Quasi stationary distributions and Fleming-Viot processes in countable spaces
SPSS术语中英文对照
SPSS术语中英文对照【常用软件】SPSS术语中英文对照Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interac tion Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 一般线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换。
统计学术语中英文对照
population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling 系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics) 实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statisticalhypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple randomsampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signedrank tests魏克森等级和检定: Wilcoxon rank sumtests连检定法: Run test离散的均匀密度: Discrete uniformdensities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniformdensities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysis存活分析: Survival analysis时间序列分析: Time series analysis线性模式: Linear models品质工程: Quality engineering机率论: Probability theory统计计算: Statistical computing统计推论: Statistical inference随机过程: Stochastic processes决策理论: Decision theory离散分析: Discrete analysis数理统计: Mathematical statistics统计名词市调辞典众数(Mode) 普查(census)指数(Index) 问卷(Questionnaire)中位数(Median) 信度(Reliability)百分比(Percentage) 母群体(Population)信赖水准(Confidence level) 观察法(Observational Survey)假设检定(Hypothesis Testing) 综合法(Integrated Survey)卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling)差距量表(Interval Scale) 序列偏差(Series Bias)类别量表(Nominal Scale) 次级资料(Secondary Data)顺序量表(Ordinal Scale) 抽样架构(Sampling frame)比率量表(Ratio Scale) 集群抽样(Cluster Sampling)连检定法(Run Test) 便利抽样(Convenience Sampling)符号检定(Sign Test) 抽样调查(SamplingSur)算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error)展示会法(Display Survey)调查名词准确效度(Criterion-RelatedValidity)元素(Element) 邮寄问卷法(Mail Interview)样本(Sample) 信抽样误差(Sampling error)效度(Validity) 封闭式问题(Close Question)精确度(Precision) 电话访问法(TelephoneInterview)准确度(Validity) 随机抽样法(RandomSampling)实验法(Experiment Survey)抽样单位(Sampling unit) 资讯名词市场调查(Marketing Research) 决策树(Decision Trees)容忍误差(Tolerated erro) 资料采矿(DataMining)初级资料(Primary Data) 时间序列(Time-Series Forecasting)目标母体(Target Population) 回归分析(Regression)抽样偏差(Sampling Bias) 趋势分析(TrendAnalysis)抽样误差(sampling error) 罗吉斯回归(Logistic Regression)架构效度(Construct Validity) 类神经网络(Neural Network)配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test)人员访问法(Interview) 判别分析法(Discriminant Analysis)集群分析法(cluster analysis) 规则归纳法(Rules Induction)内容效度(Content Validity) 判断抽样(Judgment Sampling)开放式问题(Open Question) OLAP(OnlineAnalytical Process)分层随机抽样(Stratified Randomsampling) 资料仓储(Data Warehouse)非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge DiscoveryAbsolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs),BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logi t转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified randomsampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数。
统计学术语中英文对照详解
统计学术语中英文对照Absolute deviation 绝对离差Absolute number 绝对数Absolute residuals 绝对残差Acceleration array 加速度立体阵Acceleration in an arbitrary direction 任意方向上的加速度Acceleration normal 法向加速度Acceleration space dimension 加速度空间的维数Acceleration tangential 切向加速度Acceleration vector 加速度向量Acceptable hypothesis 可接受假设Accumulation 累积Accuracy 准确度Actual frequency 实际频数Adaptive estimator 自适应估计量Addition 相加Addition theorem 加法定理Additivity 可加性Adjusted rate 调整率Adjusted value 校正值Admissible error 容许误差Aggregation 聚集性Alternative hypothesis 备择假设Among groups 组间Amounts 总量Analysis of correlation 相关分析Analysis of covariance 协方差分析Analysis of regression 回归分析Analysis of time series 时间序列分析Analysis of variance 方差分析Angular transformation 角转换ANOVA (analysis of variance)方差分析ANOVA Models 方差分析模型Arcing 弧/弧旋Arcsine transformation 反正弦变换Area under the curve 曲线面积AREG 评估从一个时间点到下一个时间点回归相关时的误差ARIMA 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper 算术格纸Arithmetic mean 算术平均数Arrhenius relation 艾恩尼斯关系Assessing fit 拟合的评估Associative laws 结合律Asymmetric distribution 非对称分布Asymptotic bias 渐近偏倚Asymptotic efficiency 渐近效率Asymptotic variance 渐近方差Attributable risk 归因危险度Attribute data 属性资料Attribution 属性Autocorrelation 自相关Autocorrelation of residuals 残差的自相关Average 平均数Average confidence interval length 平均置信区间长度Average growth rate 平均增长率Bar chart 条形图Bar graph 条形图Base period 基期Bayes' theorem Bayes定理Bell-shaped curve 钟形曲线Bernoulli distribution 伯努力分布Best—trim estimator 最好切尾估计量Bias 偏性Binary logistic regression 二元逻辑斯蒂回归Binomial distribution 二项分布Bisquare 双平方Bivariate Correlate 二变量相关Bivariate normal distribution 双变量正态分布Bivariate normal population 双变量正态总体Biweight interval 双权区间Biweight M-estimator 双权M估计量Block 区组/配伍组BMDP(Biomedical computer programs)BMDP统计软件包Boxplots 箱线图/箱尾图Breakdown bound 崩溃界/崩溃点Canonical correlation 典型相关Caption 纵标目Case—control study 病例对照研究Categorical variable 分类变量Catenary 悬链线Cauchy distribution 柯西分布Cause-and-effect relationship 因果关系Cell 单元Censoring 终检Center of symmetry 对称中心Centering and scaling 中心化和定标Central tendency 集中趋势Central value 中心值CHAID —χ2 Automatic Interaction Detector 卡方自动交互检测Chance 机遇Chance error 随机误差Chance variable 随机变量Characteristic equation 特征方程Characteristic root 特征根Characteristic vector 特征向量Chebshev criterion of fit 拟合的切比雪夫准则Chernoff faces 切尔诺夫脸谱图Chi—square test 卡方检验/χ2检验Choleskey decomposition 乔洛斯基分解Circle chart 圆图Class interval 组距Class mid—value 组中值Class upper limit 组上限Classified variable 分类变量Cluster analysis 聚类分析Cluster sampling 整群抽样Code 代码Coded data 编码数据Coding 编码Coefficient of contingency 列联系数Coefficient of determination 决定系数Coefficient of multiple correlation 多重相关系数Coefficient of partial correlation 偏相关系数Coefficient of production-moment correlation 积差相关系数Coefficient of rank correlation 等级相关系数Coefficient of regression 回归系数Coefficient of skewness 偏度系数Coefficient of variation 变异系数Cohort study 队列研究Column 列Column effect 列效应Column factor 列因素Combination pool 合并Combinative table 组合表Common factor 共性因子Common regression coefficient 公共回归系数Common value 共同值Common variance 公共方差Common variation 公共变异Communality variance 共性方差Comparability 可比性Comparison of bathes 批比较Comparison value 比较值Compartment model 分部模型Compassion 伸缩Complement of an event 补事件Complete association 完全正相关Complete dissociation 完全不相关Complete statistics 完备统计量Completely randomized design 完全随机化设计Composite event 联合事件Composite events 复合事件Concavity 凹性Conditional expectation 条件期望Conditional likelihood 条件似然Conditional probability 条件概率Conditionally linear 依条件线性Confidence interval 置信区间Confidence limit 置信限Confidence lower limit 置信下限Confidence upper limit 置信上限Confirmatory Factor Analysis 验证性因子分析Confirmatory research 证实性实验研究Confounding factor 混杂因素Conjoint 联合分析Consistency 相合性Consistency check 一致性检验Consistent asymptotically normal estimate 相合渐近正态估计Consistent estimate 相合估计Constrained nonlinear regression 受约束非线性回归Constraint 约束Contaminated distribution 污染分布Contaminated Gausssian 污染高斯分布Contaminated normal distribution 污染正态分布Contamination 污染Contamination model 污染模型Contingency table 列联表Contour 边界线Contribution rate 贡献率Control 对照Controlled experiments 对照实验Conventional depth 常规深度Convolution 卷积Corrected factor 校正因子Corrected mean 校正均值Correction coefficient 校正系数Correctness 正确性Correlation coefficient 相关系数Correlation index 相关指数Correspondence 对应Counting 计数Counts 计数/频数Covariance 协方差Covariant 共变Cox Regression Cox回归Criteria for fitting 拟合准则Criteria of least squares 最小二乘准则Critical ratio 临界比Critical region 拒绝域Critical value 临界值Cross-over design 交叉设计Cross—section analysis 横断面分析Cross—section survey 横断面调查Crosstabs 交叉表Cross—tabulation table 复合表Cube root 立方根Cumulative distribution function 分布函数Cumulative probability 累计概率Curvature 曲率/弯曲Curvature 曲率Curve fit 曲线拟和Curve fitting 曲线拟合Curvilinear regression 曲线回归Curvilinear relation 曲线关系Cut-and—try method 尝试法Cycle 周期Cyclist 周期性D test D检验Data acquisition 资料收集Data bank 数据库Data capacity 数据容量Data deficiencies 数据缺乏Data handling 数据处理Data manipulation 数据处理Data processing 数据处理Data reduction 数据缩减Data set 数据集Data sources 数据来源Data transformation 数据变换Data validity 数据有效性Data—in 数据输入Data-out 数据输出Dead time 停滞期Degree of freedom 自由度Degree of precision 精密度Degree of reliability 可靠性程度Degression 递减Density function 密度函数Density of data points 数据点的密度Dependent variable 应变量/依变量/因变量Dependent variable 因变量Depth 深度Derivative matrix 导数矩阵Derivative—free methods 无导数方法Design 设计Determinacy 确定性Determinant 行列式Determinant 决定因素Deviation 离差Deviation from average 离均差Diagnostic plot 诊断图Dichotomous variable 二分变量Differential equation 微分方程Direct standardization 直接标准化法Discrete variable 离散型变量DISCRIMINANT 判断Discriminant analysis 判别分析Discriminant coefficient 判别系数Discriminant function 判别值Dispersion 散布/分散度Disproportional 不成比例的Disproportionate sub-class numbers 不成比例次级组含量Distribution free 分布无关性/免分布Distribution shape 分布形状Distribution—free method 任意分布法Distributive laws 分配律Disturbance 随机扰动项Dose response curve 剂量反应曲线Double blind method 双盲法Double blind trial 双盲试验Double exponential distribution 双指数分布Double logarithmic 双对数Downward rank 降秩Dual-space plot 对偶空间图DUD 无导数方法Duncan's new multiple range method 新复极差法/Duncan新法Effect 实验效应Eigenvalue 特征值Eigenvector 特征向量Ellipse 椭圆Empirical distribution 经验分布Empirical probability 经验概率单位Enumeration data 计数资料Equal sun—class number 相等次级组含量Equally likely 等可能Equivariance 同变性Error 误差/错误Error of estimate 估计误差Error type I 第一类错误Error type II 第二类错误Estimand 被估量Estimated error mean squares 估计误差均方Estimated error sum of squares 估计误差平方和Euclidean distance 欧式距离Event 事件Event 事件Exceptional data point 异常数据点Expectation plane 期望平面Expectation surface 期望曲面Expected values 期望值Experiment 实验Experimental sampling 试验抽样Experimental unit 试验单位Explanatory variable 说明变量Exploratory data analysis 探索性数据分析Explore Summarize 探索-摘要Exponential curve 指数曲线Exponential growth 指数式增长EXSMOOTH 指数平滑方法Extended fit 扩充拟合Extra parameter 附加参数Extrapolation 外推法Extreme observation 末端观测值Extremes 极端值/极值F distribution F分布F test F检验Factor 因素/因子Factor analysis 因子分析Factor Analysis 因子分析Factor score 因子得分Factorial 阶乘Factorial design 析因试验设计False negative 假阴性False negative error 假阴性错误Family of distributions 分布族Family of estimators 估计量族Fanning 扇面Fatality rate 病死率Field investigation 现场调查Field survey 现场调查Finite population 有限总体Finite-sample 有限样本First derivative 一阶导数First principal component 第一主成分First quartile 第一四分位数Fisher information 费雪信息量Fitted value 拟合值Fitting a curve 曲线拟合Fixed base 定基Fluctuation 随机起伏Forecast 预测Four fold table 四格表Fourth 四分点Fraction blow 左侧比率Fractional error 相对误差Frequency 频率Frequency polygon 频数多边图Frontier point 界限点Function relationship 泛函关系Gamma distribution 伽玛分布Gauss increment 高斯增量Gaussian distribution 高斯分布/正态分布Gauss-Newton increment 高斯-牛顿增量General census 全面普查GENLOG (Generalized liner models)广义线性模型Geometric mean 几何平均数Gini’s mean difference 基尼均差GLM (General liner models) 通用线性模型Goodness of fit 拟和优度/配合度Gradient of determinant 行列式的梯度Graeco—Latin square 希腊拉丁方Grand mean 总均值Gross errors 重大错误Gross-error sensitivity 大错敏感度Group averages 分组平均Grouped data 分组资料Guessed mean 假定平均数Half-life 半衰期Hampel M—estimators 汉佩尔M估计量Happenstance 偶然事件Harmonic mean 调和均数Hazard function 风险均数Hazard rate 风险率Heading 标目Heavy-tailed distribution 重尾分布Hessian array 海森立体阵Heterogeneity 不同质Heterogeneity of variance 方差不齐Hierarchical classification 组内分组Hierarchical clustering method 系统聚类法High-leverage point 高杠杆率点HILOGLINEAR 多维列联表的层次对数线性模型Hinge 折叶点Histogram 直方图Historical cohort study 历史性队列研究Holes 空洞HOMALS 多重响应分析Homogeneity of variance 方差齐性Homogeneity test 齐性检验Huber M—estimators 休伯M估计量Hyperbola 双曲线Hypothesis testing 假设检验Hypothetical universe 假设总体Impossible event 不可能事件Independence 独立性Independent variable 自变量Index 指标/指数Indirect standardization 间接标准化法Individual 个体Inference band 推断带Infinite population 无限总体Infinitely great 无穷大Infinitely small 无穷小Influence curve 影响曲线Information capacity 信息容量Initial condition 初始条件Initial estimate 初始估计值Initial level 最初水平Interaction 交互作用Interaction terms 交互作用项Intercept 截距Interpolation 内插法Interquartile range 四分位距Interval estimation 区间估计Intervals of equal probability 等概率区间Intrinsic curvature 固有曲率Invariance 不变性Inverse matrix 逆矩阵Inverse probability 逆概率Inverse sine transformation 反正弦变换Iteration 迭代Jacobian determinant 雅可比行列式Joint distribution function 分布函数Joint probability 联合概率Joint probability distribution 联合概率分布K means method 逐步聚类法Kaplan—Meier 评估事件的时间长度Kaplan-Merier chart Kaplan—Merier图Kendall's rank correlation Kendall等级相关Kinetic 动力学Kolmogorov-Smirnove test 柯尔莫哥洛夫—斯米尔诺夫检验Kruskal and Wallis test Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis 峰度Lack of fit 失拟Ladder of powers 幂阶梯Lag 滞后Large sample 大样本Large sample test 大样本检验Latin square 拉丁方Latin square design 拉丁方设计Leakage 泄漏Least favorable configuration 最不利构形Least favorable distribution 最不利分布Least significant difference 最小显著差法Least square method 最小二乘法Least-absolute—residuals estimates 最小绝对残差估计Least—absolute-residuals fit 最小绝对残差拟合Least-absolute-residuals line 最小绝对残差线Legend 图例L-estimator L估计量L-estimator of location 位置L估计量L-estimator of scale 尺度L估计量Level 水平Life expectance 预期期望寿命Life table 寿命表Life table method 生命表法Light—tailed distribution 轻尾分布Likelihood function 似然函数Likelihood ratio 似然比line graph 线图Linear correlation 直线相关Linear equation 线性方程Linear programming 线性规划Linear regression 直线回归Linear Regression 线性回归Linear trend 线性趋势Loading 载荷Location and scale equivariance 位置尺度同变性Location equivariance 位置同变性Location invariance 位置不变性Location scale family 位置尺度族Log rank test 时序检验Logarithmic curve 对数曲线Logarithmic normal distribution 对数正态分布Logarithmic scale 对数尺度Logarithmic transformation 对数变换Logic check 逻辑检查Logistic distribution 逻辑斯特分布Logit transformation Logit转换LOGLINEAR 多维列联表通用模型Lognormal distribution 对数正态分布Lost function 损失函数Low correlation 低度相关Lower limit 下限Lowest-attained variance 最小可达方差LSD 最小显著差法的简称Lurking variable 潜在变量Main effect 主效应Major heading 主辞标目Marginal density function 边缘密度函数Marginal probability 边缘概率Marginal probability distribution 边缘概率分布Matched data 配对资料Matched distribution 匹配过分布Matching of distribution 分布的匹配Matching of transformation 变换的匹配Mathematical expectation 数学期望Mathematical model 数学模型Maximum L—estimator 极大极小L 估计量Maximum likelihood method 最大似然法Mean 均数Mean squares between groups 组间均方Mean squares within group 组内均方Means (Compare means) 均值—均值比较Median 中位数Median effective dose 半数效量Median lethal dose 半数致死量Median polish 中位数平滑Median test 中位数检验Minimal sufficient statistic 最小充分统计量Minimum distance estimation 最小距离估计Minimum effective dose 最小有效量Minimum lethal dose 最小致死量Minimum variance estimator 最小方差估计量MINITAB 统计软件包Minor heading 宾词标目Missing data 缺失值Model specification 模型的确定Modeling Statistics 模型统计Models for outliers 离群值模型Modifying the model 模型的修正Modulus of continuity 连续性模Morbidity 发病率Most favorable configuration 最有利构形Multidimensional Scaling (ASCAL) 多维尺度/多维标度Multinomial Logistic Regression 多项逻辑斯蒂回归Multiple comparison 多重比较Multiple correlation 复相关Multiple covariance 多元协方差Multiple linear regression 多元线性回归Multiple response 多重选项Multiple solutions 多解Multiplication theorem 乘法定理Multiresponse 多元响应Multi-stage sampling 多阶段抽样Multivariate T distribution 多元T分布Mutual exclusive 互不相容Mutual independence 互相独立Natural boundary 自然边界Natural dead 自然死亡Natural zero 自然零Negative correlation 负相关Negative linear correlation 负线性相关Negatively skewed 负偏Newman—Keuls method q检验NK method q检验No statistical significance 无统计意义Nominal variable 名义变量Nonconstancy of variability 变异的非定常性Nonlinear regression 非线性相关Nonparametric statistics 非参数统计Nonparametric test 非参数检验Nonparametric tests 非参数检验Normal deviate 正态离差Normal distribution 正态分布Normal equation 正规方程组Normal ranges 正常范围Normal value 正常值Nuisance parameter 多余参数/讨厌参数Null hypothesis 无效假设Numerical variable 数值变量Objective function 目标函数Observation unit 观察单位Observed value 观察值One sided test 单侧检验One—way analysis of variance 单因素方差分析Oneway ANOVA 单因素方差分析Open sequential trial 开放型序贯设计Optrim 优切尾Optrim efficiency 优切尾效率Order statistics 顺序统计量Ordered categories 有序分类Ordinal logistic regression 序数逻辑斯蒂回归Ordinal variable 有序变量Orthogonal basis 正交基Orthogonal design 正交试验设计Orthogonality conditions 正交条件ORTHOPLAN 正交设计Outlier cutoffs 离群值截断点Outliers 极端值OVERALS 多组变量的非线性正规相关Overshoot 迭代过度Paired design 配对设计Paired sample 配对样本Pairwise slopes 成对斜率Parabola 抛物线Parallel tests 平行试验Parameter 参数Parametric statistics 参数统计Parametric test 参数检验Partial correlation 偏相关Partial regression 偏回归Partial sorting 偏排序Partials residuals 偏残差Pattern 模式Pearson curves 皮尔逊曲线Peeling 退层Percent bar graph 百分条形图Percentage 百分比Percentile 百分位数Percentile curves 百分位曲线Periodicity 周期性Permutation 排列P—estimator P估计量Pie graph 饼图Pitman estimator 皮特曼估计量Pivot 枢轴量Planar 平坦Planar assumption 平面的假设PLANCARDS 生成试验的计划卡Point estimation 点估计Poisson distribution 泊松分布Polishing 平滑Polled standard deviation 合并标准差Polled variance 合并方差Polygon 多边图Polynomial 多项式Polynomial curve 多项式曲线Population 总体Population attributable risk 人群归因危险度Positive correlation 正相关Positively skewed 正偏Posterior distribution 后验分布Power of a test 检验效能Precision 精密度Predicted value 预测值Preliminary analysis 预备性分析Principal component analysis 主成分分析Prior distribution 先验分布Prior probability 先验概率Probabilistic model 概率模型probability 概率Probability density 概率密度Product moment 乘积矩/协方差Profile trace 截面迹图Proportion 比/构成比Proportion allocation in stratified random sampling 按比例分层随机抽样Proportionate 成比例Proportionate sub—class numbers 成比例次级组含量Prospective study 前瞻性调查Proximities 亲近性Pseudo F test 近似F检验Pseudo model 近似模型Pseudosigma 伪标准差Purposive sampling 有目的抽样QR decomposition QR分解Quadratic approximation 二次近似Qualitative classification 属性分类Qualitative method 定性方法Quantile-quantile plot 分位数—分位数图/Q-Q图Quantitative analysis 定量分析Quartile 四分位数Quick Cluster 快速聚类Radix sort 基数排序Random allocation 随机化分组Random blocks design 随机区组设计Random event 随机事件Randomization 随机化Range 极差/全距Rank correlation 等级相关Rank sum test 秩和检验Rank test 秩检验Ranked data 等级资料Rate 比率Ratio 比例Raw data 原始资料Raw residual 原始残差Rayleigh's test 雷氏检验Rayleigh’s Z 雷氏Z值Reciprocal 倒数Reciprocal transformation 倒数变换Recording 记录Redescending estimators 回降估计量Reducing dimensions 降维Re-expression 重新表达Reference set 标准组Region of acceptance 接受域Regression coefficient 回归系数Regression sum of square 回归平方和Rejection