两个特征——有限性和等可能性.②并不是所有试验都是古典概型,例如在适宜条件下“种下一粒种子观察它是否发芽〞,这个试验根本领件为“发芽〞,“不发芽〞,而种子“发芽〞与“不发芽〞这两种结果出现时机一般不是均等,这个试验就不属于古典概型.(2)古典概型由于满足根本领件有限性和根本领件发生等可能性这两个重要特征,所以求事件概率就可以不通过大量重复试验,而只要通过对一次试验中可能出现结果进展分析和计算即可.如果一次试验等可能根本领件共有n 个,那么每一个等可能事件发生概率为n1.假设某个事件A 包含了其中m 个等可能事件,那么事件A 发生概率为P 〔A 〕=nm =基本事件总数中所含的基本事件数A . 疑难疏引 〔1〕古典概型概率取值范围在古典概型中,假设根本领件总数为n,某个事件A 包含了其中m 个根本等可能事件,那么必有0≤m≤n,所以事件A 发生概率取值范围是0≤P(A)≤1.其中,当m=0时,事件A 是不可能事件,它发生概率为0,当m=n 时,事件A 是必然事件,它发生概率是1,当0<m <n 时,事件A 是随机事件,此时它发生概率取值范围是0<P(A)<1.〔2〕解决古典概型问题关键是分清根本领件个数n 与事件A 中所包含结果数,因此要注意以下三个方面:①本试验是否具有等可能性;②本试验根本领件有多少个;③事件A 是什么.只有清楚了这三个方面问题,解题才不至于出错.〔3〕求古典概率应按下面四个步骤进展:第一,仔细阅读题目,弄清题目背景材料,加深理解题意.第二,判断本试验结果是否为等可能事件,设出所求事件A.第三,分别求出根本领件个数n 与所求事件A 中所包含根本领件个数m.第四,利用公式P 〔A 〕=nm 求出事件A 概率. 可见在运用公式计算时,关键在于求出m 、n.在求n 时,应注意这n 种结果必须是等可能,在这一点上比拟容易出错.例如,先后抛掷两枚均匀硬币,共出现“正,正〞“正,反〞“反,正〞“反,反〞这四种等可能结果.如果认为只有“两个正面〞“两个反面〞“一正一反〞这三种结果,那么显然这三种结果不是等可能.在乘m 时,可利用列举法或者结合图形采取了列举方法,数出事件A 发生结果数.〔4〕用集合观点去审视概率在一次试验中,等可能出现n 〔例如n=5〕个结果可组成一个集合I,这n 个结果就是集合In 个元素.各个根本领件都对应于集合I 含有1个元素子集,包含m 〔例如m=3〕个结果事件A 对应于I 含有m 个元素子集A.从集合角度看,事件A 概率是I 子集A 元素个数card 〔A 〕与集合I 元素个数card(I)比值,即P 〔A 〕=(例如53). 案例2 抛掷两颗骰子,求〔1〕点数之和是4倍数概率;〔2〕点数之和大于5小于10概率.【探究】抛掷两颗骰子,根本领件总数为36.但所求事件根本领件个数不易把握,很容易出现遗漏或重复,故可借助直观图形,以便更准确地把握根本领件个数.作图,从以下图中容易看出根本领件与所描点一一对应,共36种.(1)记“点数之和是4倍数〞事件为A,从图中可以看出,事件A 包含根本领件共有9个:〔1,3〕,〔2,2〕,〔3,1〕,〔2,6〕,〔3,5〕,〔4,4〕,〔5,3〕,〔6,2〕,〔6,6〕.所以,P 〔A 〕=41. 〔2〕记“点数之和大于5小于10”为事件B,从图中可以看出,事件B 包含根本领件共有20个,即〔1,5〕,〔2,4〕,〔3,3〕,〔4,2〕,〔5,1〕,〔1,6〕,〔2,5〕,〔3,4〕,〔4,3〕,〔5,2〕,〔6,1〕,〔2,6〕,〔3,5〕,〔4,4〕,〔5,3〕,〔6,2〕,〔3,6〕,〔4,5〕,〔5,4〕,〔6,3〕. 所以P 〔B 〕=.规律总结 〔1〕计算这种概率一般要遵循这样步骤:①算出根本领件总个数n ;②算出事件A 中包含根本领件个数m ;③算出事件A 概率,即P 〔A 〕=nm .应注意这种结果必须是等可能.〔2〕在求概率时,常常可以把全体根本领件用直角坐标系中点表示,以便准确地找出某事件所含根本领件个数.案例3 一个口袋内有大小相等一个白球和已编有不同号码3个黑球.(1)假设从中摸出一球后放回,再摸一球,求两次摸出球都是黑球概率.(2)假设从中一次摸出2球,求2球都是黑球概率.【探究】(1)第一次摸球有4种不同结果,每一种结果是等可能,第二次摸球也有4种不同结果,每一种结果也是等可能,所以共有4×4=16种不同结果.这16种结果是等可能,所以一次试验是古典概型,它根本领件总数为16.第一次摸出黑球有3种不同结果,第二次摸出黑球也有3种不同结果,故摸出球都是黑球根本领件数为3×3=9,设A=“有放回摸2球黑球〞,那么P 〔A 〕=169. 〔2〕一次摸出2球,可以看作不放回抽样2次.第一次抽取有4种不同结果,第二次抽取有3种不同结果,且它们都是等可能,所以一次试验共有4×3=12种不同结果,并且是等可能,是古典概型.共有12个根本领件.第一次摸出黑球有3种结果,第二次摸出黑球有2种不同结果,故摸出2球,都是黑球根本领件数为3×2=6.设B=“一次摸出2时为黑球〞,那么P 〔B 〕=.规律总结(1)为有放回抽取问题,此类问题每次抽取球可以重复,每次抽取结果个数一样,可以无限地进展下去.〔2〕是不放回抽取问题,此类问题每次摸出球不出现重复,每次抽取结果个数不同,只能抽取有限次.案例4 甲、乙两人做掷骰子游戏,两人各掷一次,谁掷得点数多谁就取胜,求甲取胜概率.【探究】首先列举出所有可能根本领件,列出所求事件包含根本领件,再根据古典概型概率公式进展计算.解法一:甲将骰子抛掷一次,出现点数有1、2、3、4、5、6这6种结果,对甲掷得每个结果,乙又掷得点数分别为1、2、3、4、5、6这6种结果,于是共有6×6=36种不同结果. 把甲掷得i 点,乙掷得j 点〔1≤i,j≤6〕记为〔i,j 〕.事件“甲取胜〞包含以下15种结果:〔2,1〕,〔3,1〕,〔3,2〕,〔4,1〕,〔4,2〕,〔4,3〕,〔5,1〕,〔5,2〕,〔5,3〕,〔5,4〕,〔6,1〕,〔6,2〕,〔6,3〕,〔6,4〕,〔6,5〕. 故甲取胜概率为3615=125. 解法二:3615=125. 规律总结 掷骰子是典型题型,此题与解析几何知识相联系,在如以下图所示直角坐标系中,假设x 表示甲掷得点数,y 表示乙掷得点数,此题实质就是求点〔x,y 〕落在直线y=x 下方概率.活学巧用1.写出以下试验根本领件:〔1〕甲、乙两队进展一场足球赛,观察甲队比赛结果〔包括平局〕________________; 〔2〕从含有6件次品50件产品中任取4件,观察其中次品数__________________. 答案:〔1〕胜、平、负〔2〕0,1,2,3,42.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.〔1〕写出这个试验所有根本领件;〔2〕求这个试验根本领件总数;〔3〕“恰有两枚正面向上〞这一事件包含哪几个根本领件?解析:〔1〕这个试验根本领件〔正,正,正〕,〔正,正,反〕,〔正,反,正〕,〔正,反,反〕,〔反,正,正〕,〔反,正,反〕,〔反,反,正〕〔反,反,反〕.〔2〕根本领件总数是8.〔3〕“恰有两枚正面向上〞包含以下3个根本领件:〔正,正,反〕,〔正,反,正〕,〔反,正,正〕.3.