中考数学一模分类汇编作图判定无答案
2022年全国中考数学真题分类汇编专题17:尺规作图
2022年全国中考数学真题分类汇编专题17:尺规作图一.选择题(共13小题)1.如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于 的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A. B.4C.6D.2.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC3.如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE BD C.AF=AC D.∠EQF=25°4.如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD AD 5.如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于 CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°6.如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 7.如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于 BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、N,连接BM、DN.若AD =4,AB=2.则四边形MBND的周长为()A. B.5C.10D.208.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆心,大于 MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠A的度数是()A.36°B.54°C.72°D.108°9.过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.10.在△ABC中,用尺规作图,分别以点A和C为圆心,以大于 AC的长为半径作弧,两弧相交于点M和N.作直线MN交AC于点D,交BC于点E,连接AE.则下列结论不一定正确的是()A.AB=AE B.AD=CD C.AE=CE D.∠ADE=∠CDE 11.如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°12.要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行13.用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.二.多选题(共1小题)(多选)14.如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段AB =2,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;②连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法正确的是()A.△ABC是等边三角形B.AB⊥CDC.AH=BH D.∠ACD=45°三.填空题(共8小题)15.如图,依据尺规作图的痕迹,求∠α的度数°.16.如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于 DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于cm.17.如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于 AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.18.如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径作圆弧,两弧相交于点M和点N,作直线MN交CB于点D,连接AD.若AC=8,BC=15,则△ACD 的周长为.19.如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明).20.如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.21.如图,在▱ABCD中,∠ABC=150°.利用尺规在BC、BA上分别截取BE、BF,使BE=BF;分别以E、F为圆心,大于 EF的长为半径作弧,两弧在∠CBA内交于点G;作射线BG交DC于点H.若AD 1,则BH的长为.22.如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于 AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.四.解答题(共19小题)23.在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE,连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.24.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.25.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC 的长.26.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.27.已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.28.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.29.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.30.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.31.如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.32.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC 有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.33.如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)34.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.35.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)36.中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.如图2,∠ABC为直角,以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.37.课本再现(1)在⊙O中,∠AOB是所对的圆心角,∠C是 所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C ∠AOB;知识应用(2)如图4,若⊙O的半径为2,PA,PB分别与⊙O相切于点A,B,∠C=60°,求PA的长.38.如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.39.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.40.我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CFA中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CFA(AAS).同理可得:④.S△ABC=S△ADC+S△ABD S矩形ADCF S矩形AEBD S矩形BCFE ah.41.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④=S△EFB+S△EFC S矩形ABFE S矩形EFCD S矩形ABCD.∴S△BCE。
2023年上海市各地区中考一模试题按题型难易度分层分类汇编-03解答题(提升题)
上海市2023年各地区中考数学模拟(一模)试卷按题型难易度分层分类汇编-03解答题(提升题)目录一.待定系数法求二次函数解析式(共1小题) (2)二.抛物线与x轴的交点(共2小题) (2)三.二次函数综合题(共1小题) (2)四.作图—复杂作图(共3小题) (3)五.相似三角形的判定与性质(共9小题) (4)六.相似形综合题(共1小题) (6)七.特殊角的三角函数值(共1小题) (7)八.解直角三角形(共4小题) (7)九.解直角三角形的应用-仰角俯角问题(共3小题) (8)一.待定系数法求二次函数解析式(共1小题) (10)二.抛物线与x轴的交点(共2小题) (10)三.二次函数综合题(共1小题) (12)四.作图—复杂作图(共3小题) (13)五.相似三角形的判定与性质(共9小题) (16)六.相似形综合题(共1小题) (25)七.特殊角的三角函数值(共1小题) (28)八.解直角三角形(共4小题) (28)九.解直角三角形的应用-仰角俯角问题(共3小题) (32)一.待定系数法求二次函数解析式(共1小题)1.(2023•宝山区一模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c经过点A(3,0)、B(2,﹣3)、C(0,﹣3).(1)求抛物线的表达式;(2)点D与点E是抛物线上关于对称轴对称的两点,如果点D的横坐标为﹣2,试求点E的坐标.二.抛物线与x轴的交点(共2小题)2.(2023•虹口区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A(1,0)和B(5,0),与y轴交于点C.(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移m(m>0)个单位得到新抛物线,且新抛物线仍经过点C,求m的值.3.(2023•金山区一模)如图,已知抛物线y=a(x﹣2)2﹣4(a≠0)与x轴交于原点O与点A,顶点为点B.(1)求抛物线的表达式以及点A的坐标;(2)已知点P(2,m)(m>0),若△PAB的面积为6,求点P的坐标.三.二次函数综合题(共1小题)4.(2023•普陀区一模)在平面直角坐标系xOy中(如图),抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).抛物线的顶点为D.(1)求抛物线的表达式,并写出点D的坐标;(2)抛物线的对称轴上有一点M,且点M在第二象限,如果点M到x轴的距离与它到直线BD的距离相等,求点M的坐标;(3)抛物线上有一点N,直线ON恰好经过△OBD的重心,求点N到x轴的距离.四.作图—复杂作图(共3小题)5.(2023•徐汇区一模)如图,点E在平行四边形ABCD的边BC的延长线上,且CE=2BC,AE与CD交于点F.设,.(1)用向量、表示向量;(2)求作:向量分别在向量、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)6.(2023•崇明区一模)在梯形ABCD中,AD∥BC,且BC=3AD.过点A作AE∥DC,分别交BC,BD于点E、F,若=,=.(1)用、表示和;(2)求作在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)7.(2023•长宁区一模)如图,已知D是△ABC边AC上一点,且AD:DC=2:3,设,.(1)试用、表示;(2)直接在图中作出向量分别在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)五.相似三角形的判定与性质(共9小题)8.(2023•宝山区一模)已知:如图,四边形ABCD、ACED都是平行四边形,M是边CD的中点,联结BM并延长,分别交AC、DE于点F、G.(1)求证:BF2=FM•BG;(2)联结CG,如果,求证:∠BGC=∠BAC.9.(2023•普陀区一模)已知:如图,在四边形ABCD中,E为BC上一点,AB•DE=AE•EC,∠ABE=∠AED.(1)求证:△ABE∽△ECD;(2)如果F、G、H分别是AE、DE、AD的中点,连接BF、HF、HG、CG.求证:BF•HF=CG•HG.10.(2023•徐汇区一模)如图,已知△ABC是等边三角形,D、E分别是边BC、AC上的点,且BC•CE=BD•DC.在DE的延长线上取点F,使得DF=AD,联结CF.(1)求证:∠ADE=60°;(2)求证:CF∥AB.11.(2023•杨浦区一模)已知:如图,在△ABC中,点D、E、F分别在边AC、BD、BC上,AB2=AD•AC,∠BAE =∠CAF.(1)求证:△ABE∽△ACF;(2)联结EF,如果BF=CF,求证:EF∥AC.12.(2023•虹口区一模)如图,在四边形ABCD中,对角线BD与AC交于点F,∠ADB=∠ACB.(1)求证:∠ABD=∠ACD;(2)过点A作AE∥DC交BD于点E,求证:EF•BC=AD•AF.13.(2023•崇明区一模)已知:如图,在梯形ABCD中,AD∥BC,AD=BC,对角线AC与BD交于点F,点G 是AB边上的中点,联结CG交BD于点E,并满足BG2=GE•GC.(1)求证:∠GAE=∠GCA;(2)求证:AD•BC=2DF•DE.14.(2023•金山区一模)如图,已知在四边形ABCD中,AD∥BC,∠A=90°,AD=2,BC=6,BD是对角线,BD⊥DC.(1)求证:△ABD∽△DCB;(2)求CD的长.15.(2023•金山区一模)如图,已知菱形ABCD中,点E在边CB延长线上,联结DE交边AB于点F,联结AE,过点F作FG∥BE交AE于点G.(1)求证:FG=BF;(2)联结AC交DE于点O,联结BO,当∠FOB=∠DAO时,求证:DO2=AB•GF.16.(2023•松江区一模)如图,已知梯形ABCD中,AD∥BC.E是边AB上一点,CE与对角线BD交于点F,且BE2=EF•EC.求证:(1)△ABD∽△FCB;(2)BD•BE=AD•CE.六.相似形综合题(共1小题)17.(2023•青浦区一模)如图,在△ABC中,∠C=90°,AB=10,BC=8,动点D、E分别在边BA、BC上,且,设BD=5t.过点B作BF∥AC,与直线DE相交于点F.(1)当DB=DE时,求t的值;(2)当t=时,求的值;(3)当△BDE与△BDF相似时,求BF的长.七.特殊角的三角函数值(共1小题)18.(2023•虹口区一模)计算:cos245°﹣+cot230°.八.解直角三角形(共4小题)19.(2023•徐汇区一模)如图,在△ABC中,已知∠C=90°,sin A=.点D为边AC上一点,∠BDC=45°,AD=7,求CD的长.20.(2023•虹口区一模)如图,在Rt△ABC中,∠BAC=90°,BC=9,sin B=,点E在边AC上,且AE=2EC,过点E作DE∥BC交边AB于点D,∠ACB的平分线CF交线段DE于点F,求DF的长.21.(2023•崇明区一模)如图,D是△ABC边上的一点,CD=2AD,AE⊥BC,垂足为点E,若AE=9,sin∠CBD =.(1)求BD的长;(2)若BD=CD,求tan∠BAE的值.22.(2023•青浦区一模)如图,在△ABC中,AD⊥BC,垂足为点D,BF平分∠ABC交AD于点E,BC=5,AD=4,sin∠C=.(1)求sin∠BAD的值;(2)求线段EF的长.九.解直角三角形的应用-仰角俯角问题(共3小题)23.(2023•宝山区一模)如图,某小区车库顶部BC是居民健身平台,在平台上垂直安装了太阳能灯AB.已知平台斜坡CD的坡度,坡长为6米.在坡底D处测得灯的顶端A的仰角为45°,在坡顶C处测得灯的顶端A的仰角为60°,求灯的顶端A与地面DE的距离.(结果保留根号)24.(2023•金山区一模)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得顶部A的仰角为31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得顶部A的仰角为42°.求凉亭AB的高度(AB⊥BE,DE⊥BE,FG⊥BE.结果精确到0.1m).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)25.(2023•青浦区一模)某校九年级数学兴趣小组在实践活动课中测量路灯的高度.如图,在A处测得路灯顶端O 的仰角为26.6°,再沿AH方向前行13米到达点B处,在B处测得路灯顶端O的仰角为63.4°,求路灯顶端O 到地面的距离OH(点A、B、H在一直线上)的长.(精确到0.1米)(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.0)上海市2023年各地区中考数学模拟(一模)试卷按题型难易度分层分类汇编(11套)-03解答题(提升题)参考答案与试卷解析一.待定系数法求二次函数解析式(共1小题)1.(2023•宝山区一模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c经过点A(3,0)、B(2,﹣3)、C(0,﹣3).(1)求抛物线的表达式;(2)点D与点E是抛物线上关于对称轴对称的两点,如果点D的横坐标为﹣2,试求点E的坐标.【答案】(1)y=x2﹣2x﹣3.(2)E(4,5).【解答】解:(1)由题意得,9a+3b+c=0,4a+2b+c=﹣3,c=﹣3.∴a=1,b=﹣2.∴这个抛物线的表达式为y=x2﹣2x﹣3.(2)由(1)得,y=x2﹣2x﹣3.∴该抛物线的对称轴是直线x=1.∵点D与点E是抛物线上关于对称轴对称的两点,点D的横坐标为﹣2,∴E的横坐标是4.∴当x=4时,y=16﹣8﹣3=5.∴E(4,5).二.抛物线与x轴的交点(共2小题)2.(2023•虹口区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A(1,0)和B(5,0),与y轴交于点C.(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移m(m>0)个单位得到新抛物线,且新抛物线仍经过点C,求m的值.【答案】(1)y=x2﹣6x+5,点C的坐标为(0,5);(2)6.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于点A(1,0)和B(5,0),∴,解得,即此抛物线的表达式为y=x2﹣6x+5,当x=0时,y=5,即点C的坐标为(0,5);(2)∵y=x2﹣6x+5,点C(0,5),∴当y=5时,5=x2﹣6x+5,得x1=0,x2=6,∴点C关于该抛物线的对称轴对称的点的坐标为(6,5),∵此抛物线沿x轴向左平移m(m>0)个单位得到新抛物线,且新抛物线仍经过点C,∴m=6﹣0=6,即m的值是6.3.(2023•金山区一模)如图,已知抛物线y=a(x﹣2)2﹣4(a≠0)与x轴交于原点O与点A,顶点为点B.(1)求抛物线的表达式以及点A的坐标;(2)已知点P(2,m)(m>0),若△PAB的面积为6,求点P的坐标.【答案】(1)y=(x﹣2)2﹣4,点A的坐标为(4,0);(2)点P的坐标为(2,2).【解答】解:(1)∵抛物线y=a(x﹣2)2﹣4(a≠0)与x轴交于原点O,∴0=a(0﹣2)2﹣4,解得a=1,∴抛物线的表达式为y=(x﹣2)2﹣4,当y=0时,0=(x﹣2)2﹣4,解得x1=0,x2=4,∴点A的坐标为(4,0);(2)∵y=(x﹣2)2﹣4,顶点为B,∴点B的坐标为(2,﹣4),∵点P(2,m)(m>0),△PAB的面积为6,点A(4,0),∴=6,解得m=2,∴点P的坐标为(2,2).三.二次函数综合题(共1小题)4.(2023•普陀区一模)在平面直角坐标系xOy中(如图),抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).抛物线的顶点为D.(1)求抛物线的表达式,并写出点D的坐标;(2)抛物线的对称轴上有一点M,且点M在第二象限,如果点M到x轴的距离与它到直线BD的距离相等,求点M的坐标;(3)抛物线上有一点N,直线ON恰好经过△OBD的重心,求点N到x轴的距离.【答案】(1)y=x2+2x﹣3,点D(﹣1,﹣4);(2)点M的坐标为:(﹣1,+1);(3)点N到x轴的距离为:或.【解答】解:(1)由题意得:,解得:,故抛物线的表达式为:y=x2+2x﹣3,则抛物线的对称轴为x=﹣1,则点D(﹣1,﹣4);(2)设抛物线的对称轴交x轴于点R,过点M作MR⊥BC于点R,设点M(﹣1,m),则MH=m=MR,在Rt△BDH中,tan∠BDH=,则sin∠BDH===,解得:m=+1,即点M的坐标为:(﹣1,+1);(3)∵直线ON恰好经过△OBD的重心,则ON为BD边上的中线,由点B、D的坐标得BD的中点坐标为(﹣2,﹣2),则直线ON的表达式为:y=x,联立y=x2+2x﹣3和y=x并解得:或,即点N的坐标为(,﹣)或(,),故点N到x轴的距离为:或.四.作图—复杂作图(共3小题)5.(2023•徐汇区一模)如图,点E在平行四边形ABCD的边BC的延长线上,且CE=2BC,AE与CD交于点F.设,.(1)用向量、表示向量;(2)求作:向量分别在向量、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【答案】(1)=+=+2;(2)见图.【解答】解:(1)∵四边形是平行四边形,∴AD∥BC,AD=BC,AB∥DC,AB=DC,∵CE=2BC,∴CE=2AD,∴=2=2,∵==,∵=+=+2;(2)过F作FM∥CE,交DE于M,FN∥DE交CE于N,∴向量分别在向量、方向上的分向量是向量和向量.6.(2023•崇明区一模)在梯形ABCD中,AD∥BC,且BC=3AD.过点A作AE∥DC,分别交BC,BD于点E、F,若=,=.(1)用、表示和;(2)求作在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【答案】(1)=﹣+,=+;【解答】解:(1)∵AD∥BC,=,BC=3AD,∴=,∴=+=﹣+,∵AD∥EC,AE∥CD,∴四边形AECD是平行四边形,∴AD=EC,∴BE=2EC,∴=,∴=+=+,∵AD∥BE,∴==,∴AF=AE,∴=+;(2)如图,,即为所求.7.(2023•长宁区一模)如图,已知D是△ABC边AC上一点,且AD:DC=2:3,设,.(1)试用、表示;(2)直接在图中作出向量分别在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【答案】(1)=﹣+;【解答】解:(1)∵=+,∴=+,∵AD:DC=2:3,∴=AC=+,∴=+=﹣++=﹣+;(2)如图,,即为所求.五.相似三角形的判定与性质(共9小题)8.(2023•宝山区一模)已知:如图,四边形ABCD、ACED都是平行四边形,M是边CD的中点,联结BM并延长,分别交AC、DE于点F、G.(1)求证:BF2=FM•BG;(2)联结CG,如果,求证:∠BGC=∠BAC.【答案】见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵M是边CD的中点,∴AB=2CM,CM=DM,∵AB∥CM,∴△ABF∽△CMF,∴==2,∵四边形ACED为平行四边形,∴AC∥DE,∴△CMF∽△DMG,∴==1,∴BF=2FM=2MG,∵BF2=4FM2,FM•BG=FM•4FM=4FM2,∴BF2=FM•BG;(2)∵AB=CG,AB=CD,∴CD=CG,CM=CG,∴=,=,∴=,∵∠MCG=∠GCD,∴△CMG∽△CGD,∴∠MGC=∠DEC,∵AC∥CD,∴∠EDC=∠ACD,∵AB∥CD,∴∠BAC=∠ACD,∴∠BAC=∠BGC.9.(2023•普陀区一模)已知:如图,在四边形ABCD中,E为BC上一点,AB•DE=AE•EC,∠ABE=∠AED.(1)求证:△ABE∽△ECD;(2)如果F、G、H分别是AE、DE、AD的中点,连接BF、HF、HG、CG.求证:BF•HF=CG•HG.【答案】(1)证明见解答;(2)证明见解答.【解答】证明:(1)如图1,∵AB•DE=AE•EC,∴=,∵∠ABE=∠AED,∴180°﹣∠ABE﹣∠AEB=180°﹣∠AED﹣∠AEB,∵∠BAE=180°﹣∠ABE﹣∠AEB,∠CED=180°﹣∠AED﹣∠AEB,∴∠BAE=∠CED,∴△ABE∽△ECD.(2)如图2,∵F、G、H分别是AE、DE、AD的中点,∴HF∥ED,HF=ED,EG=ED,AE=2AF,DE=2EG,∴HF∥EG,HF=EG,∴四边形EFHG是平行四形,∴AF=EF=HG,∵===,∠BAF=∠CEG,∴△ABF∽△ECG,∴=,∴=,∴BF•HF=CG•HG.10.(2023•徐汇区一模)如图,已知△ABC是等边三角形,D、E分别是边BC、AC上的点,且BC•CE=BD•DC.在DE的延长线上取点F,使得DF=AD,联结CF.(1)求证:∠ADE=60°;(2)求证:CF∥AB.