point 拒绝点Relative dispersion 相对离散度Relative number 相对数Reliability 可靠性Reparametrization 重新设置参数Replication 重复Report Summaries 报告摘要Residual sum of square 剩余平方和Resistance 耐抗性Resistant line 耐抗线Resistant technique 耐抗技术R—estimator of location 位置R估计量R-estimator of scale 尺度R估计量Retrospective study 回顾性调查Ridge trace 岭迹Ridit analysis Ridit分析Rotation 旋转Rounding 舍入Row 行Row effects 行效应Row factor 行因素RXC table RXC表Sample 样本Sample regression coefficient 样本回归系数Sample size 样本量Sample standard deviation 样本标准差Sampling error 抽样误差SAS(Statistical analysis system ) SAS统计软件包Scale 尺度/量表Scatter diagram 散点图Schematic plot 示意图/简图Score test 计分检验Screening 筛检SEASON 季节分析Second derivative 二阶导数Second principal component 第二主成分SEM (Structural equation modeling)结构化方程模型Semi-logarithmic graph 半对数图Semi-logarithmic paper 半对数格纸Sensitivity curve 敏感度曲线Sequential analysis 贯序分析Sequential data set 顺序数据集Sequential design 贯序设计Sequential method 贯序法Sequential test 贯序检验法Serial tests 系列试验Short-cut method 简捷法Sigmoid curve S形曲线Sign function 正负号函数Sign test 符号检验Signed rank 符号秩Significance test 显著性检验Significant figure 有效数字Simple cluster sampling 简单整群抽样Simple correlation 简单相关Simple random sampling 简单随机抽样Simple regression 简单回归simple table 简单表Sine estimator 正弦估计量Single—valued estimate 单值估计Singular matrix 奇异矩阵Skewed distribution 偏斜分布Skewness 偏度Slash distribution 斜线分布Slope 斜率Smirnov test 斯米尔诺夫检验Source of variation 变异来源Spearman rank correlation 斯皮尔曼等级相关Specific factor 特殊因子Specific factor variance 特殊因子方差Spectra 频谱Spherical distribution 球型正态分布Spread 展布SPSS(Statistical package for the social science)SPSS统计软件包Spurious correlation 假性相关Square root transformation 平方根变换Stabilizing variance 稳定方差Standard deviation 标准差Standard error 标准误Standard error of difference 差别的标准误Standard error of estimate 标准估计误差Standard error of rate 率的标准误Standard normal distribution 标准正态分布Standardization 标准化Starting value 起始值Statistic 统计量Statistical control 统计控制Statistical graph 统计图Statistical inference 统计推断Statistical table 统计表Steepest descent 最速下降法Stem and leaf display 茎叶图Step factor 步长因子Stepwise regression 逐步回归Storage 存Strata 层(复数)Stratified sampling 分层抽样Stratified sampling 分层抽样Strength 强度Stringency 严密性Structural relationship 结构关系Studentized residual 学生化残差/t化残差Sub-class numbers 次级组含量Subdividing 分割Sufficient statistic 充分统计量Sum of products 积和Sum of squares 离差平方和Sum of squares about regression 回归平方和Sum of squares between groups 组间平方和Sum of squares of partial regression 偏回归平方和Sure event 必然事件Survey 调查Survival 生存分析Survival rate 生存率Suspended root gram 悬吊根图Symmetry 对称Systematic error 系统误差Systematic sampling 系统抽样Tags 标签Tail area 尾部面积Tail length 尾长Tail weight 尾重Tangent line 切线Target distribution 目标分布Taylor series 泰勒级数Tendency of dispersion 离散趋势Testing of hypotheses 假设检验Theoretical frequency 理论频数Time series 时间序列Tolerance interval 容忍区间Tolerance lower limit 容忍下限Tolerance upper limit 容忍上限Torsion 扰率Total sum of square 总平方和Total variation 总变异Transformation 转换Treatment 处理Trend 趋势Trend of percentage 百分比趋势Trial 试验Trial and error method 试错法Tuning constant 细调常数Two sided test 双向检验Two—stage least squares 二阶最小平方Two—stage sampling 二阶段抽样Two-tailed test 双侧检验Two—way analysis of variance 双因素方差分析Two—way table 双向表Type I error 一类错误/α错误Type II error 二类错误/β错误UMVU 方差一致最小无偏估计简称Unbiased estimate 无偏估计Unconstrained nonlinear regression 无约束非线性回归Unequal subclass number 不等次级组含量Ungrouped data 不分组资料Uniform coordinate 均匀坐标Uniform distribution 均匀分布Uniformly minimum variance unbiased estimate 方差一致最小无偏估计Unit 单元Unordered categories 无序分类Upper limit 上限Upward rank 升秩Vague concept 模糊概念Validity 有效性VARCOMP (Variance component estimation)方差元素估计Variability 变异性Variable 变量Variance 方差Variation 变异Varimax orthogonal rotation 方差最大正交旋转Volume of distribution 容积W test W检验Weibull distribution 威布尔分布Weight 权数Weighted Chi—square test 加权卡方检验/Cochran检验Weighted linear regression method 加权直线回归Weighted mean 加权平均数Weighted mean square 加权平均方差Weighted sum of square 加权平方和Weighting coefficient 权重系数Weighting method 加权法W—estimation W估计量W—estimation of location 位置W估计量Width 宽度Wilcoxon paired test 威斯康星配对法/配对符号秩和检验Wild point 野点/狂点Wild value 野值/狂值Winsorized mean 缩尾均值Withdraw 失访Youden’s index 尤登指数Z test Z检验Zero correlation 零相关Z-transformation Z变换。
Process
180
6. TIME SERIES AND STOCHASTIC PROCESSES
R( s, t) = Cov[X ( s), X .1. Stationary time series
Stationarity is a basic assumption in classical time series analysis. It means, in effect, that the main statistical properties of the series remain unchanged over time. More precisely, a process {X (t)} is said to be completely stationary or strict sense stationary (abbreviated as S S S ) if the process X (t) and X (t + c) have the same statistics for any c. That is for any set of time points t1 , t2 , · · · , tn and any integer c, the joint probability distribution of [X (t1 ), X (t2 ), · · · , X (tn )] is identical with that of [X (t1 + c), X (t2 + c), · · · , X (tn + c)]. Less stringently, a process {X (t)} is said to be covariance stationary (second order stationary) or wide sense stationary (abbreviated as WS S ) if the mean and variance of X (t) remain constant over time and the autocovariance between any two values depends only on the time difference and not on their individual locations. That is, (i) E [X (t)] = µ, independent of t (ii) Var[X (t)] = σ2 x , independent of t (iii) Cov[X (t), X (t + s)] = R( s). It may be noted that S S S implies WS S , but the converse is not true always. (6.1.2)
英文版概率论与数理统计重点单词
概率论与数理统计Probability Theory and Mathematical Statistics第一章概率论的基本概念Chapter 1 Introduction of Probability Theory不确定性indeterminacy必然现象certain phenomenon随机现象random phenomenon试验experiment结果outcome频率数frequency number样本空间sample space出现次数frequency of occurrencen维样本空间n-dimensional sample space样本空间的点point in sample space随机事件random event / random occurrence基本事件elementary event必然事件certain event不可能事件impossible event等可能事件equally likely event事件运算律operational rules of events事件的包含implication of events并事件union events交事件intersection events互不相容事件、互斥事件mutually exclusive exvents / /incompatible events互逆的mutually inverse加法定理addition theorem古典概率classical probability古典概率模型classical probabilistic model 几何概率geometric probability乘法定理product theorem概率乘法multiplication of probabilities条件概率conditional probability全概率公式、全概率定理formula of total probability贝叶斯公式、逆概率公式Bayes formula后验概率posterior probability先验概率prior probability独立事件independent event独立随机事件independent random event独立实验independent experiment两两独立pairwise independent两两独立事件pairwise independent events第二章随机变量及其分布Chapter 2 Random Variables and Distributions随机变量random variables离散随机变量discrete random variables概率分布律law of probability distribution一维概率分布one-dimension probability distribution 概率分布probability distribution两点分布two-point distribution伯努利分布Bernoulli distribution二项分布/伯努利分布Binomial distribution超几何分布hypergeometric distribution三项分布trinomial distribution多项分布polynomial distribution泊松分布Poisson distribution泊松参数Poisson theorem分布函数distribution function概率分布函数probability density function连续随机变量continuous random variable概率论与数理统计中的英文单词和短语概率密度probability density概率密度函数probability density function 概率曲线probability curve均匀分布uniform distribution指数分布exponential distribution指数分布密度函数exponential distribution density function正态分布、高斯分布normal distribution标准正态分布standard normal distribution正态概率密度函数normal probability density function正态概率曲线normal probability curve标准正态曲线standard normal curve柯西分布Cauchy distribution分布密度density of distribution第三章多维随机变量及其分布Chapter 3 Multivariate Random Variables and Distributions二维随机变量two-dimensional random variable联合分布函数joint distribution function二维离散型随机变量two-dimensional discrete random variable二维连续型随机变量two-dimensional continuous random variable联合概率密度joint probability variablen维随机变量n-dimensional random variablen维分布函数n-dimensional distribution functionn维概率分布n-dimensional probability distribution 边缘分布marginal distribution边缘分布函数marginal distribution function边缘分布律law of marginal distribution边缘概率密度marginal probability density二维正态分布two-dimensional normal distribution二维正态概率密two-dimensional normal probability 度density二维正态概率曲线two-dimensional normal probabilitycurve条件分布conditional distribution条件分布律law of conditional distribution条件概率分布conditional probability distribution条件概率密度conditional probability density边缘密度marginal density独立随机变量independent random variables第四章随机变量的数字特征Chapter 4 Numerical Characteristics fo Random Variables数学期望、均值mathematical expectation期望值expectation value方差variance标准差standard deviation随机变量的方差variance of random variables均方差mean square deviation相关关系dependence relation相关系数correlation coefficient协方差covariance协方差矩阵covariance matrix切比雪夫不等式Chebyshev inequality第五章大数定律及中心极限定理Chapter 5 Law of Large Numbers and Central Limit Theorem大数定律law of great numbers切比雪夫定理的special form of Chebyshev theorem特殊形式依概率收敛convergence in probability伯努利大数定律Bernoulli law of large numbers同分布same distribution列维-林德伯格定理、独立同分布中心极限定理independent Levy-Lindberg theorem辛钦大数定律Khinchine law of large numbers利亚普诺夫定理Liapunov theorem棣莫弗-拉普拉斯定理De Moivre-Laplace theorem第六章样本及抽样分布Chapter 6 Samples and Sampling Distributions统计量statistic总体population个体individual样本sample容量capacity统计分析statistical analysis统计分布statistical distribution统计总体statistical ensemble随机抽样stochastic sampling / random sampling 随机样本random sample简单随机抽样simple random sampling简单随机样本simple random sample经验分布函数empirical distribution function样本均值sample average / sample mean样本方差sample variance样本标准差sample standard deviation标准误差standard error样本k阶矩sample moment of order k样本中心矩sample central moment样本值sample value样本大小、样本容量sample size样本统计量sampling statistics随机抽样分布random sampling distribution抽样分布、样本分布sampling distribution自由度degree of freedomZ分布Z-distributionU分布U-distribution第七章参数估计Chapter 7 Parameter Estimations统计推断statistical inference参数估计parameter estimation分布参数parameter of distribution参数统计推断parametric statistical inference点估计point estimate / point estimation总体中心距population central moment总体相关系数population correlation coefficient总体分布population covariance总体协方差population covariance点估计量point estimator估计量estimator无偏估计unbiased estimate / unbiasedestimation估计量的有效性efficiency of estimator矩法估计moment estimation总体均值population mean总体矩population moment总体k阶矩population moment of order k总体参数population parameter极大似然估计maximum likelihood estimation极大似然估计量maximum likelihood estimator极大似然法maximum likelihood method /maximum-likelihood method似然方程likelihood equation似然函数likelihood function区间估计interval estimation置信区间confidence interval置信水平confidence level置信系数confidence coefficient单侧置信区间one-sided confidence interval置信上限confidence upper limit置信下限confidence lower limitU估计U-estimator正态总体normal population总体方差的估计estimation of population variance 置信度degree of confidence方差比variance ratio第八章假设检验Chapter 8 Hypothesis Testings参数假设parametric hypothesis假设检验hypothesis testing两类错误two types of errors统计假设statistical hypothesis统计假设检验statistical hypothesis testing检验统计量test statistics显著性检验test of significance统计显著性statistical significanceone-sided test单边检验、单侧检验one-sided hypothesis单侧假设、单边假设双侧假设two-sided hypothesis双侧检验two-sided testing显著水平significant levelrejection region拒绝域/否定区域接受区域acceptance regionU检验U-testF检验F-test方差齐性的检验homogeneity test for variances 拟合优度检验test of goodness of fit。
概率论与数理统计英语
概率论与数理统计英语English: Probability theory and mathematical statistics are two branches of mathematics that deal with the concepts and tools used to understand randomness and uncertainty in various phenomena. Probability theory is concerned with quantifying uncertainty and making predictions about the likelihood of certain events occurring, while mathematical statistics uses probability theory to draw conclusions about populations based on sample data. These two fields are closely related and often used together in applications such as insurance, finance, engineering, and social sciences. Probability theory involves concepts such as random variables, probability distributions, and the laws of large numbers, while mathematical statistics covers topics such as estimation, hypothesis testing, and regression analysis. Together, they provide a framework for understanding uncertainty and making informed decisions in the face of incomplete information.中文翻译: 概率论和数理统计是数学的两个分支,涉及用于理解各种现象中的随机性和不确定性的概念和工具。
超几何分布的英语
超几何分布的英语Here is an essay on the topic of the hypergeometric distribution, written in English with more than 1000 words. The title and any additional instructions have been omitted as requested.The hypergeometric distribution is a discrete probability distribution that describes the number of successes in a sequence of n draws from a finite population without replacement. In other words, it models the probability of obtaining a certain number of items with a desired characteristic from a finite population, given that the population is not replenished after each draw. This distribution is particularly useful in situations where the population size is relatively small, and the sampling is done without replacement, such as in quality control, survey sampling, and experimental design.The hypergeometric distribution is characterized by three parameters: the population size (N), the number of items with the desired characteristic in the population (K), and the number of items drawn from the population (n). The probability mass function (PMF) of the hypergeometric distribution is given by the formula:P(X = x) = (C(K, x) * C(N-K, n-x)) / C(N, n)where:- X is the random variable representing the number of items with the desired characteristic in the n draws- x is the observed value of X- C(a, b) is the binomial coefficient, which represents the number of ways to choose b items from a itemsThe hypergeometric distribution is related to the binomial distribution, but the key difference is that in the binomial distribution, the trials are independent and the probability of success remains constant, whereas in the hypergeometric distribution, the trials are not independent and the probability of success changes with each draw.One of the main applications of the hypergeometric distribution is in quality control. Suppose a manufacturer has produced a batch of N items, and K of them are defective. The manufacturer wants to inspect a sample of n items to determine the quality of the batch. The hypergeometric distribution can be used to calculate the probability of finding x defective items in the sample, which can help the manufacturer make decisions about the batch.Another application of the hypergeometric distribution is in survey sampling. Suppose a researcher wants to estimate the proportion ofa certain characteristic in a population, but the population size is relatively small. The researcher can draw a sample of n individuals from the population and use the hypergeometric distribution to calculate the probability of observing a certain number of individuals with the desired characteristic.The hypergeometric distribution also has applications in experimental design. For example, in a clinical trial, researchers may want to compare the effectiveness of a new drug to a placebo. The researchers can assign participants to the treatment or control group using a hypergeometric distribution, which ensures that the number of participants in each group is balanced.One of the key properties of the hypergeometric distribution is that it is a discrete distribution, meaning that the random variable X can only take on integer values. This property makes the distribution particularly useful in situations where the population size is finite and the sampling is done without replacement.Another important property of the hypergeometric distribution is that it is unimodal, meaning that the probability mass function has a single peak. The location of the peak depends on the values of the three parameters (N, K, and n), and the distribution can be left-skewed, right-skewed, or symmetric depending on the values of these parameters.The hypergeometric distribution also has several special cases. For example, when the population size N is large compared to the sample size n, the hypergeometric distribution approaches the binomial distribution. Similarly, when the number of items with the desired characteristic K is small compared to the population size N, the hypergeometric distribution approaches the Poisson distribution.In addition to its applications in quality control, survey sampling, and experimental design, the hypergeometric distribution has also been used in other areas, such as genetics, ecology, and finance. For example, in genetics, the hypergeometric distribution can be used to model the probability of observing a certain number of mutations in a gene sequence, while in ecology, it can be used to model the probability of observing a certain number of species in a sample of a habitat.Overall, the hypergeometric distribution is a powerful and versatile probability distribution that has numerous applications in a wide range of fields. Its ability to model the probability of success in a finite population without replacement makes it a valuable tool for researchers and practitioners in many different domains.。
病毒学病毒进化
AIDS, West Nile virus in US, SARS and Influenza virus (H7N9) in China, HCV, HBV, Ebola, MERS-CoV, Zika virus ……,
• Regular bouts every year with influenza and common cold virus
• If 109 viral particles produced in a person per day, then 108 mutant progeny are being produced in that one individual each day of infection!
• The replication error rate for HIV is such that each newly synthesized HIV genome carries on average approximately one mutation.
DNA viruses
• Usually use their host’s enzymes to replicate their DNA so they usually have mutation rates that are more similar to their hosts;However in cases where they do use their own enzymes their mutation rates are often 20 to 100 times greater than that of their hosts.