作投掷2颗骰子试验,用〔x,y 〕表示结果,其中x 表示第1颗骰子出现点数,y 表示第2颗骰子出现点数,写出:〔1〕事件“出现点数之和大于8”;〔2〕事件“出现点数相等〞;〔3〕事件“出现点数之和大于10”.解析:〔1〕〔3,6〕,〔4,5〕,〔4,6〕,〔5,4〕,〔5,5〕,〔5,6〕,〔6,3〕,〔6,4〕,〔6,6〕. 〔2〕〔1,1〕,〔2,2〕,〔3,3〕,〔4,4〕,〔5,5〕,〔6,6〕.〔3〕〔5,6〕,〔6,5〕,〔6,6〕.4.以下试验中,是古典概型有〔 〕250 mm±0.6 mm 一批合格产品中任意抽一根,测量其直径dC.抛一枚硬币,观察其出现正面或反面解析:C 项中试验满足古典概型两个特征——有限性和等可能性.答案:C5.向一圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能,你认为这是古典概型吗?为什么?解析:不是古典概型.因为该试验虽具有古典概型特征——等可能性,但不具有有限性,而具有无限性.6.同时掷一样两枚硬币, 观察正、反面出现情况,这个试验根本领件为〔正,正〕,〔正,反〕,〔反,反〕,它共有3个根本领件,故出现〔正,正〕概率是31.这个题目解法是否正确. 解析:根本领件为〔正,正〕,〔正,反〕,〔反,正〕,〔反,反〕,它有4个根本领件,故出现〔正,正〕概率为41. 答案:不正确7.将1枚硬币抛2次,恰好出现1次正面概率是〔 〕 A.21 B.41 C.43 解析:抛2次恰好出现1次正面包含2个根本领件,这个试验根本领件总数为4, ∴恰好出现1次正面概率是.答案:A8.据人口普查统计,育龄妇女生男生女是等可能,如果允许生育二胎,那么某一育龄妇女两胎均是女孩概率是〔 〕 A.21 B.31 C.41 D.51解析:事件“该育龄妇女连生两胎〞包含4个根本领件,即〔男,男〕、〔男,女〕、〔女,男〕、〔女,女〕,故两胎均为女孩概率是41. 答案:C9.在一次问题抢答游戏中,要求找出对每个问题所列出4个答案中唯一正确答案.其抢答者随意说出了其中一个问题答案,这个答案恰好是正确答案概率为〔 〕 A.21 B.41 C.81 D.161 解析:P=.答案:B10.一只口袋内装有大小一样5只球,其中3只白球,2只黑球,从中一次摸出两只球.问: 〔1〕共有多少个根本领件?〔2〕摸出两只球都是白球概率是多少?解析:〔1〕分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下根本领件〔摸到1,2号球用〔1,2〕表示〕:〔1,2〕,〔1,3〕,〔1,4〕,〔1,5〕,〔2,3〕〔2,4〕,〔2,5〕,〔3,4〕,〔3,5〕,〔4,5〕因此,共有10个根本领件.〔2〕如以下图,上述10个根本领件发生可能性一样,且只有3个根本领件是摸到两只白球〔记为事件A 〕,即〔1,2〕,〔1,3〕,〔2,3〕,故P 〔A 〕=103.答:〔1〕共有10个根本领件;〔2〕摸出两只球都是白球概率为103. 11.将骰子先后抛掷2次,计算:〔1〕一共有多少种不同结果?〔2〕其中向上数之和是5结果有多少种?〔3〕向上数之和是5概率是多少?分析:将骰子先后抛掷2次,实际上是分两个步骤完成,第一次抛掷骰子出现点数有6种结果,第二次抛掷骰子出现点数也有6种结果.只有将这两个步骤依次全部完成才算是将骰子先后抛掷两次这件事完成.因此将骰子先后抛掷两次试验根本领件数为6×6=36.解:〔1〕将骰子抛掷1次,它落地时向上数有1,2,3,4,5,6这6种结果,根据题意,先后将骰子抛掷2次,一共有6×6=36种不同结果.〔2〕在上面所有结果中,向上数之和为5结果有〔1,4〕,〔2,3〕,〔3,2〕,〔4,1〕4种,其中括弧内前、后两个数分别为第1、2次抛掷后向上数.上面结果可用以下图表示,其中不在虚线框内各数为相应2次抛掷后向上数之和.〔3〕由于骰子是均匀,将它抛掷2次所有36种结果是等可能出现,其中向上数之和是5结果〔记为事件A 〕有4种,因此,所求概率P 〔A 〕=.答:先后抛掷骰子2次,一共有36种不同结果;向上数之和为5结果有4种,概率是91. 12.有红、黄两种颜色小旗各2面,从中任取2面挂在一根旗杆上,求:〔1〕2面旗子同色概率;〔2〕2面旗子颜色各不一样概率.解析:设两面红旗和两面黄旗分别记为红1、红2和黄1、黄2,那么根本领件共有〔红1,红2〕,〔红1,黄1〕,〔红2,黄1〕,〔红1,黄2〕,〔红2,黄2〕,〔黄1,黄2〕计6个. 〔1〕设2面旗子同色这一事件为A,那么A为〔红1,红2〕,〔黄1,黄2〕共2个,所以2面旗子同色概率为P=.〔2〕设2面旗子不同色这一事件为B,那么B为〔红2,黄1〕,〔红2,黄1〕,〔红1,黄2〕,〔红1,黄2〕,B包含4个根本领件,所以2面旗子颜色不一样概率为.13.从1,2,3,…,50中任取一个数,求以下事件概率.〔1〕它是奇数;〔2〕它能被5整除;〔3〕它是奇数且能被5整除.解析:〔1〕设从50个数中任取一数,取得奇数为事件A,那么A包含25个根本领件,故P〔A〕=.〔2〕设取得一数,该数被5整除为事件B,B包含10个根本领件,故P〔B〕=.〔3〕设取得一数,该数是奇数且被5整除为事件C,那么C包含5个根本领件,故P〔C〕=.。
古典型概率
(1)试验的基本事件;8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11、袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
12、口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
12、为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.(1)求当选的4名同学中恰有1名男同学的概率;(2)求当选的4名同学中至少有3名女同学的概率.【参考答案】1-5:DDBBC 6-10:BCCBD11、(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)(1)34 (2)14 (3)1212、把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A ,则121()242P A ==。
高中数学第3章概率321古典概型的特征和概率计算公式课件北师大版必修3
(2)所有受到表彰奖励可能的结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{B,C}, {B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D, E},{D,F},{E,F},共 15 种, A 与 B 只有一个受到表彰奖励的结果为 {A,C},{A,D},{A,E},{A,F},{B,C},{B,D}, {B,E},{B,F},共 8 种, 则 A 与 B 只有一个受到表彰奖励的概率为 P=185.
