八年级数学上册 第13章 三角形中的边角关系、命题与证明 课题 三角形中边的关系学案 (新版)沪科版
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 三角形内角和定理及推论
540°
3 4
720°
(2)如图,从n边形的一个顶点可以引出________条对角(线n-,3把) n边形分成 ________个三角形. n边形的内角和为______________(用含n的代数式表示); (n-2) (n-2)·180°
(3)请根据上面你所找到的规律计算十二边形的内角和. 解:十二边形的内角和为(12-2)×180°=1800°.
沪科版八年级上
第13章 三角形中的边角关系、命题与证明
13.2 三命题与证明 第3课时三角形内角和定理及推论
核心必知 1 180° 2 互余 3 互余
提示:点击 进入习题
1B 2C 3B 4 见习题 5C
答案显示
6 见习题 7 见习题 8B 9 50°或80° 10 见习题
11 见习题 12 见习题 13 见习题
证明:∵CD⊥AB,∴∠CDB=90°, ∴∠BCD=90°-∠B=28°, ∴∠FCD=∠ECB-∠BCD=16°. ∵∠CDF=74°, ∴∠CFD=180°-∠FCD-∠CDF=90°, ∴△CFD是直角三角形.
12.如图,有一艘渔船上午9时在A处沿正东方向航行,在A处测得灯塔C在北 偏东60°方向上,渔船行驶2h到达B处,在B处测得灯塔C在北偏东15° 方向上,试求△ABC各内角的度数.
10.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使 ∠CAD=∠D,求∠BAD的度数.
解:∵∠ACB=80°, ∴∠ACD=180°-∠ACB=180°-80°=100°. 又∵∠CAD=∠D,∠ACD+∠CAD+∠D=180°, ∴∠CAD=∠D=40°. 在△ABD中,∠BAD=180°-∠ABD-∠D= 180°-46°-40°=94°.
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段教案
第3课时三角形中几条重要线段教学目标【知识与技能】1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线.2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点.【过程与方法】经历探究三角形的高、角平分线、中线的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】1.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.2.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识.重点难点【重点】三角形的三条高、中线和角平分线的画法.【难点】钝角三角形三条高的画法.教学过程一、创设情境,导入新知师:我们在上节课把三角形按角进行了分类,我请几个同学回答一下什么是锐角三角形、什么是直角三角形、什么是钝角三角形.生甲:在三角形中,三个角都是锐角的三角形叫做锐角三角形.生乙:在三角形中,有一个角是直角的三角形叫做直角三角形.生丙:在三角形中,有一个角是钝角的三角形叫做钝角三角形.师:很好!我们上节课学习了一个重要的定理,大家还记得吗?生:记得.三角形三个内角的和等于180°.师:很好!这节课我们继续学习三角形的有关知识.二、共同探究,获取新知师:三角形中三条边、三个角是它的六个基本元素,除此之外,同学们通过预习,知道它还有什么元素吗?生:角平分线.师:什么是角平分线呢?生:三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线.师:还有什么元素?生:中线.师:什么是中线呢?生:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线. 师:还有什么元素呢?生:高.师:什么是高呢?生:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高. 学生熟记定义.师:你能根据这些线的定义作出这些线吗?生:能.师:现在请大家画一个三角形,并作出各个角的平分线.