• Quasispecies and virulence/attenuation
负概率——精选推荐
The probability of the outcome of an experiment is never negative, but quasi-probability distributions can be defined that allow a negative probability for some events. These distributions may apply to unobservable events or conditional probabilities.经验结果的概率不可能为负,但准概率分布允许将某些事件定义为负概率。
这种分布适用于不可观察的事件或条件概率。
Physics物理性质In 1942, Paul Dirac wrote a paper "The Physical Interpretation of Quantum Mechanics" where he introduced the concept of negative energies and negative probabilities: "Negative energies and probabilities should not be considered as nonsense. They are well-defined concepts mathematically, like a negative of money."在1942年,保罗·狄拉克发表了论文“量子力学的物理解释”,引入了负能量和负概率的概念:“负能量和负概率不应该被认为是无稽之谈。
他们是被明确数学化定义的概念,就如同负的货币一样。
”The idea of negative probabilities later received increased attention in physics and particularly in quantum mechanics. Richard Feynman argued that no one objects to using negative numbers in calculations, although "minus three apples" is not a valid concept in real life. Similarly he argued how negative probabilities as well as probabilities above unity possibly could be useful in probability calculations.负概率后来在物理学中受到越来越多的关注,特别是量子力学。
科学仪器服务公司SIMION
The Industry Standard in 3D Ion and Electron Optics Simulations Scientific Instrument Services, Inc.1027 Old York Rd, Ringoes, NJ 08551Phone: (908) 788-5550Scientific Instument Services, Inc™ SIMION ™Version 8.1SIMION 8.1S IMION 8.1 is a software package used primarily to calculate electric fields, when given a configuration of electrodes withvoltages, and calculate trajectories of charged particles in those fields, when given particle initial conditions, including optional RF, magnetic field, and collisional effects are supported. In this, SIMION provides extensive supporting functionality in defin-ing your system geometry and conditions, recording and visualizing results, and extending the simulation capabilities with user pro-gramming. It is an affordable but versatile platform, widely used for over 35 years to simulate lens, mass spec, and other types of particle optics systems.Typical usage of SIMION is illustrated below for a simple three-element Einzel lens. The geometry consisting of three ring elec-trodes with given voltages is defined (top), and the fields and particle trajectories are calculated and displayed.Electrostatic field solving:SIMION solves fields in 2D and 3D arrays of up to nearbillions of points, with optimizations for systems with symmetry and mirroring, accord-ing to the finite difference method with much optimized linear-time solving. Smallarrays solve in under a minute; very large arrays may take roughly an hour depending onconditions. A “workbench” strategy allows you to position, size, and orient instances(3D images) of different grid densities and symmetries to permit the simulation of muchlarger systems that don't easily fit into a single array. Some magnetic field solving capa-bilities are also available (see following page).Particle trajectory solving: Particle trajectories are calculated given the previouslycalculated or defined fields. The method is Runge-Kutta with relativistic corrections andvariable-length dynamically adjusting and controllable time steps. Particle mass, charge,and other parameters can be defined individually or according to some pattern or distrib-ution. User programming can modify the system during particle flight to inject noveleffects (such ion-gas scattering). Particle tracing is fast _millions of particles can behandled—and they display in real-time. Basic charge repulsion effects, including a pois-son solver can help estimate the onset of space-charge.Viewing of the system is highly interactive, allowing adjustment of parametersand viewing of the system even during particle flight (trajectory calculation). SIMIONsupports cutting away volumes to see trajectories inside, zooming, viewing potentialenergy surfaces, contour lines, and trajectories, and reflying particles as dots for movieeffects.S IMION is suitable for a wide variety of systems: from ion flight through simple electrostatic and magnetic lenses to particle guns to highly complex instruments, including time-of-flight, hemispherical analyzers, ion traps, quadrupoles, ICR cells, and other MS, ion source and detector optics.Time-dependent or RF (low frequency) voltages:Electrode voltages may be controlled in a general way during particle flight via simple user programs _ e.g. to step or oscillate electrode voltages in some manner. Quadrupole mass filter, multipole, and ion trap simulations (above) in the megahertz range are regularly performed. SIMION applies the quasistatic approximation with superposition, which gives fast calculations (assuming the absence of induced magnetic field or radiation effects as would occur in “high frequency” systems having the wavelength below the length of your system).Magnetic fields: SIMION will import magnetic fields, define them analytically or solve them in restricted cases (e.g. Biot-Savart wire currents - left), optionally superimposed on an electrostatic field (e.g.penning trap or ICR cell - right) for the pur-pose of particle flying.ApplicationsRF Quad Mass Filter RF Ion Trap RF Ion Trap (Potential Energy Display)Ion Confinement in Air SolenoidICR CellIon-neutral collisions: SIMION can handle the effects of particles colliding against a background gas, such as for the buffer gas of the ion trap (top), the back-ground gas in an RF ion-funnel (right), or in ion mobility. Multiple collision models are included: Stokes' law, hard-sphere, and a mobility model optimized for high pres-sure “atmospheric” conditions. The parti-cles will diffuse and randomly scatter away from their normal trajectories.RF Ion Funnel Atmospheric Pressure ExampleDefine Your SimulationComplex CAD Modelimported from STL file(left) to a SIMION arrayGeometry (GEM) defi-nition file exampleGeometry definition: A system geometry can be defined by whichever method is most convenient for you: an interactive 3D paint-like program(called “Modify”), CAD import from STL format (supported by most CAD packages), a solid geometry defined mathe-matically via a text file(“GEM files”), and programmatic manipulation of arrays from such languages as Lua, Perl, Python, and C++.Particle initial conditions can be defined in various ways. The“FLY2” format in SIMION allows quick definition of many types ofparticles random distributions and sequences. Particles may also beexhaustively enumerated (optionally imported from a text file).Analysis and Programming SIMION has a number of capabilities for collecting data.•Package contents: a 450-page printed manual, installation CD with software license key number (for receiving softwareupdates), and quick start notes. The installation CD installs the software, examples, and additional documentation.•Documentation:SIMION comes with a 450-page printed manual. Additional documentation and course notes are available electronically, in the examples, or on the web site. See the web site for the user group, software updates, latest SIMION tips, articles, and links to some of the hundreds of scholarly papers that use SIMION.•Updates:Free updates to 8.1.x versions of 8.1 are provided as free downloads from .•Support:Free basic support via email, phone, and forum •Supported systems: Formally tested on Windows 10/8.1/8/Vista/XP, as well as Wine/Linux (and Crossover/Mac). Latest system compatibility information is on .In the example above, trajectories are calcu-lated while phase space data is interactively plotted in Excel via the Lua COM interfaceSIMION can optimize voltages and geometry with simplex optimizer and batch mode capabilities. At left is a SIMION generated surface plot of beam size as a func-tion of two lens voltages. At right is one of the many user programming examples (scattering at surface).Programming in Lua Surface Plot in ExcelScattering Effects at Surface User programming allows the simulation to be extended in many novel ways. During ion flight, you may control electrode voltages (example at right), define or modify fields, scatter or deflect ions (e.g.ion-gas collision models), tune (optimize) lens voltages, compute results, export data to programs like Excel via COM or command-line interfaces, and do many other things. The Lua scripting language is directly embedded in SIMION, and Lua may also call C/C++ or COM routines. Programming may also be used to operate SIMION in batch mode , such as for geometry optimization or to read/manipu-late potential array files.Contents Data recording:The simulation parameters you are interested in (e.g. ion position, velocity, KE, and voltage) can be recorded at various stages in particle flight (e.g. when hitting an electrode and crossing a plane). Data can be recording to the screen or to delim-ited text file for subsequent analysis of fields and trajectories (right). Analysis can be done via SIMION user programming, in a program or language of your choice like Excel, and MATLAB ®.Features in SIMION 8.1 (and 8.2EA/beta)Poisson solver (Refine), fully Dielectric materials (Refine)Supplemental Documentation Integration with Lua/C, Excel, gnuplot, Origin,Large 64-bit array sizes up to 20billion points / 190 GB Improved curved surface handling (“surface enhancement”) gives order of magnitude field accuracy improvement Multicore Refines (8.1)Oblong, non-square grid cells.More AccurateMore Versatile CompatibilityNested refining techniquesSome permeability and mag-High quality 3D (OpenGL)graphics on View screen More examples and documentation New GUI dialog library New programming API’s:。
多元柯西分布及其特性
•字餌蓀索多元柯西分布及其特性李子言(华中师范大学数学与统计学学院湖北•武汉430079)摘要柯西分布是一种基于中位数与中位数绝对偏差的分布,在数学、物理学等中都有重要的意义和作用。
其 中,一元柯西分布被大众所熟知,本文以此引入多元柯西分布的分析,初步介绍了多元柯西分布的定义和相关性质。
关键词多元柯西分布特征函数密度函数中图分类号:〇212文献标识码:ADOI : 10.16400/j .cnki .kjdk .2021.10.020Multivariate Cau c h y Distribution and i t s CharacteristicsLI Ziyan(School o f Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079)Abstract Cauchy distribution is a kind of distribution based on median and absolute deviation of median , which hasimportant significance and role in mathematics , physics and so on . Among them , the univariate Cauchy distribution is well known by the public . This paper introduces the analysis of multivariate Cauchy distribution , and introduces the definition and related properties of multivariate Cauchy distribution .Keywords multivariate Cauchy distribution ; characteristic function ; density function 柯西分布也叫作柯西-洛伦兹分布,它是以奧古斯丁 • 路易•柯西与亨德里克•洛伦兹名字命名的连续概率分 布,目前最广泛应用的是一元柯西分布,它的概率密度函 数为:/(x ;x 〇-r ) = ^[(^7T 7]其中心为分布峰值位置的位置参数,y 为最大值一半处 的一半宽度的尺度参数。
统计学术语中英对照
population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling 系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics)实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statistical hypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple random sampling 分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signed ranktests魏克森等级和检定: Wilcoxon rank sum tests连检定法: Run test离散的均匀密度: Discrete uniform densities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniform densities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysis存活分析: Survival analysis时间序列分析: Time series analysis 线性模式: Linear models品质工程: Quality engineering机率论: Probability theory统计计算: Statistical computing统计推论: Statistical inference随机过程: Stochastic processes决策理论: Decision theory离散分析: Discrete analysis数理统计: Mathematical statistics 统计名词市调辞典众数(Mode) 普查(census)指数(Index) 问卷(Questionnaire)中位数(Median) 信度(Reliability)百分比(Percentage) 母群体(Population)信赖水准(Confidence level) 观察法(Observational Survey)假设检定(Hypothesis Testing) 综合法(Integrated Survey)卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling)差距量表(Interval Scale) 序列偏差(SeriesBias)类别量表(Nominal Scale) 次级资料(Secondary Data)顺序量表(Ordinal Scale) 抽样架构(Samplingframe)比率量表(Ratio Scale) 集群抽样(ClusterSampling)连检定法(Run Test) 便利抽样(ConvenienceSampling)符号检定(Sign Test) 抽样调查(Sampling Sur)算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error)展示会法(Display Survey)调查名词准确效度(Criterion-RelatedValidity)元素(Element) 邮寄问卷法(Mail Interview)样本(Sample) 信抽样误差(Sampling error)效度(Validity) 封闭式问题(Close Question)精确度(Precision) 电话访问法(TelephoneInterview)准确度(Validity) 随机抽样法(Random Sampling)实验法(Experiment Survey)抽样单位(Sampling unit) 资讯名词市场调查(Marketing Research) 决策树(Decision Trees)容忍误差(Tolerated erro) 资料采矿(Data Mining)初级资料(Primary Data) 时间序列(Time-Series Forecasting)目标母体(Target Population) 回归分析(Regression)抽样偏差(Sampling Bias) 趋势分析(Trend Analysis)抽样误差(sampling error) 罗吉斯回归(Logistic Regression)架构效度(Construct Validity) 类神经网络(Neural Network)配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test)人员访问法(Interview) 判别分析法(Discriminant Analysis)集群分析法(cluster analysis) 规则归纳法(Rules Induction)内容效度(Content Validity) 判断抽样(Judgment Sampling)开放式问题(Open Question) OLAP(OnlineAnalytical Process)分层随机抽样(Stratified Random sampling)资料仓储(Data Warehouse)非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge DiscoveryAbsolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling,按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science),SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法。
具有高隔离度和任意功分比的平行带状功分器中英文对照翻译
A Parallel-Strip Ring Power Divider WithHigh Isolation and ArbitraryPower-Dividing RatioAbstract—In this paper, a new power divider concept, which provides high flexibility of transmission line characteristic impedance and port impedance, is proposed. This power divider is implemented on a parallel-strip line, which is a balanced transmission line. By implementing the advantages and uniqueness ofthe parallel-strip line, the divider outperforms the conventional divider in terms of isolation bandwidths. A swap structure of the two lines of the parallel-strip line is employed in this design, which is critical for the isolation enhancements. A lumped-circuit model of the parallel-strip swap including all parasitic effects has been analyzed. An equal power divider with center frequency of 2 GHz was designed to demonstrate the idea. The experimental results show that the equal power divider has 96.5%—10-dB impedance bandwidth with more than 25-dB isolation and less than 0.7-dB insertion loss. In order to generalize the concept with an arbitrary power ratio, we also realize unequal power dividers with the same isolation characteristics. The impedance bandwidth of the proposed power divider will increase with the dividing ratio, which is opposite to the conventional Wilkinson power divider. Unequal dividers with dividing ratios of 1 : 2 and 1 : 12 are designed and measured. Additionally, a frequency independent 1800 power divider has been realized with less than 20 phase errors.Index Terms—Arbitrary power-dividing ratio, parallel-strip line, ring structure, unequal power divider.I. INTRODUCTIONTHE WIKINSON power divider is one of the conventional and fundamental components in microwave engineering and exists in many microwave circuits. Both distributed and lumped Wilkinson power dividers have been applied in microwave integrated circuits and monolithic microwave integrated circuits [1]. Recently, extensive studies have been made to enhance the performances of the Wilkinson power divider, including size reductions by capacitive loading [2], folded circuitry [3] and resonating structure [4], [5], multiband operation [6], [7], unequal power dividing/combining [8], and active device [9] and waveguide implementations [10]. The power dividers discussed in this paper are focused on the isolation enhancement. The proposed divider is realized in the parallel-strip transmission line. Some parallel-strip circuits were reported with performance enhancement [11], [12]. The parallel-strip line provides more design flexibility than a micro-strip line, especially in realization of a high-impedance line and transitions.Many balanced circuits such as push–pull amplifiers, balanced mixers, frequency multipliers, and antenna arrays employ the Wilkinson power divider because of its simple design with high port-to-port isolation. Isolation is one of the important issuesin the design of the power divider and directional coupler. High isolation implies the minimization of unwanted coupling between active devices, as well as the elimination of unexpected distortions and oscillations. It is because it may provide a positivefeedback path for other frequencies, e.g., in Fig. 1, as unwanted oscillation at f1 may be set up outside of the operation frequency f0. Therefore, a wideband isolation operation is always preferred to suppress the coupling in other frequency bands.Fig. 1. Balanced circuit at frequency f0 and unwanted feedback at f1.The parallel-strip line belongs to a family of balanced transmission line. The conventional printed circuit board (PCB) fabrication technique is able to easily realize parallel-strip lines. It is a simple structure of a dielectric substrate sandwiched between two strip conductors. The signals flowing on the upper and lower strip conductors are always equal in magnitude and 1800out-of-phase. The quasi-TEM mode electric and magnetic fields distributions are closed to the micro-strip line. In this paper, a parallel-strip swap is employed to enhance isolation performance of the power divider. The swap is a passive microwave component. It forms a compact realization of 1800 phase shift by interchanging the connection of two conductors in the balanced transmission line. Various swaps were proposed for performance enhancement in a 1800 hybrid coupler [13]–[15].A new equal power divider, which is realized on a parallel-strip line with a ring-like structure, was first demonstrated in [16]. The four arms and two shunt resistors in the divider provide a high degree of freedom for choosing the circuit parameters. In this paper, the proposed concept is generalized to be arbitrary power dividing without an increase in design complexity. It shows a frequency-independent isolation characteristic, arbitrary power-dividing ratio without an external matching network, avoidance of a very thin strip line for achieving high characteristic impedance, and ease of realizing wideband 1800 dividing. While the conventional Wilkinson powerdivider exhibits limited isolation bandwidth, unequal Wilkinson power dividing relies on an external quarter-wave transformer for realizing unequal power dividing for the same port impedances.High characteristics impedance transmission lines are required for the unequal power divider. The unequal divider has been used with strict restrictions in design and fabrication because it requires a transmission line with very high impedance [8]. On the other hand, the very thin transmission line limits the power handling of the devices. To overcome this limitation in realizing characteristic impedance, the upper and lower strip lines of the parallel-strip line are offset so that it will be easier to highly increase the characteristic impedance. Three power dividers with power-dividing ratios of 1 : 1, 1 : 2, and 1 : 12 were designed, fabricated, and tested.Fig. 2. Schematic diagram of proposed power divider with four arms, a swap, and two shunt resistors.II. THEORETICAL ANALYSISThe structure of the proposed divider is illustrated in Fig. 2.In [13], the equal power divider has been analyzed using even and odd-mode analysis because of symmetry of the divider. For the same reason, the circuit parameters, such as port impedance and line impedances, should be the same as their corresponding parameters Z A=Z C, Z B=Z D, and Z2=Z3. In this paper, we try to generalize the analysis to an unequal power divider with an arbitrary dividing ratio.It consists of an 1800 swap, four quarter-wave-long arms (with characteristic impedances Z A, Z B, Z C, and Z D) and two shunt resistors with resistance . These five parameters determine the input impedances, isolation, and dividing ratio of the divider. In order to determine the arm characteristic impedances and resistor values, several parameters should be known, including port impedances Z1, Z2, and Z3 and power ratio K.Firstly, the impedance matching is considered. To achieve maximum power transfer, all the ports should be matched. The input impedance at port 1 is determined by Z A and Z C and port impedances Z2 and Z3.As illustrated in Fig. 3, it is assumed thata signal is injected to port 1 and will only pass through ports 2 and 3. There is no net current flowing from ports 2 to 3 due to port isolation between ports in the shaded region. Arms B and D with characteristic impedances Z B and Z D , respectively, the two shunt resistors, and the swap can thus be replaced by an open circuit in analysis. The two arms are connected in shunt; the input impedance at port 1 can be expressed as(1)The signal injected to port 2 can be divided into two parts, one flowing to port 1 and the other being absorbed by shunt resistors as shown in Fig. 4. Obviously, there is no net current flowing from arm to arm and port 3 in the shaded region, which can be replaced by an open circuit in analysis. The input impedance