甲、乙两人做出拳游戏(锤子、剪子、布),求: (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率. 【思路启迪】 (1)求基本事件个数的方法有几种? (2)本题用哪种较为合适?
【解】 甲有 3 种不同的出拳方法,每一种出法是等可能 的,乙同样有等可能的 3 种不同出法.一次出拳游戏共有 3×3 =9 种不同的结果,可以认为这 9 种结果是等可能的,所以一 次游戏(试验)是古典概型,总的基本事件个数为 9.
连续掷三枚硬币,观察落地后这三枚硬币出现正面还是反 面.
(1)写出这个试验的基本事件. (2)求这个试验的基本事件总数. (3)“恰有两枚正面向上”这一事件包含了哪几个基本事 件?
解:(1)这个试验的基本事件为(正,正,正),(正,正, 反),(正,反,正),(正,反,反),(反,正,正),(反,正, 反),(反,反,正),(反,反,反).
解析:用古典概型的两个特征去判断即可.
选项 分析
结果
A 发芽与不发芽的概率不同
不是
B
摸到白球与黑球的概率都是12
是
C 基本事件有无限个
不是
山东省高中数学《3.2古典概型》课件 新人教A版必修3
【题后反思】 1.当事件个数没有很明显的规律,并且涉及 的基本事件又不是太多时,我们可借助树状图法直观地将 其表示出来,这是进行列举的常用方法.树状图可以清晰 准确地列出所有的基本事件,并且画出一个树枝之后可猜 想其余的情况. 2.在求概率时,若事件可以表示成有序数对的形式,则 可以把全体基本事件用平面直角坐标系中的点表示,即采 用图表的形式可以准确地找出基本事件的个数.故采用数 形结合法求概率可以使解决问题的过程变得形象、直观, 给问题的解决带来方便.
【变式1】连续掷3枚硬币,观察落地后这3枚硬币出现正面还 是反面: (1)写出这个试验的所有基本事件; (2)求这个试验的基本事件的总数; (3)记A=“恰有两枚正面向上”这一事件,则A包含哪几个 基本事件?
解
(1)这个试验的基本事件集合为:
正,正,正,正,正,反,正,反,正,反,正,正, Ω= 正,反,反,反,正,反,反,反,正,反,反,反
判断一个试验是否为古典概型 2. 一个试验是否为古典概型,在于这个试验是否具有古典概 型的两个特点——有限性和等可能性,例如,在适宜的条 件下“种下一粒种子观察它是否发芽”,这个试验的基本事 件只有两个:发芽、不发芽,而“发芽”和“不发芽”这两种 结果出现的机会一般是不均等的;又如,从规格直径为 300±0.6mm的一批合格产品中任意抽一件,测量其直径d, 测量值可能是从299.4mm到300.6mm之间的任何一个值, 所有可能的结果有无限多个.因此这两个试验都不属于古 典概型.
题型四
利用树状图法或图表法求古典概型概率
【例4】有A、B、C、D四位贵宾,应分别坐在a、b、c、d四个 席位上,现在这四人均未留意,在四个席位上随便就坐时, (1)求这四人恰好都坐在自己的席位上的概率; (2)求这四人恰好都没坐在自己的席位上的概率; (3)求这四人恰好有1位坐在自己的席位上的概率. 审题指导 利用树状图法将A、B、C、D的就座情况一一 列出,再利用古典概型概率公式求概率.