【答案】(1)(2)证明见解析.【解答】证明:(1)∵△ABC是等边三角形,∴∠B=∠ACB=60°,AB=BC,∵BC•CE=BD•DC,∴AB:DC=BD:CE,∴△ABD∽△DCE,∴∠BAD=∠CDE,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∴∠ADE=∠B=60°.(2)连接AF,∵∠ADE=60°,AD=DF,∴△ADF是等边三角形,∴AF=AD,∠DAE=∠BAC=60°,∵∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,∴∠ACE=∠BAC=60°,∴CF∥AB.11.(2023•杨浦区一模)已知:如图,在△ABC中,点D、E、F分别在边AC、BD、BC上,AB2=AD•AC,∠BAE =∠CAF.(1)求证:△ABE∽△ACF;(2)联结EF,如果BF=CF,求证:EF∥AC.【答案】(1)(2)证明见解答过程.【解答】证明:(1)如图:∵AB2=AD•AC,∴=,∵∠BAC=∠DAB,∴△ABC∽△ADB,∴∠ACB=∠ABD,∵∠BAE=∠CAF,∴△ABE∽△ACF;(2)如图:由(1)知△ABC∽△ADB,△ABE∽△ACF,∴=,=,∴=,∵BF=CF,∴=,即=,∵∠EBF=∠DBC,∴△EBF∽△DBC,∴∠BEF=∠BDC,∴EF∥AC.12.(2023•虹口区一模)如图,在四边形ABCD中,对角线BD与AC交于点F,∠ADB=∠ACB.(1)求证:∠ABD=∠ACD;(2)过点A作AE∥DC交BD于点E,求证:EF•BC=AD•AF.【答案】(1)(2)证明见解答过程.【解答】证明:(1)∵∠ADB=∠ACB,∠AFD=∠BFC,∴△ADF∽△BCF,∴=,∴=,∵∠AFB=∠DFC,∴△AFB∽△DFC,∴∠ABF=∠DCF,即∠ABD=∠ACD;(2)∵AE∥DC,∴∠AEF=∠CDF,∵∠AFE=∠CFD,∴△AFE∽△CFD,∴=,∴=,由(1)知△ADF∽△BCF,∴=,∴=,∴EF•BC=AD•AF.13.(2023•崇明区一模)已知:如图,在梯形ABCD中,AD∥BC,AD=BC,对角线AC与BD交于点F,点G 是AB边上的中点,联结CG交BD于点E,并满足BG2=GE•GC.(1)求证:∠GAE=∠GCA;(2)求证:AD•BC=2DF•DE.【答案】(1)证明见解答;(2)证明见解答.【解答】证明:(1)∵点G是AB边上的中点,∴BG=GA,∵BG2=GE•GC,∴GA2=GE•GC,∴=,∵∠EGA=∠AGC,∴△EGA∽△AGC,∴∠GAE=∠GCA.(2)∵BG2=GE•GC,∴=,∵∠EGB=∠BGC,∴△EGB∽△BGC,∴∠GBE=∠GCB,∴∠AED=∠GAE+∠GBE=∠GCA+∠GCB=∠FCB,∵AD∥BC,∴∠ADE=∠FBC,∴△ADE∽△FBC,∴=,∴AD•BC=FB•DE,∵△ADF∽△CBF,AD=BC,∴==,∴FB=2DF,∴AD•BC=2DF•DE.14.(2023•金山区一模)如图,已知在四边形ABCD中,AD∥BC,∠A=90°,AD=2,BC=6,BD是对角线,BD⊥DC.(1)求证:△ABD∽△DCB;(2)求CD的长.【答案】(1)证明过程见解答;(2)2.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠DBC,∵∠A=90°,BD⊥DC,∴∠A=∠BDC=90°,∴△ABD∽△DCB;(2)解:由(1)知:△ABD∽△DCB,∴,∵AD=2,BC=6,∴,解得DB=2,∵∠BDC=90°,∴BD2+CD2=BC2,即(2)2+CD2=62,解得CD=2.15.(2023•金山区一模)如图,已知菱形ABCD中,点E在边CB延长线上,联结DE交边AB于点F,联结AE,过点F作FG∥BE交AE于点G.(1)求证:FG=BF;(2)联结AC交DE于点O,联结BO,当∠FOB=∠DAO时,求证:DO2=AB•GF.【答案】(1)证明过程见解答;(2)证明过程见解答.【解答】证明:(1)∵四边形ABCD是菱形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥AD,∴,∵BF∥CD,∴,∴,∴FG=BF;(2)连接BD,∵四边形ABCD是菱形,∴AC垂直平分BD,∴BO=DO,∵四边形ABCD是菱形,∠FAO=∠DAO,∵∠FOB=∠DAO,∴∠FOB=∠FAO,又∵∠FBO=∠ABO,∴△BOF∽△BAO,∴,∴BO2=BA•BF,由(1)知:BF=GF,∵BO=DO,∴DO2=AB•GF.16.(2023•松江区一模)如图,已知梯形ABCD中,AD∥BC.E是边AB上一点,CE与对角线BD交于点F,且BE2=EF•EC.求证:(1)△ABD∽△FCB;(2)BD•BE=AD•CE.【答案】(1)(2)证明见解答过程.【解答】证明:(1)∵BE2=EF•EC,∴=,∵∠BEF=∠CEB,∴△BEF∽△CEB,∴∠EBF=∠ECB,∵AD∥BC,∴∠ADB=∠FBC,∴△ABD∽△FCB;(2)由(1)知△BEF∽△CEB,△ABD∽△FCB∴=,=,∴=,∴BE•BD=AD•CE.六.相似形综合题(共1小题)17.(2023•青浦区一模)如图,在△ABC中,∠C=90°,AB=10,BC=8,动点D、E分别在边BA、BC上,且,设BD=5t.过点B作BF∥AC,与直线DE相交于点F.(1)当DB=DE时,求t的值;(2)当t=时,求的值;(3)当△BDE与△BDF相似时,求BF的长.【答案】(1);(2);(3)或.【解答】解:(1)过D作DH⊥BC,垂足为点H,∵∠C=90°,∴DH∥AC.∴,∵BD=DE=5t,∴BH=EH=4t,又∵BC=8,CE=4t,∴12t=8,t=;(2)当t=时,得BD=2,CE=,BE=.∵BE>BD,∴点F是射线ED与直线BF的交点,过E作EG∥AC,交AB于点G,则BF∥GE∥AC.∴,AG=2.∴DG=10﹣2﹣2=6,∴,,∴,(3)(i)当点F是射线DE与BF的交点时,∵△BDE与△BDF相似,又∵∠BDE=∠BDF,∴∠DBE=∠F,即∠ABC=∠F,又∵∠EBF=∠C,∴△BEF∽△CAB.∴,即.解得,过D作DM⊥BC,垂足为点M.由BD=5t,得DM=3t,BM=4t,EM==8t–8.∵BF∥DM,∴∠EDM=∠F=∠ABC.∴tan∠EDM=tan∠ABC.∴DM=,∴.解得,∴,(ii)当点F是射线ED与BF的交点时,∵∠BDE>∠F,∠BDE>∠FBD,又∵△BDE与△BDF相似,∴∠BDE=∠BDF=90°.∵∠BDE=∠C,∠DBE=∠CBA,∴△BDE∽△BCA,∴.即.解得.∴,∵∠F=∠DBE,∴sin∠F=sin∠DBE.∴.解得.综上所述,当△BDE与△BDF相似时,BF的长为或.七.特殊角的三角函数值(共1小题)18.(2023•虹口区一模)计算:cos245°﹣+cot230°.【答案】见试卷解答内容【解答】解:原式=()2﹣+()2=﹣+3=.八.解直角三角形(共4小题)19.(2023•徐汇区一模)如图,在△ABC中,已知∠C=90°,sin A=.点D为边AC上一点,∠BDC=45°,AD=7,求CD的长.【答案】5.【解答】解:∵∠C=90°,∴sin A==,令BC=5x,AB=13x,∴AC===12x,∵∠BDC=45°,∠C=90°,∴∠BDC=∠CBD=45°,∴BC=CD=5x,∴AD=AC﹣CD=7x=7,∴x=1,∴CD=5x=5.20.(2023•虹口区一模)如图,在Rt△ABC中,∠BAC=90°,BC=9,sin B=,点E在边AC上,且AE=2EC,过点E作DE∥BC交边AB于点D,∠ACB的平分线CF交线段DE于点F,求DF的长.【答案】4.【解答】解:∵∠BAC=90°,BC=9,sin B=,sin B=,∴=,解得AC=6,∵AE=2EC,AE=2EC,∴AE=4,EC=2,∵DE∥BC,∴∠ABC=∠ADE,∠EFC=∠BCF,∵sin B=,AE=4,∴DE=6,∵CF平分∠ACB,∴∠ECF=∠BCF,∴∠EFC=∠ECF,∴EF=EC=2,∴DF=DE﹣EF=6﹣2=4.21.(2023•崇明区一模)如图,D是△ABC边上的一点,CD=2AD,AE⊥BC,垂足为点E,若AE=9,sin∠CBD =.(1)求BD的长;(2)若BD=CD,求tan∠BAE的值.【答案】(1)8;(2).【解答】解:(1)作DF⊥BC于点F,∵AE⊥BC,∴DF∥AE,∴,∵CD=2AD,CD+AD=CA,∴,∵AE=9,∴=,解得DF=6,∵sin∠CBD=,sin∠CBD=,∴,解得BD=8;(2)∵BD=CD,DF⊥BC,∴BF=CF,由(1)知:DF=6,BD=8,∠DFC=90°,∴CF===2,∴BF=2,∵DF∥AE,CD=2AD,∴CF=2EF,∴EF=,∴BE=BF﹣EF=2﹣=,∴tan∠BAE==.22.(2023•青浦区一模)如图,在△ABC中,AD⊥BC,垂足为点D,BF平分∠ABC交AD于点E,BC=5,AD=4,sin∠C=.(1)求sin∠BAD的值;(2)求线段EF的长.【答案】(1);(2).【解答】解:(1)∵AD⊥BC,AD=4,sin∠C=,∴,解得AC=2,在Rt△ACD中,,∵BC=5,∴BD=BC﹣CD=5﹣2=3,在Rt△ABD中,,∴sin∠BAD=;(2)∵AB=BC=5,BF平分∠ABC,∴BF⊥AC,,∴∠AFE=∠ADC,又∵∠EAF=∠CAD,∴△AEF∽△ACD,∴,即.解得EF=.九.解直角三角形的应用-仰角俯角问题(共3小题)23.(2023•宝山区一模)如图,某小区车库顶部BC是居民健身平台,在平台上垂直安装了太阳能灯AB.已知平台斜坡CD的坡度,坡长为6米.在坡底D处测得灯的顶端A的仰角为45°,在坡顶C处测得灯的顶端A的仰角为60°,求灯的顶端A与地面DE的距离.(结果保留根号)【答案】(3+)米.【解答】解:过点B作BF⊥DE于点F,过点C作CG⊥DE于点G,由题意得,CD=6米,∠ADF=45°,∠ACB=60,CG=BF,BC=FG,∵斜坡CD的坡度,∴,即DG=CG,在Rt△CDG中,由勾股定理得,解得CG=3,∴DG=3米,BF=3米,设BC=FG=x米,则DF=(x+)米,在Rt△ABC中,tan60°=,解得AB=x,∴AF=(3+x)米,在Rt△ADF中,∠ADF=45°,∴AF=DF,即3+x=x+,解得x=3,∴AF=(3+)米.∴灯的顶端A与地面DE的距离为(3+)米.24.(2023•金山区一模)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得顶部A的仰角为31°,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得顶部A的仰角为42°.求凉亭AB的高度(AB⊥BE,DE⊥BE,FG⊥BE.结果精确到0.1m).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【答案】凉亭AB的高度约为6.9m.【解答】解:延长DF交AB于点C,如图所示,由题意可得,DE=FG=1.5m,∠ADC=31°,∠AFC=42°,DF=3m,∵∠ACD=∠ACF=90°,∴CD=,CF=,∵DF=CD﹣CF,∴3=﹣,解得AC≈5.4,∴AB=AC+BC=5.4+1.5=6.9(m),即凉亭AB的高度约为6.9m.25.(2023•青浦区一模)某校九年级数学兴趣小组在实践活动课中测量路灯的高度.如图,在A处测得路灯顶端O 的仰角为26.6°,再沿AH方向前行13米到达点B处,在B处测得路灯顶端O的仰角为63.4°,求路灯顶端O 到地面的距离OH(点A、B、H在一直线上)的长.(精确到0.1米)(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.0)【答案】路灯顶端O到地面的距离OH的长约为8.7米.【解答】解:设BH的长为x米,在Rt△OBH中,,∴OH=2BH=2x米,在Rt△AOH中,,∴AH==4x米,∵AB=AH﹣BH=4x﹣x=13,解得x=(米),∴OH=2x=≈8.7(米),∴路灯顶端O到地面的距离OH的长约为8.7米.。
2020-2021学年天津市中考数学第一次模拟试题及答案解析
最新天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.12.tan30°的值等于()A.B.C.D.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×1065.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.39.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>1010.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.811.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于.(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是;m= ,n= .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣3)+(﹣2)的结果等于()A.﹣5 B.5 C.﹣1 D.1【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(3+2)=﹣5,故选A.【点评】此题考查了有理数的加法,熟练掌握有理数加法法则是解本题的关键.2.tan30°的值等于()A.B.C.D.【分析】根据特殊角的三角函数值解答.【解答】解:tan30°=.故选C.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C上下折叠能重合,是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.根据海关统计,2015年1月4日,某市共出口钢铁1488000吨,148000这个数用科学记数法表示为()A.1.488×104B.0.1488×107C.14.88×106D.1.488×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:148000这个数用科学记数法表示为1.488×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图是由5个相同的正方体组成的一个立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.方程的解为()A.x=﹣2B.x=2 C.x=﹣1D.x=【分析】观察方程可得最简公分母是:x(x﹣1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以x(x﹣1)得,2x﹣2=3x,解得:x=﹣2.经检验:x=﹣2是原方程的解;故选A.【点评】此题考查了分式方程的解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.7.某校260名学生参加植树活动,要求每人值4﹣7棵,活动结束后随机调查了部分学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校植树量达到6棵的学生有()A.26名 B.52名 C.78名 D.104名【分析】用学生总人数乘以植树量为6棵的百分比即可求解.【解答】解:观察统计图发现植树量为6棵的占30%,故植树量达6棵的人数有260×30%=78人,故选C.【点评】本题考查了用样本估计总体及扇形统计图的知识,解题的关键是从扇形统计题中整理出植树量达6棵所占的百分比,难度不大.8.正六边形的边心距是,则它的边长是()A.1 B.2 C.2D.3【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题考查了正六边形和圆,掌握外接圆的半径等于正六边形的边长是解此题的关键.9.反比例函数y=的图象经过点A(﹣2,﹣5),则当1<x<2时,y的取值范围是()A.﹣10<y<﹣5 B.﹣2<y<﹣1 C.5<y<10 D.y>10【分析】将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(﹣2,﹣5),∴﹣5=,解得:k=10,∴反比例函数解析式为y=.当x>0时,反比例函数单调递减,当x=1时,y==10;当x=2时,y==5.∴当1<x<2时,5<y<10.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x 的值即可得出结论.10.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.【点评】此题主要考查了三角形的外接圆以及勾股定理的应用,还涉及到圆周角定理、垂径定理以及直角三角形的性质等知识,难度不大.11.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.105°B.150°C.75°D.30°【分析】根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.【解答】解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=÷2=75°,∴∠C=180°﹣75°=105°.故选A.【点评】此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()个.A.4个B.3个C.2个D.1个【分析】根据已知画出图象,把x=﹣2代入得:4a﹣2b+c=0,2a+c=2b﹣2a;把x=﹣1代入得到a﹣b+c>0;根据﹣<0,推出a<0,b<0,a+c>b,计算2a+c=2b﹣2a>0;代入得到2a﹣b+1=﹣c+1>0,根据结论判断即可.【解答】解:根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=﹣2代入得:4a﹣2b+c=0,∴①正确;把x=﹣1代入得:y=a﹣b+c>0,如图A点,∴②错误;∵(﹣2,0)、(x1,0),且1<x1,∴取符合条件1<x1<2的任何一个x1,﹣2•x1<﹣2,∴由一元二次方程根与系数的关系知x1•x2=<﹣2,∴不等式的两边都乘以a(a<0)得:c>﹣2a,∴2a+c>0,∴③正确;④由4a﹣2b+c=0得2a﹣b=﹣,而0<c<2,∴﹣1<﹣<0∴﹣1<2a﹣b<0∴2a﹣b+1>0,∴④正确.所以①③④三项正确.故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子得符号是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13.计算(﹣a2)3的结果等于﹣a6.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a2)3=﹣a6.故答案为:﹣a6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵在一个不透明布袋里面装有11个球,其中有4个红球,7个白球,∴从中任意摸出一个球,是白球的概率是:.故答案为.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.15.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴,解得m=2.故答案为:2.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系及其增减性是解答此题的关键.16.已知抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,那么抛物线的对称轴为直线x=1 .【分析】根据二次函数的图象具有对称性,由抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,可以得到它的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c过(﹣2,3),(4,3)两点,∴抛物线的对称轴为直线x=,故答案为:x=1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的性质,知道二次函数的图象具有对称性.17.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.18.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P 均落在格点上.(1)计算三角形ABC的周长等于3+5 .(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)【分析】(1)根据勾股定理分别求出AB、AC即可解决问题.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,由△AEH∽△ABC,得=,列出方程即可解决.【解答】解:(1)∵AB==,AC==2,BC=5,∴AB+AC+BC=3+5,∴△ABC的周长为3+5.故答案为3+5.(2)在线段AB上截取BE=AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,∵矩形EFGH的周长为8,∴EH=4﹣x,∵EH∥BC,∴△AEH∽△ABC,∴=,∴,∴x=,∴EF=,∵EF∥AM,∴===,∴BE=AB,∴当BE=AB时,矩形EFGH的周长等于线段BP长度的2倍.【点评】本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.三、解答题(共7小题,满分66分)19.解不等式请结合题意填空,完全本题的解答(1)解不等式①,得x≥﹣1 .(2)解不等式②,得x≤1 .(3)把不等式①和②的解集在数轴上表示出来.(4)原不等式组的解集为﹣1≤x≤1 .【分析】先根据不等式基本性质求出两个不等式的解集,再将不等式解集表示在数轴上,根据解集在数轴上的表示求其公共解.【解答】解:(1)解不等式①,得:x≥﹣1,(2)解不等式②,得:x≤1,(3)把不等式①和②的解集表示在数轴上,如图:(4)∴原不等式组的解集为:﹣1≤x≤1;故答案为:(1)x≥﹣1;(2)x≤1;(4)﹣1≤x≤1.【点评】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.某校开展社团活动,准备组件舞蹈、武术、球类(足球、篮球、乒乓球、羽毛球).花样滑冰四类社团,为了解在校学生对这4个社团活动的喜爱情况,学校随机抽取部分学生进行了“你最喜爱的社团”调查,依据相关数据绘制以下的统计图表,请根据图表中的信息解答下列问题:“你最喜爱的社团”调查统计图表社团类别人数占总人数的比例舞蹈60 25%武术m 10%花样滑冰36 n%球类120 50%(1)被调查的学生总人数是240 ;m= 24 ,n= 15 .(2)被调查喜爱球类的学生中有12人最喜爱乒乓球,若该校有2600名学生,试估计全校最喜爱乒乓球的人数.【分析】(1)用“舞蹈”类人数除以其占总人数百分比可得总人数,将“武术”类人数占总人数百分比×总人数可得m的值,将“花样滑冰”类人数除以总人数可得其所占百分比;(2)用乒乓球类人数占样本总数的百分比乘以2600可得.【解答】解:(1)被调查的学生总人数是60÷25%=240(人),“武术”类人数m=240×10%=24(人),“花样滑冰”类人数占总人数百分比n=×100=15;(2)×2600=130(人),答:估计全校最喜爱乒乓球的人数约为130人.故答案为:(1)240,24,15.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.22.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度AB,如图,在C处测得塔尖A的仰角为45°,再沿CB方向前进31.45m到达D处,测得塔尖A的仰角为60°,求塔高AB(精确到0.1m,≈1.732)【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BC﹣BD=31.45,进而可求出答案.【解答】解:设AB=x米,在Rt△ACB和Rt△ADB中,∵∠C=45°,∠ADB=60°,CD=31.45m,∴CB=x,BD=x,∵CD=BC﹣BD=x﹣x=31.45,解得:x≈74.4.答:塔高AB约为74.4米.【点评】本题考查了解直角三角形的应用﹣仰角俯角;能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形是解决问题的关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.【分析】(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;【解答】解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+57600;当x=15时,W有最大值,W最大=6300+57600=63900;②当15<x<20,W=﹣20x2+2100x+1380(40﹣x)+2400=﹣20(x﹣18)2+64080;∴x=18时有最大值为:64080元.综上x=18时,有最大利润64080.【点评】本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E 的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【分析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.【解答】解:(1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,所以,B′F=B′O=OE=x,F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8,在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握旋转变化与平移变化的性质是解题的关键.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出P点坐标,根据S△PCD=S△PAC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况进行讨论即可.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.【点评】本题考查的是二次函数综合题,涉及到二次函数与一次函数的交点问题、二次函数图象上点的坐标特点、平行四边形的判定与性质等知识,难度较大.2016年6月17日。