at port 2 can be given as(2)Similarly, the input impedance at port 3 can be expressed as(3)For the unequal power dividing and assuming the power ratio of ports 2 and 3 to be K, the power ratio can be determined by the ratio of input impedance of the arms A and C, as shown in Fig. 3, as follows:(4)123221)(-+=C A Z Z Z Z Z 12212)2(-+=B A Z R Z Z Z 12213)2(-+=D C Z R Z Z Z 32222232Z Z Z Z Z Z Z Z k A C A C ==By solving (1), (2), and (4), Z A and Z C are determined and are expressed in (5) and(6), respectively.Solving (4) and (1),(5)Solving (4) and (2),(6)Hence, the ratio of the square of Z B and Z D and shunt resistor can be determined by solving (2), (3), (5), and (6).Solving (5) and (2),(7)Solving (6) and (3),(8)There are four conditions, but five unknown parameters Z A , Z B, Z C , Z D , and R. Therefore, the solutions are singular, which implies there is no unique solution. The 31)1(Z Z k Z C +=21)11(Z Z k Z A +=)11(232kZ R Z D +=)1(222k Z R Z B +=infinite number of solutions provide a high degree of freedom when the divider is designed. For example, the divider can not only be designed for any port impedance without external matching circuits, but also provides unequal power dividing with equal port impedance.Isolation is a very important design issue. The symmetrical structure and the swap provide the possibility of frequency-independent isolation characteristics. Signals flowing through paths A –C and B –D should be equal in magnitude, but 1800 out-of -phase. In order to provide frequency-independent isolation, the phase difference between paths A –C and B –D should be frequency independent at 1800 out-of-phase and with equal amplitude, which is provided by the swap, and the characteristic impedance should be the sameZ A = Z D and Z B = Z C (9)Equation (9) represents the fifth condition for designing a divider with frequency-independent isolation and arbitrary power ratio. After combining the previous conditions, the parameters Z A , Z B, Z C , Z D , and R become unique. The design formulas can be summarized asR=2Z1 (10a)(10b)(10c)31)1(Z Z k Z Z C B +==21)11(Z Z k Z Z D A +==Fig. 5. Geometries of parallel-strip swap and parallel-strip line with equal physical length.III. PARALLEL SWAP AND DISCONTINUITYThe swap is the interchange between the two signal lines in the balance transmission line so that the signal is said to be ―reversed,‖ therefore, it provides 1800 phase shift without the existence of a delay line. It can be easily realized in some of the nonmicrostrip transmission lines such as a coplanar waveguide, coplanar strip line, and parallel-strip line. Fig. 5 shows the geometry of the parallel-strip swap. The upper and lower strip lines are connected by two vertical metical vias. The sections of the swap and parallel-strip line are simulated using Ansoft’s High Frequency Structure Simulator (HFSS). Within the entire simulation band, less than 0.5-dB extra insertion loss is introduced and 1800 phase shift is provided with less than 2 phase error, as shown in Fig. 6. The swap introduces discontinuity for the divider and always degrades the circuit performance. It is necessary to develop proper analysis models. The structure of parallel- strip swap with two shunt resistors used in the proposed divider is shown in Fig. 7. Two resistors are soldered across the two gaps at the upper and lower strip lines. These resistors are used to absorb the signal. They are necessary to provide proper impedance matching and port-to-port isolation, similar to the resistor in the Wilkinson power divider.Extra insertion loss and phase delay are introduced by the vertical via, which can be analyzed by a lumped-circuit model. The lump-circuit model of the swap with two shunt resistors (R S) is illustrated in Fig. 8. The parasitic capacitance (C S) is used to model the edge couplings between strips with different layers. The parasitic capacitance (C C) is used to model the total effect due to edge couplings between strips with the same layers and coupling between the vias. The parasitic inductance (L V) and resistance (R V) are introduced by vertical conductor in via-holes and soldering. Theparasitic components can be extracted from full-wave simulations so that the lumped model of the swap was done.The Z-parameter of the lumped equivalent model of the core in Fig. 8 is given by(11)Fig. 6. Simulated frequency responses of insertion loss and phase difference of a section of parallel-strip swap and line with same physical length.⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛212121212221121121Z Z Z Z Z Z Z Z Z Z Z ZFig. 7. 3-D view of parallel-strip swap with two shunt resistors.Fig. 8. Lump equivalent model of parallel-strip line swap.where Z 1= R V + jwL V and Z 2= (1/ R S +1/jwC C )-1 Hence, the S-parameter converted from Z-parameters of the core is determined as follows:(12)(13) ))((020*********Z Z Z Z Z Z Z S S +++==))(()(020********Z Z Z Z Z Z Z S S ++-==The structure shown in Fig. 7 is simulated by the full-wave electromagnetic (EM) simulator HFSS, determining the optimum design of the vias on the substrate dielectric constant of 2.65 and thickness of 1.5 mm where all the gapwidthsFig. 9. Simulated S-parameters of the parallel-strip line swap using lumped model and full-wave EM simulation. (a) Magnitude response. (b) Phase response.are 0.2 mm and the radius of the metallic via is 0.55 mm. Deembedding of the parameters has been performed by utilizing the microwave circuit simulator, Agilent Technologies’s Advanced Design System (ADS). Both EM and circuit simulationsof the parallel-strip swaps with 70.71- terminations are shown in Fig. 9. Good agreement of both the magnitudes and phases responses are achieved within the frequency band of interest. The values of parasitic elements are L V =2.181 nH,C S=0.2939 pF, C C=0.3878 pF, and R V =0.2624Ω. The model circuit is analyzed and, hence, the scattering matrix representing the parallel-strip swap with shunt resistor (R S) is, therefore, obtained, and the entire circuit can thus be easily modeled in the circuit simulation.IV. RESULTS OF SIMULATION AND EXPERIMENTA. Equal Power DividerThe power dividers are fabricated in a conventional printed circuit technique and the dividers designed for demonstration are built on a substrate with a dielectric constant of 2.65 and a thickness of 1.5 mm, as shown in Fig. 10. The derivation in Section II is based on an ideal transmission line model. This analysis provides initial design parameters. Discontinuities or parasitic elements such as T-junctions and steps will be introduced. EM optimization is required to determine all circuit parameters with the best performance.Fig. 10. Implementation of proposed equal power divider on PCB. (a) Upper layer. (b) Bottom layer. are built on a substrate with a dielectric constant of 2.65 and a thickness of 1.5 mm, as shown in Fig. 10. The derivation in Section II is based on an ideal transmission line model. This analysis provides initial design parameters. Discontinuities or parasiticelements such as T-junctions and steps will be introduced. EM optimization isrequired to determine all circuit parameters with the best performance.All the port impedances are designed at 50 , i.e., Z1=Z2=Z3=50Ω The designparameters of an equal power divider are Z A=Z B=Z C= Z D = 70.71Ωand R=100Ω.By removing portion of the ground of a micro-strip line, the parabolic tapered transition between the parallel-strip line and micro-strip line [11] was employed for connecting the coaxial connector for measurement purposes with less than 0.1-dB insertion loss within the entire tested frequency band. However, an approximate 0.5-dB extra insertion loss will be introduced if a subminiature A (SMA) connector is directly connected to the SMA connector. Fig. 11 shows both simulated and measured results of the equal power divider. The EM simulation tool is Ansoft’s HFSS. The measured insertion loss from ports 1 to 2 and 3 are less than 3.7 dB within the operation frequency band, as shown in Fig. 11(a). Some mismatches come from an inaccurate prediction of the vertical structure from the EM simulator and soldering. The mismatches in return losses shown in Fig. 11(b) are due to unexpected errors from soldering between the divider and SMA connectors. The ring-like structure implies similar input and output impedance characteristics, as shown in Fig. 10. The total usable impedance bandwidth is wider than that of the conventional Wilkinson power divider. Due to the imbalances of the two paths, e.g., electrical delay and insertion loss in the swap, the isolation has a finite value. Fortunately, the isolation can still provide great improvement over the conventional divider.The impedance bandwidths of return loss lower than 10 dB of the proposed divider is measured at 96.5%, as observed in Fig. 11(b). In Fig. 11(c), the proposed divider demonstrates more than 25 dB in the entire frequency band in the measurement, while a conventional Wilkinson power divider shows approximately 33% isolation bandwidth of more than 20-dB isolation. Good agreement between experimental and simulated results can be observed.B. Unequal Power DividersApart from the equal power divider, two unequal power dividers with ratios of 1 : 2 and 1 : 12 are realized. The impedance bandwidth is usually reduced with the dividing ratio in the conventional Wilkinson power divider; however, the bandwidth of the proposed divider is increased with a power ratio of . The relation is shown in Fig. 12. Figs. 13 and 14 show the frequency responses of -parameters and the dividing ratio of the 1 : 2 power divider. The design parameters are Z A=Z D=61.24Ω, ZB=ZC= 86.61Ω, and R=100Ω. Measured results agree withEMsimulation.Within the 125% operation bandwidth with lower than 10-dB return loss, more than 26-dB port-to-port isolation is achieved and the average divider ratio is approximately 2.07.Fig. 11. Simulated and measured results of proposed equal power divider.(a) Insertion losses. (b) Return losses. (c) Isolation.A high dividing ratio implies the existence of some high characteristicimpedance transmission lines. The implementation ofhigh characteristic impedance remains challenge because of theFig. 15. Cross section and 3-D view of offset parallel-strip line.Fig. 16. Relationship of characteristics impedance and normalized offset distance with different normalized strip width, where z denotes characteristics impedance, w denotes width of the strip line, d denotes offset distance, and h denotes substrate thickness.technique of extremely thin micro-strip line fabrication. The realization of the unequal power divider may be limited by fabrication of the thin strip line and low power-handling capacity of the divider.In order to easily realize a high-impedance transmission line, a micro-strip defected ground structure was proposed for the 1 : 4 unequal divider [8]. In [17], thecharacteristics impedance parallel- strip line was increased by offsetting the upper and lower strip lines in the finite ground micro-strip line for stopband enhancement. Similarly, the characteristics impedance of a parallel-strip line can be increased by offsetting the strip lines, as shown in Fig. 15. Fig. 16 shows the relationship between characteristics impedances and normalized circuit parameters on the same substrate. It is obvious that the characteristics impedance (z) increases with offset distance (d) without use of very narrow strip lines. A high characteristic impedance parallel-strip line can be realized by offsetting the upper and lower strip lines andit does not need a very narrow line.In the 1 : 12 power divider, two arms with high characteristic impedance are realized by offsetting the parallel-strip line. Figs. 17 and 18 show its -parameters and the dividing ratio varied with frequency. The design parameters are Z A=Z D=50.04Ω, Z B=Z D=180.27Ω, and R=100Ω. Good agreement of both simulated and measured results are obtained. Within the 150% operation bandwidth with lower than 10-dBreturn loss, more than 24-dB port-to-port isolation is achieved and the average divider ratio is approximately 12.68.Fig. 17. Simulated and measured S-parameters of 1 : 12 proposed divider.Fig. 18. Simulated and measured dividing ratio of 1 : 12 proposed divider.C. Frequency-Independent 180 Power DividerConventionally, the symmetric power divider is used for in-phase powerdividing/combining. A power divider with wideband 1800 out-of-phase operation is needed for many balanced circuit such as a push–pull amplifier and balanced mixer. The 1800 hybrid or the power divider with a 1800 delay line is used for such purpose.A 1800 divider can be easily realized by adding an extra section of delay line. However, a delay line limits the bandwidth of phase balances. The conventional 1800 hybrid coupler or Wilkinson power divider with a delay line may not fulfill actual application demands and may degrade system performance. With a similar approach to [12], the frequency-independent 1800 differential phase between ports 2 and 3 is realized by tapering the lower line in port 2 and the upper line in port 3, the parallel-strip line-to-micro-strip line transition, which is used for measurement, is formed as shownin Fig. 19. All circuit parameters are the same as the equal power divider in Section IV. The magnitudes of simulated and measured -parameters are close to that of the equal power divider, as shown in Fig. 11. A frequency-independent 1800 phase difference is observed, as shown in Fig. 20. A small phase error within 2 is introduced due to the thickness of the substrate of the PCB, while it can be minimized by using a thinner substrate with a lower dielectric constant. Similarly, the 1800 unequal power divider with an arbitrary dividing ratio can be realized via the same technique.Fig. 19. Implementation of proposed 1800 equal power divider on PCB. (a) Upper layer. (b) Bottom layer.Fig. 20. Phase response of 1800 equal power divider.V. CONCLUSIONA novel power divider with better isolation than the conventional Wilkinson power divider has been presented. Design formulas for the proposed divider have been proven analytically. The ring-like structure provides design flexibility such as unequal power dividing without extra impedance matching networks. The equal and unequal power dividers were designed and tested with out-performed isolation characteristics. Additionally, a 1800 equal power divider was realized by making use of the balanced structure of the parallel-strip line. Similarly, a 1800unequal power divider can be designed. The proposed design leads to realization of a new geometrical configuration for a high-performance power-divider concept.R EFERENCES[1] L. H. Lu, P. Bhattacharya, L. P. B. Katehi, and G. E. Ponchak, ―X-band and K-band lumped Wilkinson power dividers with a micromachined technology,‖ in IEEE MTT-S Int. Microw. Symp. Dig., 2000, pp. 287–290.[2] K. Hettak, G. A. Morin, and M. G. Stubbs, ―Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and seri es stub loading,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1624–1635, May 2005.[3] L. Chiu, T. Y. Yum, Q. Xue, and C. H. Chan, ―The folded hybrid ring and its applications in balance devices,‖ in IEEE Eur. Microw. Conf., 2005, pp. 1–4.[4] K. M. Shum, Q. Xue, and C. H. Chan, ―Curved PBG cell and its applications,‖in Asia–Pacific Microw. Conf., 2001, pp. 767–770.[5] D. J. Woo and T. K. Lee, ―Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2139–2144, Jun. 2005.[6] L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, ―A dual-frequency Wilkinson power divider,‖ IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 278–284, Jan. 2006.[7] M. Chongcheawchamnan, S. Patisang, M. Krairiksh, and I. D. Robertson, ―Tri-band Wilkinson power divider using a three-section transmission-line transformer,‖ IEEE Microw. Wireless Compon. Lett.,to be published.[8] J. S. Lim, S. W. Lee, C. S. Kim, J. S. Park, D. Ahn, and S. W. Nam, ―A 4 : 1 unequal Wilkinson power divider,‖ IEEE Microw. Wireless Compon. Lett., vol. 11, no. 3, pp. 124–126, Mar. 2001.[9] L. H. Lu, Y. T. Liao, and C. R. Wu, ―A miniaturized Wilkinson power divider withCMOSactive inductors,‖ IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005.[10] X. Xu, R. G. Bosisio, and K. Wu, ―A new six-port junction based on substrate integrated waveguide technology,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2267–2273, Jul. 2006.[11] S. G. Kim and K. Chang, ―Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2148–2152, Sep. 2004.[12] L. Chiu, T. Y. Yum, Q. Xue, and C. H. Chan, ―A wide band compact parallel-strip 180_ Wilkinson power divider for push-pull circuitries,‖ IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 49–51, Jan. 2006.[13] C. W. Kao and C. H. Chen, ―Novel uniplanar 180 hybrid-ring couplers with spiral-type phase inverters,‖ IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 412–414, Oct. 2000.[14] B. R. Heimer, L. Fan, and K. Chang, ―Uniplanar hybrid couplers using asymmetrical coplanar striplines,‖ IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2234–2240, Dec. 1997.[15] T. Q. Wang and K. Wu, ―Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,‖ IEEE Trans. Microw. Theory Tech., vol. 47, no. 2, pp.198–206, Feb. 1999.[16] L. Chiu and Q. Xue, ―A new parallel-strip power divider with enhanced isolation performance,‖ in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 411–416.[17] S. Sun and L. Zhu, ―Stopband-enhanced and size-miniaturized lowpass filters using high-impedance property of offset finite-ground microstrip line,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp.2844–2850, Sep. 2005.具有高隔离度和任意功分比的平行带状功分器摘要:在这篇文章中,提出了一种新型的功率分配器概念,并提及传输线特性阻抗和端口阻抗的高弹性。
概率论与数理统计英汉对照词汇
概率论与数理统计英汉对照词汇1概率论与数理统计词汇Aabsolute value 绝对值accept 接受acceptable region 接受域additivity 可加性adjusted 调整的、校正的alternative hypothesis 对立假设analysis 分析analysis of covariance 协方差分析analysis of variance 方差分析arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验assumed mean假定平均值asymmetric distribution 非对称分布autoregressive 自回归(的)availability 有效度average均值averages 平均量Bbalanced 平衡的band 带宽bar chart 条形图Bartlett's test 巴特利特检验Bayes, -ian 贝叶斯的、贝叶斯beta-distribution 贝塔分布beta function 贝塔函数between (间)内between groups 组间的bias 偏倚、偏差biased question 有偏问题binomial distribution 二项分布binomial test 二项检验binomial theorem 二项定理bioassay 生物鉴定法bivariate normal distribution二元正态分布blind test盲检法Bonferroni's inequality 邦费罗尼不等式bootstrap自助法Box-Cox transformation Box-Cox变换Ccalculate 计算case 个案canonical correlation 典型相关case control study 案例对照研究categorization 分类categorize 分类category 类别causality 因果关系center of gravity 重心central tendency 中心趋势central limit theorem中心极限定理Chebyshev's inequality切比雪夫不等式chi-square distribution 卡方分布chi-square test 卡方检验classification分类、种类classify 分类、归类cluster analysis 聚类分析coding 编码coefficient 系数coefficient of correlation 相关系数coefficient of concordance一致性系数coefficient of determination可决系数collinearity 共线性column 列comparison 比较common factors 公共因子,公因数communality 公因子方差component 成分compare 比较comparison 对照components 构成,分量compound 复合的conditional probability 条件概率confidence coefficient 置信系数confidence interval置信区间confidence limits 置信界限confirmatory确定的confound, -ing 混杂、混杂法confounding design 混杂设计convergence in law (distribution)依法则收敛(依分布收敛)consistency 一致性consistent 一致性continuous distribution 连续分布control(group)控制、控制(群)constant 常数continuous variable 连续变量control charts 控制图correction 校正、修正correction factor 校正因子correction for continuity 连续校正correlation 相关correlation coefficient 相关系数correlation ratio 相关比correlogram 相关图covariance 协方差covariance matrix 协方差矩阵covariate共变向量covariation共变criterion variable 基准变量critical point 临界点critical region判别区域critical value 临界值cross-section 横截面cross-tabulation 交叉表crosstab 列联表cubic 三次的,立方的cubic term 三次项cumulative distribution function 累加分布函数cumulative frequency 累积频率curve estimation 曲线估计curvilinear曲线(的)Ddata 数据data analysis数据分析default 默认的definition 定义degree of freedom 自由度deleted residual 剔除残差density 密度density function 密度函数dependent variable 因变量description 描述descriptive statistics 描述性统计design of experiment 试验设计deviate 偏差deviation 偏、偏差deviations 差异df.(degree of freedom) 自由度diagnostic 诊断dimension 维distribution 指数分布discrimination 判別discriminatory analysis 判别分析discriminant function 判別函数discrete variable 离散变量discrete distribution 离散分布distance 距离distribution 分布D.K.