学生操作,教师巡视.教师在黑板上演示画一个角的平分线.∠1=∠2,BD是∠ABC的平分线.师:现在请大家重新画一个三角形,并作出这个三角形的三条中线.学生操作,教师巡视.教师在黑板上演示画一条中线.BD=DC,AD是BC边上的中线.师:现在请大家重新画一个三角形,并作出这个三角形的三条高.学生操作,教师巡视.教师在黑板上演示画三种类型的三角形的一条高线.锐角三角形BC边上的高直角三角形BC边上的高钝角三角形BC边上的高师:你能用折叠的方法作出一个角的平分线吗?学生思考,交流.生:能.师:你是怎样做的?生:先作出一个三角形,把它裁剪下来,我折叠要平分的这个角使它的两边重合,这样得到的折痕与这个角的对边有一个交点,连接这个角的顶点与这个交点得到的线段就是这个三角形的角平分线.师:你太聪明了.大家现在都知道怎么作的吗?生:知道.师:那么请同学们动手做一做.学生操作.师:你能用折叠的方法作出三角形的一条中线吗?学生思考,交流.生:能.师:你是怎么做的?生:要作出三角形一边上的中线,我折叠这条边,使其两端点重合,折痕与这条边的交点,就是这条边的中点.连接这条边所对角的顶点与这个中点,所得的线段就是这条边上的中线.师:现在请大家动手作出中线.学生操作.师:你能用折叠的方法作出三角形一边上的高吗?学生讨论.生:过这边所对角的顶点折叠三角形,使这条边的两段重合,这样就得到了三角形的高.师:很好,请大家动手做一做.学生操作,教师巡视指导.三、作图练习,理解定义师:三角形的角平分线的定义给出了角平分线的作法,请同学们在纸上画出一个三角形,并根据角平分线的定义,画出三个角的平分线.学生操作,教师巡视指导.师:请同学们再画出一个三角形,然后根据中线的定义,作出中线.学生操作,教师巡视指导.师:请同学们完成教材上“操作”的第1题.学生操作,教师巡视指导,最后集体订正.师:直角三角形的高中,有两条和边重合;钝角三角形的高中,有两条在三角形的外部.请同学们观察一下,你们作出的三条角平分线、三条中线和三条高,它们有什么特点?生甲:三条角平分线交于一点.生乙:三条中线交于一点.生丙:三条高交于一点.师:很好!之前学过的说明三角形意义的语句、本节中说明三角形角平分线意义的语句:“不在同一直线上的三条线段首尾依次相接所组成的图形叫做三角形”,“三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线”,分别是三角形、三角形角平分线的定义.七年级时我们也学过一些定义,如“整数和分数统称为有理数”是有理数的定义.前两个定义揭示了对象的特征性质,后一个定义明确了所指对象的范围.给出定义,就是在于明确研究对象是什么.四、课堂小结师:本节课我们学习了什么内容?生:我们学习了三角形的角平分线、中线和高的定义以及画法.师:对,我们由作图过程知道了三角形的三条角平分线、三条中线和三条高是交于一点的.教学反思本节课通过让学生自己动手作图,作出三角形三个角的平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的这些线是交于一点的,培养他们观察、总结的能力.通过实际动手得到的结论,他们的印象会更深刻,理解更透彻.这节课所讲授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,学习起来更容易.强调三角形中的三种线是“线段”,而不是以往的“射线”.。
八年级数学上册 第13章 三角形中的边角关系、命题与证明 13.1 三角形中的边角关系(第1课时)教
11
二、新课讲解
例 等腰三角形中,周长为18cm. (1)如果腰长是底边长的2倍,求各边长; (2)如果一边长为4cm,求另外两边长.
精选ppt
12
二、新课讲解
解:(1)设等腰三角形的底边长为 xcm,则腰长为2x cm.根
据题意,得
x+2x+=18.
解方程,得 x=3.6.
所以三角形的三边长分别为3.6cm、7.2cm、7.2cm.
走到点C,你有几条路可以
选择?各条线路的长一样
精选ppt
10
二、新课讲解
探究
三角形的边是三条线段,那么任
意三条线
(不一定)
段三条能线否段应组具成备一什么个条三件角才能形构呢成三?角形呢?
三角形两边的和大于第三边.
三角形两边的差小于第三边.
即a+b>c, b+c>a, c+a>b.
即a-b<c, b-c<精a选p,pt c-a<b.