2021年江西省各市各区数学中考模拟试题分类汇编 图形的性质解答(四)
2021年江西省各市各区数学中考模拟试题分类汇编:图形的性质解答(四)1.(2021•江西模拟)两个大小不同且都含有30°角的直角三角板按如图所示放置,将△ABC与△EDC的顶点C重合,其中∠ACB=∠DCE=90°,∠CAB=∠CED=30°.(1)如图1,当点E在AC上,点D在BC上时,CE:AE=2:3,求S△DCE :S四边形AEDB;(2)如图2,将△EDC绕着点C旋转一定角度时,求BD:AE;(3)如图2,当点A,E,D在同一条直线上时,连接BD,若CD=1,BC=3,求BD.2.(2021•乐平市一模)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC 边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD的长;若不存在,试说明理由.3.(2021•江西模拟)如图,AB是⊙O中不过圆心的一条弦,请用无刻度的直尺,分别按下列要求画图.(1)在图1中画出一条弦CD,使CD∥AB;(2)在图2中,M是AB下方⊙O上的一点,以点A,M为顶点画一个直角三角形,使其第三顶点也落在⊙O上,并使该直角三角形的一个内角的度数与∠ABM相等.4.(2021•乐平市一模)请用无刻度直尺完成下列作图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图1,在▱ABCD中,E是边AD上一点,在边BC上画点F,使CF=AE;(2)如图2,△ABC内接于⊙O,D是的中点,画△ABC的中线AE;(3)如图3,在▱ABCD中,E是边AD上一点,且DE=DC,画∠BAD的平分线AF;(4)如图4,BC是⊙O的直径,A是⊙O内一点,画△ABC的高AD.5.(2021•江西模拟)如图,在矩形ABCD中,AB=6,BC=8,点O为对角线AC的中点,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,点P运动速度为每秒2个单位长度,点Q运动速度为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设点P运动时间为t(t>0)秒.(1)cos∠BAC=.(2)当PQ⊥AC时,求t的值.(3)求△QOP的面积S关于t的函数表达式,并写出t的取值范围.(4)当线段PQ的垂直平分线经过△ABC的某个顶点时,请直接写出t的值.6.(2021•江西模拟)如图,已知二次函数y=x2+4x﹣5的图象及对称轴,现用无刻度直尺按下列要求作图:(1)在图1中作点A(﹣4,﹣5);(2)已知A(﹣4,﹣5),在图2中的对称轴上作点P,使CP﹣AP最大.7.(2021•乐平市一模)如图,在平面直角坐标系中,▱ABOC的顶点A(0,2),点B(﹣4,0),点O为坐标原点,点C在第一象限,若将△AOB沿x轴向右运动得到△EFG(点A、O、B分别与点E、F、G对应),运动速度为每秒2个单位长度,边EF交OC于点P,边EG交OA于点Q,设运动时间为t(0<t<2)秒.(1)在运动过程中,线段AE的长度为(直接用含t的代数式表示);(2)若t=1,求出四边形OPEQ的面积S;(3)在运动过程中,是否存在四边形OPEQ为菱形?若存在,直接写出此时四边形OPEQ 的面积;若不存在,请说明理由.8.(2021•吉安县模拟)如图,在网格纸中,O、A都是格点,以O为圆心,OA为半径作圆.用无刻度的直尺完成以下画图:(不写画法)(1)在图①中画⊙O的一个内接正六边形ABCDEF;(2)在图②中画⊙O的一个内接正八边形ABCDEFGH.9.(2021•江西模拟)如图所示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B 重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF 的最大值.10.(2021•东湖区模拟)已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)11.(2021•江西模拟)请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)如图1,抛物线l与x轴交于A,B两点,与y轴交于点C,CD∥x轴交抛物线于点D,作出抛物线的对称轴EF;(2)如图2,抛物线l1,l2交于点P且关于直线MN对称,两抛物线分别交x轴于点A,B和点C,D,作出直线MN.12.(2021•江西模拟)如图,AB是⊙O的直径,平行四边形ACDE的一边在直径AB上,点E在⊙O上.(1)如图1,当点D在⊙O上时,请你仅用无刻度的直尺在AB上取点P,使DP⊥AB于P;(2)如图2,当点D在⊙O内时,请你仅用无刻度的直尺在AB上取点Q,使EQ⊥AB于Q.13.(2021•九江一模)如图,▱ABCD的顶点A、B、D都在⊙O上,请你仅用无刻度的直尺按下列要求画图:(1)在图1中,画出一条弦与AD相等;(2)在图2中,画出一条直线与AB垂直平分.14.(2021•吉水县一模)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.15.(2021•吉安模拟)如图,△ABC是⊙O的内接三角形,请仅用无刻度的直尺在下列图形中按要求画图.(1)在图1中,已知OD⊥BC于点D,画出∠A的角平分线;(2)在图2中,已知OE⊥AB于点E,OF⊥AC于点F,画出∠A的角平分线.16.(2021•江西模拟)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.17.(2021•南昌县一模)等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.18.(2021•江西模拟)操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若=时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.19.(2021•乐平市一模)如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,若AB=5cm,BD=3cm,求BE的长.20.(2021•江西模拟)在矩形ABCD中,点E是对角线AC上一动点,连接DE,过点E作EF⊥DE交AB于点F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E在运动过程中的值是否发生变化?请说明理由;(3)如图3,若点F为AB的中点,连接DF交AC于点G,将△GEF沿EF翻折得到△HEF,连接DH交EF于点K,当AD=2,CD=2时,求KH的长.21.(2021•江西模拟)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.22.(2021•江西模拟)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.23.(2021•江西模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连接AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.24.(2021•江西模拟)如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD 与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.(1)求证:PA是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.25.(2021•江西模拟)在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长.参考答案1.【解答】解:(1)当点E在AC上,点D在BC上时,∵∠CAB=∠CED=30°,∴DE∥AB,∴△ABC∽△EDC,∴S△DCE :S△ABC=(CE:CA)2=4:25,∴S△DCE :S四边形AEDB=4:21;(2)∵∠ACB=∠DCE=90°,∴∠DCB=∠ACE.∵∠CAB=∠CED=30°,∴,,∴DC:CE=BC:CA,∴△DBC∽△EAC,∴;(3)由(2)可知,∵△DBC∽△EAC,∴∠AEC=∠BDC.∵点A,E,D在同条一直线上,∠CED=30°,∴∠AEC=∠BDC=150°,∴∠ADB=150°﹣60°=90°.设BD=x,可知,在Rt△ABD中,,解得,(舍).∴.2.【解答】解:(1)∵∠CFE=45°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.3.【解答】解:(1)如图1,CD为所求.(2)如图2,△AEM为所求.4.【解答】解:(1)如图1中,线段CF即为所求作.(2)如图2中,线段AE即为所求作.(3)如图3中,射线AF即为所求作.(4)如图4中,线段AD即为所求作.5.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∴AC===10,∴cos∠BAC===,故答案为:;(2)由题意得:BQ=t,AP=2t,则AQ=6﹣t,当PQ⊥AC时,∠APQ=90°,∴cos∠QAP==,即=,解得:t=,即当PQ⊥AC时,t的值为;(3)过Q作QE⊥AC于E,如图1所示:则∠AEQ=90°=∠ABC,又∵∠QAE=∠CAB,∴△AEQ∽△ABC,∴=,即=,解得:QE=(6﹣t),∵点O为对角线AC的中点,∴AO=AC=5,若P与O重合时,则AP=AO=5,∴2t=5,∴t=,若P与C重合时,则AP=AC=10,∴2t=10,∴t=5,当点P在线段AO上时,OP=5﹣2t,则△QOP的面积S=OP×QE=×(5﹣2t)×(6﹣t)=t2﹣t+12,即S=t2﹣t+12(0≤t<);当点P在线段CO上时,OP=2t﹣5,则△QOP的面积S=OP×QE=×(2t﹣5)×(6﹣t)=﹣t2+t﹣12,即S=﹣t2+t﹣12(<t≤5);(4)分三种情况:①当线段PQ的垂直平分线经过点C时,连接QC,如图2所示:PC=QC=10﹣2t,在Rt△QBC中,由勾股定理得:QC2=BC2+BQ2,即(10﹣2t)2=82+t2,解得:t=或t=(舍去),∴t=;②当线段PQ的垂直平分线经过点B时,BQ=BP=t,过点P作PG⊥BC于G,连接BP,如图3所示:则PG∥AB,∴△PCG∽△ACB,∴==,即==,解得:PG=(10﹣2t)=6﹣t,CG=(10﹣2t),∴BG=8﹣(10﹣2t)=t,在Rt△BPG中,由勾股定理得:BP2=BG2+PG2,即t2=(t)2+(6﹣t)2,此方程无解;③当线段PQ的垂直平分线经过点A时,如图4所示:则AQ=AP,即6﹣t=2t,解得:t=2;综上所述,当线段PQ的垂直平分线经过△ABC的某个顶点时,t的值为或2.6.【解答】解:(1)如图1,点A为所作;(2)如图2,点P为所作.7.【解答】解:(1)在运动过程中,线段AE的长度为2t,故答案为:2t;(2)∵将△AOB沿x轴向右运动得到△EFG,∴AB∥EG,OA∥EF,∵四边形ABOC是平行四边形,∴AB∥OC,∴EG∥OC,∵OQ∥PE,∴四边形OPEQ是平行四边形,∵A(0,2),点B(﹣4,0),∴OA=2,OB=4,∵t=1,∴AE=BG=2,∴OG=2,∵AE=OG,∵AC∥OB,∴∠AEQ=∠OGQ,∠EAQ=∠GOQ,∴△AEQ≌△OGQ(ASA),∴AQ=OQ=OA=1,∴四边形OPEQ的面积S=1×2=2;(3)存在,由(2)知四边形OPEQ是平行四边形,若四边形OPEQ是菱形,则EQ=OQ,∵AE∥OB,AB∥EG,∴∠AEQ=∠ABO=∠EGO,∠EAQ=∠AOB,∴△QEA∽△ABO,∴,∵AE=2t,∴=,∴AQ=t,∴OQ=2﹣t,∵QE=OQ,∴AE2+AQ2=OQ2,∴(2t)2+t2=(2﹣t)2,解得:t=,∴AE=﹣1,OQ=,∴当t=时,四边形OPEQ为菱形,∴四边形OPEQ的面积=AE•OQ=3﹣5.8.【解答】解:如图所示,(1)如图①,正六边形ABCDEF即为所求;(2)如图②,正八边形ABCDEFGH即为所求.9.【解答】(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE===4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED和△AGD中,,∴△AED≌△AGD(AAS),∴AE=AG,DE=DG,∵∠FAD=∠DAB,∴=,∴DF=DB,在Rt△DEF和Rt△DGB中,,∴Rt△DEF≌Rt△DGB(HL),∴EF=BG,∴AB=AG+BG=AF+EF=AF+EF+EF=AF+2EF,即:x+2y=10,∴y=﹣x+5,∴AF•EF=﹣x2+5x=﹣(x﹣5)2+,∴AF•EF有最大值,当x=5时,AF•EF的最大值为.10.【解答】证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).11.【解答】解:(1)如图1所示,直线EF即为所求.(2)如图2所示,直线MN即为所求.12.【解答】解:(1)如图,延长AO交⊙O于点F,连接DF交AB于点P,点P即为所求;(2)延长ED交⊙O于M,作直径MF,连接EF交OA于点Q,点Q即为所求.13.【解答】解:(1)BE就是所求作的弦;(2)FG就是所求作的垂直平分线.14.【解答】解:(1)如图正方形ABCD;(2)如图平行四边形EFGH.15.【解答】解:(1)如图1所示:AM即为所求;(2)如图2所示:AN即为所求.16.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.17.【解答】解:(1)如图1,DE为所作:(2)如图2,DE为所作:18.【解答】解:(1)OE=OG,理由:如图1,连接OD,在正方形ABCD中,∵点O是正方形中心,∴OA=OD,∠OAD=∠ODC=45°,∵AG=DE,∴△AOG≌△DOG,∴OE=OG,(2)∠EOF的度数不会发生变化,理由:由(1)可知,△AOG≌△DOE,∴∠DOE=∠AOG,∵∠AOG+∠DOG=90°,∴∠DOE+∠DOG=90°,∴∠DOE=∠AOG,∵∠EOG=90°,∵OE=OG,OF⊥EG,∴∠EOF=45°,∴恒为定值.(3)由(2)可知,OE=OG,OF⊥EG,∴OF垂直平分EG,∴△DEF的周长为DE+EF+DF=AG+FG+DF=AD,∵a=6,∴△DEF的周长为AD=a=6,(0<DE<3)(4)①如图2,∵∠EOF=45°,∴∠COE+AOF=135°∵∠OAF=45°,∴∠AFO+∠AOF=135°,∴∠COE=∠AFO,∴△AOF∽△CEO,∴,∵O到AF与CE的距离相等,∴,∴()2=,∵>0,∴=,②猜想:S=a2,理由:如图3,由(1)可知,△AOF∽△CEO,∴,∴AF×CE=OA×OC,∵EH⊥AB,FG⊥CB,∠B=90°,∴S=AF×CE,∴S=OA×OC=×=a2.19.【解答】解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5cm;∵BD=CD=3cm,∴BE=BD+CD+CE=3+3+5=11cm.20.【解答】(1)证明:如图,连接DF,在矩形ABCD中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)解:的值不变;如图,过点E作EM⊥AD于点M,过点E作EN⊥AB于点N,∴四边形ANEM是矩形,∴EN=AM,∵∠EAM=∠CAD,∠EMA=∠CDA.∴△EAM∽△CAD,∴,即,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又∵∠DME=∠ENF=90°,∴△DME∽△FNE,∴,由①②可得,∵AD与DC的长度不变,∴的长度不变;(3)连接GH交EF于点I,∵点F是AB的中点,∴AF=,在Rt△ADF中,DF===,由(2)知=,∴DE=EF,在Rt△DEF中,EF=,DE=,又∵AB∥DC,∴△AGF∽△CGD,∴,∴,由折叠的性质可知GI=IH,GH⊥EF,又∵DE⊥EF,∴GH∥DE,∴△GFI∽△DFE,∴,∴EI==,GI=IH=,又∵GH∥DE,∴△DEK∽△HIK,∴=,∴KI==,∴HK==.21.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)AF=CE+BD,理由如下:连接OD,DE,由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.22.【解答】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S=BQ•PQ=×=.△PQB23.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,∵=,∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠FAD,∴∠BEC=∠FAD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠FAC=∠EBC=∠ABC=45°,∵∠AED=45°,∴∠AED=∠FAC,∵∠FED=∠FAD,∴∠AED﹣∠FED=∠FAC﹣∠FAD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴,∵在Rt△ABG中,AB=8,∠ABG=45°,∴AG=,在Rt△ADE中,AE=AD,∴,∴,在Rt△ADC中,AD2+DC2=AC2,∴设AD=4x,AC=5x,则有(4x)2+52=(5x)2,∴x=,∴ED=AD=,∴CE=CD+DE=,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=CE=,∴DM=DE﹣EM=,∵∠FDM=45°,∴FM=DM=,∴S=DE•FM=.△DEF24.【解答】(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)解:在Rt△ADF中,设AD=2a,则DF=3a.OD=BC=4,OE=AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+4a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.25.【解答】解:(1)如图1中,延长EO交CF于K.∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=EK=OE.(2)如图2中,延长EO交CF于K.∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE.(3)如图3中,延长EO交CF于K.作PH⊥OF于H.∵|CF﹣AE|=2,EF=2,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=PF=1,HF=,OH=2﹣,∴OP==﹣如图4中,当点P在线段OC上时,作PG⊥OF于G.同法可得:HE=2,OH=OF,EF=2,∴tan∠HFE=,∴∠HFE=30°,∴FH=2HE=4,∵OH=OF,∴OH=OF=OE=2,∵△OPF的等腰三角形,∴PO=PF,∵PG⊥OF,∴OG=GF=1,∴OP==综上所述,OP的长为﹣或.。
专题几何图形初步-学易金卷:2023年中考数学一模试题分项汇编(山东专用)
专题03 几何图形初步一.选择题(共17小题)(2023•临清市一模)1. 一个由完全相同的小正方体组成的几何体的三视图如图所示,若在这个几何体的基础上增加几个相同的小正方体,将其补成一个大正方体,则需要增加的小正方体的个数最少为()A. 6个B. 5个C. 4个D. 3个(2023•垦利区一模)2. 如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A. 俯视图不变,左视图不变B. 主视图改变,左视图改变C. 俯视图不变,主视图不变D. 主视图改变,俯视图改变(2023•宁阳县校级一模)3. 如图是由几个大小相同的小正方体堆砌而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的主视图是()A. B. C. D.(2023•东阿县一模)4. 如图,几何体是由六个相同的立方体构成的,则该几何体三视图中面积最大的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和左视图(2023•博山区一模)5. 如图,裁掉一个正方形后能折叠成正方体,不能裁掉的是( )A. 1B. 2C. 3D. 6(2023•博山区一模)6. 几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A. 3B. 4C. 6D. 9(2023•天桥区一模)7. 休闲广场供游客休息的石板凳如图所示,它的俯视图是( )A. B.C. D.(2023•郓城县一模)8. 由5个大小相同的小正方体搭成的几何体如图所示,它的主视图是()A. B. C. D.(2023•长清区一模)9. 如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A. B. C. D.(2023•菏泽一模)10. 如图,该几何体的左视图是()A. B.C. D.(2023•东明县一模)11. 如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是( )A. 竟B. 成C. 事D. 者(2023•东明县一模)12. 一个螺母如图放置,则它的左视图是()A. B. C. D.(2023•东平县校级一模)13. 如图,由8个大小相同小正方形组成的几何体中,在几号小正方体上方添加一个小正方体,其左视图可保持不变()A. ①B. ②C. ③D. ④(2023•历下区一模)14. 如图是某几何体的三视图,该几何体是()A. B. C. D.(2023•岱岳区校级一模)15. 全运会颁奖台如图所示,它的主视图是()A. B. C. D.(2023•泰山区校级一模)16. 如图是某个几何体的三视图,该几何体是( )A. 三棱柱B. 圆柱C. 长方体D. 正方体(2023•东营区校级一模)17. 下列立体图形中,左视图是圆的为()A. B. C. D.专题03 几何图形初步一.选择题(共17小题)(2023•临清市一模)【1题答案】【答案】C【解析】【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层两列,故得出该几何体的小正方体的个数.【详解】解:∵综合三视图可知,这个组合体的底层有3个小正方体,第二层有1个小正方体,∴搭成这个几何体的小正方体的个数为3+1 =4个,若在这个几何体的基础上增加几个相同的小正方体,将其补成一个大正方体,则需要增加的小正方体的最少个数为4.故选:C.【点睛】本题考查了三视图和空间想象能力,解题的关键是求出原来的几何体及搭成的大正方体共有多少个小立方块.(2023•垦利区一模)【2题答案】【答案】A【解析】【分析】结合几何体的形状,结合三视图可得出俯视图和左视图没有发生变化.【详解】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图发生了改变,故选A.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.(2023•宁阳县校级一模)【3题答案】【答案】A【解析】【分析】由已知条件可知,主视图共3列,各列从左到右小正方形个数分别为2,3,1,据此可以得出图形,从而求解.