(Don't Know)dose-response curve (relationship)用量反应曲线(关系)double blind test 二重盲检法downward trend 下降倾向drop out 脱落例D-optimal design D-优化设计Durbin-Watson statistic(ratio)Durbin-Watson统计量(比)(cf. standard -- , mean --)dichotomous question二分搜索法Eefficient, efficiency 有效的、有效性effects of interaction 交互效应eigenvalue 特征值Engel's coefficient 恩格尔系数Entropy 熵Epidemiology 流行病学equal 相等equal size 等含量equation 方程error 误差error margin 误差幅度error of the first kind(type I error)第1类误差error of the second kind(type II error)第2类误差error term 误差项estimable 可估的estimate 估计量estimation 估计estimator 估计量estimate 估计estimation of parameters参数估计estimations 估计量evaluate 衡量event 事件exact value 精确值expectation 期望expected value 期望值exponential 指数的exponential distributon 指数分布extreme value 极值exact probability test 直接概率法expectation 期望expected frequency 期待度数experimental design 试验设计explanatory variable 说明变量exploratory 探索的exponential 指数Ffactor 因素,因子factor analysis 因子分析factor loadings因子输入量(系数)factor score 因子得分factorial effects 析因效应factorial designs 析因设计factorial experiment 析因试验fiducial probability 置信概率fit 拟合fitted line 拟合线fitted value 拟合值filter, -ing 滤子finite population 有限总体Fisher information 费希尔信息itting 拟合fixed-effect model固定效应模型fixed model 固定模型fixed variable 固定变量follow-up study 追跡研究force of mortality 死力fractional factorial design部分析因设计frequency 频数fractional factorial design分步实施计划设计free-answer question 自由回答法frequency 频率frequency distribution 频率分布F statistic(ratio, test)F 统计量(F 比、F 检验)full factorial design 完全析因设计function 函数GGauss, Gaussian 高斯(的)gamma distribution 伽玛分布geometric mean 几何均值genetic algorithm 遗传算法geometric distribution 几何分布geometric mean 几何平均值goodness of fit 拟合优度Greco-Latin square 正交拉丁方group 组Hharmomic mean 调和均值hazard function 故障率函数heterogeneity 不齐性heteroscedastic, -ity异方差(性)histogram 直方图homogeneity 齐性homogeneity of variance方差齐性homoscedastic, -ity 同方差(性)hypergeometric distribution超几何分布hypothesis 假设hypothesis test 假设检验Iindependence 独立independent variable 自变量independent-samples 独立样本index 指数index of correlation 相关指数infinite population 无限总体Input 入力Inspection 检查interval estimation 区间推定interval scale 间隔尺度interaction 交互作用Intercept 切片interclass correlation 组内相关interval estimate 区间估计intraclass correlation 组间相关inverse 倒数的iterate 迭代item 项KKaplan-Meier estimateKaplan-Meier估计Kendall's rank correlation coefficients肯德尔等级相关系数Kullback-Leibler information number库尔贝克-莱布勒信息函数kernal 核Kolmogorov-Smirnov test柯尔莫哥洛夫-斯米诺夫检验kurtosis 峰度LLag 时间滞后lLatin square 拉丁方large sample 大样本large sample problem 大样本问题law of large numbers 大数定律(strong -, weak- )強定律、弱定律layer 层least-significant difference最小显著差数least-square estimation最小二乘估计least-square method 最小二乘法least square 最小二乘法level 水平level of significance 显著性水平least significant difference, LSD.最低显著性差异leverage value 中心化杠杆值life 寿命life table 生命表life test 寿命试验likelihood 似然likelihood function 似然函数likelihood ratio test 似然比检验linear 线性的linear discriminant function线形判别函数linear estimator 线性估计linear model 线性模型linear regression 线性回归linear relation 线性关系linear term 线性项local control 局部控制l logarithmic 对数的logarithms 对数logistic function 逻辑斯蒂函数logit analysis(transformation)分对数分析(变换)log-linear model 对数线性模型log-log 对数llog-normal distribution对数正态分布logistic 逻辑的lost function 损失函数MMahalanobis' generalized distance Mahalanobis马氏'广义马氏距离mail survey 邮送调査main effect 主效应marginal边缘(的)Markov, -ian马尔科夫(的)mathematical statistics数理统计学matrix 矩阵maximum 最大值maximum likelihood estimation 极大似然估计McNemar's test McNemar测试meta-analysis元分析*Mean 平均(值)mean deviation 平均偏差mean effect 平均效应mean squared deviation(MSD) 均方差mean sum of square 均方和measure 衡量median 中位数M-estimator M估计minimum 最小值missing values 缺失值mixed model 混合模型mode 众数model 模型-ing 建模momen 矩Monte Carle method 蒙特卡罗法moving average 移动平均值multidimensional scaling(MDS)多维换算multicollinearity 多元共线性multiple answer重复回答multiple choice多重选择multiple correlation coefficient 多重相关系数multiple comparison 多重比较multiple correlation 多重相关multiple correlation coefficient 复相关系数multiple correlation coefficient 多元相关系数multiple regression analysis多元回归分析multiple regression equation 多元回归方程multiple response 多响应multivariate analysis 多元分析Multivariate analysis of variance 多元方差分析multi-stage sampling 多阶段抽样multivariate normal distribution 多变量正态分布Nnegative relationship 负相关n×m tablen×m表nominal scale额定尺度nonadditively 不可加性non-central 无心nonparametric 非参数的normal approximation 正态近似normal distribution正态分布normal equation 正规方程nonlinear 非线性nonlinear regression 非线性回归noparametric tests 非参数检验normal distribution 正态分布null 原假设null hypothesis 零假设number of cases 个案数Oone-sample 单样本one-tailed test 单侧检验one-way ANOVA 单向方差分析one-way classification 单向分类optimal 优化的optimum allocation 最优配制order 排序order statistics 次序统计量origin 原点orthogonal 正交的outliers 异常值Ppaired comparison成对比较法panel survey固定样本调查parameter系数partial confounding部分混杂(法)* Pearson's product moment correlation coefficient皮尔逊矩相关系数phi coefficientφ系数pooled variance estimate联合方差估计* population总体correlation coefficient总体相关系数* population mean总体平均值* population variance总体方差posterior probability (distribution)后验概率(分布)power(function)幂(函数)pre-coding预编码predicted value预测值* prediction预测predictive预测(的)presentation表示、表现(法)primary sampling unit 第1 次抽样的单位* probability distribution概率分布probability proportionate sampling概率比例抽样probit analysis概率单位分析process 过程producer's risk生产者风险projection pursuit投影寻踪paired observations 成对观测数据paired-sample 成对样本parameter 参数parameter estimation 参数估计partial correlation 偏相关partial correlation coefficient偏相关系数partial regression coefficient偏回归系数percent 百分数periodic 周期的periodogram 周期图percentiles 百分位数pie chart 饼状图plot 点图point estimate 点估计poisson distribution 泊松分布polynomial curve 多项式曲线polynomial regression 多项式回归polynomials 多项式positive relationship 正相关power 幂P-P plot P-P概率图predict 预测predicted value 预测值prediction intervals 预测区间principal component analysis主成分分析prior probability(distribution)先验概率(分布)proability 概率probability density function概率密度函数probit analysis 概率分析proportion 比例proportional hazard model 比例风险模型prospective study 远景调查Qqadratic 二次的Q-Q plot Q-Q概率图quadratic term 二次项quality control 质量控制quantitative 数量的,度量的quartiles 四分位数Rrandom 随机的random number 随机数random number 随机数random sampling 随机取样random seed 随机数种子random variable 随机变量randomization 随机化range 极差rank 秩rank correlation 秩相关rank statistic 秩统计量regression analysis 回归分析regression coefficient 回归系数regression line 回归线reject 拒绝rejection region 拒绝域relationship 关系reliability 可靠性repeated 重复的report 报告,报表residual 残差residual sum of squares 剩余平方和response 响应risk function 风险函数robustness 稳健性root mean square 标准差row 行run 游程run test 游程检验Ssample 样本sample size 样本容量sample space 样本空间sampling取样sampling inspection 抽样检验scatter chart 散点图S-curve S形曲线separately 单独地sets 集合sign test 符号检验significance 显著性significance level 显著性水平significance testing 显著性检验significant 显著的,有效的significant digits 有效数字skewed distribution 偏态分布skewness 偏度small sample problem 小样本问题smooth 平滑sort 排序soruces of variation 方差来源space 空间spread 扩展square 平方standard deviation 标准离差standard error of mean均值的标准误差standardization 标准化standardize 标准化statistic 统计量statistical quality control统计质量控制std. residual 标准残差stepwise regression analysis逐步回归stimulus 刺激strong assumption 强假设stud. deleted residual学生化剔除残差stud. residual 学生化残差subsamples 次级样本sufficient statistic 充分统计量sum 和sum of squares 平方和summary 概括,综述Ttable 表t-distribution t分布test 检验test criterion 检验判据test for linearity 线性检验test of goodness of fit拟合优度检验test of homogeneity 齐性检验test of independence 独立性检验test rules 检验法则test statistics 检验统计量testing function 检验函数time series 时间序列tolerance limits 容许限total 总共,和transformation 转换treatment 处理trimmed mean 截尾均值true value 真值t-test t检验two-tailed test 双侧检验Uunbalanced 不平衡的unbiased estimation 无偏估计unbiasedness 无偏性uniform distribution 均匀分布VVariate 变量variance ratio方差比varimax rotation varimax旋度varimax solution varimax解variation变差variability变异性validity有效性value of estimator 估计值variable 变量variance 方差variance components 方差分量variance ratio 方差比various 不同的vector 向量WWelch's test Welch检验weighted sampling 加权抽样weight 加权,权重weighted average 加权平均值within groups 组内的within (级)间with probability 1(w.p.1)以概率1 wording 措辞Xχ2-statisticχ2统计量χ2-testχ2检验YYates' correction Yates修正ZZ score Z分数Zipf's law Zipf法則z transformation z 变换2. 最优化方法词汇英汉对照表Aactive constraint 活动约束active set method 活动集法analytic gradient 解析梯度approximate 近似arbitrary 强制性的argument 变量attainment factor 达到因子Bbandwidth 带宽be equivalent to 等价于best-fit 最佳拟合bound 边界Ccoefficient 系数complex-value 复数值component 分量constant 常数constrained 有约束的constraint 约束constraint function 约束函数continuous 连续的converge 收敛cubic polynomial interpolation method三次多项式插值法curve-fitting 曲线拟合Ddata-fitting 数据拟合default 默认的,默认的define 定义diagonal 对角的direct search method 直接搜索法direction of search 搜索方向discontinuous 不连续Eeigenvalue 特征值empty matrix 空矩阵equality 等式exceeded 溢出的Ffeasible 可行的feasible solution 可行解finite-difference 有限差分first-order 一阶GGauss-Newton method高斯-牛顿法goal attainment problem目标达到问题gradient 梯度gradient method 梯度法Hhandle 句柄Hessian matrix 海色矩阵Iindependent variables 独立变量inequality 不等式infeasibility 不可行性infeasible 不可行的initial feasible solution 初始可行解initialize 初始化inverse 逆invoke 激活iteration 迭代iteration 迭代JJacobian 雅可比矩阵LLagrange multiplier 拉格朗日乘子large-scale 大型的least square 最小二乘least squares sense最小二乘意义上的Levenberg-Marquardt method列文伯格-马夸尔特法line search 一维搜索linear 线性的linear equality constraints线性等式约束linear programming problem线性规划问题local solution 局部解Mmedium-scale 中型的minimize 最小化mixed quadratic and cubic polynomial interpolation and extrapolation method混合二次、三次多项式内插、外插法multiobjective 多目标的Nnonlinear 非线性的norm 范数O1-way layout 1 元布局法objective function 目标函数observed data 测量数据observational error 观测误差observed frequency 观测频率observed value 观测值odds 奇odds ratio 奇数比one-sided 单侧OC(operating characteristic)curve作用特性曲线open-ended question 可扩充解答法optimum allocation 最佳分配法optimization routine 优化过程optimize 优化optimizer 求解器ordered classification 顺序化ordinal scale 序数尺度orthogonal polynomial 正交多项式outlier 边际值output 输出、结果over-determined system 超定系统Pparameter 参数partial derivatives 偏导数polynomial interpolation method 多项式插值法Qquadratic 二次的quadratic interpolation method 二次内插法quadratic programming 二次规划Rreal-value 实数值residuals 残差robust 稳健的robustness 稳健性,鲁棒性Sscalar 标量semi-infinitely problem半无限问题Sequential Quadratic Programming method序列二次规划法simplex search method单纯形法solution 解sparse matrix 稀疏矩阵sparsity pattern 稀疏模式sparsity structure 稀疏结构starting point 初始点step length 步长subspace trust region method子空间置信域法sum-of-squares 平方和symmetric matrix 对称矩阵Ttermination message 终止信息termination tolerance 终止容限the exit condition 退出条件the method of steepest descent 最速下降法transpose 转置Uunconstrained 无约束的under-determined system 负定系统Vvariable 变量vector 矢量Wweighting matrix 加权矩阵3样条词汇英汉对照表Aapproximation 逼近array 数组a spline in b-form/b-spline b样条a spline of polynomial piece /ppform spline分段多项式样条Bbivariate spline function 二元样条函数break/breaks 断点Ccoefficient/coefficients 系数cubic interpolation 三次插值/三次内插cubic polynomial 三次多项式cubic smoothing spline 三次平滑样条cubic spline 三次样条cubic spline interpolation/三次样条内插curve 曲线Ddegree of freedom 自由度dimension 维数Eend conditions 约束条件Iinput argument 输入参数interpolation 插值/内插interval 取值区间Kknot/knots 节点Lleast-squares approximation最小二乘拟合Mmultiplicity 重次multivariate function 多元函数Ooptional argument 可选参数order 阶次output argument 输出参数Ppoint/points 数据点Rrational spline 有理样条rounding error舍入误差(相对误差)Sscalar 标量sequence 数列(数组)singular 奇异spline 样条spline approximation样条逼近/样条拟合spline function 样条函数spline curve 样条曲线spline interpolation样条插值/样条内插spline surface 样条曲面smoothing spline 平滑样条Ttolerance 允许精度Uunivariate function 一元函数Vvector 向量Wweight/weights 权重4 偏微分方程数值解词汇Aabsolute error 绝对误差absolute tolerance 绝对容限adaptive mesh 适应性网格Bboundary condition 边界条件Ccontour plot 等值线图converge 收敛coordinate 坐标系Ddecomposed 分解的decomposed geometry matrix 分解几何矩阵diagonal matrix 对角矩阵Dirichlet boundary conditions Dirichlet边界条件Eeigenvalue 特征值elliptic 椭圆形的error estimate 误差估计exact solution 精确解Ggeneralized Neumann boundary condition推广的Neumann边界条件geometry 几何形状geometry description matrix几何描述矩阵geometry matrix 几何矩阵graphical user interface(GUI)图形用户界面Hhyperbolic 双曲线的Iinitial mesh 初始网格Jjiggle 微调LLagrange multipliers 拉格朗日乘子Laplace equation 拉普拉斯方程linear interpolation 线性插值loop 循环Mmachine precision 机器精度mixed boundary condition 混合边界条件NNeuman boundary condition Neuman边界条件node point 节点nonlinear solver 非线性求解器normal vector 法向量PParabolic 抛物线型的partial differential equation 偏微分方程plane strain 平面应变plane stress 平面应力Poisson''s equation 泊松方程polygon 多边形positive definite 正定Qquality 质量Rrefined triangular mesh加密的三角形网格relative tolerance 相对容限relative tolerance 相对容限residual 残差residual norm 残差范数Q quartile四分位(数)quartile deviation四分位偏差* quality 质qualitative定性的qualitative data定性的数据* quantity量quantitative 定量的、计量的quota system定额系统R * radar chart雷达图*random随机的random-effectmodel随机效应模型randomization概率化、随机化* randomness随机性randomnumber随机数randomsampling随机抽样randomwalk随机游动* range范围(区域)* rank秩* rankcorrelation coefficients等级相关系数ranking method秩评定法* rank-size rule秩规模规则rank test秩检验ratingmethod比率法* ratio scale比率尺度* regression回归*regression coefficient回归系数regression diagnosis回归诊断* regression equation(line)回归方程(直线)* rejection region 拒绝区域* relative frequency相对频率relative risk相对风险reliability(coefficient)信赖性(系数)* residual残差response curve(surface)相应曲线(曲面)retrospective study 追溯调查risk风险risk factor风险因素robust, -ness稳健的(性)* run取遍S * sample样本* samplemean样本均值* sample size样本量(大小)* sample variance 样本方差* sampling抽样sampling error抽样误差sampling interval抽样间隔sampling unit抽样单位*scales尺度* scattergram,scatter plot(diagram)点状图Scheffe's test Scheffe检验score得分seasonality季节性secondary sampling unit第 2 次单位抽样serial correlation序列相关self-adminstration自管理semi-log半对数sigmoid拟S 型、S 状signal to noiseratio SN(信噪)比signed rank test带符号的秩检验* significance, significant显著(的)* significance probability 显著概率simple random sampling简单随机抽样* simple regression简单回归single replication 1 次重复size proportionate allocation 比例布局法skewed斜的* skewness失真slope斜率spectral window谱窗spectrogram谱图spectrum谱* Spearman's rank correlation coefficients斯皮尔曼等级相关系数* spurious correlation伪相关square平方* standard deviation, S.D.标准方差* standard error标准误差* standard score标准得分start number起始编号* stationary平稳的* statistic(for inference)统计量(统计推论的)statistical 统计的statistically significant 统计显著的stem-and-leaf presentation茎叶表现stereotype陈腔滥调stochastic process随机过程* stratification分层stratified sampling分层抽样* stratum([pl.] strata)层Student('s)学生(的)studentized range学生化范围study研究sub-sampling二次抽样sufficiency充分性sufficientstatistic充分统计量supervisor管理者survivalanalysis生存时间分析survey调查systematic sampling系统抽样T taxonomy分类(学)tail尾* test检验* test ofgoodness of fit拟合良好性检定* test of independence无关性检验3-way layout 3 元布局法threshold阈值tie结tie correction结修正*time series时间序列total variation全变差treatment处理* trend趋势trend analysis趋势分析trial尝试* t-statistic, -test, -ratio t 统计量(t 检验、t 比)two-sided双边的*2-sample t-test 2 样本t 检验2-stage sampling 2 阶段抽样法two-by-two contingency table2×2列联表2-way layout 2 元布局法*2-way table 2 重表two-stage sampling 2 阶段抽样法U unbiased estimator无偏估计量unbiased variance无偏方差uncorrelated不相关(的)uniform distribution均匀分布uniform random numbers均匀随机数uniqueness唯一性updating更新* upward trend 向上趋向[基本] <分> likelihood 可能性[数学] <精> likelihood 似然[主科技] <精> likelihood 相似性; 似然; 似真[数学] <扩> Conditional likelihood, 条件似然[数学] <扩> likelihood function似然函数[数学] <扩> likelihood ratio 似然比[数学] <扩> likelihood ratio test 似然比值检验[数学] <扩> maximum likelihood equations 极大似然方程[数学] <扩> maximum likelihood estimating function 极大似然估计量[数学] <扩> maximum likelihood estimator 极大似然估计量[数学] <扩> maximum likelihood method 极大似然法[数学] <扩> Maximum likelihood method, 最大似然法[数学] <扩> maximum likelihood principle 极大似然法[数学] <扩> sequential likelihood ratio test 序贯似然比值检验[心理学] <扩> iterative maximum likelihood estimation 重复最大相似性估计。
常微分方程与动力系统青年研讨会
常微分方程与动力系统青年研讨会2019.4.12-4.141.会议日程 (2)2.报告摘要 (4)上海交通大学数学科学学院&教育部科学工程计算重点实验室1.会议日程4.13 报告报告人8:25-8:30 开幕式:肖冬梅主持人:肖冬梅8:30-9:00 Variational formulations and stability of steady equatorial waves with储继峰vorticity9:00-9:30 关于近完全可积系统的一些研究结果吴昊9:30-10:00 On several Lotka-Volterra competitive systems 周鹏10:00-10:20 茶歇主持人:于江10:20-10:50 Global dynamics of a cubic Lienard system 陈和柏10:50-11:20 The stability of full dimensional KAM tori for nonlinear Schrödinger丛洪滋equation11:20-11:50 Bifurcations of limit cycles around the boundaries of a period annulus 田云11:50-13:45 午餐主持人:储继峰13:45-14:15 The limit distribution of inhomogeneous Markov processes andKolmogorov's problem 柳振鑫14:15-14:45 Time-Domain Analysis of an Acoustic–Elastic Interaction Problem 高忆先14:45-15:15 Long time stability of Hamiltonian partial differential equations withderivatives in nonlinearities 张静15:15-15:45 Invariant Cantor manifolds of quasi-periodic solutions for the DNLSequation 高美娜15:45-16:00 茶歇主持人:柳振鑫16:00-16:30 双曲之外微分动力系统的一些遍历理论进展田学廷16:30-17:00 C^1-openness of non-uniform hyperbolic diffeomorphisms withbounded C^2 norm 杨佳刚17:00-17:30 The mixing property of partially hyperbolic attractors 杨大伟17:30-18:00 Werk KAM solutions and twist maps of the annulus MaximeZavidovique 18:00-20:00 晚餐4.14 报告报告人主持人:杨大伟8:45-9:15 微分动力系统中的内蕴持续动力学行为与双曲性文晓9:15-9:45 Hyperbolicity vs. non-hyperbolic ergodic measures inside homoclinic王晓东classes9:45-10:10 茶歇主持人:文晓10:10-10:40 Dynamics and bifurcations of some piecewise smooth differential唐异垒systems10:40-11:10 Weak KAM Theory and its Applications 王楷植11:10-11:30 讨论11:30-12:30 午餐2.报告摘要Global dynamics of a cubic Lienard system陈和柏(福州大学)Abstract:In this talk, we investigate the dynamical behaviour of a cubic Liénard system with global parameters. For global parameters we give a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505–19) about the existence of some function whose graph is exactly the surface of double limit cycles.Variational formulations and stability of steady equatorial waves with vorticity储继峰(上海师范大学)Abstract:When the vorticity is monotone with depth, we present a variational formulation for steady periodic water waves of the equatorial flow in the $f$-plane approximation, and show that the governing equations for this motion can be obtained by studying variations of a suitable energy functional $\mathcal{H}$ in terms of the stream function and the theromcline. We derive criteria which ensure that the second variation of the constrained energy functional is a nonnegative form, proving thus linear stability of steady equatorial water waves with vorticity.The stability of full dimensional KAM tori for nonlinear Schrödinger equation丛洪滋(大连理工大学)Abstract:In this talk,we will discuss the existence and long time stability the full dimensional invariant tori for 1D nonlinear Schrödinger equation with periodic boundary conditions.Invariant Cantor manifolds of quasi-periodic solutions for the DNLS equation高美娜(上海第二工业大学)Abstract:We are concerned with the derivative nonlinear Schrodinger equation with periodic boundary conditions. We show the above equation possesses Cantor families of smoothquasi-periodic solutions of small amplitude. The proof is based on an infinite dimensional KAM theorem for unbounded perturbation vector fields.Time-Domain Analysis of an Acoustic–Elastic Interaction Problem高忆先(东北师范大学)Abstract:Consider the scattering of a time-domain acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous air or fluid. This paper concerns the mathematical analysis of such a time-domain acoustic–elastic interaction problem. An exact transparent boundary condition (TBC) is developed to reduce the scattering problem from an open domain into an initial-boundary value problem in a bounded domain. The well-posedness and stability are established for the reduced problem. A priori estimates with explicit time dependence are achieved for the pressure of the acoustic wave field and the displacement of the elastic wave field. Our proof is based on the method of energy, the Lax–Milgram lemma, and the inversion theorem of the Laplace transform. In addition, a time-domain absorbing perfectly matched layer (PML) method is introduced to replace the nonlocal TBC by a Dirichlet boundary condition. A first order symmetric hyperbolic system is derived for the truncated PML problem. The well-posedness and stability are proved. The time-domain PML results are expected to be useful in the computational air/fluid–solid interaction problems.The limit distribution of inhomogeneous Markov processes and Kolmogorov's problem柳振鑫(大连理工大学)Abstract:In this talk, we will talk about the limit distribution of inhomongeneous Markov processes, especially those generated by the SDEs. Meantime, we will also discuss the recent progress in Kolmogorov's problem on the limit behavior of stationary distributions of diffusion processes as the diffusion tends to zero.Dynamics and bifurcations of some piecewise smooth differential systems唐异垒(上海交通大学)Abstract:In this talk, we study the dynamics and the bifurcations of some piecewise smooth differential systems and exhibit rich and complicated dynamical phenomena, such as Hopfbifurcation, grazing bifurcation, grazing-sliding bifurcation and bifurcations of limit cycles. All global phase portraits of the system are presented on the Poincar\'e disc.双曲之外微分动力系统的一些遍历理论进展田学廷(复旦大学)Abstract:一方面介绍Bowen针对双曲之外提出的统计式理论及Specificaition存在性问题在非一致双曲系统情形的进展,例如发现了多种Specification新形式(较原Specification虽然失去了很多一致性,但跟踪程度指数式变化、相邻回复时刻几乎无间隙等新观察弥补了缺陷)并可用于得到Poincare回复时刻与Lyapunov指数的关系、时间平均饱和集的存在性及其拓扑熵与对应测度熵的变分原理并应用于重分形理论(适用于Bonatti-Viana、Mañé、Katok等发现的几大类双曲之外的系统);另一方面在Specification对遍历平均的应用上有一些新进展(在一致双曲时也是新的),例如肯定Mañé关于Oseledec乘法遍历定理中Lyapunov正则性的拓扑论断、得到回复轨道层次的满拓扑熵和分布混沌等描述。
Some properties on quasi stationary distributions in the birth and death chains