【数学】3.2《古典概型》测试(苏教版必修3)(1)
高中苏教数学③3.2古典概型水平测试一、选择题1.将1枚硬币抛2次,恰好出现1次正面的概率是( ) A.12 B.14 C.34 D.0 答案:A2.高一(1)班有60名学生,其中女生有24人,现任选1人,则选中男生的概率是( ) A.25 B.35 C.160 D.1 答案:B3.任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是( ) A.17 B.27 C.149 D.249 答案:B4.某银行储蓄卡上的密码是一种4位数字号码,每位上的数字可在0,1,2,…,9这10个数字中选取,某人未记住密码的最后一位数字,若按下密码的最后一位数字,则正好按对密码的概率是( ) A.15 B.19 C.110 D.1100 答案:C 二、填空题5.连续3次抛掷一枚硬币,则正、反面交替出现的概率是 . 答案:146.在坐标平面内,点()x y ,在x 轴上方的概率是 .(其中{}012345x y ∈,,,,,,) 答案:56三、解答题7.在箱子里装有10张卡片,分别写有1到10的10个数字,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任意取出一张卡片,记下它的读数y . 求:(1)x y +是10的倍数的概率; (2)xy 是3的倍数的概率. 解:先后两次取卡片共有1010100⨯=种等可能结果(1)记“x y +是10的倍数”为事件A ,则该事件包括 (19)(28)(37)(46)(55)(64)(73)(82)(91)(1010),,,,,,,,,,,,,,,,,,,共10个基本事件.101()10010P A ==∴; (2)符合xy 是3的倍数,只要x 或y 是3的倍数即可,包括三类:①x 是3的倍数,y 不是3的倍数,有3721⨯=种;②y 是3的倍数,x 不是3的倍数,有7321⨯=种:③x y ,都是3的倍数有339⨯=种,故xy 是3的倍数共有51种.xy ∴是3的倍数的概率为51100.8.已知集合{}9753102468A =-----,,,,,,,,,,在平面直角坐标系中,点()x y ,的x A y A ∈∈,,且x y ≠,计算(1)点()x y ,不在x 轴上的概率;(2)点()x y ,正好在第二象限的概率.解:点()x y ,中,x A y A ∈∈,,且x y ≠,故x 有10种可能,y 有9种可能,所以试验的所有结果有10990⨯=种,且每一种结果出现的可能性相等. (1)设事件A 为“点()x y ,不在x 轴上”,那么y 不为0有9种可能.事件A 包含的基本事件个数为9981⨯=种.因此,事件A 的概率是81()0.990P A ==. (2)设事件B 为“点()x y ,正好在第二象限”.则0x <,0y >,x 有5种可能,y 有4种可能,事件B 包含的基本事件个数为5420⨯=.因此,事件B 的概率是202()909P B ==.备选题1.小红随意地从她的钱包中取出两枚硬币,已知她的钱包中有1分、2分币各两枚,5分币3枚,则她取出的币值正好是七分的概率是( )A.17 B.27 C.37 D.47 答案:B2.先后抛掷3枚均匀的1分、2分、5分硬币. (1)一共可能出现 种不同结果;(2)出现“2枚正面,1枚反面”的结果有 种; (3)出现“2枚正面,1枚反面”的概率是 . 答案:8;3;383.某学校成立三个社团,共60人参加,A 社团有39人,B 社团有33人,C 社团有32人,同时只参加A 、B 社团的有10人,同时只参加A 、C 社团的有11人,三个社团都参加的有8人.随机选取一个成员.(1)他至少参加两个社团的概率为多少? (2)他参加不超过两个社团的概率为多少?解:由Venn 图可求得各社团的情况如图所示,用D 表示他至少参加两个社团的概率,用E 表示他参加不超过两个社团的概率,则有 (1)至少参加两个社团的概率为7810113()605P D +++==.(2)68107101113()6015P E +++++==.4.从一副扑克牌(没有大小王)的52张牌中任取两张,求: (1)两张是不同花色牌的概率; (2)至少有一张是红心的概率.解:从52张牌中任取2张,取第一张时有52种取法,取第二张时有51种取法,但第一张取2,第二张取4和第一张取4,第二张取2是同一基本事件,故共有总取法种数为152512n =⨯⨯.(1)记“2张是不同花色牌”为事件A ,下面计算A 包含的基本事件数.取第一张时有52种取法,不妨设取到了方块,则第二张从红心、黑球、梅花共39张牌中任取一张,不妨设取了一张红心,第一张取方块,第二张取红心和第一张取红心,第二张取方块是同一基本事件,所以事件A 含的基本事件数为1152392m =⨯⨯.11523939132()1511752512m P A n ⨯⨯====⨯⨯∴.(2)记“至少有一张是红心”为事件B ,其对立事件C 为“所取2张牌都不是红心”,即2张都是从方块、梅花、黑桃中取的,事件C 包含的基本事件数为2139382m =⨯⨯.2139381319192()117263452512m P C n ⨯⨯⨯====⨯⨯⨯∴. ∴由对立事件的性质,得1915()1()13434P B P C =-=-=.高中苏教数学③3.2古典概型水平测试一、选择题1.下列试验是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球 C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的D.射击运动员向一靶心进行射击,试验结果为,命中10环,命中9环,…,命中0环 答案:B 2.若书架上放有中文书五本,英文书三本,日文书两本,则抽出一本为外文书的概率为( )A.15 B.310 C.25 D.12答案:D3.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为()A.750 B.7100 C.748 D.15100答案:A4.一枚硬币连抛5次,则正、反两面交替出现的概率是()A.131 B.116 C.18 D.332答案:B5.在6盒酸奶中,有2盒已经过了保质期,从中任取2盒,取到的酸奶中有已过保质期的概率为()A.115 B.13 C.23 D.35答案:D6.掷一个骰子,出现“点数是质数”的概率是()A.16 B.13 C.12 D.23答案:C二、填空题7.有语、数、外、理、化五本教材,从中任取一本,取到的是理科教材的概率是.答案:3 58.从含有4个次品的10000个螺钉中任取1个,它是次品的概率为.答案:1 25009.1个口袋中有带有标号的2个白球、3个黑球,则事件A“从袋中摸出1个是黑球,放回后再摸一个是白球”的概率是.答案:6 2510.从标有1、2、3、4、5、6的6张卡片中任取3张,积是偶数的概率为.答案:19 20三、解答题11.做A、B、C三件事的费用各不相同.在一次游戏中,要求参加者写出做这三件事所需费用的顺序(由多到少排列),如果某个参加者随意写出答案,他正好答对的概率是多少?解:A、B、C三件事排序共有6种排法,即基本事件总数6n=.记“参加者正好答对”为事件D,则D含有一个基本事件,即1m=.由古典型的概率公式,得1 ()6mP Dn==.12.一个口袋内装有5个白球和3个黑球,从中任意取出一个球.(1)“取出的球是红球”是什么事件,它的概率是多少?(2)“取出的球是黑球”是什么事件,它的概率是多少?(3)“取出的球是白球或黑球”是什么事件,它的概率是多少?解:(1)由于袋内只装有黑、白两种颜色的球,故“取出的球是红球”不可能发生,因此,它是不可能事件,其概率为0.(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率为38.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球就是白球,因此,“取出的球是白球或黑球”是必然事件,它的概率是1.13.在一次口试中,要从5道题中随机抽出3道进行回答,答对其中的2道题就获得优秀,答对其中的1道题就获得及格,某考生会回答5道题中的2道题,试求: (1)他获得优秀的概率是多少?(2)他获得及格与及格以上的概率是多大? 解:从5题中任取3道回答,共有(123)(124)(125)(134)(135)(145)(234)(235)(245)(345),,,,,,,,,,,,,,,,,,,,,,,,,,,,,10个基本事件. (1)设A =“获得优秀”,则随机事件A 所包含的基本事件个数3m =;故事件A 的概率为3()10m P A n ==; (2)B =“获得及格与及格以上”,由事件B 所包含的基本事件个数9m =.故事件B 的概率9()10m P B n ==. 所以这个考生获得优秀的概率为310,获得及格与及格以上的概率为910.14. 两个盒内分别盛着写有0,1,2,3,4,5六个数字的六张卡片,若从每盒中各取一张,求所取两数之和等于6的概率,现有甲、乙两人分别给出的一种解法:甲的解法:因为两数之和可有0,1,2,…,10共11种不同的结果,所以所求概率为111. 乙的解法:从每盒中各取一张卡片,共有36种取法,其中和为6的情况有5种:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率为536. 试问哪一种解法正确?为什么? 解:乙的解法正确.因为从每个盒中任取一张卡片,都有6种不同的以法,且取到各张卡片的可能性均相等,所以从两盒中各任取一张卡片的不同的可能结果共有36种,其中和数为6的情况正是乙所例5种情况,所以乙的解法正确.而甲的解法中,两数之和可能出现的11种不同结果,其可能性并不均等,所以甲的解法是错误的.。
2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber
19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知
高中数学第三章概率321古典概型322概率的一般加法公式(选学)课件新人教B版必修3
(2)下列是古典概型的是( ) A.任意抛掷两枚骰子,所得点数之和作为基本事件 B.求任意的一个正整数平方的个位数字是 1 的概率,将取出的正整数作为基本 事件 C.从甲地到乙地共 n 条路线,求某人正好选中最短路线的概率 D.抛掷一枚质地均匀的硬币首次出现正面为止
【精彩点拨】 结合基本事件及古典概型的定义进行判断,基本事件是最小的 随机事件,而古典概型具有两个特征——有限性和等可能性.