【详解】主视图是从前往后看到的图形,由俯视图中标的数字可知:几何体共3列,主视图各列从左到右小正方形个数分别为2,3,1,该几何体的主视图是,故选A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.(2023•东阿县一模)【4题答案】【答案】C【解析】【分析】从正面看,得到从左往右3列正方形的个数依次为1,2,1;从左面看得到从左往右3列正方形的个数依次为1,2,1;从上面看得到从左往右3列正方形的个数依次,2,2,1,依此画出图形即可判断.【详解】解:如图所示主视图和左视图都是由4个正方形组成,俯视图由5个正方形组成,所以俯视图的面积最大.故选:C.【点睛】本题主要考查作图-三视图,正确画出立体图形的三视图是解答本题的关键.(2023•博山区一模)【5题答案】【答案】C【解析】【分析】根据正方体的展开图,进行分析即可.【详解】解:由图可知,3和5是对立面,∴不能裁掉3;故选C.【点睛】本题考查正方体的展开图,熟练掌握正方体的展开图,是解题的关键.(2023•博山区一模)【6题答案】【答案】B【解析】【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题的关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.(2023•天桥区一模)【7题答案】【答案】D【解析】【分析】根据俯视图的定义和画法进行判断即可.【详解】解:从上面看,可得俯视图为:故选:D.【点睛】本题考查简单组合体的俯视图,俯视图就是从上面看物体所得到的图形.(2023•郓城县一模)【8题答案】【答案】B【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的或看不到的棱都应表现在主视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形,故选:B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.(2023•长清区一模)【9题答案】【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.(2023•菏泽一模)【10题答案】【答案】D【解析】【分析】画出从左面看到的图形即可.【详解】解:该几何体的左视图是一个长方形,并且有一条隐藏的线用虚线表示,如图所示:,故选:D.【点睛】本题考查三视图,具备空间想象能力是解题的关键,注意看不见的线要用虚线画出.(2023•东明县一模)【11题答案】【答案】A【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“有”字相对的面上的汉字是“竞”.故选:A.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.(2023•东明县一模)【12题答案】【答案】C【解析】【分析】左视图是指从左向右看几何体得到的视图,据此即可得答案.【详解】从左面看,是一个长方形,中间是一条实线,实线上下两侧各有一条虚线,故选:C.【点睛】本题考查三视图,熟练掌握左视图是指从左向右看几何体得到的视图是解题关键.(2023•东平县校级一模)【13题答案】【答案】C【解析】【分析】先画出左视图,从左视图可以看出第二列有3层,则得到在③号小正方体上方添加一个小正方体,左视图保持不变.【详解】解:根据题意,左视图为:由左视图可知,在③号小正方体上方添加一个小正方体,左视图保持不变.故选:C.【点睛】本题考查了几何体的三种视图和学生的空间想象能力,正确掌握左视图是解题关键.(2023•历下区一模)【14题答案】【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体是圆锥.故选:C.【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.(2023•岱岳区校级一模)【15题答案】【答案】C【解析】【分析】主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可.【详解】解:主视图是从前面先后看得到的图形,是C.故选C.【点睛】本题考查主视图,掌握三视图的特征是解题关键.(2023•泰山区校级一模)【16题答案】【答案】A【解析】【分析】根据正视图和左视图确定为矩形判断出是柱体,根据俯视图判断出这个几何体是三棱柱,即可得.【详解】解:∵正视图和左视图是矩形∴该几何体是柱体,∵俯视图是三角形,∴该几何体是三棱柱,故选:A.【点睛】本题考查了几何体的三视图,解题的关键是掌握三视图.(2023•东营区校级一模)【17题答案】【答案】D【解析】【分析】左视图是从物体左面看,所得到的图形,据此回答.【详解】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、圆台的左视图是梯形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。
中考数学真题分类汇编及解析(五十三)尺规作图
(2022•舟山中考)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.【解析】选D.由图可知,选项A、B、C中的线都可以作为角平分线;选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线.(2022•威海中考)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.【解析】选C.选项A,连接P A,PB,QA,QB,因为P A=PB,所以点P在线段AB的垂直平分线上,因为QA=QB,所以点Q在线段AB的垂直平分线上,所以PQ⊥l,故此选项不符合题意;选项B,连接P A,PB,QA,QB,因为P A=QA,所以点A在线段PQ的垂直平分线上,因为PB=QB,所以点B在线段PQ的垂直平分线上,所以PQ⊥l,故此选项不符合题意;选项C,无法证明PQ⊥l,故此选项符合题意;选项D,连接P A,PB,QA,QB,因为P A=QA,所以点A在线段PQ的垂直平分线上,因为PB=QB,所以点B在线段PQ的垂直平分线上,所以PQ⊥l,故此选项不符合题意.(2022•天津中考)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于√10;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求【解析】)连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.【解析】(Ⅰ)EF=√12+32=√10.答案:√10;(Ⅱ)如图,点M,N即为所求.步骤:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO 交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.答案:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO 交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与DÊ交于点F;再以点E为圆心,仍以BD长为半径画弧与DÊ交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.【解析】(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,所以∠DBF=∠EBG=60°,因为∠ABC=90°,所以∠DBG=∠GBF=∠FBE=30°.【解析】(1)如图1中,射线BP即为所求;(2)如图2中,直线l即为所求.(2022•扬州中考)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【解析】【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;̂即为所求.【问题再解】如图3中,CD【解析】(1)如图,(2)AE =CF ,证明如下:因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠EAO =∠FCO ,∠AEO =∠CFO ,因为EF 是AC 的垂直平分线,所以AO =CO ,在△AOE 和△COF 中,{∠AEO =∠CFO∠EAO =∠FCO AO =CO,所以△AOE ≌△COF (AAS ),所以AE =CF.(2022•陕西中考)如图,已知△ABC ,CA =CB ,∠ACD 是△ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP ∥AB .(保留作图痕迹,不写作法)【解析】如图,射线CP 即为所求.(2022•无锡中考)如图,△ABC 为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC 右上方确定点D ,使∠DAC =∠ACB ,且CD ⊥AD ;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B =60°,AB =2,BC =3,则四边形ABCD 的面积为 5 .【解析】(1)如图1中,点D 即为所求;(2)过点A作AH⊥BC于点H.在Rt△ABH中,AB=2,∠B=60°,所以BH=AB•cos60°=1,AH=AB•sin60°=√3,所以CH=BC﹣BH=2,因为∠DAC=∠ACB,所以AD∥BC,因为AH⊥CB,CD⊥AD,所以∠AHC=∠ADC=∠DCH=90°,所以四边形AHCD是矩形,所以AD=CH=2,所以S四边形ABCD=12×(2+3)×2=5,答案:5(2022•仙桃中考)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【解析】(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【解析】(1)如图,点O即为所求;(2)由题意,△ABC的面积=12×14×1.3=9.1(cm2).。
中考数学一模试卷及答案.doc
2019-2020 年中考数学一模试卷及答案本试卷分选择题和非选择题两部分,共三大题25 小题,共 5 页,满分150 分.考试用时 120 分钟.注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己所在学校、姓名、考场试室号、座位号、考生号,再用2B 铅笔把考生号对应的标号涂黑.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,案必须写在答题卡各题指定区域内的相应位置上;上新的答案;改动的答案也不能超出指定的区域.涉及作图的题目,用 2B 铅笔画图.答如需改动,先划掉原来的答案,然后再写不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题 ( 共 30 分 )一、选择题 ( 本大题共 10 小题,每小题 3 分,满分 30 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的绝对值是(※)A .4 B.41 1 C.D.4 42. 下列汽车标志中既是轴对称图形又是中心对称图形的是(※ )A .B.C. D .3. 下列运算正确的是(※ )A. a2 a4 a6 B. a2 a4 a6 C. (a2 )4 a6 D. a10 a2 a5 4. 将如图所示的Rt△ABC 绕直角边 BC 旋转一周,所得几何体的左视图是(※ )BC A5.命题:①对顶角相等;②两直线平行,内A错角相等;③全B等三角形的对应C边相等。
D其中逆命题为真命题的有(※ )个。
A . 0B . 1C . 2D . 36. 已知⊙ O 1 的半径为 4cm ,⊙ O 2 的半径为 5cm ,若两圆相切, 则两圆的圆心距是 ( ※)A .9cmB . 1cmC . 9cm 或 1cmD .不能确定7. 实数 a 、 b 在数轴上的位置如图所示,则下列关系式正确的是(※ )A . a b 0B . a bC . abD . ab 08.学生数(人)为了解初三学生的体育锻炼时间,小华调查了某班201845 名同学一周参加体育锻炼的情况,并把它绘制成1510折线统计图.那么关于该班45 名同学一周参加体育105锻炼时间的说法错误的是()45A .众数是 9B .中位数是 90 7 8 910 11 锻炼时间( h )C .平均数是 9D .锻炼时间不低于 9 小时的有14 人9. 一元二次方程 x24x 3 0 的解是 ( ※ ).A. x 1B. x 3C. 无解D.x 1 或 x 310.如图,沿 AE 折叠矩形 ABCD ,点 D 落在 BC 边上的点 F 处,已知 AB=8 , BC=10 ,则EC 的长是( ※ )A DA . 2B . 3C . 4D .5EBCF第二部分 非选择题 ( 共 120 分 )二、填空题 ( 本大题共 6 小题,每小题 3 分, 满分 18 分 ) 11.使 x 2 有意义的 x 的取值范围是 ﹡﹡﹡.12.内角和为 900°的多边形是 ﹡﹡﹡边形 .13. 二次函数 y ( x1) 22 的图象的顶点坐标是﹡﹡﹡.14.已知扇形的半径为 3,圆心角为 120°,则该扇形的弧长是﹡﹡﹡,面积等于﹡﹡﹡ . (结果保留 )15. 现有甲、乙两支球队, 每支球队队员身高数据的平均数均为1.80 米,方差分别为 S 甲2= 0.31、 S 乙2= 0.36 ,则身高较整齐的球队是 ﹡﹡﹡ 队(填“甲”或“乙” ).16. 如图,图( 1)中含有 1 条线段,图( 2)中含有 3 条线段,图( 3)中含有 6 条线段,则接下去的图( 4)中应含有﹡﹡﹡条线段 .( 1)( 2)( 3)三、解答题 ( 本大题共 9 小题, 满分 102 分.解答应写出文字说明、证明过程或演算步骤)17. (本小题 满分 9 分)x 2 0解不等式组2x 6①② ,并把解集在数轴上表示出来.18.(本小题 满分 9 分)如图有一个等腰三角形ABD , AB =AD(1)请你用尺规作图法作出点A 关于轴 BD 的对称点C ;(不用写作法,但保留作图痕迹)A(2)连结( 1)中的 BC 和 CD ,请判断四边形 ABCD B D的形状,并证明你的结论。
中考数学一轮总复习 第38课时 尺规作图(无答案) 苏科版
第38课时:尺规作图与视图【知识梳理】1.基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),会画简单物体的三视图,能根据三视图描述基本几何体或实物的原型.2.图形的展开与折叠.3.基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作角的平分线;④作线段的垂直平分线;⑤过已知点作已知直线的垂线.4.写出下列作图的根据:已知三边作三角形;已知两边及其夹角作三角形;已知底边及底边上的高作等腰三角形.【课前预习】1.如图所示,这个几何体的主视图是图中的( )2.在如图所示的四个几何体中,左视图是四边形的几何体共有 ( )A.1个B.2个C.3个D.4个3.某几何体的三种视图如右图所示,则该几何体可能是( )A.圆锥体B.球体C.长方体D.圆柱体4.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A. B. C.D.5.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()A.文B.明C.城D.市6.①作线段AB等于已知线段a;②作∠AOB等于已知角α;③作∠AOB的平分线OC;B④作线段AB 的垂直平分线; ⑤过已知点作已知直线的垂线. AB A B P【例题精讲】例1 如图所示的是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.例2 如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( ) A.9 B.339- C.3259- D.3239- 例3 A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P 的位置,并求出它的坐标.【巩固练习】1.如图所示,一个空间几何体的主视图和左视图都是边长为l 的正三角形,俯视图是一个圆及圆3.小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹)【课后作业】班级姓名1.下面四个几何体中,同一几何体的主视图和俯视图相同的共有()A.1个B.2个C.3个D.4个2.如图是一种小零件,支架的两个台阶的高度和宽度都是同一长度,则它的三视图是()A. B. C. D.3.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.4.下列图形中,经过折叠不能围成一个立方体的是()A. B. C. D.5.一个正方体的每一个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“城”字相对的字是()A.丹B.东C.创D.联6.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为 .7.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为 . 8.画图题:用圆规、直尺作图,不写作法,但要保留作图痕迹. 为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛. 9.已知:△ABC 为等边三角形,D 为AB 上任意一点,连结CD. (1)在CD 右上方,以CD 为一边作等边三角形CDE (尺规作图,保留作图痕迹,不写作法)(2)连结AE ,求证:BD =AE10.在ABC 中,AB=AC=10,BC=8,用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写做法、证明),并求AD 的长.11.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B 、C 两点的对应点B′、C′的坐标;(3)如果△OBC 内部一点M 的坐标为(x ,y),写出M 的对应点M′的坐标.12.如图所示的是由若干个小立方体搭成的几何体的主视图和俯视图.(1)该几何体共有几层?(2)俯视图a ,b ,c 的位置分别可以放几个小立方体?(3)最少需要多少个小立方体?最多需要多少个小立方体?共有几种摆创联城四东丹A B CB A C法?13.如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,求圆柱B的体积.。
山东省青岛市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(10套)-03解答题
山东省青岛市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(10套)-03解答题(基础题)②一.分式的混合运算(共2小题)1.(2023•莱西市一模)(1)化简:;(2)解不等式组.2.(2023•即墨区一模)(1)化简:;(2)解方程组.二.根的判别式(共1小题)3.(2023•城阳区一模)计算:(1)解方程:.(2)关于x的一元二次方程3x2+2x﹣k=0有实数根,求k的取值范围.三.一次函数与一元一次不等式(共1小题)4.(2023•市北区一模)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.小刚在学习了一次方程(组)、一元一次不等式和一次函数后,结合图示对相关知识作如下归纳整理:(1)小刚学习笔记中的①②③④分别指什么呢?请你根据以上的复习阅读,在下面横线上将他们的意思体现清楚:① ;② ;③ ;④ ;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是 .四.二次函数图象与系数的关系(共1小题)5.(2023•即墨区一模)已知二次函数y=x2﹣2mx+m2﹣1.(1)求证:二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)若二次函数y=x2﹣2mx+m2﹣1的图象与x轴交点的横坐标一个大于2,一个小于1,求m的取值范围.五.二次函数的应用(共1小题)6.(2023•城阳区一模)为响应国家提出由中国制造向中国创造转型的号召,某公司自主设计了一款机器人,每个生产成本为16元,投放市场进行了销售.经过调查,售价为30元/个时,每月可售出40万个,销售单价每涨价5元,每月就少售出10万个.(1)确定月销售量y(万个)与售价x(元/个)之间的函数关系式(x>30);(2)设商场每月销售这种机器人所获得的利润为w(万元),请确定所获利润w(万元)与售价x(元/个)之间的函数关系式(x>30).六.线段垂直平分线的性质(共1小题)7.(2023•市北区一模)在△ABC内找一点P,使点P到A,B两点的距离相等,并且点P 到点C的距离等于线段AC的长.七.菱形的性质(共1小题)8.(2023•即墨区一模)在菱形ABCD中,CE,AF分别是其外角∠DCN和∠DAM的平分线,AD的延长线交CE于点E,CD的延长线交AF于点F.(1)证明:△ADC≌△EDF;(2)判断四边形ACEF是什么特殊四边形.并说明理由.八.菱形的判定(共1小题)9.(2023•青岛一模)如图,在▱ABCD中,AC,BD交于点O,点E,F分别是AO,CO 的中点.(1)求证:DE=BF;(2)请从以下三个条件:①AC=2BD;②∠BAC=∠DAC;③AB=AD中,选择一个合适的作为已知条件,使四边形DEBF为菱形.你选择添加的条件是: (填写序号);添加条件后,请证明四边形DEBF为菱形.九.作图—复杂作图(共2小题)10.(2023•青岛一模)已知:线段a,b;求作:矩形ABCD,使AB=a,BC=b.11.(2023•莱西市一模)已知A、B、C三点.求作⊙O,使它经过A、B、C三点.(尺规作图,要求保留作图痕迹)一十.扇形统计图(共2小题)12.(2023•莱西市一模)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 名学生;(2)C组所在扇形的圆心角为 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?13.(2023•青岛一模)为增强居民防治噪声污染意识,保障公共健康,某地区环保部门随机抽取了某一天部分噪声测量点18:00这一时刻的测量数据进行统计,把所抽取的测量数据分成A,B,C,D,E五组,并将统计结果绘制了两幅不完整的统计图表.组别噪声声级x/dB频数A55≤x<605B60≤x<65aC65≤x<701818D70≤x<75bE75≤x<809请解答下列问题:(1)a= ;b= ;(2)在扇形统计图中E组对应的扇形圆心角的度数是 °;(3)若该地区共有600个噪声测量点,请估计该地区这一天18:00时噪声声级低于70dB 的测量点的个数.一十一.条形统计图(共1小题)14.(2023•城阳区一模)10月16日是“世界粮食日”,某校倡导“光盘行动”,为了让学生养成珍惜粮食的优良习惯.在这天午餐后随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的条形统计图和扇形统计图:(1)把条形统计图补充完整.(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是 °.(3)为了树立良好的节约粮食风气,学校准备对全校“剩少量”和“没有剩”的同学颁发奖状,若全校共有2000名学生,则约有多少人获得奖状?一十二.列表法与树状图法(共2小题)15.(2023•青岛一模)某强校提质校举办“数学素养”趣味赛.比赛题目分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四组(依次记为A,B,C,D).小明和小亮两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小明抽到B组题目的概率是 ;(2)请用列表或画树状图的方法,求小明和小亮两名同学抽到不同题目的概率.16.(2023•即墨区一模)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)用画树状图或列表法表示同时摸出两张牌的所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张牌的牌面图形都是中心对称图形的概率.一十三.游戏公平性(共2小题)17.(2023•市北区一模)小明和小亮用如图所示的,两个均匀、可以自由转动的转盘做配紫色游戏,游戏规则是:分别任意转动两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,即可以配成紫色.此时小明胜,否则小亮胜.这个游戏对双方公平吗?请用画树状图或列表格的方法说明理由.18.(2023•城阳区一模)下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并分别标记了数字1,2,3和1,2,3,4.