SOME PROPERTIES OF QUASI STATIONARY DISTRIBUTIONS IN THE BIRTH AND DEATH CHAINS:A DYNAMICAL APPROACHP.A.FERRARIInstituto de Matem´a tica e EstatisticaUniversidade de S˜a o Paulo,S˜a o Paulo,Brasil.S.MARTINEZDepartamento de Ingenier´ıa Matem´a ticaFacultad de Ciencias F´ısicas y Matem´a ticasUniversidad de Chile,Santiago,Chile.P.PICCOCentre de Physique Th´e orique,C.N.R.S.Luminy,Marseille,France.ABSTRACT.We study the existence of non-trivial quasi-stationary distributions for birth and death chains by using a dynamical approach.We also furnish an elementary proof of the solidarity property.1.IntroductionConsider an irreducible discrete Markov chain(X(n))on S∗∪{0}where0is the only absorbing state and S∗is the set of transient states.Letνbe a probability distribution. Denote byν(n)(x)=Pν(X(n)=x||X(n)=0)(1.1) the conditional probability that at time n the chain is at state x given that it has not been absorbed,starting with the initial distributionν.A measureµis called a Yaglom limit iffor some probability measureνwe have:ν(n)(x)−−→n→∞µ(x)for all x∈S∗.Now assume that the transition probabilities p(x,y)=P(X(n+1)=y|X(n)=x) verify the following hypothesis:p(0,0)=1P∗=(p(x,y):x,y∈S∗)is irreducible∀x∈S the set{y∈S:p(y,x)>0}isfinite and non-emptyThen it is easy to show that Yaglom limitsµverify the set of equations∀x∈S∗,µ(x)=y∈S∗µ(y)(p(y,x)+p(y,0)µ(x))(1.2)or equivalently the row vectorµ=(µ(x):x∈S∗)satisfiesµP∗=γ(µ)µwithγ(µ)=1−µ(x)p(x,0)(1.3)x∈S∗In general a quasi-stationary distribution(q.s.d.)is a measureµwhich verifies(1.3). Ifµis also a probability measure we call it a normalized quasi-stationary distribution (n.q.s.d.).Obviously the trivial measureµ≡0is a q.s.d.It is easy to show that the irreducibility condition we have imposed on the Markov chain implies that for any non-trivial q.s.d.,µ(x)>0for all x∈S∗.Some of the interesting problems of q.s.d.are concerned with the search for·necessary and/or sufficient conditions on the transition matrices for the existence of non-trivial q.s.d.,·domains of attractions of q.s.d.,·evolution ofδ(n),δx being the Dirac distribution at point x.xconverges to a n.q.s.d.For several kinds of Markov chains it has been proved thatδ(n)xThis was shown for branching process by Yaglom(1947),forfinite state spaces by Darroch and Seneta(1965),for continuous time simple random walk on N by Seneta(1966)and for discrete time random walk on N by Seneta and Vere-Jones(1966).does not For birth and death chains the existence of the limit of the sequenceδ(n)xdepend on x,and if the limit exists it is the same for all x.We provide in section3 an elementary proof of this fact.Good(1968)gave a proof of this result based on some powerful results of Karlin and McGregor(1957);some technical details need additional explanations.The problem of convergence ofν(n)forνother than Dirac distributions was initially considered by Seneta and Vere Jones(1966)for Markov chains with R-positive transition matrix.For random walks it turns of that the Yaglom limit ofδ(n)is the minimal n.q.s.d.x(this meansγ(µ)is minimal).Then the study of the domains of attraction of non-minimal n.q.s.d.concerns the evolutionν(n)forνother than Dirac distributions.Recently we proved in[FMP]that the domains of attraction of non-minimal n.q.s.d.are non-trivial. More precisely we show that:Theorem1.1.Letµ,µ be n.q.s.d.withγ(µ)>γ(µ ).Assume thatνsatisfies:sup{|ν(x)−µ(x)|µ (x)−1:x∈S∗}<∞orν=ηµ+(1−η)µ forη∈(0,1]µ.thenν(n)−−→n→∞Our main results deal with q.s.d.in birth and death chains.Afirst study concerning the description of the class of q.s.d.’s for birth and death process was made by Cavender (1978).Roughly,this class was characterized as an ordered one-parameter family and it was proved that any q.s.d.has total mass0,1or∞.2.Existence of Q.S.D.for Birth and Death Chains2.1GENERAL CONDITIONS FOR EXISTENCEConsider a birth and death chain(X n)on N with0as its unique absorbing state,so p(0,0)=1.Denote q x=p(x,x−1)and p x=p(x,x+1),so p(x,x)=1−p x−q x for all x∈N∗.For a sequenceµ=(µ(x):x∈N∗)the equations(1.2)take the form,∀y∈N∗:(p y+q y)µ(y)=q y+1µ(y+1)+p y−1µ(y−1)+q1µ(1)µ(y)(2.1)Ifµ(1)>0we getxy=1µ(y)=1−1µ(1)q1(q x+1µ(x+1)−p xµ(x))so a non-trivial q.s.d.is normalized iffµ(x)−−→x→∞0.Now forγ=p1+q1define in a recursive way the following sequenceZγ=(Zγ(x):x∈N∗),Zγ(1)=γ(2.2)∀y≥2:Zγ(y)=fγ,y(Zγ(y−1))(2.3) wherefγ,y(z)=γ+p y+q y−p1−q1−p y−1q yz(2.4)Associate to Zγthe following vectorµ(γ)=(µ(γ)(x):x∈N∗)µ(γ)(1)=1q1(p1+q1−γ)(2.5)∀x≥2:µ(γ)(x)=µ(γ)(1)x−1y=1Zγ(y)q y+1(2.6)In[FMP]it was shown that a vectorµ=(µ(x):x∈N∗)with non-null terms verifies equations(2.1)iffthere exists aγ=p1+q1such thatµ=µ(γ).In particular this last result implies that there exist non-trivial q.s.d.µifffor some γ<p1+q1the sequence Zγ=(Zγ(x):x∈N∗)is strictly positive.Then we search for conditions under which the orbitZγ(y)=fγ,y◦fγ,y−1◦···◦fγ,2(γ)is strictly positive.Assume for simplicity that p x +q x =1for all x ∈N ∗so the evolution functions f γ,y take the form,f γ,y (z )=γ−p y −1q yz(2.7)Now make the following hypothesis:there exists a ¯q ∈(12,√7−12)such that ∀y ∈N ∗,12<¯q −12¯q −122<q ≤q y ≤q <¯q +12¯q −122<1(2.8)Denote p =1−q ,p=1−q.Notice that if ¯q =√7−12then ¯q +12(¯q −12)2=1.The abovecondition (2.8)means that the birth and death chain is a perturbation of a random walk of parameter ¯q .It can be shown that the hypothesis (2.8)implies the inequality2pq <p +q <1Call g γ(z )=γ−p q zand h γ(z )=γ−pq z .It is easy to check that:∀y ∈N ∗,z ≥0:h γ(z )≤f γ,y (z )≤g γ(z )(2.9)Take γ∈[2√pq ,1),then h γ(z )has two fixed points (only one if γ=2√pq ),a stable oneξ=γ+√γ2−4pq2and an unstable one η=γ−√γ2−4pq 2.Also g γ(z )has two fixed points,a stable one ˜ξ=γ+√γ2−4p q 2and an unstable one ˜η=γ−√γ2−4pq 2.Theorem 2.1.If condition (2.8)holds then there exist n.q.s.d.More precisely,if γ∈[2√pq,1)then µ(γ)is a non trivial q.s.d.and if γ∈[2√pq ,p +q ]then µ(γ)is a n.q.s.d.Proof.Take γ∈[2√pq,1).We have Z γ(1)=γ≥ξ.ThereforeZ γ(y )=f γ,y ◦...◦f γ,2(Z γ(1))≥h (y −1)γ(Z γ(1))≥h (y −1)γ(ξ)=ξ>0Then Z γ(y )≥ξ>0.Now γ<1implies µ(γ)(1)>0and expression (2.6)shows µ(γ)(x )>0for any x ≥2,so µ(γ)is a non trivial q.s.d.Now let us prove that:∀y ∈N ∗,Z γ(y )≤˜ξ+(γ−˜ξ) ˜η˜ξy −1(2.10)Since Z γ(1)=γthe relation (2.10)holds for y =1.Now we haveZ γ(y )=f γ,y ◦f γ,y −1◦···◦f γ,2(γ)≤g (y −1)γ(γ)where g (x )γ=g γ◦···◦g γx times.Since g (y −1)γ(˜ξ)=˜ξwe get from Taylor formula,g (y −1)γ(γ)≤˜ξ+(γ−˜ξ)sup z ∈[˜ξ,γ]∂∂t g (y −1)γ(z )Now∂∂z g (y −1)γ(z )=y −2 x =0g γ(g (x )γ(z ))withg (0)γ(z )=z and g γ(z )=p qz 2=˜ξ˜ηz 2.Using the fact that g γis increasing and ˜ξis a fixed point of g γwe get easily that for all 0≤x ≤y −2,and z ∈[˜ξ,γ],we have g (x )γ(z )≥˜ξ.Therefore we get supz ∈[˜ξ,γ] ∂∂t g (y −1)(z ) ≤ ˜η˜ξ y −1Then property (2.10)is fulfilled.Recall that q y ≥q .Use the bound (2.10)to get from (2.6),µ(γ)(x )≤µγ(1)(x −1y =1(1+γ−˜ξ˜ξ(˜η˜ξ)y −1))(˜ξq )x −1Since∞ y =1(˜η˜ξ)y −1<∞we deduce that C =∞ y =1(1+γ−˜ξ˜ξ(˜η˜ξ)y −1)<∞.Soµ(γ)(x )≤Cµγ(1)(˜ξq)x −1.Now assume γ∈[2√pq ,p+q ].Since pq >p q we get:˜ξ=12(γ+ γ2−4pq )≤12((p +q )+ (p +q )−4p q )<12((p +q )+(q −p ))=q Then˜ξq<1so µ(γ)(x )−−→x →∞0.Then µ(γ)is a n.q.s.d.2.2LINEAR GROWTH CHAINS WITH IMMIGRATIONThese processes are birth and death chains withp y =py +1(p +q )y +1,q y =qy(p +q )y +afor y ∈N ∗,(2.11)(so p y +q y =1)and an absorving barrier at 0,p (0,0)=1.We assume conditionsp >q and a <p +q (2.12)It can be shown that these inequalities imply that the sequence of functions(f γ,y :y ∈N ∗)defined in (2.7),is increasing with y .The pointwise limit of this sequence,when y →∞,is f γ,∞(z )=γ−pq(p +q )2z .Then we have:f γ,2≤···≤f γ,y ≤f γ,y +1≤···≤f γ,∞(2.13)Observe that f γ,2plays the role of h γand f γ,∞that of g γin (2.9).Now,inequality p 1q 2<1is equivalent to2(q −p )2+a (3p +a −5q )>0(2.14)This condition is verified if q is big enough,for instance if q >p +54a +a (p +1716a ).We assume (2.14)holds.Take γ∈(2√p 1q 2,1)so ξ=γ+√γ2−4p 1q 22belongs to the interval (0,γ)and it is a fixed point of f γ,2.Then Z γ(1)=γand,Z γ(y )=f γ,y ◦···◦f γ,2(γ)>f (y −1)γ,2(ξ)=ξ>0Since γ<1,from (2.5)and (2.6)we get µ(γ)(y )>0for any y ∈N ∗.Hence µ(γ)is a non trivial q.s.d.Recall that f γ,2≤f γ,∞is equivalent to pq(p +q )2<p 1q 2.Take γ∈(2√pq (p +q ),2√p 1q 2).Then the point ˜η=γ−γ2−4pq(p +q )22and ˜ξ=γ+ γ2−4pq (p +q )2are respectively the unstable and the stable fixed points of f γ,∞.Replacing g γby f γ,∞we get that condition (2.9)holdswith ˜η,˜ξthe fixed points of f γ,∞.Then,µ(γ)(x )≤µ(γ)(1){x −1y =1(1+γ−˜ξ˜ξ(˜η˜ξ)y −1}˜ξx −1x −1 y =11q y +1(2.15)Denote C =∞y =1(1+γ−˜ξ˜ξ(˜η˜ξ)y −1)which is finite.We have x −1 y =11q y +1=(p +q q )x −1x −1 y =1(1+a(p +q )(y +1))≤(p +q q )x −1exp{ap +qx −1 y =11y +1}.Thenx −1 y =11q y +1≤(p +q q )x −1(x −1)a.Hence µ(γ)(x )≤µ(γ)(1)C (˜ξ(p +q )q)x −1(x −1)a p +q(2.16)It can be easily verified that our assumptions imply that˜ξ<qp+q .Thenµ(γ)(x)−−→x→∞0.Then,forγ∈(2√pqp+q,2√p1q2)the q.s.d.µ(γ)is normalized.3.Solidarity Property for Birth and Death ChainsConcerning the convergence of point measures to some Yaglom limit,the deepest results have been established in[S2,SV-J]for random walks(q x=q,p x=1−q)with continuous and discrete time.Here we shall show a solidarity process which asserts that it suffices to have the convergence for the probability measure concentrated at1.Our proof is elementary,in fact it does not use any higher technique.We must point out that Good [G]has also shown this result but in his proof some technical steps have been overlooked.Theorem3.1.Ifδ(n)1converges to a q.s.d.µthen for any x∈N∗,δ(n)xconverges toµ.Proof.For x,n∈N∗set:αx(n)=P x+1(X(n−1)=0)P x(X(n)=0),βx(n)=P x(X(n−1)=0)P x(X(n)=0),ξx(n)=P x−1(X(n−1)=0) P x(X(n)=0)Observe thatξ1(n)=0for all n∈N∗,all other terms being>0.These quantities are related by the identity∀x∈N∗,ξx+1(n)=βx(n)βx+1(n)(αx(n))−1(3.1) On the other hand from the equationP x(X(n)=0)=q x P x−1(X(n−1)=0)+(1−p x−q x)P x(X(n−1)=0)+p x P x+1(X(n−1)=0)(3.2) we deduce that∀x,n∈N∗,q xξx(n)+(1−p x−q x)βx(n)+p xαx(n)=1(3.3) Also from definition we getβx(n)=(P x(X(n)=0|X(n−1)=0))−1=(1−δ(n−1)x(1)q1)−1(3.4)If the limit of a sequenceη(n)exits denote it byη(∞).So the hypothesis of thetheorem is:∀z∈N∗,δ(∞)1(z)exists.Sinceδ(∞)1(1)exists and belongs to[0,1]we deduce from(3.4)thatβ1(∞)exists andbelongs to[1,11−q1].Fromξ1(n)=0and(3.3)we get thatα1(∞)exists and is bigger orequal than1p1(1−(1−p1−q1)1−q1)=11−q1.Now let us show that,∀x∈N∗,lim infn→∞αx(n)>0(3.5) This holds for x=1.Now from(3.2)evaluated at x+2we deduce the inequalityP x+1(X(n−1)=0)≤q−1x+2P x+2(X(n)=0)On the other hand since P y(X(n)=0)increases with y∈N∗and decreases with n∈N∗we get the following relationsP x(X(n)=0)≥p x P x+1(X(n−1)=0)αx+1(n)=P x+2(X(n−1)=0)P x+1(X(n)=0)≥P x+2(X(n)=0)P x+1(X(n−1)=0)Hence we obtain:αx(n)=P x+1(X(n−1)=0)P x(X(n)=0)≤(p x q x+2)−1P x+2(X(n)=0)P x+1(X(n−1)=0)≤(p x q x+2)−1αx+1(n)Thenαx+1(n)≥p x q x+2αx(n).So lim infn→∞αx+1(n)>0and relation(3.5)holds.Now let us prove by recurrence that:the limitsαx(∞),βx(∞),ξx(∞)andδ(∞)x(z)for all z∈N∗,exist(3.6) We show above that these limits exist for x=1.Assuming that property(3.6)holds for x∈{1,...,y},we shall prove that it is also satisfied for x=y+1.With this purpose in mind,condition on thefirst step of the chain to get,P y(X(n)=z)=q y P y−1(X(n−1)=z)+(1−p y−q y)P y(X(n−1)=z)+p y P y+1(X(n−1)=z)(3.7) Now from definitions ofαy(n),βy(n),ξy(n)we have the following identities for y≥2:P y(X(n)=0)=αy(n)(P y+1(X(n−1)=0))−1=βy(n)(P y(X(n−1)=0))−1=ξy(n)(P y(X(n−1)=0))−1Developδ(n)y(z)=P y(X(n)=z)(P y(X(n)=0))−1according to(3.7)and the last equalities to get:δ(n) y (z)=δ(n−1)y−1(z)q yξy(n)+δ(n−1)y(z)(1−p y−q y)βy(n)+δ(n−1)y+1(z)p yαy(n)(3.8)This last equality holds for any y≥1(recallξ1(n)=0).Sinceδ(∞)(z),ξx(∞),βx(∞),αx(∞)exist for any x≤y and z∈N∗,and,by(3.5),αx(∞)>0we get thatδ(∞)y+1(z)exists for any z∈N∗.On the other hand equality(3.4)implies thatβy+1(∞)exists.Then by(3.1)the limitξy+1(∞)exists and equation(3.3) implies the existence ofαy+1(∞).From(3.5)and(3.4)we deduceαx(∞)>0andβx(∞)>0for any x∈N∗.So(3.1) impliesξx(∞)>0for x≥2.Then ifδ(∞)y(z)=0for some y,z∈N∗we can deduce from equality(3.8)thatδ(∞) x (z)=0for all x∈N∗.So the q.s.d.’s which are the limits ofδ(n)xare all trivial ornormalized.Assume thatδ(n)1converges to a normalized q.s.d.µ.Let us prove by recurrence thatδ(n)xconverges toµfor all x.Since the limitsδ(∞)y exists andδ(∞)1(z)>0,when we evaluate(3.8)at y=1,n=∞we get the following equation:1=(1−p1−q1)β1(∞)+(δ(∞)2(z)δ(∞)1(z))p1α1(∞)Comparing this equation with(3.3)evaluated at x=1,n=∞,and by taking into accountthatξ1(∞)=0we deduceδ(∞)2(z)=δ(∞)1(z)for any z∈N∗.Assume we have shown for any y∈{1,...,y0}that:∀z∈N∗,δ(∞)y (z)=δ(∞)1(z).Letus show that this last set of equalities also hold for y0+1.Evaluate equation(3.8)at y=y0,n=∞to get1=q y0ξy(∞)+(1−p y−q y)βy(∞)+(δ(∞)y0+1(z)δ(∞)y0(z))p yαy(∞)Comparing this equation with(3.3)evaluated at x=y0,n=∞we deduce thatδ(∞)y0+1(z)=δ(∞) y0(z).Hence the recurrence follows and for any x∈N∗,δ(n)xconverges toµ=δ(∞)1.AcknowledgmentsWe thank Antonio Galves and Isaac Meilijson for discussions.P.P.and S.M.acknowl-edge the very kind hospitality at Instituto de Matem´a tica e Estat´ıstica,Universidade deS˜a o Paulo.The authors acknowledge the very kind hospitality of Istituto Matematico, Universit`a di Roma Tor Vergata.This work was partially supported by Funda¸c˜a o de Am-paro`a Pesquisa do Estado de S˜a o Paulo.S.M.was partially supported by Fondo Nacional de Ciencias0553-88/90and Fundaci´o n Andes(becario Proyecto C-11050).References[C]J.A.Cavender(1978)Quasi-stationary distributions of birth and death processes.Adv.Appl.Prob.,10,570-586.[FMP]P.Ferrari,S.Mart´ınez,P.Picco(1990)Existence of non trivial quasi stationary dis-tributions in the birth and death chains.Submitted J.Appl.Prob.[G]P.Good(1968)The limiting behaviour of transient birth and death processses condi-tioned on survival.J.Austral Math.Soc.8,716-722.[KMcG1]S.Karlin and J.McGregor(1957)The differential equations of birth and death pro-cesses,and the Stieljes Moment Problem.Trans Amer.Math.Soc.,85,489-546. [KMcG2]S.Karlin and J.McGregor(1957)The classification of birth and death processes.Trans.Amer.Math.Soc.,86,366-400.[SV-J]E.Seneta and D.Vere-Jones(1966)On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states.J.Appl.Prob.,3,403-434.[S1]E.Seneta(1981)Non-negative matrices and Markov chains.Springer Verlag.[S2]E.Seneta(1966)Quasi-stationary behaviour in the random walk with continuous time.Australian J.on Statistics,8,92-88.[SW]W.Scott and H.Wall(1940)A convergence theorem for continued-fractions.Trans.Amer.Math.Soc.,47,115-172.[Y]A.M.Yaglom(1947)Certain limit theorems of the theory of branching stochastic processes(in russian)Dokl.Akad.Nank SSSR,56,795-798.。
概率论与数理统计英文目录
Probability Theory and Mathematical Statistics1. OVERVIEW AND DESCRIPTIVE STATISTICS.Populations, Samples, and Processes.Pictorial and Tabular Methods in Descriptive Statistics.Measures of Location.Measures of Variability.2. PROBABILITY.Sample Spaces and Events.Axioms, Interpretations, and Properties of Probability.Counting Techniques.Conditional Probability.Independence.3. DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Random Variables.Probability Distributions for Discrete Random Variables.Expected Values of Discrete Random Variables.The Binomial Probability Distribution.Hypergeometric and Negative Binomial Distributions.The Poisson Probability Distribution.4. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS.Continuous Random Variables and Probability Density Functions.Cumulative Distribution Functions and Expected Values.The Normal Distribution.The Exponential and Gamma Distribution.Other Continuous Distributions.Probability Plots.5. JOINT PROBABILITY DISTRIBUTIONS AND RANDOM SAMPLES.Jointly Distributed Random Variables.Expected Values, Covariance, and Correlation.Statistics and Their Distributions.The Distribution of the Sample Mean.The Distribution of a Linear Combination.6. POINT ESTIMATION.Some General Concepts of Point Estimation.Methods of Point Estimation.7. STATISTICAL INTERVALS BASED ON A SINGLE SAMPLE.Basic Properties of Confidence Intervals.Large-Sample Confidence Intervals for a Population Mean and Proportion.Intervals Based on a Normal Population Distribution.Confidence Intervals for the Variance and Standard Deviation of a Normal Population.8. TESTS OF HYPOTHESES BASED ON A SINGLE SAMPLE.Hypothesis and Test Procedures.Tests About a Population Mean.Tests Concerning a Population Proportion.P-Values.Some Comments on Selecting a Test.9. INFERENCES BASED ON TWO SAMPLES.z Tests and Confidence Intervals for a Difference Between Two Population Means. The Two-Sample t Test and Confidence Interval.Analysis of Paired Data.Inferences Concerning a Difference Between Population Proportions. Inferences Concerning Two Population Variances.10. THE ANALYSIS OF VARIANCE.Single-Factor ANOVA.Multiple Comparisons in ANOVA.More on Single-Factor ANOVA.11. MULTIFACTOR ANALYSIS OF VARIANCE.Two-Factor ANOVA with Kij = 1.Two-Factor ANOVA with Kij > 1.Three-Factor ANOVA.2p Factorial Experiments.12. SIMPLE LINEAR REGRESSION AND CORRELATION.The Simple Linear Regression Model.Estimating Model Parameters.Inferences About the Slope Parameter a1.Inferences Concerning Y-x* and the Prediction of Future Y Values. Correlation.13. NONLINEAR AND MULTIPLE REGRESSION.Aptness of the Model and Model Checking.Regression with Transformed Variables.Polynomial Regression.Multiple Regression Analysis.Other Issues in Multiple Regression.14. GOODNESS-OF-FIT TESTS AND CATEGORICAL DATA ANALYSIS. Goodness-of-Fit Tests When Category Probabilities are Completely Specified. Goodness of Fit for Composite Hypotheses.Two-Way Contingency Tables.15. DISTRIBUTION-FREE PROCEDURES.The Wilcoxon Signed-Rank Test.The Wilcoxon Rank-Sum Test.Distribution-Free Confidence Intervals.Distribution-Free ANOVA.16. QUALITY CONTROL METHODS.General Comments on Control Charts.Control Charts fort Process Location.Control Charts for Process Variation.Control Charts for Attributes.CUSUM Procedures.Acceptance Sampling.APPENDIX TABLES.Cumulative Binomial Probabilities.Cumulative Poisson Probabilities.Standard Normal Curve Areas.The Incomplete Gamma Function.Critical Values for t Distributions.Tolerance Critical Values for Normal Population Distributions.Critical Values for Chi-Squared Distributions. t Curve Tail Areas. Critical Values for F Distributions.Critical Values for Studentized Range Distributions.Chi-Squared Curve Tail Areas.Critical Values for the Ryan-Joiner Test of Normality.Critical Values for the Wilcoxon Signed-Rank Test.Critical Values for the Wilcoxon Rank-Sum Test.Critical Values for the Wilcoxon Signed-Rank Interval.Critical Values for the Wilcoxon Rank-Sum Interval. a Curves for t Tests. Answers to Odd-Numbered Exercises.Index.。
统计学专业英语翻译
统计学专业英语翻译-CAL-FENGHAI.-(YICAI)-Company One1汉译英Population 总体,样本总体 sample 样本,标本 parameter 限制因素median 中位数 odd 奇数,单数 even 偶数range 极差 variance 方差 standard deviation 标准差Covariance 协方差 empty event 空事件 product event 积事件conditional probability 条件概率 Random variable 随机变量 binominal distribution 二项式分布uniform distribution 均匀分布 Poisson distribution 泊松分布 residual 残差central limit theorem 中心极限定律英译汉descriptive statistics 描述统计学 mathematical statistics 数理统计学 inductive statistics 归纳统计学Inferential statistics 推断统计学 dimension 维,维数 continuous variable 连续变量ordinal variable 有序变量 nominal variable 名义变量 dichotomous 两分的;二歧的discrete variable 离散变量 categorical variable 分类变量 location 定位,位置,场所dispersion 分散 mean 均值 unimodal 单峰的multimodal 多峰的 chaotic 无秩序的 grouped data 分组数据frequency distribution频数分布 cumulative frequency 累加频数 tallying 计算Uniformly distribution 均匀分布 histogram 直方图 frequency polygon 频率多边图rectangle 矩形 Percentile 百分位数 quartile 四分位数interquartile range 四分位数间距 simple event 简单事件Compound event 复合事件 mutually exclusive 互斥的,互补相交的 complementary event 对立事件Independent 独立的 joint probability function 联合概率函数 jacobian 雅克比行列式Law of large numbers大数定律 point estimate 点估计 estimate 估计值statistic 统计量 optimality 最优性 Unbiased estimate 无偏估计量 efficient estimate 有偏估计量unbiasedness 无偏性 efficience 有效性 Consistent estimate 一致估计量asymptotic properties 渐近性质 Confidence interval 置信区间 interval estimation 区间估计null hypothesis 原假设 alternative hypothesis 备择假设 significance level 显著性水平power function 幂函数 testing procedures 检验方法 test statistic 检验统计量rejection region 拒绝区域 acceptance region 接受区域 critical region 临界区域first-derivatives 一阶导数 second-derivatives 二阶导数 Likelihood ratio 似然比dependent variable因变量 unexplanatory variable未解释变量 independent variable自变量Error term 误差项 regression coefficients 回归系数 Sum of squared residuals 残差平方和Marginal probability function 边际概率函数 joint probability density function 联合概率密度函数Marginal probability density function边际概率密度函数 stochastically independent 随机独立的Mutually independently distribution 相互独立的分布 independently and identically distribution 独立同分布的likelihood function 似然函数 maximum likelihood estimator 最大似然估计量maximum likelihood estimate 最大似然估计值 log-likelihood function 对数似然函数ordinary least squares estimation/estimate/estimator 普通最小二乘估计/估计值/估计量linear unbiased estimator 线性无偏估计第三章、概念与符号[An index]把指数定义成是对一组相关变量之中变化进行测算的一个实数。
Chapter 13 - Statistical Distributions(t)
MUTUALLY EXCLUSIVE 互斥
• When rolling dice, the occurrence of a 2 or 12 cannot happen concurrently.掷骰子 时,同时出现2或12是不可能的
• The 2 outcomes are mutually exclusive of each other; a 2 and 12 cannot occur at the same time.
通过了解population百分位数分布,我们可以知道顾客之需求
• This is obtained with the shape of the population. 这可通过population形状获得
• One of the difficult jobs in dealing with probability distributions is determining
连续变量总体可用正态、威伯尔或对数正态分布来描绘。
• From a population, samples can be taken with the objective of characterizing the process.