探究 2 基本事件的表示方法有哪些? 【提示】 写出所有的基本事件可采用的方法较多,例如列表法、坐标系法、 树状图法,但不论采用哪种方法,都要按一定的顺序进行,做到不重不漏.
探究点3 古典概型的特征 探究 3 古典概型有何特点?何为非古典概型?
【答案】 (1)A (2)C
名师指津 1.基本事件具有以下特点:①不可能再分为更小的随机事件;②两个基本事件 不可能同时发生. 2.判断随机试验是否为古典概型,关键是抓住古典概型的两个特征——有限性 和等可能性,二者缺一不可.
[再练一题] 1.下列试验是古典概型的为________. ①从 6 名同学中选出 4 人参加数学竞赛,每人被选中的可能性大小; ②同时掷两颗骰子,点数和为 6 的概率; ③近三天中有一天降雨的概率; ④10 人站成一排,其中甲、乙相邻的概率. 【解析】 ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典 概型,因为不符合等可能性,降雨受多方面因素影响.
[再练一题] 4.在对 200 家公司的最新调查中发现,40%的公司在大力研究广告效果,50% 的公司在进行短期销售预测,而 30%的公司在从事这两项研究.假设从这 200 家公 司中任选一家,记事件 A 为“该公司在研究广告效果”,记事件 B 为“该公司在 进行短期销售预测”,求 P(A),P(B),P(A∪B). 解 P(A)=40%=0.4,P(B)=50%=0.5, 又已知 P(A∩B)=30%=0.3, ∴P(A∪B)=P(A)+P(B)-P(A∩B)=0.4+0.5-0.3=0.6.
人教版数学必修三教案古典概型
§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。
高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…
高中数学必修3课件:3.2.1 古典概型
第三章 概率
想一想 “在区间[0,10]上任取一个数,这个数恰为2的概率是多少”?这 个概率模型属于古典概型吗? 提示:不是.因为在区间[0,10]上任取一个数,其试验结果有 无限个,故其基本事件有无限个,所以不是古典概型.
栏目 导引
第三章 概率
做一做 2.投掷一枚骰子,恰好数字6正面向上的概率是________. 解析:由于骰子每一个面向上的可能性相等,故数字 6 正面向 上的概率是16. 答案:16
栏目 导引
第三章 概率
【解】 从 7 人中选出数学、物理、化学成绩优秀者各 1 名, 其一切可能的结果组成的 12 个基本事件为: (A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2), (A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2), (A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2). C1 恰被选中有 6 个基本事件: (A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1), (A3,B1,C1),(A3,B2,C1), 因而 P(M)=162=12.
第三章 概率
1.基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能 再分的最简单的___随__机____事件称为该次试验的基本事件. (2)特点:一是任何两个基本事件是_互__斥___的;二是任何事 件(除不可能事件)都可以表示成基本事件的__和___.
栏目 导引
第三章 概率
做一做 1.袋中有红、白色球各一个,每次任取一个,有放回地抽三 次,所有的基本事件数是________. 解析:所有的基本事件有(红红红)(红红白)(红白红)(白红红)( 红白白)(白红白)(白白红)(白白白),共8个. 答案:8
高中概率知识点高考考点易错点归纳
高中概率知识点高考考点易错点归纳高中数学——概率知识要点3.1 随机事件的概率3.1.1 随机事件的概率在条件S下,一定会发生的事件称为相对于条件S的必然事件。
在条件S下,一定不会发生的事件称为相对于条件S的不可能事件。
必然事件和不可能事件统称相对于条件S的确定事件。
在条件S下可能发生也可能不发生的事件称为相对于条件S的随机事件。
在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数nA。
事件A出现的比例称为频率f(A)=nA/nn。
随机事件A的概率是频率的稳定值,反之,频率是概率的近似值。
3.1.2 概率的意义随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
抽签的公平性是游戏的公平性的一个例子。
在从多个可选答案中挑选出正确答案的决策任务中,“使得样本出现的可能性最大”可以作为决策的准则。
极大似然法和小概率事件也与概率思想相关。
天气预报的概率解释是明天本地下雨的机会是70%。
XXX的豌豆试验是试验与发现的例子。
遗传机理中的统计规律也与概率相关。
3.1.3 概率的基本性质对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作B A(或A B)。
不可能事件记作。
若B A且A B,则称事件A与事件B相等,记作A=B。
事件A与事件B的并事件(和事件)是某事件发生当且仅当事件A发生或事件B 发生。
事件A与事件B的交事件(积事件)是某事件发生当且仅当事件A发生且事件B发生。
事件A与事件B互斥是AB为不可能事件,即AB=,即事件A与事件B在任何一次试验中并不会同时发生。
事件A与事件B互为对立事件是AB为不可能事件,AB为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。
概率的几个基本性质包括:1)0≤P(A)≤1;2)必然事件的概率为1,即P(E)=1;3)不可能事件的概率为0,即P(F)=0.3.2 古典概型古典概型是一种具有有限个基本事件且每个基本事件出现的可能性相等的概率模型。
3.2古典概型
排列组合是计算古典概率的重要工具 .