小明和小亮利用这两个转盘做游戏,规则如下:同时转动两个转盘,指针停止后,将指针所指区域的数字相乘(若指针停在分界线上,则重新转动转盘),如果积为奇数,则小明获胜;如果积为偶数,则小亮获胜,请你确定游戏规则是否公平,并说明理由.山东省青岛市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(10套)-03解答题(基础题)②参考答案与试题解析一.分式的混合运算(共2小题)1.(2023•莱西市一模)(1)化简:;(2)解不等式组.【答案】(1)a+1;(2)2<x≤5.【解答】解:(1)====a+1;(2),解不等式①得,x≤5,解不等式②得,x>2,∴原不等式组的解集是2<x≤5.2.(2023•即墨区一模)(1)化简:;(2)解方程组.【答案】(1);(2).【解答】解:(1)原式=1﹣•=1﹣==;(2),①×3+②得16x=10,解得x=,②×5﹣①得﹣16y=18,解得y=﹣,所以原方程组的解为.二.根的判别式(共1小题)3.(2023•城阳区一模)计算:(1)解方程:.(2)关于x的一元二次方程3x2+2x﹣k=0有实数根,求k的取值范围.【答案】(1)x=3;(2)k≥﹣.【解答】解:(1)去分母,得3﹣x﹣1=x﹣4,解得x=3,检验:当x=3时,x﹣4≠0,则x=3为原方程的解,所以原方程的解为x=3;(2)根据题意得Δ=22﹣4×3×(﹣k)≥0,解得k≥﹣,即k的取值范围为k≥﹣.三.一次函数与一元一次不等式(共1小题)4.(2023•市北区一模)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.小刚在学习了一次方程(组)、一元一次不等式和一次函数后,结合图示对相关知识作如下归纳整理:(1)小刚学习笔记中的①②③④分别指什么呢?请你根据以上的复习阅读,在下面横线上将他们的意思体现清楚:① kx+b=0 ;② ;③ kx+b>0 ;④ kx+b<0 ;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是 x≥1 .【答案】(1)kx+b=0;;kx+b>0;kx+b<0;(2)x≥1.【解答】解:(1)根据题意知:①kx+b=0;②;③kx+b>0;④kx+b<0.故答案为:kx+b=0;;kx+b>0;kx+b<0;(2)如果点C的坐标为(1,3),那么不等式kx+b≤k1x+b1的解集是:x≥1.故答案为:x≥1.四.二次函数图象与系数的关系(共1小题)5.(2023•即墨区一模)已知二次函数y=x2﹣2mx+m2﹣1.(1)求证:二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)若二次函数y=x2﹣2mx+m2﹣1的图象与x轴交点的横坐标一个大于2,一个小于1,求m的取值范围.【答案】(1)见解答;(2)1<m<2.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣1)=4>0,∴二次函数y=x2﹣2mx+m2﹣1的图象与x轴总有两个交点;(2)当y=0时,x2﹣2mx+m2﹣1=0,x==m±1,解得x1=m+1,x2=m﹣1,∵抛物线与x轴的交点坐标为(m﹣1,0)、(m+1,0),∴,解得1<m<2,即m的取值范围为1<m<2.五.二次函数的应用(共1小题)6.(2023•城阳区一模)为响应国家提出由中国制造向中国创造转型的号召,某公司自主设计了一款机器人,每个生产成本为16元,投放市场进行了销售.经过调查,售价为30元/个时,每月可售出40万个,销售单价每涨价5元,每月就少售出10万个.(1)确定月销售量y(万个)与售价x(元/个)之间的函数关系式(x>30);(2)设商场每月销售这种机器人所获得的利润为w(万元),请确定所获利润w(万元)与售价x(元/个)之间的函数关系式(x>30).【答案】(1)月销售量y(万个)与售价x(元/个)之间的函数关系式为y=﹣2x+100(x>30);(2)获利润w(万元)与售价x(元/个)之间的函数关系式为w=﹣2x2+132x﹣1600(x >30).【解答】解:(1)根据题意得:y=40﹣×10=﹣2x+100,∴月销售量y(万个)与售价x(元/个)之间的函数关系式为y=﹣2x+100(x>30);(2))由题意得,w=y(x﹣16)=(﹣2x+100)(x﹣16)=﹣2x2+132x﹣1600,∴获利润w(万元)与售价x(元/个)之间的函数关系式为w=﹣2x2+132x﹣1600(x>30).六.线段垂直平分线的性质(共1小题)7.(2023•市北区一模)在△ABC内找一点P,使点P到A,B两点的距离相等,并且点P 到点C的距离等于线段AC的长.【答案】见解答.【解答】解:由题意得,点P是线段AB的垂直平分线与以点C为圆心、CA长为半径画弧的交点,再根据各选项的尺规作图即可.七.菱形的性质(共1小题)8.(2023•即墨区一模)在菱形ABCD中,CE,AF分别是其外角∠DCN和∠DAM的平分线,AD的延长线交CE于点E,CD的延长线交AF于点F.(1)证明:△ADC≌△EDF;(2)判断四边形ACEF是什么特殊四边形.并说明理由.【答案】(1)见解析过程;(2)四边形ACEF是矩形,理由见解析过程.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AB=BC=AD=CD,∴∠MAF=∠AFD,∠AEC=∠ECN,∵AF平分∠MAE,∴∠MAF=∠FAD=∠AFD,∴AD=DF,同理可得:CD=DE,∴AD=CD=DE=DF,在△ADC和△EDF中,,∴△ADC≌△EDF(SAS);(2)解:四边形ACEF是矩形,理由如下:∵AD=DE,DC=DF,∴四边形ACEF是平行四边形,∵AD=CD=DE=DF,∴AE=CF,∴平行四边形ACEF是矩形.八.菱形的判定(共1小题)9.(2023•青岛一模)如图,在▱ABCD中,AC,BD交于点O,点E,F分别是AO,CO 的中点.(1)求证:DE=BF;(2)请从以下三个条件:①AC=2BD;②∠BAC=∠DAC;③AB=AD中,选择一个合适的作为已知条件,使四边形DEBF为菱形.你选择添加的条件是: ②③ (填写序号);添加条件后,请证明四边形DEBF为菱形.【答案】(1)见解析过程;(2)②③.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E,F分别是AO,CO的中点,∴EO=AO,FO=CO,∴EO=FO,∴四边形DEBF是平行四边形,∴DE=BF;(2)解:当AC=2BD时,AO=CO=BD,∴EO=FO=DO=BO,∴EF=BD,∴平行四边形DEBF是矩形;当∠BAC=∠DAC时,∵AB∥CD,∴∠BAC=∠DCA=∠DAC,∴AD=CD,又∵AO=CO,∴BD⊥AC,∴平行四边形DEBF是菱形;当AB=AD时,∵AB=AD,BO=DO,∴AC⊥BD,∴平行四边形DEBF是菱形;故答案为②③.九.作图—复杂作图(共2小题)10.(2023•青岛一模)已知:线段a,b;求作:矩形ABCD,使AB=a,BC=b.【答案】见解答.【解答】解:如图,矩形ABD为所作.11.(2023•莱西市一模)已知A、B、C三点.求作⊙O,使它经过A、B、C三点.(尺规作图,要求保留作图痕迹)【答案】见解答.【解答】解:如图,⊙O为所作.一十.扇形统计图(共2小题)12.(2023•莱西市一模)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 50 名学生;(2)C组所在扇形的圆心角为 72 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?【答案】(1)50;6;(2)72;(3)960人.【解答】解:(1)本次共调查的学生=14÷28%=50(人);故答案为:50;(2)C组的圆心角为360°×=72°;故答案为:72;(3)B组的人数为50×12%=6(人);D组的人数为50﹣4﹣6﹣14﹣10=16(人),则估计优秀的人数为1600×=960(人).优秀的人数为960人.13.(2023•青岛一模)为增强居民防治噪声污染意识,保障公共健康,某地区环保部门随机抽取了某一天部分噪声测量点18:00这一时刻的测量数据进行统计,把所抽取的测量数据分成A,B,C,D,E五组,并将统计结果绘制了两幅不完整的统计图表.组别噪声声级x/dB频数A55≤x<605B60≤x<65aC65≤x<701818D70≤x<75bE75≤x<809请解答下列问题:(1)a= 13 ;b= 15 ;(2)在扇形统计图中E组对应的扇形圆心角的度数是 54 °;(3)若该地区共有600个噪声测量点,请估计该地区这一天18:00时噪声声级低于70dB 的测量点的个数.【答案】(1)13;15;(2)54;(3)360个.【解答】解:(1)∵样本容量为18÷30%=60,∴b=60×25%=15,∴a=60﹣(5+18+15+9)=13,故答案为:13;15;(2)在扇形统计图中E组对应的扇形圆心角的度数是360°×=54°,故答案为:54;(3)600×=360(个).答:估计该地区这一天18:00时噪声声级低于70dB的测量点的个数约360个.一十一.条形统计图(共1小题)14.(2023•城阳区一模)10月16日是“世界粮食日”,某校倡导“光盘行动”,为了让学生养成珍惜粮食的优良习惯.在这天午餐后随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的条形统计图和扇形统计图:(1)把条形统计图补充完整.(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是 54 °.(3)为了树立良好的节约粮食风气,学校准备对全校“剩少量”和“没有剩”的同学颁发奖状,若全校共有2000名学生,则约有多少人获得奖状?【答案】(1)补全的条形统计图见解答;(2)54;(3)约有1200人获得奖状.【解答】(1)本次调查的学生有:120÷40%=300(人),剩少量的学生有:300﹣120﹣75﹣45=60(人),补全的条形统计图如图所示;(2)扇形统计图中,“剩大量”所对应的扇形的圆心角度数是:360°×=54°,故答案为:54;(3)2000×=1200(人),答:约有1200人获得奖状.一十二.列表法与树状图法(共2小题)15.(2023•青岛一模)某强校提质校举办“数学素养”趣味赛.比赛题目分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四组(依次记为A,B,C,D).小明和小亮两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小明抽到B组题目的概率是 ;(2)请用列表或画树状图的方法,求小明和小亮两名同学抽到不同题目的概率.【答案】(1).(2).【解答】解:(1)∵比赛题目有四组,∴小明抽到B组题目的概率是.故答案为:.(2)画树状图如下:共有16种等可能的结果,其中小明和小亮两名同学抽到不同题目的结果有AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,共12种,∴小明和小亮两名同学抽到不同题目的概率为=.16.(2023•即墨区一模)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)用画树状图或列表法表示同时摸出两张牌的所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张牌的牌面图形都是中心对称图形的概率.【答案】(1)AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC.(2).【解答】解:画树状图如下:共有12种等可能的结果,分别为:AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC.(2)纸牌A,B,C,D的牌面图形中,为中心对称图形的是B,C,由树状图可知,共有12种等可能的结果,其中摸出两张牌的牌面图形都是中心对称图形的结果有:BC,CB,共2种,∴摸出两张牌的牌面图形都是中心对称图形的概率为=.一十三.游戏公平性(共2小题)17.(2023•市北区一模)小明和小亮用如图所示的,两个均匀、可以自由转动的转盘做配紫色游戏,游戏规则是:分别任意转动两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,即可以配成紫色.此时小明胜,否则小亮胜.这个游戏对双方公平吗?请用画树状图或列表格的方法说明理由.【答案】公平,理由见解答.【解答】解:根据题意列表如下:红蓝蓝红(红,红)(红,蓝)(红,蓝)蓝(蓝,红)(蓝,蓝)(蓝,蓝)共有6种等可能的结果数,其中能配成紫色的结果数为3,所以小明胜的概率是=,小亮胜的概率是,∵=,∴这个游戏公平.18.(2023•城阳区一模)下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并分别标记了数字1,2,3和1,2,3,4.小明和小亮利用这两个转盘做游戏,规则如下:同时转动两个转盘,指针停止后,将指针所指区域的数字相乘(若指针停在分界线上,则重新转动转盘),如果积为奇数,则小明获胜;如果积为偶数,则小亮获胜,请你确定游戏规则是否公平,并说明理由.【答案】不公平.【解答】解:根据题意画树状图如下:∵共有12种等可能的结果,积为奇数的有4种情况,积为偶数有8种情况,∴P(小明获胜)==;P(小亮获胜)==;∴P(小明获胜)≠P(小亮获胜),∴这个游戏规则对小明、小亮双方不公平.。
2023年江苏省中考数学模拟题知识点分类汇编:尺规作图(附答案解析)
2023年江苏省中考数学模拟题知识点分类汇编:尺规作图一.选择题(共7小题)
1.(2022•丰县二模)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=4,则△AFH的周长为()
A.8B.6C.4D .
2.(2021•东海县模拟)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是()
A.S△ABC=BC•AH B.AC平分∠BAD
C.BH垂直平分线段AD D.AB=AD
3.(2021•广陵区二模)用直尺和圆规作已知角∠AOB的平分线的作法如图,能得出∠AOC =∠BOC的依据是()
第1页(共46页)。
中考数学一模分类汇编作图判定无答案_
作图判定2018西城一模16.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点.求作:过点且与直线垂直的直线,垂足为点某同学的作图步骤如下:以点弧,交直线于连接,作的平分线,于点__________ 即为所求作.请你根据该同学的作图方法完成以下推理:∵,__________,∴.(依据:__________).2018石景山一模16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在的两边,上分别取;(2)利用两个三角板,分别过点,画,的垂线,交点为;(3)画射线.则射线为的平分线.请写出小林的画法的依据.2018平谷一模16.下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON .求作:射线OP ,使它平分∠MON .作法:如图2,(1)以点O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(2)连结AB ;(3)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于点P ; (4)作射线OP .所以,射线OP 即为所求作的射线.请回答:该尺规作图的依据是.2018怀柔一模16. 阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:该尺规作图的依据是____________________________. 2018海淀一模16.下面是“过圆上一点作圆的切线”的尺规作图过程.已知:⊙O 和⊙O 上一点P .求作:⊙O 的切线MN ,使MN 经过点P .。
中考数学一模试卷含答案解析考点分类汇编
辽宁省沈阳市中考数学一模试卷一、选择题1.﹣的绝对值是()A.﹣3B.3C.﹣D.2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为()A.28×103B.2.8×104C.0.28×105D.2.8×1053.下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.1,2,3D.5,6,104.不等式|x﹣1|<1的解集是()A.x>2B.x<0C.1<x<2D.0<x<25.在平面直角坐标系中,抛物线y=﹣(x+1)2﹣的顶点是()A.(﹣1,﹣)B.(﹣1,)C.(1,﹣)D.(1,)6.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x=B.x=﹣C.x=﹣2D.x=27.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A.B.C.D.8.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐9.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1C.D.二、填空题10.当a=9时,代数式a2+2a+1的值为.11.某舞蹈队10名队员的年龄分布如表所示:年龄(岁)13141516人数2431则这10名队员年龄的众数是.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.14.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC 的距离为.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.17.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.三、解答题(17~19小题每题9分,20题12分.共39分)18.计算: +()﹣1﹣(+1)(﹣1)19.先化简,再求值:,其中.20.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.21.某校九年级(1)班所有学生参加初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.四、解答题(21、22小题每题9分,23题10分.共28分)22.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.如图,已知一次函数的图象y=kx+b与反比例函数y=﹣的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.24.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.四、解答题25.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C 为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?辽宁省沈阳市中考数学一模试卷参考答案与试题解析一、选择题1.﹣的绝对值是()A.﹣3B.3C.﹣D.【考点】倒数.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣的绝对值是.故选:D.2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为()A.28×103B.2.8×104C.0.28×105D.2.8×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将28000用科学记数法表示为2.8×104.故选B.3.下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.1,2,3D.5,6,10【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.4.不等式|x﹣1|<1的解集是()A.x>2B.x<0C.1<x<2D.0<x<2【考点】解一元一次不等式.【分析】根据绝对值性质分x﹣1>0、x﹣1<0,去绝对值符号后解相应不等式可得x的范围.【解答】解:①当x﹣1≥0,即x≥1时,原式可化为:x﹣1<1,解得:x<2,∴1≤x<2;②当x﹣1<0,即x<1时,原式可化为:1﹣x<1,解得:x>0,∴0<x<1,综上,该不等式的解集是0<x<2,故选:D.5.在平面直角坐标系中,抛物线y=﹣(x+1)2﹣的顶点是()A.(﹣1,﹣)B.(﹣1,)C.(1,﹣)D.(1,)【考点】二次函数的性质.【分析】结合抛物线的解析式和二次函数的性质即可得出该抛物线顶点坐标.【解答】解:∵抛物线的解析式为y=﹣(x+1)2﹣,∴该抛物线的顶点坐标为(﹣1,﹣).故选A.6.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x=B.x=﹣C.x=﹣2D.x=2【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:2x﹣x﹣10=5x+2x+2,移项合并得:﹣6x=12,解得:x=﹣2,故选C7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率==.故选C.8.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.5,S乙2=2.5,∴S甲2<S乙2,则甲班选手比乙班选手身高更整齐.故选A.9.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1C.D.【考点】翻折变换(折叠问题);勾股定理.【分析】利用折叠的性质得出AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,根据DB2+BC2=DC2,列出方程即可解决问题.【解答】解:连接DC,∵折叠直角三角形ABC纸片,使两个锐角顶点A、C重合,∴AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,∵∠DBC=90°,∴DB2+BC2=DC2,即x2+32=(4﹣x)2,解得:x=,∴BD=.故选A.二、填空题10.当a=9时,代数式a2+2a+1的值为100.【考点】因式分解﹣运用公式法;代数式求值.【分析】直接利用完全平方公式分解因式进而将已知代入求出即可.【解答】解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.11.某舞蹈队10名队员的年龄分布如表所示:年龄(岁)13141516人数2431则这10名队员年龄的众数是14岁.【考点】众数.【分析】众数可由这组数据中出现频数最大数据写出;【解答】解:这组数据中14岁出现频数最大,所以这组数据的众数为14岁;故答案为:14岁.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为22°.【考点】平行线的性质.【分析】根据AB∥CD,求出∠DFE=49°,再根据三角形外角的定义性质求出∠E 的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=49°,又∵∠C=27°,∴∠E=49°﹣27°=22°,故答案为22°.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个不透明的袋子中有3个白球、4个黄球和5个红球,∴球的总数是:3+4+5=12个,∴从袋子中随机摸出一个球,则它是黄球的概率=;故答案为:.14.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是x1+x2>0.【考点】反比例函数图象上点的坐标特征.【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y=﹣,用y1、y2表示出x1,x2,再根据y1+y2>0即可得出结论.【解答】解:∵A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,∴y1y2<0,y1=﹣,y2=﹣,∴x1=﹣,x2=﹣,∴x1+x2=﹣﹣=﹣,∵y1+y2>0,y1y2<0,∴﹣>0,即x1+x2>0.故答案为:x1+x2>0.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC 的距离为59m.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到BC=41m,∠BAC=35°,∠ACB=90°,然后根据锐角三角函数即可求得AC的值.【解答】解:由题意可得,BC=41m,∠BAC=35°,∠ACB=90°,∴tan∠BAC=,即tan35°=,∴0.7=,解得,AC≈59故答案为:59m.16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为3.