大学数学函数的极限共40页
《高等数学极限》课件
THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。
函数的极限.ppt
② 解不等式
③取 ,
C x x0 ,
则当 0 x
得
x
x0
C
,
x0 时,总有
f
x
A
,
即
C
lim f (x) A
xx0
16
例3 证明:当 x0 0 时,lim xx0
x
x0 .
证: 对于 0, 由于
x x0
x x0 x x0
1 x0 x x0
要使
x
x0 , 只要
f x A C ,
x
(其中C为常数)
② 解不等式 C , 得 x C ,
x
③取M C , 则当 x M 时,总有 f x A , 即
lim f (x) A
x
19
例5 讨论函数
x,
f
(
x)
0,
x 0, x 0,
sin
1 x
x 0.
y
当x 0 时,函数 f ( x)的极限的情况。 1
x
x
x
1
0, 要使 2 x 1 2 ,
x
x
O
x
只要 x 2 即可,
取X
2
,
则当 x
X , 恒有
2 x x
1
.
lim 2 x 1.
x x
直线y 1是y 2 x 的图形的水平渐近线. x
18
注:用定义证明函数极限 lim f (x) A 的步骤 x
① 0, 由不等式 f x A , 经一系列地放大可得:
n
a
n存在。
反之,若
lim
n
a
n
lim n
f (n)不存在, lim x
函数的极限【高等数学PPT课件】
A(或f
( x0
0)
A)
右极限: 定理1
lim
xx0
f (x)
A(或f (x0
0)
A)
lim f (x) A lim f (x) lim f (x) A
xx0
xx0
xx0
x sin x, x 0
例1
试问函数f ( x)
10, x 0
(c) Sketch the graph of F.
例2 lim sin x不存在 x
lim sin 1 不存在.
x0
x
y sin 1 x
思考与练习
1. 若极限 lim f ( x) 存在, 是否一定有
x x0
lim f ( x) f ( x0 ) ?
x x0
2. 设函数 f ( x) a x2, x 1 且 2x 1, x 1
lim f ( x)
x1
存在, 则 a 3 .
3.Let F (x) x 2 1 .
x 1
(a) Find (i) lim F (x) x 2 1 .
x1
x 1
(ii) lim x1
F(x)
x2 1 .
x 1
(b) Does lim F(x). exist?
x1
lim f ( x) lim f ( x) lim f ( x) 不存在.
x0
x0
x0
二、函数极限的性质
1.惟一性
定理1 (极限的惟一性) 如果函数极限
存在,则极限值惟一.
2.有界性
定理2 (局部有界性)
如果极限 lim f (x) xx0
大学高数第一章函数和极限ppt课件
lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
解:由于函数表达式中带有| x | ,
y
所以要分别求函数的左右极限。
因为: lim | x | lim x 1,
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
变量 u 称为中间变量。
如:y sin3 x 可视为 y u3,u sin x 复合而成的 复合函数。 类似地,可以定义多于两重复合关系的复合函数。
11
例 已知 y arcsin[ln(x 1)]
(1)分析 y 的复合结构;(2)求 y 的定义域.
解:(1) y arcsinu , u ln v , v x 1
常见的周期函数有:sin x 、cos x 、tan x ,cot x
前两者周期为 2 ,后两者周期为 。
9
5.函数的有界性
若存在某个正数 M ,使得不等式 f (x) M
对于函数 f (x) 的定义域 D 内的一切 x 值都成立,则称函数 f (x) 在定义域内是有界函数; 如果这样的正数 M 不存在,则称函数 f (x) 在定义域 D 内是
高等数学-函数的极限PPT课件
则A是 f (x)当 x 的极限. 记为: lim f ( x) A. x
或者记为:当 x 时,f ( x) A.
从定义中得到: x X 包含了 x X 和x X .
所以: x 包含了 x 和 x . 于是有
定理:lim f ( x) A lim f ( x) A且 lim f ( x) A.
x
x
x
则有:lim(2 1 ) 2, limarctan x 不存在.
x
x
x
.
7
注意: 证明极限存在时,关键是任意给定 0, 寻找X.