10/20
小结: 利用古典概型的计算公式时应注意两点: (1)所有的基本事件必须是互斥的; (2)m为事件A所包含的基本事件数,
求m值时,要做到不重不漏。
11/20
例2 单选题是标准考试中常用的题型,一般是从 A,B,C,D四个选项中选择一个正确答案。如 果考生掌握了考查的内容,他可以选择唯一正确 的答案,假设考生不会做,他随机地选择一个答 案,问他答对的概率是多少?
3 7 8 A. B. C. 5 15 15
D.1
4.在40根纤维中,有12根的长度超过30mm, 从中任取一根,取到长度超过30mm的纤维 的概率是( )
30 A. 40 12 B. 40 12 C. 30
D.以上都不对
17/20
5.盒中有10个铁钉,其中8个是合格的,2个 是不合格的,从中任取一个恰为合格铁钉的 概率是
解: “答对” 所包含的基本事件的个数 P(“答对”)=—————————————— 4 =1/4=0.25
12/20
例3:将一颗骰子先后抛掷2次,观察向上的点数,问: (1) 共有多少种不同的结果? (2) 两数之和是3的倍数的结果有多少种?
(3) 两数之和是3的倍数的概率是多少?
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
1 A. 5 1 B. 4 4 C. 5 1 D. 10
6.在大小相同的5个球中,2个是红球,3个 是白球,若从中任取2个,则所取的2个球中 至少有一个红球的概率是 。 7.抛掷2颗质地均匀的骰子,求点数和为8的 概率。
18/20
19/20
1.从两位正整数中任取一个数x,则 log 2 x 也 是正整数的概率是_________.
人教版高中数学必修3-3.2概念汇总:古典概型
1 / 1
3.2 古典概型
1.古典概型有两个特征:
(1)试验中所有可能出现的基本事件只有有限个;
(2)各基本事件的出现是等可能的,即它们发生的概率相同.
我们称具有这两个特征的概率称为古典概率模型,简称古典概型
2.古典概型的概率计算公式:P (A )=总的基本事件个数
包含的基本事件个数A . 3.古典概型的使用条件:试验结果的有限性和所有结果的等可能性.在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.
4.古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A 所包含的基本事件数,然后利用公式P (A )=
总的基本事件个数
包含的基本事件数A。
高中数学必修3第三章:概率3.2古典概型
验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2
个
基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
3.2 古典概型
张喜林制3.2 古典概型教材知识检索考点知识清单1.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P(A)= .2.古典概型试验有两个共同的特征是: (1) .在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件. (2) .每个基本事件发生的可能性是均等的.3.我们把由事件A 和B 所构成的事件D 称为事件A 与B 的 (或 ),记作B A D =(或⋅=)AB D4.在古典概型情况下的概率的一般加法公式为=)(B A P 要点核心解读1.古典概型(1)古典概型的定义.我们把具有:①试验中所有可能出现的基本事件有有限个;②每个基本事件发生的可能性相等,以上两个特点的概率模型称为古典概率模型,简称古典概型.(2)古典概率模型的概率求法,如果一次试验中等可能的基本事件共有n 个,那么每一个等可能的基本事件发生的概率都是;1n 如果某个事件A 包含了其中的m 个等可能的基本事件,那么事件A 发生的概率为nm A P =)( 注意:①运用公式时,一定要检验事件是否为古典模型,即是否满足有限性和等可能性两个条件, ②公式也可由以下方法得出:某一事件共有n 个基本事件,其中事件A 包含的基本事件有m 个,则P (“事件A 发生”)+P (“事件A 不发生”)=1,...P(“事件A 发生”)=1 - P(“事件A 不发生”).2.古典概型的理解(1)古典概型是一种最基本的概型,也是学习其他概型的基础,深入理解等可能性事件必须抓住以下三个特点:第一,对于每次随机试验来说,只可能出现有限个不同的试验结果;第二,对于这有限个不同的试验结果,它们出现的可能性是相等的;第三,求事件的概率可以不通过大量重复试验,而只要通过对一次试验中可能出现的结果进行分析计算即可.因此,必须分清事件是否为等可能性事件,以免与后面学习的其他事件及其概念混淆.nm A P =)()2(既是等可能性事件的概率的定义,又是计算这种概率的基本方法,根据这个公式计算概率时,关键在于求出n ,m ,因此,首先要正确理解基本事件与事件A 的相互关系,一次试验连同其中可能出现的每一个结果称为一个基本事件.特别要强调指出,一个基本事件是某一次试验出现的结果,千万不可以把几次试验的结果混为一个结果.如果同时抛两个硬币,一共出现四个等可能的结果:正正、反反、正反、反正,而不能把一正一反看做一个基本事件(因为这一事件包括“正反”“反正”这两种结果),否则基本事件就不等可能了.而事件A 则不同,它可能仅含一个基本事件,也可能包含多个基本事件,因此在求n 时必须强调n 个基本事件必须等可能,否则n 就求错了,同时在求m 时,事件A 中包含的每个基本事件也必须是等可能的.(3)用集合的观点来考查事件c4的概率,有利于帮助学生生动、形象地理解事件A 与基本事件的关 系,有利于理解公式nm A P =)(如图3 -2 -1所示,把一次试验中等可能出现的几个结果组成一个集合,,其中每一个结果就是,中的一个元素,把含m 个结果的事件A 看做含有m 个元素的集合,则事件A 是集合,的一个子集,则有nm I card A card A P ==)()()(3.概率的一般加法公式(选学)(1)事件A 与B 的交(或积).我们把由事件A 和B 同时发生所构 成的事件D ,称为事件A 与B 的交(或积),记作).(AB RD B A D ==(2)概率的一般加法公式.当A ,B 不是互斥事件时:的基本事件总数中包含的基本事件数Ω=B A B A P )( 基本事件的总数中基本事件的个数中基本事件的个数中基本事件的个数Ω-+=B A B A),()()(B A P B P A P -+=⋅-+=)()()()(B A P B P A P B A P 即注:该公式也适合A ,B 为互斥事件的情况,因为.0)(=B A P4.古典概型的概率的求法(1)古典概型的概率的求法有两种: ,)(nm A P =①其中n 为试验所产生的等可能基本事件的总个数,m 为事件A 所包含的等可能的基本事件的个数;,)()()(I card A card A P =②其中card(A)表示事件A 包含的所有结果组成的集合A 中的元素个数,card (I)表示试验所产生的所有结果组成的集合,的元素个数.(2)利用概率的古典定义来求等可能事件概率的步骤:①算出基本事件的总个数n ;②算出事件A 中包含的基本事件的个数m;③算出事件A 的概率,即nm A P =)(典例分类剖析考点1 古典概型的定义[例1] (1)向一个圆面内随机地投一个点,如果该点落在圆内的任意一点都是等可能的,这是古典概型吗?(2)某射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环,命中9环,……,命中1环和命中0环(即不命中).你认为这是古典概型吗?[答案] 依据古典概型的定义判断.(1)不是古典概型,因为事件的个数不是有限个.(2)不是古典概型.因为每一事件发生的可能性不相等.[点拨] 古典概型中要求的有限性和等可能性缺一不可.1.从全班20名男生、30名女生共50名同学中选一名作为班长,选出的班长要么是男生,要么是女生,因此,“选男生为班长”和“选女生为班长”是两个等可能事件,是古典概型,这种说法正确吗? 