【考点】旋转的性质.【分析】利用直角三角形的性质得出AB=2,再利用旋转的性质以及三角形外角的性质得出AB′=1,进而得出答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠CAB=30°,故AB=2,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=2,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=1,∴AA′=1+2=3,故答案为3.17.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=2:3.【考点】位似变换.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.【解答】解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.三、解答题(17~19小题每题9分,20题12分.共39分)18.计算: +()﹣1﹣(+1)(﹣1)【考点】二次根式的混合运算;负整数指数幂.【分析】原式第一项化为最简二次根式,第二项利用负指数公式化简,第三项利用平方差公式化简,合并后即可得到结果.【解答】解: +()﹣1﹣(+1)(﹣1)=2+4﹣(5﹣1)=2+4﹣4=2.19.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a=代入进行计算即可.【解答】解法一解:原式===当时,原式=.解法二:原式===当时,原式=.20.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD﹣ED=BC﹣BF,即AE=CF,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OA=OC.21.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C 等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.四、解答题(21、22小题每题9分,23题10分.共28分)22.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【考点】分式方程的应用.【分析】设原计划每天铺设管道x米,根据需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,根据等量关系:铺设120米管道的时间+铺设米管道的时间=27天,可列方程求解.【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.如图,已知一次函数的图象y=kx+b与反比例函数y=﹣的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)设直线AB与y轴交于C,找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论;(3)观察函数图象,根据图象的上下关系即可找出不等式的解集.【解答】解:(1)令反比例函数y=﹣中x=﹣2,则y=4,∴点A的坐标为(﹣2,4);反比例函数y=﹣中y=﹣2,则﹣2=﹣,解得:x=4,∴点B的坐标为(4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=﹣x+2.(2)设直线AB与y轴交于C,令为y=﹣x+2中x=0,则y=2,∴点C的坐标为(0,2),=OC•(x B﹣x A)=×2×[4﹣(﹣2)]=6.∴S△AOB(3)观察函数图象发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴一次函数的函数值大于反比例函数的函数值时x的取值范围为x<﹣2或0<x <4.24.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=90°,理由是:直径所对的圆周角是直角;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.【考点】圆的综合题.【分析】(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.【解答】解:(1)∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴===∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=四、解答题25.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C 为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?【考点】相似形综合题.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.【解答】解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.2017年4月13日。
人教中考数学一模试题分类汇编——相似综合含答案
一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【答案】(1)8-2t;(2)解:不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD= ,∴BD=AB-AD=10- ,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t= ,解得:t= .当t= 时,PD= ,BD=10- ,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD= ,BD=10- ,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即 =10- ,解得:t=当PD=BQ,t= 时,即,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2× +6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【解析】【解答】(1)根据题意得:CQ=2t,PA=t,∴QB=8-2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA= ,∴PD= .【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.3.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA= ,∴BC=8,则AC= =6,∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ= AC=3(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴ ×AB×CP= ×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴ = = = ,即 = ,解得,CQ=(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴ = = ,∴ = ,∴CP=4× =4× =5,∴CQ= ,∴BQ=8﹣ = ,∴BM= × = ,∴AP=AB﹣PB=AB﹣2BM=【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以,可得;(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.4.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为________.【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)(2)60;【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC.∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.∵∠ABC=60,∴∠AEC=120°=∠AOC.∵OA=OC,∴∠OAC=∠OCA=30°.∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CAD+∠D.∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.∵OA=OC,∴▱AOCE是菱形;②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= = .故答案为:①60°;② .【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.5.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:① 为何值时为等腰三角形;② 为何值时线段PN的长度最小,最小长度是多少.【答案】(1)解:设平移后抛物线的解析式,将点A(8,,0)代入,得 = ,所以顶点B(4,3),所以S阴影=OC•CB=12(2)解:设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得,解得:,所以直线AB的解析式为,作NQ垂直于x轴于点Q,①当MN=AN时, N点的横坐标为,纵坐标为,由三角形NQM和三角形MOP相似可知 ,得,解得(舍去).当AM=AN时,AN= ,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);当MN=MA时,故是钝角,显然不成立,故;②由MN所在直线方程为y= ,与直线AB的解析式y=﹣x+6联立,得点N的横坐标为X N= ,即t2﹣x N t+36﹣x N=0,由判别式△=x2N﹣4(36﹣)≥0,得x N≥6或x N≤﹣14,又因为0<x N<8,所以x N的最小值为6,此时t=3,当t=3时,N的坐标为(6,""),此时PN取最小值为【解析】【分析】(1)平移前后的两个二次函数的a的值相等,平移后的图像经过点原点,因此设函数解析式为:,将点A的坐标代入就可求出b的值,再求出顶点B的坐标,利用割补法可得出阴影部分的面积=以OC,BC为边的矩形的面积。
2022年上海15区中考数学一模考点分类汇编专题08 平面向量的线性运算 (解析版)
2022年上海市15区中考数学一模考点分类汇编专题08 平面向量的线性运算一.选择题(共12小题)1.(青浦区)如果(、均为非零向量),那么下列结论错误的是()A.B.∥C.D.与方向相同【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,∴||=2||;;=;与的方向相反,故A,B,C正确,D错误,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.2.(金山区)点G是△ABC的重心,设=,=,那么关于和的分解式是()A.+B.﹣C.+D.﹣【分析】根据向量加法的平行四边形法则得出=(+),再根据重心的性质得出=,即可求解.【解答】解:∵=,=,∴=(+)=(+),∵点G是△ABC的重心,∴==×(+)=(+).故选:C.【点评】本题考查三角形的重心,平面向量,平行四边形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(崇明区)如果向量与向量方向相反,且3||=||,那么向量用向量表示为()A.B.C.D.【分析】由向量与向量方向相反,且3||=||,可得,继而求得答案.【解答】解:∵向量与向量方向相反,且3||=||,∴3=﹣,∴.故选:D.【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.4.(徐汇区)已知点C是线段AB的中点,下列结论中正确的是()A.=B.+=0C.=D.||=||【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵点C是线段AB的中点,∴;;;||=||,∴A,B,C错误,D正确,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.5.(黄浦区)已知,,是非零问量,下列条件中不能判定∥的是()A.∥,∥B.=3C.||=||D.=,=﹣2【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,,∴,故A能;∵,∴,故B能;∵||=||,不能判断与方向是否相同,故C不能;∵,,∴=﹣,∴,故D能,故选:C.【点评】本题考查了平面向量,熟练掌握平面向量的定义与性质是解题的关键.6.(嘉定区)已知一个单位向量,设、是非零向量,那么下列等式中一定正确的是()A.B.C.D.【分析】根据单位向量的性质逐一判断即可.【解答】解:∵是单位向量,∴||=1,∴||=,∴A正确;∵||与的大小相同,但方向不一定相同,∴B错误;∵与大小相同,但方向不一定相同,∴C错误;∵与方向不一定相同,∴不一定等于,∴D错误,故选:A.【点评】本题考查了平面向量,熟练掌握单位向量的性质是解题的关键.7.(宝山区)已知为非零向量,=2,=﹣3,那么下列结论中,不正确的是()A.||=||B.C.D.∥【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵=2,=﹣3,∴||=||,=﹣,故A正确,B错误;∵=2,=﹣3,∴3=6﹣6=,故C正确;∵=2,=﹣3,∴=﹣,∴,故D正确,故选:B.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.8.(杨浦区)已知和都是单位向量,下列结论中,正确的是()A.=B.﹣=C.||+||=2D.+=2【分析】根据单位向量的定义逐一判断即可.【解答】解:根据单位向量的定义可知:和都是单位向量,但是这两个向量并没有明确方向,∴A,B,D错误,C正确,故选:C.【点评】本题考查了平面向量中的单位向量知识,熟练掌握单位向量的定义是解题的关键.9.(虹口区)已知=7,下列说法中不正确的是()A.﹣7=0B.与方向相同C.∥D.||=7||【分析】根据平面向量的定理逐一判断即可.【解答】解:∵=7,∴=;与方向相同;;||=7||,故A不正确;B、C、D正确,故选:A.【点评】本题考查了平面向量的定理,熟练掌握平面向量的基本定理是解题的关键.10.(浦东新区)已知||=3,||=2,且和的方向相反,那么下列结论中正确的是()A.3=2B.2=3C.3=﹣2D.2=﹣3【分析】根据平行向量的性质即可解决问题.【解答】解:∵||=3,||=2,且和的方向相反,∴=﹣,∴2=﹣3,故选:D.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(普陀区)已知与是非零向量,且||=|3|,那么下列说法中正确的是()A.B.C.D.||=3【分析】根据平行向量以及模的定义的知识求解即可求得答案【解答】解:A、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相同,不一定成立,故不符合题意;B、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相反,即不一定成立,故不符合题意;C、由与是非零向量,且||=|3|知,与3只是模相等,不一定共线,故不符合题意;D、由与是非零向量,且||=|3|知,||=3,符合题意.故选:D.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.12.(松江区)已知=2,那么下列判断错误的是()A.﹣2=0B.C.||=2||D.∥【分析】根据平行向量以及模的定义的知识求解即可求得答案.【解答】解:A、由=2知,﹣2=,符合题意;B、由=2知,,不符合题意;C、由=2知,||=2||,不符合题意;D、由=2知,∥,不符合题意.故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.二.填空题(共14小题)13.(崇明区)计算:2(3+2)﹣5=.【分析】根据平面向量的加减运算法则即可求解.【解答】解:原式=6=,故答案为:,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.14.(杨浦区)已知的长度为2,的长度为4,且和方向相反,用向量表示向量=﹣2.【分析】根据与的长度与方向即可得出结果.【解答】解:∵的长度为2,的长度为4,且和方向相反,∴,故答案为:﹣2【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的定义和性质是解题的关键.15.(虹口区)如果向量、、满足(+)=﹣,那么=(用向量、表示).【分析】根据平面向量的加减运算法则计算即可.【解答】解:∵(+)=﹣,∴,∴,故答案为:.【点评】本题考查了平面向量,熟练掌握平面向量的加减运算法则是解题的关键.16.(浦东新区)计算:3(2﹣)﹣2(2﹣3)=2+3.【分析】根据平面向量的加减运算法则即可求解.【解答】解:3(2﹣)﹣2(2﹣3)=6﹣3﹣4+6=2+3,故答案为:2+3.【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的加减运算法则是解题的关键.17.(浦东新区)如图,已知平行四边形ABCD的对角线AC与BD交于点O.设=,=,那么向量关于向量、的分解式是﹣+.【分析】根据向量的加减计算法则即可得出结果.【解答】解:∵=,=,∴==﹣+,故答案为:﹣+.【点评】本题考查了向量的加减计算法则,熟练掌握向量的加减计算法则是解题的关键.18.(普陀区)已知是单位向量,与方向相反,且长度为6,那么=﹣6.(用向量表示)【分析】根据平面向量的性质解决问题即可.【解答】解:∵是单位向量,与方向相反,且长度为6,∴=﹣6,故答案为:﹣6.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(徐汇区)计算:2﹣(﹣4)=+2.【分析】根据平面向量的加减运算法则求解即可.【解答】解:2=2﹣+2=+2,故答案为:+2,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.20.(徐汇区)如图,已知点G是△ABC的重心,记向量=,=,则向量=+..(用向量x+y的形式表示,其中x,y为实数)【分析】如图,延长AE到H,使得EH=AE,连接BH,CH.求出,证明AG=AH即可解决问题.【解答】解:如图,延长AE到H,使得EH=AE,连接BH,CH.∵AE=EH,BE=EC,∴四边形ABHC是平行四边形,∴AC=BH,AC∥BH,∵=+=+,∵G是重心,∴AG=AE,∵AE=EH,∴AG=AH,∴=(+)=+.故答案为:+.【点评】本题考查三角形的重心,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(嘉定区)已知向量、、满足,试用向量、表示向量,那么=.【分析】根据平面向量的加减运算法则求解即可.【解答】解:∵,∴2﹣2=3﹣3,∴=3﹣2,故答案为:3.【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.22.(静安区)如图,在△ABC中,中线AD、BE相交于点G,如果=,=,那么=+.(用含向量、的式子表示)【分析】由重心的性质可得,,利用三角形法则,即可求得的长,又由中线的性质,即可求得答案.【解答】解:在△ABC中,中线AD、BE相交于点G,∴点G为△ABC的重心,∴==,==,∴=+=+,∴=2=+.故答案为:+.【点评】此题考查了三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.23.(崇明区)如图,在平行四边形ABCD中,点M是边CD中点,点N是边BC的中点,设=,=,那么可用、表示为.【分析】先根据中位线定理求出,再根据平面向量的加减运算法则求出即可求解.【解答】解:如图,连接BD,∵点M是边CD中点,点N是边BC的中点,∴MN是△BDC的中位线,∴MN∥BD,且MN=,∴,∵=,=,∴,∴,∴,故答案为:【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.24.(奉贤区)计算:2(﹣2)+3(+)=5﹣.【分析】根据平面向量的加法法则计算即可.【解答】解:2(﹣2)+3(+)=2﹣4+3+3=5﹣,故答案为5﹣.【点评】本题考查平面向量,平面向量的加法法则,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(金山区)计算:(﹣2)+2=+.【分析】根据平面向量的加法法则计算即可.【解答】解:(﹣2)+2=﹣+2=+.故答案为:+.【点评】本题考查平面向量的加法法则,解题的关键是掌握平面向量的加法法则,属于中考常考题型.26.(青浦区)计算:3﹣2(﹣2)=.【分析】根据平面向量的加法法则计算即可.【解答】解:3﹣2(﹣2)=3﹣2+4=+4,故答案为:+4.【点评】本题考查平面向量,解题的关键是掌握平面向量的加法法则,属于中考常考题型.三.解答题(共9小题)27.(浦东新区)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).【分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【解答】解:(1)如图,∵DE∥BC,且DE=BC,∴==.又AC=6,∴AE=4.(2)∵=,=,∴=﹣=﹣.又DE∥BC,DE=BC,∴==(﹣).【点评】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.28.(杨浦区)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,试用、的线性组合表示向量.【分析】(1)根据相似三角形的性质得出等式求解即可;(2)根据平面向量的加减运算法则即可求解.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∵DE=,∴AE=4;(2)由(1)知,,∴DE=,∵,∴=.【点评】本题考查了平面向量,相似三角形的性质等知识,熟练掌握平面向量的加减运算法则是解题的关键.29.(宝山区)如图,已知在四边形ABCD中,F是边AD上一点,AF=2DF,BF交AC于点E,又=.(1)设=,=,用向量、表示向量=,=.(2)如果∠ABC=90°,AD=3,AB=4,求BE的长.【分析】(1)根据平面向量的加减运算法则即可求解;(2)先证明△ABF∽△BCA,得∠ABF=∠BCA,从而得出△ABF∽△ECB,再根据相似三角形对应边成比例得出比例式求解即可.【解答】解:(1)∵AF=2DF,∴AF=,∵,∴,∴=,∵=,∴,∴=,故答案为:,;(2)∵=,∴AF∥BC,AF=,∴∠BAF=∠ABC=90°,∠AFB=∠CBE,∵AD=3,AF=2DF,∴AF=2,∴BC=8,在Rt△ABF中,BF==2,又∵,∴△ABF∽△BCA,∴∠ABF=∠BCA,∴△ABF∽△ECB,∴,∴,∴BE=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABF∽△ECB是解第(2)问的关键.30.(虹口区)如图,在平行四边形ABCD中,延长BC到点E,使CE=BC,联结AE交DC于点F,设=,=.(1)用向量、表示;(2)求作:向量分别在、方向上的分向量.(不要求写作法,但要写明结论)【分析】(1)利用三角形法则解决问题即可;(2)利用平行四边形法则解决问题即可.【解答】解:(1)∵四边形ABCD时平行四边形,∴AD=BC,AB=CD,AD∥BC,AB∥CD,∴==,==,∵CE=BC,∴=,∴=+=+;(2)如图,过点F作FM∥AD交AB于点M,,即为向量分别在、方向上的分向量.【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质,平行四边形的性质,平面向量等知识,解题的关键是掌握三角形法则,平行四边形法则解决问题.31.(奉贤区)如图,在△ABC中,AC=5,cot A=2,cot B=3,D是AB边上的一点,∠BDC =45°.(1)求线段BD的长;(2)如果设=,=,那么=,=,=(含、的式子表示).【分析】(1)作CE⊥AB于E,设CE=x,AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解方程即可解决问题;(2)先求出AD的长,再求出AD与AB的数量关系,根据平面向量的加减运算法则即可求解.【解答】解:(1)作CE⊥AB于E,设CE=x,∵cot A=,∴AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解得x=±,∵x>0,∴x=,∴CE=,∵∠CDE=45°,∴CE=DE=,∵cot B=3,∴BE=3CE=3,∴BD=BE+DE=3+=4;(2)∵DE=,AE=2,∴AD=,∵BD=4,∴,即AD=,∵=,=,∴=,∴,∴==,故答案为:;;.【点评】本题考查了平面向量,三角函数的定义勾股定理等知识,熟练掌握三角函数的定义,平面向量的加减运算法则是解题的关键.32.(长宁区)如图,在梯形ABCD中,AB∥CD,且AB:CD=3:2,点E是边CD的中点,联结BE交对角线AC于点F,若=,=.(1)用、表示、;(2)求作在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【分析】(1)利用三角形法则,平行线分线段成比例定理求解即可.(2)利用平行四边形法则作出图形即可.【解答】解:(1)∵AB:CD=3:2,∴CD=AB,∴=,∴=+=+,∴DE=EC,CE∥AB,∴==,∴AF=AC,∴=(+)=+.(2)如图,在、方向上的分向量分别为,.【点评】本题考查平面向量,梯形的性质等知识,解题的关键是掌握三角形法则,平行四边形法则,属于中考常考题型.33.(金山区)如图,已知:四边形ABCD中,点M、N分别在边BC、CD上,==2,设=,=.求向量关于、的分解式.【分析】连接BD,先由得到MN∥BD、MN:BD=2:3,然后得到3=2,再结合平面向量的减法运算得到与和的关系,最后即可用含有和的式子表示.【解答】解:连接BD,∵,∴MN∥BD,,∴,∵,,∴,∴.【点评】本题考查了平行线的判定、平面向量的减法运算,熟练应用三角形法则是解题的关键.34.(普陀区)如图,已知AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,AB:CD=1:3.(1)求的值;(2)设=,=,那么=,=+(用向量,表示)【分析】(1)根据平行线的性质和相似三角形的判定证明△ABE∽△DCE和△BEF∽△BCD即可得出结论;(2)根据(1)中结论和平面向量的加、减运算即可得出结论.【解答】解:(1)∵AB∥CD,∴∠EAB=∠EDC,∠ABE=∠DCE,∴△ABE∽△DCE,∴==,∴CE=3BE,∵EF∥CD,∴∠BEF=∠BCD,∵∠B=∠B,∴△BEF∽△BCD,∴=,∵BC=BE+CE=BE+3BE=4BE,∴=;(2)由(1)知:EF=CD,∴==,∵+=,∴=﹣,∵=,∴,∵AB:CD=1:3,∴AB=CD,∴=,=+﹣=.故答案为:,.【点评】本题考查相似三角形的判定和性质以及平面向量,熟练掌握平行线的性质和平面向量的加、减运算是解题的关键.35.(青浦区)如图,在平行四边形ABCD中,点E在边AD上,CE、BD相交于点F,BF=3DF.(1)求AE:ED的值;(2)如果,,试用、表示向量.【分析】(1)由平行四边形的性质得AD∥BC,从而△BCF∽△DEF,利用相似三角形的性质得比例式,从而解得AE:ED的值;(2)先求出.再利用向量的加法可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BCF∽△DEF,∴,∵BF=3DF,∴.∴,∴.∴AE:ED=2;(2)∵AE:ED=2:1,∴.∵,∴,∵,∴,∵AD∥BC,∴,∵BF=3DF,∴.∴.∴,∴.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质,平面向量,解决本题的关键是理解平面向量.。