求X的方法: 由 f (x) A 解出x
几何解释:
Aε f (x) Aε
AA
X
A X
或者记为:当 x 时,f ( x) A.
则有:lim (2 1 ) 2, limarctan x π
x
x
x
2
对于 y 2 1 ,lim (2 1 ) 2,lim (2 1 ) 2,那么 lim(2 1 ) ?
x x
x
x
或者从x0的两边同时接近于x0.
.
12
函数极限的几何意义
lim f ( x) A 0, 0, 使得当
xБайду номын сангаас x0
0 x x0 时, 恒有 f ( x) A 成立.
0
当 x U ( x0 ) 时,
函数f(x)的图形完全
y
y f (x)
落在以直线y=A为中
定义:如果 0, X 0, 使当 x X 时,恒有 f (x) A ,
高等数学第一章函数极限(共41张PPT)
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
注 :{ x 0 意 x x 0 } { x 0 x x 0 } { x x x 0 0 }
0 取 mx 0 i,n x 0 {}
当 0 |xx0|时恒有
| x x0||xxx 00|
例4 证明 lim a x 1 (a 1) x0 证 0 (不妨设ε<1)
要|使 ax1|
只 1 须 a x 1
又 la o ( 1 只 ) g x l须 a o ( 1 ) g
令 mia n 1 1 { ,llo o a(1 g g )}
x
问题: 如何用精确的数学数学语言刻划函数“无限 接近”.
f(x )A 表f(示 x )A 任;意小
xX表x示 的过 . 程
1. 定义 :
定义1 如果对于任意给定的正数 (不论它多么小), 总存在着正数X,使得对于适合不等式x X的一切 x,所对应的函数值f (x)都满足不等式f (x) A , 那末常数A就叫函数f (x)当x 时的极限,记作 limf(x) A 或 f(x)A(当x)
1. 定义:
定义2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值f (x) 都 满足不等式 f (x) A ,那末常数A 就叫函数
f (x)当x x0时的极限,记作
lim f (x) A 或
xx0
f (x) A(当x x0)
f ( xn )
函数极限的基本公式详解
函数极限的基本公式详解函数极限是微积分中的重要概念,用于描述自变量趋向于某一特定值时函数取的极限值。
在实际应用中,函数极限广泛地应用于计算、物理、经济等领域。
本文将详细解析函数极限的基本公式,以帮助读者更好地理解和运用这一概念。
一、极限定义函数极限是指当自变量无限接近于某一特定值时,函数的取值趋近于一个确定的值。
数学上,我们用极限符号来表示函数极限,即:lim f(x) = L (x→a)其中,f(x)为函数,L为极限值,x→a表示x趋向于a。
二、常用的函数极限公式无论是基础的或是复杂的函数,都有一些常用的极限公式。
下面将详解几个常用的函数极限公式。
1. 常函数的极限当函数为常数函数时,其极限值为该常数值。
例如,对于函数f(x)=3,当x趋向于任意值a时,函数的极限值为3。
2. 多项式函数的极限多项式函数包括线性函数、二次函数等。
对于一个n次多项式函数,当x趋向于无穷大时,其极限值为无穷大或无穷小。
例如,对于函数f(x)=2x^2+3x+1,当x趋向于无穷大时,函数的极限值为正无穷。
3. 幂函数的极限幂函数是指以x为底的指数函数,常见的幂函数有平方函数、立方函数等。
对于幂函数f(x)=x^n(n为常数),当x趋向于无穷大时,极限值根据幂指数n的奇偶性分为两种情况:- 当n为正偶数时,极限值为正无穷大;- 当n为正奇数时,极限值为负无穷大。
例如,对于函数f(x)=x^4,当x趋向于正无穷大时,函数的极限值为正无穷大。
4. 指数函数和对数函数的极限指数函数和对数函数在极限的运算中具有特殊的性质。
例如,对于指数函数f(x)=a^x,其中a为常数且大于0且不等于1,当x趋向于无穷大时,函数的极限值为无穷大;对于对数函数f(x)=log_a(x),当x趋向于无穷大时,函数的极限值为正无穷大。
5. 三角函数和反三角函数的极限三角函数包括正弦函数、余弦函数、正切函数等,而反三角函数则包括反正弦函数、反余弦函数、反正切函数等。
大学数学函数的极限
lim x2 1 2. x1 x 1
例2 证明 lim C C, (C为常数) x x0
证 0, 要使 f ( x) A C C 0 成立,
可任取一 0, 当 0 x x0 时
lim C C.