我们从总体里挑选一些样品来对过程定性
• A distribution that describes the characteristic of this sampling is called a sampling distribution (t distribution, F distribution and Chi-Square distribution).
• To provide an introduction to the theory of basic probability. 介绍初级概率论的基础知识
Kerr介质腔中三能级原子与腔场相互作用系统量子保真度
Kerr介质腔中三能级原子与腔场相互作用系统量子保真度周青春;曾小祥【摘要】研究了Kerr介质腔中相干态单模场与级联三能级原子共振相互作用系统中量子保真度的演化特性.结果表明,对真空初场,原子、场及系统保真度都呈现调制周期振荡;对不依赖强度的原子-场耦合系统,增大Kerr效应或增强初场强度都能提高原子的量子保真度,在原子量子保真度复苏时区同时提升场和系统的量子保真度,但对依赖强度耦合系统却无此作用.【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2009(023)004【总页数】5页(P368-372)【关键词】Kerr介质;三能级原子;量子保真度;相干态【作者】周青春;曾小祥【作者单位】江苏科技大学,数理学院,江苏,镇江,212003;江苏科技大学,数理学院,江苏,镇江,212003【正文语种】中文【中图分类】O431Kerr介质参与的光学过程在量子态制备和光通信[1]等方面有重要应用价值.文献[2]中的研究工作还表明,存在Kerr介质时光场压缩效应几乎不受腔损耗和热光场的影响,揭示了Kerr介质对获得光场压缩态潜在应用前景.有鉴于此,Kerr介质中原子与光场之间的相互作用引起了学者们的关注[3-9].近年来,量子力学、信息科学和计算机科学结合产生了量子信息和量子计算科学,其中量子态成为信息的载体,量子信息处理和传递是通过量子态演化实现的.所以,量子态的保真度是值得研究的问题,它关系到量子通信的失真度和量子计算的可靠性.由于腔量子电动力学实验手段很可能是实现量子信息处理的有效途径之一[10-11],故有必要研究腔场与原子相互作用系统量子态保真度演化规律.文献[6]研究了Kerr介质腔中依赖强度和常系数原子-场耦合2种情况下三能级原子布居演化特征及其与原子发射谱的关系,而本文在同一模型的基础上考虑依赖强度耦合对子系统和复合系统量子态保真度演化有何影响.1 理论模型、态矢量及保真度图1为Kerr介质腔中等频率间距三能级原子与以共振频率ωc振荡的光场产生共振相互作用.|a〉, |b〉和|c〉分别表示原子的基态、中间态和最高激发态,|a〉, |b〉之间和|b〉,|c〉之间跃迁是偶极许可跃迁,|a〉,|c〉之间跃迁是偶极禁戒的.在相互作用绘景中采取旋波近似可得系统哈密顿量H= ħχa†2a2+ħ{[gbcaf(a†a)σcb+gabaf(a†a)σba]+h.c.}(1)式中,χ为Kerr效应强度的常数,与Kerr介质三阶非线性极化率有关;σij=|i〉〈j|(i,j=a,b,c)为原子跃迁算符;a† (a)为场生(灭)算符;gabf(a†a)和gbcf(a†a)分别为|a〉↔ |b〉跃迁及|c〉↔ |b〉跃迁与场模之间的耦合系数;f(a†a)=1为不依赖强度耦合情况;f(a†对应依赖强度耦合情况,h.c.为厄密共轭.为简单起见,以下讨论取gab=gbc=g.图1 原子能级结果示意图Fig.1 Diagram of the three-level atomic energy level设初始时刻原子处于最高激发态|c〉,腔场处于相干态|α〉,则系统初态|Ψ(0)〉=∑∞n=0Pn|c,n〉=∑∞(2)式中α为描述相干态的复参量.根据相互作用绘景中的薛定谔方程,结合初始条件式(2),经过推演可得系统在时刻t>0的态矢量|Ψ(t)〉= ∑∞n=0Pne-in(n+1)χt[Cc,n(t)|c,n〉+Cb,n(t)|b,n+1〉+Ca,n(t)|a,n〉](3)式(3)中系数(4)式中λk=Rcos[φ+2(k-1)π/3]-2χ/3 (k=1,2,3)(5)A1= [(λ2-λ1)(λ3-λ1)]-1A2=[(λ1-λ2)(λ3-λ2)]-1A3=[(λ1-λ3)(λ2-λ3)]-1(6)式中φ,R确定如下B= -{4n(n+1)χ2+g2(n+2)[f(n+2)]2+g2(n+1)[f(n+1)]2}C= 2χg2{n(n+2)[f(n+2)]2-[(n+1)f(n+1)]2}(7)为了描述量子态演化过程中与初态偏差,在文献[12]中引入了Bures保真度(8)式中ρ1,ρ2分别为初态和演化过程中态相应的密度算符.Bures保真度取值范围为0≤F(ρ1,ρ2)≤1,当F(ρ1,ρ2)=0时,初量子态信息完全失去,而F(ρ1,ρ2)=1时,表示量子态又回到初态,传递的量子信息无失真.如果初态为纯态ρ1=|ψ(0)〉〈ψ(0)|,时刻t密度算符表示为ρ2=ρ(t),则式(8)简化为[12]F(t)= Tr[ρ(t)|ψ(0)〉〈ψ(0)|]=〈ψ(0)|ρ(t)|ψ(0)〉(9)利用式(9)及态矢量式(3)和初始条件式(2),易求出原子、场及“场+原子”复合系统的量子态保真度分别为(10)该式决定了复合系统和子系统量子保真度的演化特征.2 数值计算结果及分析如果初始相干态场是真空(α=0),则复合系统和子系统的量子保真度表现出周期性振荡,且能经过适当时间的演化达到数值为1的最大保真度.若腔中无Kerr介质(χ=0),由式(5,7)易见系统本征振荡频率一个为零,另外两个相等,故由式(4)确定的系统一般振荡频率是固定的,保真度必然随时间作周期性等幅振荡.存在Kerr介质(χ≠0)时,系统本征振荡频率λk(k=1,2,3)都不同,导致态矢量中系数和保真度振幅受到调制.对于α≠0的初始相干态场,保真度的演化规律变复杂.图2为α=4, χ=0系统及子系统的量子保真度时间演化曲线,图2a),b)分别为与强度无关耦合及依赖强度耦合2种情况.由图2可看出,初始相干态场足够强时,子系统和复合系统的量子保真度在演化过程中都出现崩塌-复苏现象.依赖强度耦合复苏周期明显短于不依赖强度耦合情况,并且依赖强度耦合的崩塌-复苏周期性更明显.该差别起因于本征振荡频率对光子数不同的依赖关系:在n≈|α|2≫1,依赖强度耦合的λ2,3与n有近似线性关系,而不依赖强度耦合的本征振荡频率与光子数无线性关系.在复苏区,不论是子系统还是复合系统,最大保真度都是依赖强度耦合情况高于不依赖强度耦合的情况,但对应的平均保真度相差无几.平均保真度由大到小的顺序都是:场保真度、原子保真度、复合系统保真度.a) 不依赖强度耦合 b) 依赖强度耦合图2 原子、场及复合系统量子保真度的时间演化(α=4,χ=0)Fig.2 Time evolution of quantum fidelity for the atom, the field and the compound system(α=4,χ=0)图3,4为存在Kerr介质时保真度的时间演化曲线,只是图3中(|α|2=16)初场强度比图4的(|α|2=4)提高了.比较图2,3可发现,在不依赖强度的原子-场耦合情况下,Kerr介质的存在提高了原子的量子保真度,减小了其振荡幅度,使其稳定性增强.这一现象物理原因在文献[6]中曾提及过,Kerr介质中的原子感受到的场有2|α|2χ的频移,相当于原子与场不再是共振相互作用,即原子和场耦合变弱,从而原子保真度得以提高,振荡减弱.在原子保真度平稳区,场和复合系统保真度显著地低于无Kerr 介质情况,基本上是在Ff, Fs≈0.1附近高频振荡.这主要归因于式(10)中Kerr介质产生的高频振荡因子e-in(n+1)χt所起的作用,它使得求和式中诸项相位随机性增大.最值得关注的是,在原子保真度复苏区,场和复合系统的保真度由于Kerr介质的存在得到很大的提升,这点也许存在潜在利用价值.但对于依赖强度耦合情况,发现Kerr 介质对子系统和复合系统保真度有降低作用.a) 不依赖强度耦合 b) 依赖强度耦合图3 原子、场及复合系统量子保真度的时间演化(α=4,χ/g=0.5)Fig.3 Time evolution of quantum fidelity for the atom,the field and the compound system(α=4,χ/g=0.5)a) 不依赖强度耦合 b) 依赖强度耦合图4 原子、场及复合系统量子保真度的时间演化(α=2,χ/g=0.5)Fig.4 Time evolution of quantum fidelity for the atom, the field and the compound system(α=2,χ/g=0.5)从图3,4可看出初始相干态场强度对保真度演化的影响.初始场不够强时,保真度演化周期性不明显,随|α|增大,对不依赖强度耦合情形,原子保真度崩塌-复苏周期越来越强,且其值愈来愈接近于1,而上面提到的复苏区域场和复合系统保真度最大值也愈来愈大;对于依赖强度耦合情况,增大初场强度,未见子系统或复合系统保真度的提高,原子保真度振荡幅度也未见显著变化.实际上,对依赖强度耦合模型,给定χ条件下,提高初场强度相当于增大原子-场相互作用失谐量,但同时也增大了耦合系数,影响耦合的两相反因素在强场条件下抵消,因此不明显改变保真度振幅和大小.注意,对依赖强度耦合模型,场和系统保真度在部分复苏区也会出现较大值(图3,4中所取时间范围以外),幅值不超过图2的相应值.3 结论研究了Kerr介质腔中初始时刻处于相干态的单模电磁场与初始位于高激发态的级联三能级原子共振相互作用系统中的原子、场及“原子+腔”复合系统的量子态保真度时间演化特征.主要结论归纳如下:1) 初始腔场为真空态时,Kerr介质的存在使得保真度周期性振荡振幅受到调制;2) 对强度足够大的初始相干态场,Kerr介质提高了不依赖强度耦合系统中原子保真度,抑制原子保真度振荡幅度,在原子保真度复苏时区同时提高了场和复合系统保真度,依赖强度耦合系统保真度没有明显改善;3) 增强初场强度有利于提高不依赖强度耦合系统的量子保真度,但对依赖强度耦合系统作用相反.参考文献(References)[1] Imoto N, Haus H A, Yamamoto Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect [J]. Phys Rev A, 1985, 32(4): 2287-2292.[2] Werner M J, Risken H. Quasiprobability distributions for the cavity-damped Jaynes-Cummings model with an additional Kerr medium [J]. Phys Rev A, 1991, 44(7): 4623-4632.[3] 刘素梅. Kerr介质中V型三能级原子与压缩相干态光场相互作用系统Mandel 因子的演化特性[J]. 量子电子学报, 2004, 21(6): 829-836.Liu Sumei. Evolution properties of Mandel factor in the system of the V-type three-level atom interacting with a squeezed coherent light field in a Kerr medium [J].Chinese Journal of Quantum Electronic, 2004, 21(6): 829-836.(in Chinese)[4] 穆轶,侯邦品,余万伦. 高Q Kerr介质腔内强相干光场与∧型三能级原子相互作用中原子的偶极压缩效应[J]. 量子电子学报, 2004, 21(3): 337-341.Mu Yi, Hou Bangpin, Yu Wanlun. Dipole squeezing in the interaction of a ∧-type three-level atom with a strong coherent field in a high-Q Kerr cavity [J]. Chinese Journal of Quantum Electronics, 2004, 21(3): 337-341. (in Chinese)[5] Abdel-Aty M. Influence of a Kerr-like medium on the evolution of field entropy and entanglement in a three-level atom [J]. J Phys B At Mol Opt Phys, 2000, 33 (14): 2665-2676.[6] Zhou Qingchun. Population dynamics and emission spectrum of a cascade three-level Jaynes-Cummings model with intensity-dependent coupling in a Kerr-like medium [J]. Commun Theor Phys, 2006, 45(4): 727-731.[7] 周青春. 含级联型三能级原子Kerr介质腔的腔场谱[J]. 江苏科技大学学报:自然科学版,2006,20(4):23-27.Zhou Qingchun. Cavity field spectrum for system consisting of cascade three-level atom within Kerr-medium filled cavity [J]. Journal of Jiangsu University of Science and Technology:Natural Science Edition,2006,20(4):23-27.(in Chinese)[8] Zhou Qingchun. Atomic transition transfer, field statistics and squeezing of the off-resonant cascade three-level Jaynes-Cummings model with a Kerr medium [J]. Opt Commun, 2006, 266(1): 218-224. [9] 赖云忠,梁九卿. Kerr介质中双模SU(1,1)相干态场与V型三能级原子的相互作用[J]. 物理学报,1997,46(9): 1710-1717.Lai Yunzhong, Liang Jiuqing.Interaction of two-mode SU(1,1)coherent states with the V-type three-level atom in a Kerr-like medium [J]. Acta Physica Sinica, 1997,46(9): 1710-1717.(in Chinese)[10] Miller R, Northup T E, Birnbaum K M, et al. Trapped atoms in cavity QED: coupling quantized light and matter [J]. J Phys B At Mol Opt Phys, 2005, 38(9): S551-S565.[11] Boozer A D, Boca A, Miller R, et al. Reversible state transfer between light and a single trapped atom [J]. Phys Rev Lett, 2007, 98(19): 1936011-1936014.[12] Jozsa R. Fidelity for mixed quantum states [J]. J Mod Opt, 1994, 41(12): 2315-2323.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:mat h /65665v1[mat h.PR]25May26Quasi stationary distributions and Fleming-Viot processes in countable spaces Pablo A.Ferrari,Nevena Mari´c Universidade de S˜a o Paulo Abstract We consider an irreducible pure jump Markov process with rates Q =(q (x,y ))on Λ∪{0}with Λcountable and 0an absorbing state.A quasi-stationary distri-bution (qsd )is a probability measure νon Λthat satisfies:starting with ν,the conditional distribution at time t ,given that at time t the process has not been absorbed,is still ν.That is,ν(x )=νP t (x )/( y ∈ΛνP t (y )),with P t the transition probabilities for the process with rates Q .A Fleming-Viot (fv )process is a system of N particles moving in Λ.Each particle moves independently with rates Q until it hits the absorbing state 0;but then instan-taneously chooses one of the N −1particles remaining in Λand jumps to its position.Between absorptions each particle moves with rates Q independently.Under the condition α:= x inf Q (·,x )>sup Q (·,0):=C we prove existence of qsd for Q ;uniqueness has been proven by Jacka and Roberts.When α>0the fv process is ergodic for each N .Under α>C the mean normalized densities of the fv unique stationary measure converge to the qsd of Q ,as N →∞;in this limit the variances vanish.Keywords Quasi stationary distributions.Fleming-Viot process.AMS Classification 60F 60K351IntroductionLet Λbe a countable set and Z t be a pure jump regular Markov process on Λ∪{0}with transition rates matrix Q =(q (x,y )),transition probabilities P t (x,y )and with absorbing state 0;that is q (0,x )=0for all x ∈Λ.Assume that the exit rates are uniformly bounded above:¯q :=sup x y ∈{0}∪Λ\{x }q (x,y )<∞,that P t (x,y )>0for all x,y ∈Λand t >0and that the absorption time is almost surely finite for any initial state.The process Z t is ergodic with a unique invariant measure δ0,the measure concentrating mass in the state 0.Let µbe a probability on Λ.The law of the process at time t starting with µconditioned to non absorption until time t is given byϕµt (x )= y ∈Λµ(y )P t (y,x )A quasi stationary distribution(qsd)is a probability measureνonΛsatisfyingϕνt=ν. Since P t is honest and satisfies the forward Kolmogorov equations we can use an equivalent definition of qsd,according Nair and Pollett[12].Namely,a qsd(and only a qsd)is a left eigenvectorνfor the restriction of the matrix Q toΛwith eigenvalue− y∈Λν(y)q(y,0):νmust satisfy the systemν(y)[q(y,x)+q(y,0)ν(x)]=0,∀x∈Λ.(1.2) y∈Λ(recall q(x,x)=− y∈Λ∪{0}\{x}q(x,y).)The Yaglom limit for the measureµis defined bylimϕµt(y),y∈Λ(1.3)t→∞if the limit exists and it is a probability onΛ.WhenΛisfinite,Darroch and Seneta(1967)prove that there exists a unique qsdνfor Q and that the Yaglom limit converges toνindependently of the initial distribution. WhenΛis infinite the situation is more complex.Neither existence nor uniqueness of qsd are guaranteed.An example is the asymmetric random walk p=q(i,i+1)=1−q(i,i−1), for i≥0.In this case there are infinitely many qsd when p<1/2and none when p≥1/2 (see Cavender[2]and Ferrari,Martinez and Picco[6]for birth and death more general examples).ForΛ=N under the condition lim x→∞P(R>t|Z0=x)=0,where R is the absorption time of Z t,Ferrari,Kesten,Mart´inez and Picco[5]prove that the existence of qsd is equivalent to the existence of a positive exponential moment for R,i.e.E eθR<∞for someθ>0.When the Yaglom limit exists,it is known it is a qsd,but existence of the limit is not known in general for infinite state space.Phil Pollett maintains an updated bib-liography on qsd in the site .au/˜pkp/papers/qsds/qsds.html.Define the ergodicity coefficient of the chain Q byα=α(Q):= z∈Λinf x∈Λ\{z}q(x,z)(1.4)Ifα(z):=inf x=z q(x,z)>0,then z is called Doeblin state.Define the maximal absorbing rate of Q byC=C(Q):=supq(x,0)(1.5)x∈ΛSince the chain is absorbed with probability one,C>0.On the other hand,C<¯q,the maximal rate.Jacka and Roberts[9]proved that if there exists a Doeblin state z∈Λsuch that α(z)>C and if there exists a qsdνfor Q,thenνis the unique qsd for Q and the Yaglom limit converges toνfor any initial measureµ;their proof also works under the weaker assumptionα>C.We show thatα>C is a sufficient condition for the existence of a qsd for Q.Theorem 1.1.If α>C then there exists a unique qsd νfor Q and the Yaglom limit converges to νfor any initial measure µ.The condition α>C is disjoint to the condition lim x P (R >t |Z 0=x )=0,under which [5]show existence ofqsd .On the other hand,α>0implies that R has a positive exponential moment.The Fleming-Viot process (fv ).Let N be a positive integer and consider a system of N particles evolving on Λ.The particles move independently,each of them governed by the transition rates Q until absorption.At most one particle is absorbed at any given time.When a particle is absorbed,it returns instantaneously to a state in Λchosen with the empirical distribution of the particles remaining in Λ.In other words,it chooses one of the other particles uniformly and jumps to its position.Between absorption times the particles move independently governed by Q .This process has been introduced by Fleming and Viot [7]and studied by Burdzy,Holyst and March [1],Grigorescu and Kang [8]and L¨o bus [11]in a Brownian motion setting.The generator acts on functions f :Λ(1,...,N )→R as followsL N f (ξ)=Ni =1 y ∈Λ\{ξ(i )} q (ξ(i ),y )+q (ξ(i ),0)η(ξ,y )N −ϕµt (x ) 2=0(1.8)The convergence in probability has been proven for Brownian motions in a compact domain in [1].Extensions of this result and the process induced in the boundary have been studied in [8]and [11].When Λis finite,the fv process is an irreducible pure-jump Markov process on a finite state space.Hence it is ergodic (that is,there exists a unique stationary measure for theprocess and starting from any measure,the process converges to the stationary measure).When Λis infinite,general conditions for ergodicity are not still established.We prove the following resultTheorem 1.3.If α>0,then for each N the fv process with N particles is ergodic.Assume α>0.Let ηN be a random configuration distributed with the unique invariant measure for the fv process with N particles.Our next result says that the empiric profile of the invariant measure for the fv process converges in L 2to the unique qsd for Q .Theorem 1.4.Assume α>C .Then there exists a probability measure νon Λsuch that for all x ∈Λ,lim N →∞EηN (x )dt ϕµt (x )= y ∈Λϕµt (y )[q (y,x )+q (y,0)ϕµt (x )],x ∈Λ(1.10)From a generator computation,taking f (ξ)=η(ξ,x )in(1.6),d N = y ∈ΛEηN,µt (y )N −1 (1.11)If solutions of (1.11)converge along subsequences as N →∞,then the limits equal the unique solution of (1.10).In fact,we prove in Proposition 3.1that for x,y ∈Λ,E ηN,µt (y )ηN,µt (x )−E ηN,µt (y )E ηN,µt (x ) =O (N )(1.12)This argument shows the convergence of the means E ηN,µt (x )/N to ϕµt (x ).Since the vari-ances ((1.12),with x =y )divided by N 2go to zero,the L 2convergence follows.The stationary case is proven analogously.IfηN is distributed with the invariant measure for the fv process,from(1.11),0= y∈ΛE ηN(y)N−1 (1.13) Under the hypothesisα>C we show a result forηN analogous to(1.12)to conclude that solutions of(1.13)converge to the unique solution of(1.2).To show that the limits are probability measures it is necessary to show that the families of measures(1NEηN,N∈N)are tight;we do it in Section4.Comments One interesting point of the Fleming-Viot approach is that it permits to show the existence of a qsd in theα>C case,a new result as far as we know.Compared with the results for Brownian motion in a bounded region with absorbing boundary(Burdzy,Holyst and March[1],Grigorescu and Kang[8]and L¨o bus[11]and other related works),we do not have trouble with the existence of the fv process,it is immediate here.On the other hand those works prove the convergence in probability without computing the correlations.We prove that the fact that the correlations vanish asymptotically is sufficient to show convergence in probability.For the moment we are able to show that the correlations vanish for the stationary state under the hypothesisα>C.The conditioned distributionϕµt is not necessarily the same as15)/2andν(2)=(−1+√2Eη2,νt=ϕνt=νfor sufficiently larget,as12Construction of fv processIn this section we perform the graphic construction of the fv processξN t.Recall C<∞andα≥0.Recallα(z)=inf x∈Λ\{z}q(x,z).For each i=1,...,N,we define independent stationary marked Poisson processes (PP’s)on R:•Regeneration times.PP rateα:(a i n)n∈Z,with marks(A i n)n∈Z•Internal times.PP rate¯q−α:(b i n)n∈Z,with marks((B i n(x),x∈Λ),n∈Z)•Voter times.PP rate C:(c i n)n∈Z,with marks((C i n,(F i n(x),x∈Λ)),n∈Z)The marks are independent of the PP’s and mutually independent.The denominations will be transparent later.The marginal laws of the marks are:•P(A i n=y)=α(y)/α,y∈Λ;•P(B i n(x)=y)=q(x,y)−α(y)=1−P(F i n(x)=0),x∈Λ.C•P(C i n=j)=1Construction ofξN,ξ[s,t]=ξN,ξ[s,t],ωSince for each particle i there are three Poisson processes with rates C,αand¯q−α, the number of events in the interval[s,t]is Poisson with mean N(C+¯q).So the events can be ordered from the earliest to the latest.At time s the initial configuration isξ.Then,proceed event by event following the order as follows:The configuration does not change between Poisson events.At each regeneration time a i n particle i jumps to state A i n regardless the current con-figuration.If at the internal time b i n−the state of particle i is x,then at time b i n particle i jumps to state B i n(x)regardless the position of the other particles.If at