作图题2022年广州数学中考一模汇编
作图题2022年广州数学中考一模汇编1.如图,AB为⊙O的直径,点C在⊙O上.(1) 尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2) 探究OE与AC的位置及数量关系,并证明你的结论.2.如:AB为⊙O的直径,点C为弧AB中点,连接AC,BC.(1) 利用尺规作图,作出∠BAC的角平分线,分别交BC,⊙O于点D,E,连接BE.(保留作图痕迹,不写作法)(2) 若BE=2,求AD的长度.3.如图,四边形ABCD为平行四边形,AD=2,AB=6,∠DAB=60∘,E为边CD上一点.(1) 尺规作图:延长AE,过点C作射线AE的垂线,垂足为F(不写作法,保留作图痕迹).(2) 当点E在线段CD上(不与C,D重合)运动时,求EF⋅AE的最大值.4.如图,△ABC中,BD是∠ABC的角平分线.(1) 尺规作图:作线段BD的垂直平分线EF,交AB于点E,交BG于点F(保留作图痕迹,不要求写作法).(2) 连接DE,若DE=4,AE=3,求BC的长.5.矩形ABCD中,点E是DC上一点,连接AE.(1) 在BC上取一点F,使∠AFE=90∘,且BF<FC.(用尺规作图,找出点F,保留作图痕迹)(2) 连接AF,EF,延长EF与AB的延长线交于点G,求证:BF2=BG⋅AG−BG2.6.如图,在△ABC中,∠ACB=90∘,点O是BC上一点.(1) 尺规作图:作⊙O,使⊙O与AC,AB都相切.(不写作法与证明,保留作图痕迹)(2) 若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD,DE,求证:DB2=BC⋅BE.7.已知,如图,在△ABC中,∠C=90∘,D为BC边中点.(1) 尺规作图:以AC为直径作⊙O,交AB于点E(保留作图痕迹,不需写作法);(2) 连接DE,求证:DE为⊙O的切线;(3) 若AC=10,AE=8,求DE的长.8.如图所示,在△ABC中,AB=AC=2√5,∠B=30∘,点O为边BC上一点以O为圆心的圆经过点A,B.(1) 求作圆O(尺规作图,保留作留痕迹,不写作法);(2) 求证:AC是⊙O的切线;(3) 若点P为圆O上一点,且弧PA=弧PB,连接PC,求线段PC的长.9.如图:已知:点A(−4,0),B(0,3)分别是x,y轴上的两点.(1) 用尺规作图作出△ABO的外接圆⊙P;(不写作法,保留作图痕迹)(2) 求出⊙P向上平移几个单位后与x轴相切.10.如图,已知△ABC的面积为4,D为AB的中点.(1) 尺规作图:作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2) 在(1)的条件下,求△ADE的面积.11.如图,AD是Rt△ABC斜边BC上的高.(1) 尺规作图:作∠C的平分线,交AB点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母).(2) 在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何.请予以证明.(3) 在(2)的条件下,连接DE,DH,求证:ED⊥HD.12.如图,在平面直角坐标系中有△ABC,其中A(−3,4),B(−4,2),C(−2,1).把△ABC绕原点顺时针旋转90∘,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1) 画出△A1B1C1和△A2B2C2.(2) 直接写出点B1,B2坐标.(3) P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1,P2,请直接写出点P1,P2的坐标.13.已知,如图,△ABC中,∠C=90∘,E为BC边中点.(1) 尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2) 连接DE,求证:DE为⊙O的切线;,求BD的长.(3) 若AC=5,DE=158)和点C(−4,5),点B(0,5).14.如图,二次函数y=ax2+c的图象经过点A(−1,54(1) 求二次函数y=ax2+c的解析式;(2) 在图①中仅用尺规作图(保留作图痕迹,不要求写作法)在y轴上确定点P,使∠APO=∠BPC,直接写出点P的坐标;(3) 在(2)的条件下,如图②,过点P的直线y=kx+b交二次函数y=ax2+c的图象于D(x1,y1),E(x2,y2),且x1<0<x2,过点D,E作x轴的垂线段,垂足分别是F,G,连接PF,PG.①求证:无论k为何值,总有∠FPO=∠PGO;②当PF+PG取最小值时,求点O到直线y=kx+b的距离.15.如图,△ABC中,∠ABC=90∘.(1) 在BC边上找一点P,作⊙P与AC,AB边都相切,与AC的切点为Q;(尺规作图,保留作图痕迹)(2) 若AB=4,AC=6,求第(1)题中所作圆的半径;(3) 连接BQ,第(2)题中的条件不变,求cos∠CBQ的值.16.已知:如图,在矩形ABCD中,E为AD的中点,连接EC(AB>AE).(1) 尺规作图:过点E作EF⊥EC交AB于F点,连接FC(保留作图痕迹,不要求写作法和证明);(2) 在(1)所作的图中,求证:△AEF∽△ECF;=k,是否存在这样的k值,使得△AEF与△(3) 在(1)所作的图中,∠BCF≠AFE,设ABBCBFC相似,若存在,证明你的结论并求出k的值;若不存在,说明理由.17.如图,在△ABC中,∠ACB=90∘,点O是BC上一点.(1) 尺规作图:作⊙O,使⊙O与AC,AB都相切.(不写作法与证明,保留作图痕迹)(2) 若⊙O与AB相切于点D,与BC的另一个交点为点E,连接CD,DE,求证:DB2=BC⋅BE.18.如图,在Rt△ABC中,∠BAC=90∘.(1) 先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2) 判断图中BC与⊙P的位置关系,并证明你的结论.)和点C(−4,5),点B(0,5).19.如图,二次函数y=ax2+c的图象经过点A(−1,54(1) 求二次函数y=ax2+c的解析式;(2) 在图①中仅用尺规作图(保留作图痕迹,不要求写作法)在y轴上确定点P,使∠APO=∠BPC,直接写出点P的坐标;(3) 在(2)的条件下,如图②,过点P的直线y=kx+b交二次函数y=ax2+c的图象于D(x1,y1),E(x2,y2),且x1<0<x2,过点D,E作x轴的垂线段,垂足分别是F,G,连接PF,PG.①求证:无论k为何值,总有∠FPO=∠PGO;②当PF+PG取最小值时,求点O到直线y=kx+b的距离.20.如图,在Rt△ABC中,∠C=90∘,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1) 尺规作图:作出⊙O,并连接OD(不写作法与证明,保留作图痕迹);(2) 求证:△OBD∽△ABC.21.如图,在平行四边形ABCD中,AB<BC.(1) 利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2) 若BC=8,CD=5,则CE=.22.如图,⊙O是△ABC的外接圆.(1) 尺规作图:作出∠C的角平分线CD,与⊙O交于点D,与AB交于点E(不写作法,保留作图痕迹);(2) 在(1)的条件下,连接BD.①求证:△BDE∽△CDB;②若BD=√7,DE⋅EC=3,求DE的长.23.如图,在平行四边形ABCD中,AB<BC.(1) 利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2) 若BC=8,CD=5,则CE=.答案1. 【答案】(1) 如图所示;AC.(2) OE∥AC,OE=12理由如下:∵AD平分∠BAC,∠BAC,∴∠BAD=12∠BOD,∵∠BAD=12∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,AC.∴OE∥AC,OE=122. 【答案】(1) 作图所示.⏜点,(2) ∵点C为AB⏜等于BC⏜,∴AC∴AC=BC,又∵AB为直径,∴∠ACB=90∘,延长BE,AC交于点F,由(1)作图知:∠BAE=∠CAE,∠AEB=90∘,∴AE垂直平分BF,∴BF=2BE=4,又∵∠DAC=∠FBC,∠ACD=∠BCF=90∘,AC=BC,∴△ACD≌△BCF(SAS),∴AD=BF=4.3. 【答案】(1) 如图,射线CF即为所求.(2) 作AH⊥CD交CD的延长线于H.设EC=x,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=6,∴∠BAD =∠ADH =60∘,∵∠H =90∘,∴∠DAH =30∘,∴DH =12AD =1,∴CH =CD +DH =6+1=7,∵∠CFE =∠H =90∘,∠CEF =∠AEH ,∴△CFE ∽△AHE ,∴EF EH =CE AE ,∴EF ⋅AE =CE ⋅EH =x (7−x )=−x 2+7x =−(x −72)2+494,∵−1<0, ∴EF ⋅AE 的最大值为494.4. 【答案】 (1) 如图,EF 为所作.(2) ∵EF 垂直平分 BD ,∴EB =ED =4,∴∠EDB =∠EBC ,∵∠ABD =∠CBD ,∴∠EDB =∠CBD ,∴DE ∥BC ,∴△ADE ∽△ACB ,∴DE BC =AE AB ,即4BC =33+4, ∴BC =283. 5. 【答案】(1) ①作 AE 的垂直平分线,交 AE 于点 H .②以点 H 为圆心,AH 或 HE 为半径画圆交 BC 于点 F .③连接 AF ,EF .∵AE 是 ⊙H 的直径,∴∠AFE =90∘,且 BF <FC ,∴ 点 F 即为所求.(2) ∵ 四边形 ABCD 为矩形,由(1)可知∠AFE=90∘,∴∠AFB+∠BFG=90∘,∵∠AFB+∠BAF=90∘,∴∠BFG=∠BAF,∴△FBG∽△AFG,∴GFAG =BGGF,则GF2=BG⋅AG.∵在Rt△FBG中,GF2=BF2+BG2,∴BF2=BG⋅AG−BG2.6. 【答案】(1) 如图,⊙O即为所求.(2) 连接OD.∵AB是⊙O的切线,OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∠B=∠B,∴△CDB∽△DEB.∴DBBE =BCDB.∴DB2=BC⋅BE.7. 【答案】(1) ⊙O如图所示.(2) 连接OE,CE,∵AC为直径,∴∠AEC=90∘,∵D为BC边中点,∴DE为Rt△BDC斜边BC上的中线,∴∠ECD=∠CED,∵OC=OD,∴∠OCE=∠OEC,∴∠OED=∠OEC+∠CED=∠OCE+∠ECD=∠ACB=90∘,∴OD⊥DE,∴DE为⊙O的切线.(3) 在Rt△ACE中,EC=√AC2−AE2=√102−82=6,∵∠AEC=∠CEB=90∘,∠ACE+∠ECB=90∘,∠B+∠ECB=90∘,∴∠ACE=∠B,∴△ACE∽△CBE,∴ACBC =AEEC,∴10BC =86,∴BC=152,∴DE=12BC=154.8. 【答案】(1) 如图,圆O即为所求.(2) 连接OA,∵OA=OB,∴∠OAB=∠B=30∘,∵AB=AC,∴∠ACB=∠B=30∘,∴∠BAC=120∘,∴∠CAO=∠BAC−∠OAB=90∘,∴OA⊥AC,OA是⊙O的半径,∴AC是⊙O的切线.(3) ∵弧PA=弧PB,∴符合条件的点P有两个,Pʹ和Pʺ,连接PʹC和PʺC,作PʹE⊥BC于点E,∵OPʹ⊥AB,根据垂径定理,得AF=BF=12AB=√5,∵∠B=30,∴∠PʹOB=60∘,∴OB=BFcos30∘=2√153,作AD⊥BC于点D,则AD=√5,DC=√15,∴BC=2DC=2√15,∴CE=BC−BE=5√153,∴PʹC=√PʹE2+CE2=2√1053;连接PʺC,∵OA=OPʺ,∠AOC=∠COPʺ=60∘,OC=OC,∴△AOC≌△PʺOC(SAS),∴PʺC=AC=2√5.综上所述:线段PC的长为2√1053或2√5.9. 【答案】(1) 如图,即为△ABO的外接圆⊙P.(2) ∵点A(−4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴⊙P的半径为2.5,即PD=2.5;∵P是AB的中点,C是OA的中点,∴PC=12OB=1.5;∴CD=PD−PC=1.∴⊙P向上平移1个单位后与x轴相切.10. 【答案】(1) 作线段AC的垂直平分线MN交AC于E,则点E即为所求.(2) ∵AD=DB,AE=CE,∴DE是△ABC的中位线.∴DE∥BC,DE=12BC.∴△ADE∽△ABC.∴S△ADES△ABC =(DEBC)2,即S△ADE4=14.∴△ADE的面积为1.11. 【答案】(1) 如图,直线CE为所求.(2) FH=CH.∵CE平分∠ACB,∴∠ACE=∠BCE,又∵FH∥BC,∴∠HFC=∠BCE,∴∠ACE=∠HFC,∴FH=CH.(3) 过点E作EM⊥BC,∵CE平分∠ACB,EA⊥AC,EM⊥BC,∴EM=EA,∵∠AEF+∠ACE=∠DFC+∠DCF,∴∠AEF=∠DFC=∠AFE,∴EM=EA=AF,∵△ABD∽△CBA,∴BDAD =BACA,∵△BEM∽△BAD,∴BEBA =EMAD=AFAD,∵△AFH∽△ADC,∴AFAD =AHAC,∴BEBA =AHAC,∴BEAH =BAAC=BDAD,∵∠B=∠DAH,∴△BED∽△AHD,∴∠EDB=∠HDA,∴∠EDH=∠BDA=90∘,∴BD⊥DH.12. 【答案】(1) 如图所示,△A1B1C1和△A2B2C2即为所求:(2) 点B1坐标为(2,4),B2坐标为(0,−1).(3) 由题意知点P1坐标为(b,−a),点P2的坐标为(b−2,−a−5).13. 【答案】(1) 如图1,(2) 如图2,连接OD,CD,∵AC为直径,∴∠ADC =90∘,∵E 为 BC 边中点,∴DE 为 Rt △BDC 斜边 BC 上的中线,∴DE =EC =BE ,∴∠1=∠2,∵OC =OD ,∴∠3=∠4,∴∠ODE =∠2+∠4=∠1+∠3=∠ACB =90∘,∴OD ⊥DE ,∴DE 为 ⊙O 的切线.(3) ∵E 为 BC 边中点,∴BC =2DE =154, ∵AC =5,∴AB =254,∵∠DBC =∠CBA ,∴Rt △BDC ∽Rt △BCA ,∴BD BC =BC AB ,即BD 154=154254, ∴BD =94.14. 【答案】(1) 将点 A (−1,54) 和点 C (−4,5) 代入二次函数 y =ax 2+c ,得:{a +c =54,16a +c =5.解得:{a =14,c =1.∴ 二次函数的解析式为 y =14x 2+1.(2) (0,2).(3) ①将点 P (0,2) 代入直线 y =kx +b ,得 b =2,联立 {y =14x 2+1,y =kx +2.化简得:x 2−4kx −4=0,解得:x =2k ±2√k 2+1,∵x <0<x ,∴x 1=2k −2√k 2+1,x 2=2k +2√k 2+1,∴OF =−x 1=−2k +2√k 2+1,OG =x 2=2k +2√k 2+1,∴OF ×OG =4=OP 2,∴OF OP =OP OG ,即 △FOP ∽△POG ,∴∠FPO =∠PGO .② ∵x 1+x 2=4k ,x 1x 2=−4,∴(PF +PG )2=PF 2+2×PF ×PG +PG 2=x 12+4+2√x 12+4×√x 22+4+x 22+4=(x 1+x 2)2−2x 1x 2+8+2√(x 1x 2)2+4(x 1+x 2)2−8x 1x 2+16=16k 2+16+16√k 2+1.不妨令 t =√k 2+1,t ≥1,∴PF +PG =4√t 2+t =√(t +12)2−14, ∴ 当 k =0 时,t =1,此时 PF +PG 取最小值 4√2,∴ 点 O 到直线 y =kx +b 的距离即 OP =2.【解析】(2) 如图,点 P 即为所求.点 A (−1,54) 关于 y 轴的对称点 Aʹ(1,54), 结合 C (−4,5) 知直线 AʹC 的解析式为 y =−34x +2, 当 x =0 时,y =2,则点 P 坐标为 (0,2).15. 【答案】(1) 如图,⊙P 即为所求.(2) 在 Rt △ABC 中,∵AB =4,AC =6,∴BC =√AC 2−AB 2=2√5,∵PA 平分 ∠BAC ,PB ⊥BA ,PQ ⊥AC ,∴PB =PQ ,设 PB =PQ =r ,∵S △ABC =S △ABP +S △ACP ,∴12×4×2√5=12×4×r +12×6×r ,(3) ∵∠ABP=∠AQP=90∘,AP=AP,PB=PQ,∴Rt△APB△≌Rt△APQ(HL),∴AB=AQ,∵PB=PQ,∴PA垂直平分线段BQ,∴∠CBQ+∠ABQ=90∘,∠BAP+∠APB=90∘,∴∠CBQ=∠BAP,∴cos∠CBQ=cos∠BAP=ABAP =√42+(4√55)=4√305.16. 【答案】(1) ∴如图为所求.(2) 延长FE与CD的延长线交于点G.∵E是AD的中点,∴AE=ED.在△AEF与△DEG中,{∠EAF=∠EDG=90∘, AE=ED,∠AEF=∠DEG,∴△AFE≌△DGE.∴∠AFE=∠G,FE=GE.∴E为FG的中点.又∵CE⊥FG,∴CE垂直平分FG,∴FC=GC.∴∠CFE=∠G.∴∠AFE=∠EFC.在△AEF与△ECF中,{∠AFE=∠EFC,∠EAF=∠CEF=90∘,∴△AEF∽△ECF.(3) 存在.当k=ABBC =√32时,△AEF∽△BCF.证明:在矩形ABCD中,∵AB=CD,2DE=BC,∴ABBC =CD2DE,又∵ABBC =√32,∴DCDE=√3,即cot∠ECG=√3,∴∠ECG=30∘.∴∠ECG=∠ECF=∠AEF=30∘,∵∠FCG=∠ECF+∠ECG=30∘+30∘=60∘.∴∠BCF=90∘−∠FCG=90∘−60∘=30∘.∴∠AEF=∠BCF.在△AEF与△BCF中,{∠AEF=∠BCF,∠EAF=∠CBF=90∘,∴△AEF∽△BCF.17. 【答案】(1) 如图,⊙O即为所求.(2) 连接OD.∵AB是⊙O的切线,OD⊥AB,∴∠ODB=90∘,即∠1+∠2=90∘,∵CE是直径,∴∠3+∠2=90∘,∴∠1=∠3,∵OC=OD,∴∠4=∠3,∴∠1=∠4,又∠B=∠B,∴△CDB∽△DEB.∴DBBE =BCDB.∴DB2=BC⋅BE.18. 【答案】(1) 如图:(2) 图中BC与⊙P相切,证明:过点P作PD⊥BC于D,则∠PDC=90∘,∵∠BAC=90∘,∠PAC=∠PDC,∵PC平分∠ACB,∠ACP=∠DCP,∵PC=PC.∴△PCDF≌△PAC,∴PA =PD .又 ∵PA 是 ⊙O 的半径,∴BC 是 ⊙O 的切线.19. 【答案】(1) 将点 A (−1,54) 和点 C (−4,5) 代入二次函数 y =ax 2+c , {a +c =54,16a +c =5, 解得:{a =14,c =1.二次函数的解析式为 y =14x 2+1. (2) 如图,点 P 即为所求,点 P 坐标为 (0,2).(3) ①将点 P (0,2) 代入直线 y =kx +b ,得 b =2,联立 {y =14x 2+1,y =kx +2化简得:x 2−4kx −4=0,x =2k ±2√k 2+1, ∵x 1<0<x 2,∴x 1=2k −2√k 2+1,x 2=2k +2√k 2+1,∴OF =−x 1=−2k +2√k 2+1,OG =x 2=2k +2√k 2+1,∴OF ×OG =4=OP 2,∴OF OP =OP OG ,即 △FOP ∽△POG ,∴∠FPO =∠PGO .② ∵x 1+x 2=4k ,x 1x 2=−4,∴(PF +PG )2=PF 2+2×PF ×PG +PG 2=x 12+4+2√x 12+4×√x 22+4+x 22+4=(x 1+x 2)2−2x 1x 2+8+2√(x 1x 2)2+4(x 1+x 2)2−8x 1x 2+16=16k 2+16+16√k 2+1.不妨令 t =√k 2+1,t ≥1,∴PF +PG =4√t 2+t =√(t +12)2−14,∴ 当 k =0 时,t =1,此时 PF +PG 取最小值 4√2,∴ 点 O 到直线 y =kx +b 的距离即 OP =2.20. 【答案】(1) 如图 1 所示为所作.(2) 如图 2,∵OA =OD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴OD∥AC.∴△OBD∽△ABC.21. 【答案】(1)(2) 3【解析】(2) AE为∠BAD的角平分线,可得BE=AB=5,所以CE=3.22. 【答案】(1) ∠C的角平分线CD,如图所示:(2) ① ∵∠DBE=∠ACD,∠ACD=∠DCB,∴∠DBE=∠DCB,∵∠BDE=∠CDB,∴△BDE∽△CDB.② ∵△BDE∽△CDB,∴BD2=DE⋅DC=7,∴DE(DE+EC)=7,∴DE2+DE⋅EC=7,∵DE⋅EC=3,∴DE2=4,∴DE=2或DE=−2(舍去).23. 【答案】(1)(2) 3【解析】(2) AE为∠BAD的角平分线,可得BE=AB=5,所以CE=3.。
2023年深圳市中考一模数学试卷(含答案)数学参考答案