xx0
例3
证明 lim x x0
数f(x)当x→x0时的极限,记作
lim
x x0
f (x) A 或
f ( x) A( x x0 )
语言表述
0, 0,当 0 x x0 时有 f ( x) A
则 lim f ( x) A x x0
度量 f (x) 与 A的接近程度
lim(x 1) 2
x1
相似地 lim(x2 1) 1 x0
自变量趋于有限值时函数的极限
定义1 设函数f(x)在点x0的某一去心邻域内有定义,如果存
在常数A ,对于任意给定的正数ε(不论它多么小),总存 在正数δ,使得当x 满足不等式0<|x-x0|<δ时,对应的函 数值f(x)都满足不等式,| f(x)-A|<ε那么常数A就叫做函
f ( x0 ).
若Q( x0 ) 0, 则商的法则不能应用.
例3
求lim x3
x3 x2 9
x3
1
解
lim
x3
x2
9
lim
x3
x
3
lim1 x3
lim(x 3)
1 6
x3
例4
求lim x 1
2x 3 x2 5x
4
解 分母的极限 lim(x2 5x 4) 0,不能应用商的极限 x1
数学分析函数极限
极限的数学符号表示
表示方法
lim f(x) = A 当 x→x0
符号表示的意义
表示当x趋向于x0时,f(x)趋向于A。
03
函数极限的性质
极限的四则运算性质
极限的加法性质
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) + g(x)] = A + B。
数学分析函数极限
• 引言 • 函数极限的定义 • 函数极限的性质 • 函数极限存在的条件 • 无穷小量与无穷大量 • 函数极限的应用
01
引言
主题简介
01
函数极限是数学分析中的一个基 本概念,它描述了函数在某一点 附近的性质和行为。
02
极限的概念是微积分的基础,对 于理解连续函数、导数、积分等 概念至关重要。
极限的减法性质
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) - g(x)] = A - B。
极限的乘法性质
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) * g(x)] = A * B。
极限的除法性质
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B(B≠0),则 lim(x→x0) [f(x) / g(x)] = A
/ B。
极限的唯一性
极限的唯一性定理
若lim(x→∞) f(x)存在,则lim(x→∞) f(x)只有一个值。
唯一性定理的意义
确保函数在无穷大处的行为是确定的,没有歧义。
利用函数极限求函数的值
高数课件-函数的极限
25-15
注 2:X 的相应性 一般说,X 是随着ε的变小而变大的, 可写成 X= X(ε),但是这种写法并不意味着 X 是由ε唯一确
例 2.2.4 证明 lim ax 0 ,其中常数a 1 . x
证 对于任意给定的正数 (0 1) ,要使得 ax 0 ax ,
只须 x lg a lg ,即 x lg ,故取 X lg 0 ,当 x X 时,
lg a
lg a
恒有
ax 0
成立,所以 lim ax 0 . x
lim
x x0
sin
x
sin
x0
.
25-27
注
在利用定义来验证函数极限时,也可考虑对 |f(x) -A|进行放大,放大的原则与数列时的情形完全相同。此外还须注意
x=x 此时是在
0的附近考察问题的,对于“附近”应如何理解,请揣摩一
下。
单侧极限:
自变量 x 是指 x 无限增大.
如果只考察 x 0 , x 无限增大,就称 x 趋向正无穷大,
f
(x) .
25-30
极限自变量x的li某m变化过程 f (x) A 的整体刻画:
如果对于任意给定的正数 ε,当自变量 x 变化到一定的程 度时,恒有
| f (x) A |
成立,则有
lim
自变量x的某变化过程
f
(x)
A。
25-31
lim f (x) A
x
0,X 0,使当x X时,恒有 f (x) A lim f (x) A