the voter time c i n−the state of particle i is x and F i n(x)=1,then at time c i n particle i jumps to the state of particle C i n;if F i n(x)=0,then particle i does not jump.The configuration obtained after using all events isξN,ξ[s,t].The denominations are nowclear.At regeneration times a particle jumps to a new state independently of the current configuration.At voter times a particle either jumps to the state of another particle chosen at random or does not jump.At internal times the particle jumps are indifferent to the position of the other particles.Lemma2.1.For each s∈R,the process(ξN,ξ[s,t],t≥s)is Markov with generator(1.6)andinitial conditionξN,ξ[s,s]=ξ.Proof Follows from the Markov properties of the Poisson processes;the rate for particle i to jump from x to y is the sum of three terms:(a)αα(y)¯q−α(the maximal rate of internal events times the probability that the corresponding marktakes the value y)and(c)C q(x,0)N−1(the maximal absorption ratetimes the probability the absorption rate from state x divided by the maximal absorption rate times the empirical probability of state y for the particles different from i).The sum of these three rates is the rate indicated by the generator(the square brackets in(1.6)with ξ(i)=x).Generalized duality For each realization of the marked Poisson processes in the interval [s,t]we construct a setΨiω[s,t]⊂{1,...,N}corresponding to the particles involved at time s with the definition ofξN,ξ[s,t],ω(i).We drop the labelωin the notation.InitiallyΨi[t,t]={i}and look backwards in time for the more recent i-Poisson event at some timeτin the past of t but more recent than s.Ifτis a regeneration event,then we don’t need to go further in the past to know the state of the i particle,so we erase thei particle fromΨi[τ−,t].Ifτis the voter event c i n,its C i n mark pointing to particle j,say, then we need to know the state of the particle i at timeτ−to see which F i n will be used to decide if the i particle effectively takes the value of particle j or not.Hence,we need to follow backwards particles i and j and we add the j particle toΨi[τ−,t].Then continue this procedure starting from each of the particles inΨi[τ−,t].The process backwards finishes ifΨi[r,t]is empty for some r smaller than s or if we have processed all marks involving i in the time interval[s,t].More rigorously:Construction ofΨi[s,t]We constructΨi[s,t]backwards in time.Changes occur at Poisson events andΨi[s,t] is constant between two Poisson events.The construction ofΨi[s,t]depends only on the regeneration and voter events.It ignores the internal events.InitiallyΨi[t,t]={i}.AssumeΨi[r′,t]has been constructed for all r′∈[τ′,t].Letτbe the time of the latest Poisson event beforeτ′.SetΨi[r′′,t]=Ψi[τ′,t]for all r′′∈(τ,τ′].Ifτ<s stop,we have constructedΨi[r,t]for all r∈[s,t].If not,proceed as follows.Ifτis a regeneration event involving particle j(that is,τ=a j n for some n),then set Ψi[τ,t]=Ψi[τ′,t]\{j}.Ifτis a voter event whose mark points to particle j(that is,τ=c j′n for some j′and n and C j′n=j),then setΨi[τ,t]=Ψi[τ′,t]∪{j}.This ends the iterative step of the construction.For a generic Poisson marked event m let time(m)be the time it occurs and label(m) its label;for instance time(c i n)=c i n,label(c i n)=i.Defineωi[s,t]={m∈ω:(label(m),time(m)+)∈{(Ψiω[r,t],r),r∈[s,t]},(2.16)(i)andthe set of marked events inωinvolved in the value ofξN,ξ[s,t],ωξi[s,t]=(ξ(j),j∈Ψiω[s,t]),(2.17)(i).the initial particles involved in the value ofξN,ξ[s,t],ωThe generalized duality equation isξN,ξ(i)=H(ωi[s,t],ξi[s,t]).(2.18)[s,t],ωThere is no explicit formula for H but the important point is that for any real time s,ξN,ξ(i)[s,t] depends only on afinite number of Poisson events contained inωi[s,t]and on the initial stateξ(j)of the particles j∈Ψiω[s,t].The internal marks involved with the definition ofξdepend on the initial configurationξand the evolution of the process but in any case are bounded by a Poisson random variable with mean¯q|Ψi[s,t]|.Proof of Theorem1.3If the number of marks inωi[−∞,t]isfinite with probability one,then the processH(ωi[s,t],ξi[s,t]),i∈{1,...,N},t∈R(2.19)ξN t,ω(i)=lims→−∞is well defined with probability one and does not depend onξ.By construction(ξN t,t∈R) is a stationary Markov process with generator(1.6).Since the law at time t does not depend on the initial configurationξ,the process admits a unique invariant measure,the law of ξN t.See[4]for more details about this argument.The number of points inωi[−∞,t]isfinite if and only if for somefinite s<t,Ψi[s,t]=∅. But since there are3N stationaryfinite-intensity Poisson processes,with probability one, for almost allωthere is an interval[s(ω),s(ω)+1]in the past of t such that there is at least one regeneration mark for all particle k and there are no voter marks in that interval. We have used here that the regeneration rateα>0.This guarantees thatΨi[s(ω),t]=∅. To conclude notice that ifΨi[s,t]=∅,thenΨi[s′,t]=∅for s′<s.3Particle correlations in the fv processIn this section we show that the particle-particle correlations in the fv process with N particles is of the order of1/N.Proposition3.1.Let x,y∈Λ.For all t>0E ηN,µt(x)ηN,µt(y)N E ηN,µt(y)N e2Ct(3.20)Assumeα>C.LetηN be distributed according to the unique invariant measure for the fv process with N particles.ThenE ηN(x)ηN(y)N E ηN(y)Nαand green events.With these marked events we construct simultaneously the processes (Ψi[s,t],Ψj[s,t],ˆΨi[s,t],ˆΨj[s,t])and a new process I[s,t]as follows.Initially set I[t,t]=0,ˆΨi[t,t]=Ψi[t,t]=i andˆΨj[t,t]=Ψj[t,t]=jGo backwards in time as in the construction ofΨi in Section2proceeding event by event as follows.Assume I[r′,t],ˆΨi[r′,t],Ψi[r′,t],ˆΨj[r′,t]andΨj[r′,t]have been constructed for all r′∈[τ′,t].Letτbe the time of the latest Poisson event beforeτ′.If I[τ′,t]=1then:(a)if the event is green,use it to updateˆΨi[τ,t],Ψi[τ,t]andΨj[τ,t] only;(b)if the event is red,use it only to updateˆΨj[τ,t].If I[τ′,t]=0then:(a)if the event is green,then use it to updateˆΨi[τ,t],Ψi[τ,t]andΨj[τ,t].Use it also to updateˆΨj[τ,t]only if(after the updating)ˆΨj[τ,t]∩ˆΨi[τ,t]=∅.Otherwise do not update ˆΨi[τ,t]and set I[τ,t]=1.(b)if the event is red do not use it to updateˆΨi[τ,t],Ψi[τ,t]andΨj[τ,t].Use it to updateˆΨj[τ,t]only if after the updatingˆΨj[τ,t]∩ˆΨi[τ,t]=∅;in this case set I[τ,t]=1. Otherwise do not updateˆΨi[τ,t]and keep I[τ,t]=0.The processes so constructed satisfy1.I[s,t]indicates if the hated processes intersect:I[s,t]=1{ˆΨj[s,t]∩ˆΨi[s,t]=∅}.(3.22)2.Ψi[s,t]andΨj[s,t]are constructed using only the green events.3.ˆΨi[s,t]is also constructed using the green events,hence it coincides withΨi[s,t].4.ˆΨj[s,t]is constructed with a combination of the red and green events in such a waythat it coincides withΨj[s,t]as long as possible,it is independent ofˆΨi[s,t]and has the same marginal distribution ofΨj[s,t].We use the coupling processes to estimate the covariances ofξN,µ[s,t].Callωj[s,t],ωi[s,t],ˆωj[s,t]andˆωi[s,t]the set of marked events defined with(2.16)usingΨj[s,t],Ψi[s,t],ˆΨj[s,t] andˆΨi[s,t]respectively.Take two independent random vectors X and Y with the same distribution as in(2.14),that is,iid coordinates with lawµ.Denote the initial particles defined as in(2.17)by X j[s,t],X i[s,t],ˆX j[s,t]andˆY i[s,t]as function ofΨj[s,t],Ψi[s,t],ˆΨj[s,t]andˆΨi[s,t]respectively.Denoteωi instead ofωi[s,t],X i instead of X i[s,t],etc.; we haveP(ξN,µ[s,t](j)=x,ξN,µ[s,t](i)=y)−P(ξN,µ[s,t](j)=x)P(ξN,µ[s,t](i)=y)=P(ξN,X[s,t](j)=x,ξN,X[s,t](i)=y)−P(ξN,X[s,t](j)=x)P(ξN,Y[s,t](i)=y)(3.23)=E 1{H(ωj,X j)=x,H(ωi,X i)=y)}−1{H(ˆωj,ˆX j)=x),H(ˆωi,ˆY i)=y)}If I[s,t]=0thenΨj[s′,t]=ˆΨj[s′,t]andΨi[s′,t]=ˆΨi[s′,t]for all s′∈[s,t]and the same holds for the correspondingω’s.Also,given I[s,t]=0,X j and Y i depend on disjoint sets of initial particles.This implies that we can couple X i and Y i in such a way that in theevent I[s,t]=0,X i=Y i.Hence,taking absolute values in(3.23)we get|P(ξN,µ[s,t](j)=x,ξN,µ[s,t](i)=y)−P(ξN,µ[s,t](j)=x)P(ξN,µ[s,t](i)=y)|≤P(I[s,t]=1).(3.24) Lemma3.1.For t≥0and different particles i,j∈{1,...,N}P(I[s,t]=1)≤1α−C(1−e2(C−α)(t−s))(3.25)Proof:At time s the process I[s,t]jumps from0to1at a rate depending onˆΨi[s,t]and ˆΨj[s,t]which is bounded above by2CN−1 tsˆΨi[s′,t]ˆΨj[s′,t]ds′ (3.26)where F[s,t]is the sigmafield generated by((ˆΨi[s′,t],ˆΨj[s′,t]),s<s′<t).From(3.26), using1−e−a≤a and taking expectations,P(I[s,t]=1)≤2CN−1 tse2(C−α)(t−s′)ds′(3.28)which gives(3.25).Proof of Proposition3.1DefiningηN,µ[s,t](x)=Ni=11{ξN,µ[s,t]=x}ThenηN,µ[s,t]has the same law asηN,µt−sandηN has the same law asηN,µ[−∞,t].Hence E ηN,µ[s,t](x)ηN,µ[s,t](y)N2N i=1N j=1P(ξN,µ[s,t](i)=x,ξN,µ[s,t](j)=y)EηN,µ[s,t](x)EηN,µ[s,t](y)N2Ni=1Nj=1P(ξN,µ[s,t](i)=x)P(ξN,µ[s,t](j)=y)Using this,(3.24)and(3.25)with s=0andα=0we get(3.20).Ifα>C,ηN,η[s,t]converges as s→−∞toηN t a configuration distributed with the unique invariant measure,as in Theorem1.3,see(2.19)for the corresponding statement forξN t. Hence the left hand side of(3.21)is bounded above by P(I[−∞,t]=1).Taking s=−∞in(3.25)we get(3.21).4TightnessIn this section we prove tightness for the mean densities as probability measures inΛ, indexed by N.Proposition4.1.For all t>0,x∈Λ,i=1,...,N and probabilityµonΛit holdsEηN,µt(x)α,x∈Λ,whereαx=inf z q(z,x).For z,x∈ΛdefineRλ(z,x)= ∞0λe−λt P t(z,x)dt.(4.2) The matrix Rλrepresents the semigroup P t evaluated at a random time Tλexponentially distributed with rateλindependent of(Z t).Rλ(z,x)is the probability the process(Z z t) be in x at time Tλ.The matrix R is substochastic: x∈ΛRλ(z,x)is just the probability of non absorption of(Z z t)at the random time Tλ.Proposition4.2.Assumeα>C and letρN(x)be the mean proportion of particles in state x under the unique invariant measure for the fv process with N particles.Then for x∈Λ,ρN(x)≤CTypes To prove the propositions we introduce the concept of types.We say that particle i is type 0at time t if it has not been absorbed in the time interval [0,t ].Particles may change type only at absorption times.If at absorption time s particle i jumps over particle j which has type k ,then at time s particle i changes its type to k +1.Hence,at time t a particle has type k if at its last absorbing time it jumped over a particle of type k −1.We writetype(i,t ):=type of particle i at time t .The marginal law of ξN,µt (i )1{type(i,t )=0}is the law of the process Z µt :P (ξN,µt (i )=x,type(i,t )=0)= z ∈Λµ(z )P t (z,x ).(4.4)Proof of Proposition 4.1SinceE ηN,µt (x )k !z ∈Λµ(z )P t (z,x )(4.5)We proceed by induction.By (4.4)the statement is true for k =0.Assume (4.5)holdsfor some k ≥0.We prove it holds for k +1.Time is partitioned according to the last absorption time s of the i th particle.The absorption occurs at rate bounded above by C .The particle jumps at time s to a particle j with probability 1/(N −1),this particle has type k and state y .Then it must go from y to x in the time interval [s,t ]without being ing the Markov property,we get:P (ξN,µt (i )=x,type(i,t )=k +1)(4.6)≤ tC1k !z ∈Λµ(z )y ∈ΛP s (z,y )P t −s (y,x )ds=(Ct )k +1Proof of Proposition 4.2If ξN is distributed according to the unique invariant measure for the fv process then ρN =P (ξN (i )=x ).Since α>0we can construct a version of thestationary process ξN s such that P (ξN (i )=x )=P (ξNs (i )=x ),∀s .We analyze the marginal law of the particle distribution for each type,as in the proof of Proposition 4.1.Define the types as before,but when a particle meets a regeneration mark,then the particle type is reset to 0.In the construction,at that time the state of the particle is chosen with law µα.Under the hypothesis α>C the process((ξN t (i ),type(i,t )),i =1,...,N ),t ∈R )is Markovian and can be constructed in a stationary way as ξNt .HenceA k (x ):=P (ξNs (i )=x,type(i,s )=k )(4.9)does not depend on s .The regeneration marks follow a Poisson process of rate αand the last regenerationmark of particle i before time s happened at time s −T i α,where T iαis exponential of rate α.Then,A 0(x )= ∞αe −αtz ∈Λµα(z )P t (z,x )dt =µαR α(x ).(4.10)A reasoning similar to (4.6)-(4.7)impliesA k (x )≤ ∞e −αtC z ∈ΛA k −1(z )P s (z,x )dt.(4.11)=CαkµαR k +1α(x ).(4.12)We interpret R kλ(z,x )as the expectation of P τk (z,x ),where τk is a sum of k independent random variables with exponential distribution of rate λ.Summing (4.11),and multiplying and dividing by (α−C ),P (ξN s (i )=x )≤Cαk 1−Cα−CµαR α−C (x ).(4.14)5Proofs of theoremsIn this section we prove Theorems 1.3and 1.4.We start deriving the forward equations for ϕµt and show they have a unique solution.Lemma 5.1.The Kolmogorov forwards equations for ϕµt are given byddtP t (z,x )=y ∈ΛP t (z,y )q (y,x ),z ∈Λ,x ∈Λ∪{0}(5.2)Write γt =z ∈Λµ(z )P t (z,0)and differentiate (1.1)to getd dtP t (z,x )dt γt)1−γt=z ∈Λµ(z )y ∈ΛP t (z,y )q (y,x )1−γt·z ∈Λµ(z )P t (z,x )dtǫt (y )≤z ∈Λǫt (z )q (z,y )+z ∈Λ|ϕt (z )ϕt (y )−ψt (z )ψt (y )|q (z,0)(5.4)Bound the modulus with ϕt (z )ǫt (y )+ǫt (z )ψt (y ),sum (5.4)in y ,call E t =y ∈Λǫt (y )anduse q (z,y )≤¯q and q (z,0)≤C to getdProof of Theorem1.2Wefirst show convergence of the meanslimN→∞E ηN,µt(x) =ϕµt(x).(5.6) Sum and subtract y∈Λq(y,0)E(ηN t(y)N)to(1.11)to getE L N ηN,µt(x)N q(y,x)+q(y,0)EηN,µt(x)N= y∈Λρµt(y)[q(y,x)+q(y,0)ρµt(x)](5.9)If F is a bounded function twice continuously differentiable and with uniformly bounded derivatives,then,M F t=F(ηt)−F(η0)− t0L F(ηs)ds(5.10) is a martingale(see Kipnis and Landim(1999),for instance).We choose F(ηN t)=ηN t(x)Nds.(5.11) From(5.9)we conclude that any limitρµt must satisfyρµt(x)=ρµ0(x)+ t0 y∈Λρµs(y)[q(y,x)+q(y,0)ρµs(x)]dt.(5.12)which impliesρµt must satisfy(1.10),the forward equations forϕµt.Since there is a unique solution for this equation,the limit exists and it isϕµt.Taking y=x in(3.20),the variances asymptotically vanish:lim N→∞E[ηN,µt(x)]2−[EηN,µt(x)]2This concludes the proof.Uniqueness and the Yaglom limit convergence of Theorem1.4is a consequence of the next Theorem.Theorem5.1(Jacka&Roberts).If there exists an x∈Λsuch thatα>C and there exists a qsdνfor Q,thenνis the unique qsd for Q and the Yaglom limit(1.3)converges toνfor any initial distributionµ.Jacka and Roberts[9]use the stronger hypothesis inf y∈Λq(y,x)>C for some x∈Λbut the proof works under the hypothesisα>C.Proof of Theorem 1.4Sinceα>0,the fv process governed by Q is ergodic by Theorem1.3.CallηN a random configuration chosen with the unique invariant measure. Since E L NηN(x)=0,summing and subtracting y∈Λq(y,0)ρN(x)ρN(y),we get 0= y∈ΛρN(y)[q(y,x)+q(y,0)ρN(x)]+ y∈Λq(y,0) E ηN(y)N −E ηN(y)N (5.14)which holds for any N and x∈Λ.By Proposition4.2,(ρN,N∈N)is tight and by (4.3)dominated uniformly in N by a summable sequence.BoundingηN(x)[2]Cavender,J.A.(1978)Quasi-stationary distributions of birth and death processes.Adv.Appl.Prob.10,570-586.[3]Darroch,J.N.,Seneta, E.(1967)On quasi-stationary distributions in absorbingcontinuous-timefinite Markov chains,J.Appl.Prob.4,192-196.[4]Fern´a ndez,R.,Ferrari,P.A.,Garcia,N.L.(2001)Loss network representation ofPeierls contours.Ann.Probab.29,no.2,902–937.[5]Ferrari,P.A,Kesten,H.,Mart´ınez,S.,Picco,P.(1995)Existence of quasi stationarydistributions.A renewal dynamical approach,Ann.Probab.23,2:511–521.[6]Ferrari,P.A.,Mart´ınez,S.,Picco,P.(1992)Existence of non-trivial quasi-stationarydistributions in the birth-death chain,Adv.Appl.Prob24,795-813.[7]Fleming,.W.H.,Viot,M.(1979)Some measure-valued Markov processes in populationgenetics theory,Indiana Univ.Math.J.28,817-843.[8]Grigorescu,I.,Kang,M.(2004)Hydrodynamic limit for a Fleming-Viot type system,Stoch.Proc.Appl.110,no.1:111-143.[9]Jacka,S.D.,Roberts,G.O.(1995)Weak convergence of conditioned processes on acountable state space,J.Appl.Prob.32,902-916.[10]Kipnis,C.,Landim,C.(1999)Scaling Limits of Interacting Particle Systems,Springer-Verlag,Berlin.[11]L¨o bus,J.-U.(2006)A stationary Fleming-Viot type Brownian particle system.Preprint.[12]Nair,M.G.,Pollett,P.K.(1993)On the relationship betweenµ-invariant measuresand quasi-stationary distributions for continuous-time Markov chains,Adv.Appl.Prob.25,82-102.[13]Seneta,E.(1981)Non-Negative Matrices and Markov Chains.Springer-Verlag,Berlin.[14]Seneta,E.,Vere-Jones,D.(1966)On quasi-stationary distributions in discrete-timeMarkov chains with a denumerable infinity of states,J.Appl.Prob.3,403-434. [15]Vere-Jones,D.(1969)Some limit theorems for evanescent processes,Austral.J.Statist11,67-78.[16]Yaglom,A.M.(1947)Certain limit theorems of the theory of branching stochasticprocesses(in Russian).Dokl.Akad.Nauk SSSR(n.s.)56,795-798.。