深圳市2022-2023 学年初三年级中考适应性考试数学学科参考答案及评分标准一、选择题 题号 12345678910答案DCBCACBDAB二、填空题三、解答题16.解法一:1242=−x x ……………………………………………………………1分412442+=+−x x ……………………………………………………………2分16)2(2=−x ……………………………………………………………3分42±=−x ……………………………………………………………4分即 61=x ,22−=x .……………………………………………………………5分解法二:24120x x −−=这里1a =,7b =−,12c =−………………………………………………………1分∵ 0644816)12(141642>=+=−××−=−ac b ……………………………2分∴ 28412644±=×±=x ……………………………………………………………3分即 61=x ,22−=x . ………………………………………………………………5分解法三:24120x x −−=0)2)(6(=+−x x …………………………………………………………………3分06=−x 或02=+x 即 61=x ,22−=x . ………………………………………………………………5分17.(1)_________;…………………………………………………………………………3分(2)解法一:………………………………6分(A ,A ) (A ,B ) (A ,C ) (B ,A ) (B ,B ) (B ,C ) (C ,A ) (C ,B ) (C ,C ) 共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91.……………………………7分 解法二:……………………6分共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91. ……………………………7分 (备注:①解法一中,9种等可能结果没有列举出来不扣分,即“树状图”正确3分,“结果”正确1分;②解法二中,表格中没有结果表示,只作标记如打√,且没对√的含义给出解释,扣1分)18.(1) 1∶2 ;(或21)………………………………………………………………2分 (2………………………4分(备注:△A 1B 1C 1只需要描点及连接正确即可,建议描对一个点给1分,虚线OA 和OCAy xBCB 1 O24 68101224 6 8 A 1 C 1 31没有画出来或连接成实线,均不扣分)(3) ;(备注:坐标表示没有括号不给分) …………………………………6分 (4) 3 . ………………………………………………………………………………8分19. (1) 60-x ;(备注:写成“160-100-x ” 不扣分)…………………………3分 (2)根据题意得:(200+10x )(60-x )=15000 ………………………………………………………………5分 解得:101=x ,302=x ……………………………………………………………………6分 因为降价不超过20元,所以302=x (不合题意,舍去) ………………………………7分 答:每件工艺品应降价10元.………………………………………………………………8分 (备注:解正确但没有舍根,只扣1分;答的表述不规范,扣1分) 20.(1) 解法一:所选择的条件是 ② ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∠ADE =∠DAC∵ AD 是△ABC 的角平分线∴ ∠EAD =∠DAC ∴ ∠EAD =∠ADE∴ AE =DE …………………………4分 ∴ 四边形AEDF 是菱形……………5分解法二:所选择的条件是 ③ ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴ EF ⊥AD …………………………………………………………………………4分 ∴ 四边形AEDF 是菱形……………………………………………………………5分)2,2(b a ABCDEF解法三:所选择的条件是 ③ ,………………………………………………………………………1分 证明:∵DE //AC ,DF //AB∴四边形AEDF 是平行四边形 ………………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴AE =AF ………………………………………………………………………………4分 ∴四边形AEDF 是菱形…………………………………………………………………5分 (2) 解法一:∵四边形AEDF 是菱形 ∴DE =DF =2………………………………6分 ∵ DF //AB ∴∠FDC =∠ABC ∵ DE //AC ∴∠FCD =∠EDB∴△BED ∽△DFC …………………………………………………………………………7分 ∴DFBE CF DE =,即212BE=∴BE =4………………………………………………………………………………………8分 解法二:∵四边形AEDF 是菱形 ∴AE =DF =AF =2∴CA =CF +AF =1+2=3 ………………………………………………………………………6分 ∵ DF //AB ∴∠CAB =∠CFD ∠CDF =∠CBA∴△CDF ∽△CBA …………………………………………………………………………7分 ∴AB DFCA CF =,即AB231= ∴AB =6∴BE =4 ……………………………………………………………………………………8分ABCDEF21.(1)DE 与BC…………………………………………………2分 (2)点A 与点B ,………………………………………………4分 点O 到双曲线C 1的距离是_________;……………………………………………………6分 (3)作直线l 5:y x b =−+交y 轴于点P ,交C 2于M ,N 两点,作MG ⊥l 4,NH ⊥l 4,垂足分别为G ,H 两点,作OK ⊥l 5,垂足为K .当OK =80时,隔音屏障为GH 的长. ∵y x b =−+,OK =80, ∴∠POK =45°,∴2802==OK OP ,即l 5:y x =−+……………………………………………7分 由y x =−+与2400y x=联立可求: M ,N …………………………………………………………8分∴80GH MN ===答:需要在高速路旁修建隔音屏障的长度是80 m .………………………………………9分 (其它解法,酌情按步骤给分)22.(1)证明:∵四边形ABCD 是正方形∴AD =AB ,∠DAB =90° …………………………………1分 ∵旋转90°∴∠P AQ =90°且AP =AQ …………………………………2分 ∴∠DAB -∠P AB =∠P AQ -∠P AB 即:∠P AD =∠QAB ∴△APD ≌△AQB∴BQ =DP …………………………………………………3分图5 y /m x /m l 4C 2 Ol 5MNGHKP6 ABCDQP M(2)解法一:(如图2)过点B 作BE ⊥AQ ,交AQ 的延长线于点E ∵旋转60°∴AP =AQ ,∠P AQ=60°∴△APQ 为等边三角形∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠BQE =180°–∠PQA –∠PQB =180°-90°-60°=30° 又∵∠DAP =∠BAQ=15°∴∠ABQ =∠BQE –∠BAQ =30°-15°=15°=∠BAQ∴AQ =QB …………………………………………………5分 设BE =x ,在Rt △BQE 中,则BQ =2x =AQ ,QE =3x ∴AE =AQ +QE =x x x )32(32+=+ 在Rt △BQE 中,AB 2=AE 2+BE 2即 222])32[)26(x x ++=+(…………………6分 解得 x =±1(舍负),∴AP =AQ =BQ =2x =2 …………………………………7分 解法二:(如图3)过点P 作PF ⊥AB ,垂足为F 点 ∵∠DAB=60°,∠DAP =15°, ∴∠P AB=∠DAB –∠DAP =45° ∵旋转60°∴AP =AQ ,∠BAQ =∠P AQ –∠P AB =15°∴△APQ 为等边三角形………………………………4∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠AQB =∠PQA +∠PQB =60°+90°=150° ∴∠ABQ=180°-∠AQB –∠BAQ =150°-15°=15° ∴AQ =QB =PQEDA BCPQ l图2F DABCP Ql图3即△BPQ 为等腰Rt △∴∠PBQ =45°,∠PBA=∠PBQ –∠ABQ =45°-15°=30°…………………5分 设AF =x ,则PF =x ,BF =x 3 则AB =BF +AF =2613(3+=+=+x x x )……6分解得 x =2 ∴AF =PF =x =2∴AP =22=x ……………………………………………7分 (3)51124和523……………………………………10分 (备注:对1个答案给2分,对2个答案给3分) 解析:设AM 交CD 于T ,过点T 作TK ⊥AC 于K 在△TKC 中,易得TK =3,即DT =3.第一种情况:以点B 为直角顶点,即∠PBR =90°,P 、R 的位置如图5所示 连接DP ,延长CB 交AR 于点H ,过R 作RG ⊥CH ,交BH 于点G 由43==AR AP AB DA ,∠DAB =∠P AR =90° 可证△ADP ∽△ABR 则∠APD =∠ARB 由于∠PBR =∠P AR =90° 则∠ARB +∠APB =180° 即∠APD +∠APB =180° 所以D 、P 、B 三点共线 由于RG ⊥CD ,∠DAT =∠BAH 易得△RGH ∽△ABH ∽△ADT 所以2163====AD DT AB BH RG GH 由于AB =8,则BH =4,AH =54 易得△BRG ∽△DBCPRABCDMG HKT 图5所以DBBRDC BG BC RG == 又因为CB =6,CD =8,则BD =10 设RG =3x ,则BG =4x ,BR =5x ,GH =x 23,11512253==x RH ∴BH =BG +GH =4x +x 23=x 211=4,解得118=x ∴11512253==x RH ∴511325111254=−=−=RH AH AR ∴51124511324343=×==AR AP . 第二种情况:以点R 为直角顶点,即∠PRB =90°,P 、R 的位置如图6所示 连接BP ,过B 作BI ⊥AR 于点I 易证△APR ∽△IRB ∴43==BI RI AR AP 设RI =3y ,则BI =4y ,BR =5y 易证△ABI ∽△ADT 则236===DT AD BI AI ∴AI =2BI =8y ∴854)48(2222==+=+=y y y BI AI AB () ∴552548==y ∴AR =AI -RI =8y -3y =5y =52 ∴523524343=×==AR AP .PRIABCDM图6T。
2022年河北省秦皇岛市山海关区中考数学一模试卷(Word版 无答案)
2022年河北省秦皇岛市山海关区中考数学一模试卷一、选择题(本大题有16个小题,共42分。
1-10小题各3分,11-16小题各2分,在每个小题给出的四个选项中,只有一项符合题目要求) 1.如图所示的几何体的面数为( )A .3个B .4个C .5个D .6个2.《经济参考报》和《光明网》在2022年2月11日公开发文称:我国城镇1.27亿退休职工养老金将迎来18连涨,其中1.27亿用科学记数法表示为( ) A .1.27×107B .1.27×108C .12.7×107D .1.27×1093.下列运算正确的是( ) A .√3+√7=√10 B .(a 2)3=a 5 C .4a 6÷2a 2=2a 3D .5a 3×3a =15a 44.不等式3x ﹣9≤0的解集在数轴上表示正确的是( )A .B .C .D .5.下列变形中,属于因式分解且正确的是( ) A .2x +6=2(x +3) B .a (a +1)=a 2+a C .x 2﹣x =x (x +1)(x ﹣1) D .x 2﹣3x +1=x (x ﹣3)+16.下面算式与512−13+214的值相等的是( )A .312−(﹣213)+(﹣414) B .12−(﹣313)+314C .212+(﹣213)+714D .412−(−13)+3147.实数a ,b 在数轴上对应的位置如图所示,化简|a +b |−√b 2的结果是( )A .2b ﹣aB .a +2bC .﹣aD .a8.如图,菱形ABCD 的两条对角线相交于点O ,若∠ADC =120°,DO =2,菱形的周长为( )A .8B .16C .12D .12√39.不改变分式的值,将分式0.02x+0.5y x+0.004y中的分子、分母的系数化为整数,其结果为( )A .20x+500y 1000x+4yB .20x+500y 100x+4yC .2x+50y1000x+4yD .2x+5y x+4y10.如图,用5个小正方体分别摆成甲、乙两个几何体,对于其三视图说法正确的是( )A .主视图、俯视图,左视图都相同B .主视图、俯视图都相同C .俯视图,左视图都相同D .主视图、左视图都相同11.手机截屏内容是某同学完成的作业,需要回答横线上符号代表的内容. 如图,∠A =∠ADE ,∠C =∠E .求证:BE ∥CD . 证明:∵∠A =∠ADE , ∴DE ∥①, ∴∠ABE =②. 又∵∠C =∠E , ∴∠ABE =③, ∴BE ∥CD (④). 则回答正确的是( )A .①应填ACB .②应填∠C C .③应填∠ED .④应填内错角相等,两直线平行12.已知13(m +3)>1,则函数y =−mx 的图象大致是( )A .B .C .D .13.如图,△ABO 与△A ′B ′O ′是以点M 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点M 到点A 和点A '的距离之比( )A .1:2B .1:3C .1:4D .2:314.已知⊙O 的直径CD =10,CD 与⊙O 的弦AB 垂直,垂足为M ,且AM =4.8,则直径CD 上的点(包含端点)与A 点的距离为整数的点有( )A .1个B .3个C .6个D .7个15.如图,⊙O是△ABC的外接圆,在弧BC上找一点M,使点M平分弧BC.以下是嘉嘉和琪琪两位同学提供的两种不同的作法:嘉嘉:如图1,作∠BAC的平分线AF,交弧BC于点M,则点M即为所求.琪琪:如图2,作BC的垂直平分线PQ,PQ交弧BC于点M,则点M即为所求.对于上面的两种作图方法,下面的说法正确的是()A.嘉嘉的作法正确B.琪琪的作法正确C.嘉嘉和琪琪的作法都错误D.嘉嘉和琪琪的作法都正确16.二次函数y=ax2+bx+c的图象如图所示,下面结论:①(b+c)2>a2;②4a+2b+c>0;③a+b≥m(am+b);④若此抛物线经过点C(t,n),则2﹣t一定是方程ax2+bx+c=n的一个根.其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.已知x=12+√3,y=2+√3.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.18.如图,正方形ABCD和正六边形ADEFGH有一边重合,则∠DF A的度数为,当AB=√3时,DF=.19.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至35℃,如此循环下去.(1)t的值为.(2)如果在0~t分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持续时间为分钟.三、解答题(本大题共7个小题,共66分。
2023年河南省中考数学模拟题知识点分类汇编:尺规作图(附答案解析)
2023年河南省中考数学模拟题知识点分类汇编:尺规作图一.选择题(共28小题)
1.(2022•河南模拟)如图所示,平行四边形ABCD中,AB=3,AD=5,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交BA于点E,交BC于点F;②分别以点E,
F
为圆心,大于的长为半径画弧,两弧在∠ABC内相交于点P;③画射线BP,交
AD于点Q,交对角线AC于点O.若BA⊥CA,则AO的长度为(
)
A .
B .
C .
D .2.(2022•濮阳二模)如图,菱形ABCD的边长为4,∠A=45°,分别以点A和点B为圆
心,大于的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长是(
)
A .
B .
C .
D .3.(2022•许昌二模)根据以下尺规作图痕迹,在一个平行四边形内作出的四边形ABCD中,无法确定是菱形的是()
A .
第1页(共51页)。
2022年辽宁省沈阳市于洪区中考数学一模试题(wd无答案)
2022年辽宁省沈阳市于洪区中考数学一模试题(wd无答案)一、单选题(★) 1. 下列实数最小的是()A.-2B.-3.5C.0D.1(★★★) 2. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.(★) 3. 2021年5月,由中国航天科技集团研制的天向一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.中国航天器首次奔赴火星,就“毫发未损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举.火星与地球的最近距离约为5500万千米,该数据用科学记数法可表示为()千米.A.B.C.D.(★★) 4. 下列运算正确的是()A.B.C.D.(★) 5. 如图,直线,将一个含角的三角尺按如图所示的位置放置,若,则的度数为()A.B.C.D.(★) 6. 如表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是()A.79%B.92%C.95%D.76%(★★★) 7. 如图,已知每个小方格的边长均为1,则△ABC与△CDE的面积比为()A.B.C.D.(★★) 8. 如图,直线与相交于点,则关于x的方程的解是()A.B.C.D.(★) 9. 下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯(★★) 10. 如图,AB为的直径,C,D为上的两点,若,则的度数为()A.B.C.D.二、填空题(★★★) 11. 分解因式: _____ .(★★) 12. 甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为,则两人成绩比较稳定的是 __________ .(填“甲”或“乙”)(★★★) 13. ______ .(★★★) 14. 不等式组的解集是 _____ .(★★★) 15. 如图,△AOB中,AO=AB,OB在x轴上C,D分别为AB,OB的中点,连接CD,E为CD上任意一点,连接AE,OE,反比例函数y(x>0)的图象经过点A.若△AOE的面积为2,则k的值是 ___ .(★★★) 16. 如图,在△ABC中(),,,D为BC边上的中点,过点D的直线DF将△ABC的周长平分,交AB于点F,则DF的长为 ______ .三、解答题(★★) 17. 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .(★★★★) 18. 在△ABC中,D是BC边长的一点,E是AC边的中点,过点A作交DE的延长线于点F,连接AD,CF.(1)求证:四边形ADCF是平行四边形:(2)若,,,请直接写出AE的长为__________.(★★) 19. 为了加快推进我国全民新冠病毒疫苗接种,在全国范围内构筑最大免疫屏障,各级政府积极开展接种新冠病毒疫苗的宣传工作.某社区印刷了多套宣传海报,每套海报四张,海报内容分别是:A.防疫道路千万条,接种疫苗第一条;B.疫苗接种保安全,战胜新冠靠全员;C.接种疫苗别再拖,安全保障好处多;D.疫苗接种连万家,平安健康乐全家.志愿者小张和小李利用休息时间到某小区张贴海报.(1)小张从一套海报中随机抽取一张,抽到B海报的概率是.(2)小张和小李从同一套海报中各随机抽取一张,用列表法或画树状图法,求他们两个人中有一个人抽到D海报的概率.(★★) 20. 某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1 辆A型公交车和2 辆B型公交车需要165 万元,2 辆A型公交车和3 辆B型公交车需要270 万元.(1) 求A型公交车和B型公交车每辆各多少万元?(2) 公交公司计划购买A型公交车和B型公交车共140 辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?(★★) 21. 赏中华诗词,寻文化基因,品文学之美”,某校对全体学生进行了古诗词知识测试,将成绩分为一般、良好、优秀三个等级,从中随机抽取部分学生的测试成绩,根据调查结果绘制成两幅不完整的统计图,根据图中信息,解答下列问题:(1)求本次抽样调查的人数;(2)在扇形统计图中,阴影部分对应的扇形圆心角的度数是;(3)将条形统计图补充完整;(4)该校共有1500名学生,根据抽样调查的结果,请你估计测试成绩达到优秀的学生人数.(★★★) 22. 如图,在△ABC中,AB= AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至E,使得OE= OB,连接AE.(1)求证:AE是⊙O的切线;(2)若BD= AD=4,求阴影部分的面积.(★★★★) 23. 如图,在平面直角坐标系中,四边形OABC为菱形,点A的坐标为,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求B点的坐标及∠AOC度数;(2)设△OMN的面积为S,直线l运动时间为t秒()①当,则能大致反映S与t的函数关系的图象是()A.B.C.D.②当时,直接写出S与t的函数表达式;(3)在题(2)的条件下,是否存在某一时刻,使得△OMN的面积与菱形OABC的面积之比为.如果存在,直接写出t值;如果不存在,请说明理由.(★★★★) 24. 如图,△ABC中,,,边BA绕点B顺时针旋转角得到线段BP,连接P A,PC,过点P作于点D.(1)如图1,若,______°;(2)如图2,若,求∠DPC的度数;(3)如图3,若,依题意补全图,并求出∠DPC的度数.(★★★★★) 25. 如图1,抛物线与x轴交于点A和点B,与y轴交于点C,直线经过点A和点C.(1)求抛物线的解析式;(2)如图2,点P为y轴左侧抛物线上一动点,连CP、CB和AP.①当点P在直线AC上方时,连PB交AC于D,记,求M的最大值及M取最大值时点P的坐标?②当点P满足时,直接写出P点坐标为______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作图判定
2018西城一模 16.阅读下面材料:
在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理. 已知:直线和直线外的一点.
求作:过点且与直线垂直的直线,垂足为点 某同学的作图步骤如下:
请你根据该同学的作图方法完成以下推理: ∵PA PB =,APQ ∠=∠__________, ∴PQ l ⊥
.(依据:
__________).
2018石景山一模
16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边,上分别取OM ON =; (2)利用两个三角板,分别过点,画OM ,ON 的垂线,
交点为; (3)画射线.
则射线为AOB ∠的平分线. 请写出小林的画法的依据.
2018平谷一模
16.下面是“作已知角的角平分线”的尺规作图过程.
请回答:该尺规作图的依据是.
2018怀柔一模
16. 阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
小明的作法如下:
请回答:该尺规作图的依据是____________________________. 2018海淀一模
16.下面是“过圆上一点作圆的切线”的尺规作图过程.
请回答:该尺规作图的依据是.
16.已知正方形ABCD.
求作:正方形ABCD的外接圆.
作法:如图,
(1)分别连接AC,BD,交于点O;
(2)以点O为圆心,OA长为半径作⊙.
⊙即为所求作的圆.
请回答:该作图的依据是_____________________________________.
2018朝阳一模
16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.
请回答:该尺规作图的依据是.
2018丰台一模
16.下面是“作一个角等于已知角”的尺规作图过程.请回答:该尺规作图的依据是.
2018大兴一模
16.下面是“求作∠AOB的角平分线”的尺规作图过程.
请回答:该尺规作图的依据是.
2018顺义一模
16.在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.小华的做法如下:
老师说:“小华的作法正确” .
请回答:小华的作图依据是.
2018通州一模
16. 尺规作图:过直线外一点作已知直线的平行线.
作法如下:
请回答:PM 平行与的依据是.
2018房山一模
16.如图,在平面直角坐标系xOy 中,点A (-3,0) ,B (-1,2) .以原点O 为旋转中心,将△AOB 顺时针旋转90°,再沿x 轴向右平移两个单位,得到△A’O’B’,其中点A’与点A 对应,点B’与点B 对应. 则点A’的坐标为__________,点B’的坐标为__________.
(1) 在直线上任取两点,,连接,
PM
2018燕山一模
16.在数学课上,老师提出如下问题:
曈曈的作法如下:
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是________________________.
2018门头沟一模
16.下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.。