15
四、强化训练
一个三角形有两条边相等,三角形的一边长3㎝,
另一边长5㎝,那么该三角形的周长是( D )
A、8 B、11 C、13 D、11或13
精选ppt
16
四、强化训练
下列长度的三条线段能否组成三角形?为什么?
(1) 3,4,8 (2) 2,5,6 (3) 4,6,10
( 不能) (能 ) ( 不能)
(2)若底边长为4cm,设腰长为x cm,根据题意,得
2x+4=18.
解方程,得 x=7.
若一条腰长为4cm,设底边长为x cm,则有 2×4+x=18.
解方程,得 x=10.
八年级数学上册第13章三角形中的边角关系、命题与证明13.2命题与证明教学
D A
∠CAD=∠B+∠C
B
C
2021/12/13
第十一页,共二十三页。
二、新课讲解
(jiǎngjiě)
探究 你能用推理的方法来论证∠ACD= ∠B+ ∠ A吗?
你能用几种方法呢?相信(xiāngxìn)你一定能行! A
B
2021/12/13
C
D
第十二页,共二十三页。
二、新课讲解
2021/12/13
第七页,共二十三页。
二、新课讲解
趁热打铁:
你能在下图中填出已知角是哪个三角形的外角(wài jiǎo)或内角吗?
1.∠ BEF是( △AE)C的外角(wài jiǎo),也是( △BEF、 △BEC
)的内角.
2.∠ BDC是( △ABD)的外角(wài jiǎo),也是(△BDC
八年级数学(shùxué)沪科版·上 册
第13章
三角形中的边角关系 、命题与证明 (guān xì)
13.2命题与证明(zhèngmíng)(第4课时)
2021/12/13
授课人:XXXX
第一页,共二十三页。
一、新课引入
三角形内角(nèi 和定理: jiǎo)
三角形的三个内角的和等于180°.
几何(பைடு நூலகம்ǐ hé)语言:在△ABC中,有∠A+∠B+∠C=180 °
(等量(děnɡ liànɡ)代换)
二、新课讲解
方法(fāngfǎ)
二: 擅长画平行线的小明用另一
A
E
种方法解释了这个性质,看
动画,你知道他是怎么解释
的吗?哪位同学(tóng xué)证明一
下.
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课
感悟新知
例4 如图,在△ABC 中,AD,BE 分别是△ABC, 知2-练 △ABD的中线. (1)若△ABD与△ADC的周长之差为 3,AB=8,求 AC 的长. (2)若S△AB间 的关系和面积之间的关系解题.
感悟新知
解:(1)因为AD为BC边上的中线,
B.CE是△BCD的角平分线 C. 3 1 ACB
2
D.CE是△ABC的角平分线
知1-练
感悟新知
知识点 2 三角形的中线
知2-讲
1.定义:连接三角形一个顶点和它对边的中点,所得的 线段叫做该三角形这条边上的中线.
2.位置图例:任何三角形的三条中线都交于一点,且该 点在三角形内部,如图,这 个点叫做三角形的重心.
感悟新知
总结
知2-讲
三角形的中线把边分成相等的两条线段,故BD=CD,
且△ ABD 的边BD上的高与△ACD 的边CD上的高相同,
根据等底同高的三角形的面积相等,可得所分得的两个
三角形的面积相等,即S△ ABD=S△ ADC=
1 2
S△ABC.
感悟新知
知2-练
例5 张大爷的两个儿子都长大成人了,也该分家了.
1 (中考·长沙)过△ABC的顶点A,作BC边上的高,以 下作法正确的是( )
感悟新知
知3-练
2 下列说法中正确的是( ) A.三角形的三条高都在三角形内 B.直角三角形只有一条高 C.锐角三角形的三条高都在三角形内 D.三角形每一边上的高都小于其他两边
感悟新知
知识点 4 定义
知4-讲
像这样能明确界定某个对象含义的语句叫做定义. 今后我们还会学习许多定义.