考点2 列举法求古典概型的概率[例2] 袋中装有6个小球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球中一个是白球,另一个是红球.[解析] 首先应求出任取两球的基本事件的总数,然后需分别求出事件A :取出的两球都是白球的总数;事件B :取出的两球一个是白球,而另一个是红球的总数,便可套用公式解决之.[答案] 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从袋中的6个小球中任取两个,所取的两球全是白球的方法总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴ 取出的两个小球全是白球的概率为⋅==52156)(A P (2)从袋中的6个小球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.∴ 取出的两个小球一个是白球,另一个是红球的概率为⋅=158)(B P 考点3 图表法求古典概型的概率[例3] 抛掷两颗骰子,求:(1) 点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率.[解析] 抛掷两颗骰子,基本事件的总数为36.但所求事件的基本事件个数不易把握,很容易出现遗漏或重复,故可借助直观图形,以便更准确地把握基本事件的个数.[答案] 作图3 -2 -3,从图中容易看出基本事件与所描点一一对应,共36种.(1)记“点数之和是4的倍数”的事件为4,从图中可以看出,事件A 包含的基本事件共有9个:(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6),所以,⋅=41)(A P (2)记“点数之和大于5小于10”为事件B ,从图中可以看出,事件B 包含的基本事件共有20个,即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(2,6)(3,5)(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3).所以,⋅=95)(B P [点拨] 在求概率时,常常可以把全体基本事件用直角坐标系中的点表示,以便我们准确地找出某事件所含的基本事件的个数.2.(1)将甲、乙两颗骰子先后各抛一次,a ,b 分别表示抛掷甲、乙两颗骰子掷出的点数,若把点P(a ,b)落在不等式组⎪⎩⎪⎨⎧≤+>>4,0,0y x y x 所表示的平面区域内的事件记为A ,求事件A 的概率.(2)用三种不同的颜色给图3-2 -4中的3个矩形随机涂色,每个矩形只涂一种颜色,求:①3个矩形颜色都相同的概率;②3个矩形颜色都不同的概率,考点4 概率的一般加法公式(*)[例4] 甲、乙等四人参加4x100米接力,求甲跑第一棒或乙跑第四棒的概率.[答案] 设事件A 为“甲跑第一棒”,事件B 为“乙跑第四棒”;则,41)(,41)(==B P A P 计算 ),(B A P 记x 为甲跑的棒数,y 为乙跑的棒数,记为(x ,y),则共有可能结果12种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),而甲跑第一棒,乙跑第四棒只有一种可能(1,4),故⋅=121)(B A P 所以,甲跑第一棒或乙跑第四棒的概率为: ⋅=-+=-+=1251214141)()()()(B A P B P A P B A x [点拨] (1)关键要计算出A(lB 发生的概率.(2)-般概率的加法公式为-+=)()()(B P A P B A P ).(B A P3.(1)每次抛掷一颗骰子(六个面上分别标有数l ,2,3,4,5,6),①连续抛掷2次,求向上的数不同的概率;②连续抛掷2次,求向上的数之和为6的概率.(2)同时抛掷红、黄两颗骰子,事件A=“红骰子点数大于3”,事件B=“黄骰子点数大于3”,求事件AUB=“至少有一颗骰子的点数大于3”的概率,优化分层测训第一课时古典概型(1)学业水平测试1.下列试验中,是古典概型的有( ).A ..种下一粒种子观察它是否发芽B .从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚质地均匀的硬币,观察其出现正面还是反面D .某人射击中靶或不中靶2.下列概率模型中,有几个是古典概型( ).①从区间[1,10]内任意取出一个数,求取到1的概率;②从1~10中任意取出一个整数,求取到l 的概率;③向一个正方形ABCD 内投一点P ,求P 刚好与点A 重合的概率;④向上抛掷一枚不均匀的旧硬币,求正面朝上的概率.A.l 个B.2个C.3个 B.4个3.将一枚硬币先后抛掷两次,恰好出现一次正面向上的概率是( ).21.A 41.B 43.C 31.D 4.在6个零件中,有4个正品和2个次品,从中不放回地任取2个,恰好都是正品的概率是____.5.同时掷1角和5角的两枚硬币,两枚都出现正面的概率为 ,一枚出现正面,一枚出现反面的概率为____.6.-个家庭中有两个小孩,设小孩是男还是女是等可能的,求此家庭中两个小孩均为女孩的概率为高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011年全国新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )31.A 21.B 32.C 43.D 2.若书架上放有中文书五本,英文书三本,日文书两本,则抽出一本外文书的概率为( ).51.A 103.B 52.C 21.D 3.从甲、乙、丙三名学生中选出两名代表,其中甲被选中的概率为( ).21.A 31.B 32.C 1.D 4.在一次问题抢答的游戏中,要求答题者在问题所列出的4个答案中找出唯一正确的答案.某抢答者不知道正确答案便随意说出了其中的一个答案,则这个答案恰好是正确答案的概率是( ).21.A 41.B 81.C 161.D 5.从分别写有A ,B ,C ,D ,E 的5张卡片中任取2张,这2张卡片上的字母顺序恰好相邻的概率是( ).52.A 51.B 103.C 107.D 6.(2011年安徽高考题)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).101.A 81.B 61.C 51.D 7.在两个袋内,分别装有写着0,1,2,3,4,5六个数字的6张卡片,从每一个口袋中各任取一张卡片,则两数之和等于7的概率为( ).31.A 61.B 91.C 121.D 8.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子和分母构成分数,则这种分数是可约分数的概率是( ).135.A 285.B 143.C 145.D 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题后的相应位置)9.把一枚硬币向桌上连抛10次,则正、反两面交替(可以正反,正反…也可以反正,反正…)出现的概率是 .10.(2009年江苏高考题)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为____.11.袋子中有大小相同的四个小球,分别涂上红、白、黑、黄四种颜色.(1)从中任取1球,取出白球的概率为____.(2)从中任取2球,取出的是红球和白球的概率为____.12.掷一颗骰子,观察掷出的点数,则掷得偶数点的概率是三、解答题(本大题共4小题,每小题10分,共40分,解答须写出文字说明、证明过程和演算步骤)13.从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和.求取出的两球上的数字之和大于11或者能被4整除的概率.14.甲、乙、丙三人比赛,没有平局,问(1)甲得第一的概率;(2)甲比乙强的概率.15.(2011年江西高考题)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和曰两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.16.