感悟新知
知3-练
解:以A,B,C,D,E中的三点为顶点的三角形有 △ABC,△ABD,△ABE,△ACD,△ACE,
八年级数学上册第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系第1课时三角形中边的
2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版的全部内容。
第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系第1课时三角形中边的关系◇教学目标◇【知识与技能】1。
认识三角形,理解三角形的三边关系;2.会对三角形按边分类。
【过程与方法】经历三角形边长的数量关系的探索过程,理解三角形的三边关系。
掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。
让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.◇教学重难点◇【教学重点】三角形三边关系的探究和归纳.【教学难点】三角形三边关系的应用。
◇教学过程◇一、情境导入看下列实物中,有你熟悉的图形吗?二、合作探究在小学数学中我们学习了有关三角形的一些初步知识,现在请观察上面的屋顶框架图,并思考以下问题:(1)你能从图中找出几个不同的三角形?这些三角形有什么共同的特点?(2)什么叫做三角形?(3)三角形的边可以怎么表示?问题1:研究三角形的三条边是否相等,有多少种可能的情况?结论:三角形中,三条边互不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形,其中相等的两边叫做腰,第三边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角;三条边都相等的三角形叫做等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选教案
课题:三角形中边的关系
【学习目标】
1.了解三角形的概念,掌握三角形三边关系;
2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵.【学习重点】
了解三角形的分类,弄清三角形三边关系.
【学习难点】
对两边之差小于第三边的领悟.
可编辑
行为提示:
点燃激情,引发学生思考本节课学什么.
行为提示:
教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
方法指导:
典例注意引导学生观察有公共边的三角形;注意不要漏数与多数.
情景导入生成问题
情境导入:
投影图片,把收集好的与三角形有关系的生活图片用投影仪播放,让学生对三角形有一个感性认识.如下图:
自学互研 生成能力
知识模块一 三角形定义与三角形的分类
阅读教材P 67的内容,回答下列问题:
什么叫三角形?三角形按边如何分类?
答:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.如图三角形ABC 记作△ABC ,三边为AB 、BC 、CA .三角形按边分类:
三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形(等边三角形是等腰三角形的特例)
典例1:如图,图中共有5个三角形,其中以BC 为一边的三角形是△CEB 、△CDB、△CAB;以∠A 为一个内
角的三角形是△ABE、△ABC.
第1题图
第2题图
典例2:在课堂上,老师在黑板上画出了如图所示的三个三角形,让同学们根据它们的边长进行分类,其中搭配错误的是( D)
A.①——不等边三角形B.②③——等腰三角形
C.③——等边三角形D.②③——等边三角形
典例3:一个三角形的周长为14cm,三边长度比为2∶2∶3,则此三角形的三边长分别为4cm,4cm,
6cm,按边分类,此三角形为等腰三角形.
知识模块二三角形三边关系
阅读教材P68的内容,回答下列问题:
在一个三角形中三边关系是什么?推理依据是什么?
答:三角形三边关系定理:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.推理依据:两点之间的所有连线中线段最短.
说明:
仿例2中在第三边长度未知的情况下,要运用“两边之和大于第三边及两边之差小于第三边”来确定范围.提示:
变例中,对于等腰三角形,告诉一边长为5cm,要考虑它为底或腰.
行为提示:
找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在小组展示的时候解决.
积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.典例:(2015·西宁中考)下列线段能构成三角形的是( B)
A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6
仿例1:在长为12cm、10cm、8cm、4cm的四根木条中选三根组成三角形,可以构成三角形的个数是( C)
A.1个B.2个C.3个D.4个
仿例2:已知三角形的两边的长分别是4cm和9cm.则第三边的长x的取值范围是5cm<x<13cm.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一三角形定义与三角形的分类
知识模块二三角形三边关系
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书
【课后检测】见学生用书
课后反思查漏补缺
1.收获:___________________________________________________________________ 2.存在困惑:__________________________________________________________。