(2011年山东高考题)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.第二课时古典概型(2)学业水平测试1.掷两颗质地均匀的骰子,事件“点数之和为6”的概率是( ).111.A 91.B 365.C 61.D 2.-个均匀的正方体玩具的各个面上分别标有1,2,3,4,5,6,将这个玩具先后抛掷两次,则“向上的数之和是5”的概率是( ).91.A 61.B 121.C 31.D 3.任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是( ).71.A 72.B 491.C 492.D 4.从含有三件正品和一件次品的4件产品中不放回地任取两件,则取出的两件中恰有一件次品的概率是 .5.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是 .6.甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题意的)1.将一颗骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程02=++c bx x 有相等实根的概率为( ). 121.A 91.B 361.C 181.D 2.掷两颗质地均匀的骰子,出现“点数和为3”的概率是( ).61.A 6161.⨯B 6161.+C 361361.+D 3.从分别写有A ,B ,C ,D 的4张卡片中任取2张,这2张卡片上的字母顺序恰好相邻的概率是( ).41.A 21.B 43.C 107.D 4.先后抛掷两颗质地均匀的正方体骰子(他们的六个面分别标有点数l ,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则112=y og x 的概率为( ).61.A 365.B 121.C 21.D 5.(2008年辽宁高考题)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ).3.1.A 21.B 32.C 43.D 6.从不包括大小王的52张扑克牌中,随机抽出一张是A 或K 的概率是( ).132.A 521.B 261.C 131.D 7.在线段AB 上随机任取三个点,321x x x 、、则2x 位于1x 和3x 之间的概率为( ).21.A 31.B 41.C 1.D 8.从数字1,2,3,4,5中,随机抽取3个数字(允许重复),组成一个三位数,其各位数字之和等于9的概率为( ).12513.A 12516.B 12518.C 12519.D 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题后的相应位置)9.在第1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站的正好是这位乘客所要等的汽车的概率等于____.10.若事件A 与B 不互斥,那么P(A+B)与P(A)+P (B )的大小关系是P(A+B ) P(A)+P(B ).11.射手甲一次击中目标的概率为0.7,射手乙一次击中目标的概率为0.5,现在甲、乙两人同时向一个目标射击一次,则目标被击中的概率是 ;甲、乙都击不中目标的概率是12.从甲口袋中摸出一白球的概率为,31从乙口袋中摸出一白球的概率为,21从两口袋中各摸出一球,都是白球的概率为,61则从两口袋中各摸出一球,至少有一个白球的概率为三、解答题(本大题共4小题,每小题10分,共40分,解答须写出文字说明、证明过程和演算步骤)13.储蓄卡上的密码是一种四位数字号码,每位上的数字可在0到9这10个数字中选取.(1)使用储蓄卡时如果随意按下一个四位数字号码,正好按对这张储蓄卡的密码的概率只有多少?(2)某人未记准储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时如果前三位号码仍按本卡密码,而随意按下密码的最后一位数字,正好按对密码的概率是多少?14.从1,2,3,4,5,6,7,8,9中任取一个数,求取出的数大于3或者能被3整除的概率.15.如图3-2 -7所示的电路中,开关a ,b ,c 开或关的概率都是,21且彼此互不相关,求灯亮的概率.16.(2011年北京高考题)以下茎叶图(如图3-2 -8)记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差:=2s +-+-2221)()([1x x x x n],)(2x x n -+ 其中x 为,1x n x x ,,2 的平均数)。
原创1:3.2.1古典概型
即 P(“出现正面朝上”)=
1 2
=“出现正面朝上”所包含的基本事件的个数 基本事件的总数
基本概念 方法探究 典型例题 课堂训练 课堂小结
试验2: 掷一颗均匀的骰子, 事件A 为“出现偶数点”,请问事件 A的概率是多少?
探讨: 基本事件总数为: 1点,2点,3点,4点,5点,6点
事件A 包含 3 个基本事件:6 2点 4点 6点
P(A) P(“2点”)
P(“4点”)
P(“6点”)
111 3 =6+6+6=6
31 =6=2
P(“出现偶数点”)=“出现偶数点基”本所事包件含的的总基数本事件的个数
基本概念 方法探究 典型例题 课堂训练 课堂小结
古典概型的概率计算公式:
P(A)= A所包含的基本事件的个 数m 基本事件的总数 n
典 概
型
m n
在使用古典概型的概率公式时,应该注意:
(1)要判断所用概率模型是不是古典概型(前提) (2)要找出随机事件A包含的基本事件的个数和试验中基本 事件的总数。
基本概念 方法探究 典型例题 课堂训练 课堂小结
例2 先后抛掷两枚均匀的硬币,会出现几种结果?列举出来. 出现“一枚正面向上,一枚反面向上”的概率是多少?
2号骰子 1号骰子
1 2 3 4 5 6
1
2
3
4
5
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复兴中学“效能作业” 高二年级 数学学科必修三
编制人:史洁 2013-4-10 1 3.1随机事件的概率
一、 课前预习题
【必做题】
1. 把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n ),q =(-2,1),则向量p ⊥q 的概率为( )
A. 118
B. 112
C. 19
D. 16
【思考题】
两人相约9时到10时在某地会面,先到者等候另一个20分钟,这时就可离去,则这两人能会面的概率为________.
二、 课堂练习题
【必做题】
1.一排有6个凳子,两人各随机就坐,则每人两侧都有空凳的概率为________.
【选作题】
1. 有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1、2、3、4,把两个玩具各抛掷一次,斜向上的面写有的数字之和能被5整除的概率为________
【思考题】
一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“One ”,“World ”,“One ”,“Dream ”
的四张卡片随机排成一行,若卡片按从左到右的顺序排成“One World One Dream ”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为( )
A.112
B.512
C.712
D.56
三、 课后作业题
【必做题】
1. 在三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为( )
A.120
B.115
C.15
D.16
【选作题】
1将一枚骰子抛掷两次,若先后出现的点数分别为b 、c 则方程x 2+bx +c =0有实根的概率为_______.
【思考题】
1. 为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.
2. 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.。