初一合并同类项专项练习 (24)
初一合并同类项经典练习题
秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。
在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、 典型例题代数式求值例1 当12,2x y ==时,求代数式22112x xy y +++的值。
例2 已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式322325315x x y xy y +--的值。
例3已知25a b a b -=+,求代数式()()2232a b a b a b a b -+++-的值。
合并同类项例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号) =2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。
解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。
初一合并同类项练习题汇总带答案
初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。
为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。
一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。
2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。
3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。
4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。
5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。
6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。
7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。
8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。
二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。
2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。
七年级数学合并同类项练习题
七年级数学合并同类项练习题一、填空:(一) 基础知识部份:1.由 与 的乘积组成的代数式叫单项式,一个单2.几个 的和叫做多项式,不含字母项叫 项,多项式里次数最 项的次数,就是这个多项式的次数,如:多项式23413552x x x +--,共有 项,最高项的系数是 ,常数项是 ,这个多项式是 次 项式;3. 和 统称为整式,把下列代数式分别填在相应的括号里: 3m n ,1x ,2-,4x y -,27xy -,21x x --,23x y + 单项式{ };多项式{ };整 式{ }。
4.把一个多项式按某字母的指数由 到 的顺序排列叫做按这个字母的降幂排列,反之叫升幂排列;如多项式322235x y y x -+按x 降幂排列为 ,按y 的升幂排列为 ;5.所含字母相同,并且相同字母的 也分别相同的项叫做同类项。
若53m x y -和337n x y -是同类项,则mn = ;6.合并同类项的法则:①把同类项的系数 ,所得的结果作为系数;②字母和字母的指数保持 ;如合并同类项:226x y x y -+= ,3356x x -= (二)列代数式部分:1.三角形三边分别为x cm ,y cm ,z cm ,则其周长为 ________cm ;2.某本书原价是x 元,提价10%后的价格为 元;3.三个连续的奇数,最小的一个是21n -,则其后面两个分别为 、 ;4.设甲数为x ,用代数式表示乙数:①乙数比甲数的一半大2,则乙数为 ;②甲数的倒数比乙数小5,则乙数为 ;5.一个两位数,十位数字为x ,个位数字比十位数字少1,则这个两位数可用代数式表示为 ;6.一桶油重a kg ,桶重b kg ,现将油平均分成3份,每份油重 ________kg ;二、判断①34x -的项是3x ,4 ( ) ②25a -是由2a 和5-两项组成的一次二项式 ( )③235x y -与3227y x 是同类项( ) ④224352x x x -+= ( ) ⑤223302727a b ba -+=( ) ⑥()a b c a b c --+=--+ ( ) 三、选择题:1.单项式53a π-的系数是( )A .3B .3-C .3πD .3π-2.单项式235ab c 的次数是( )A .3B .5C .6D .73.下列单项中,书写最规范的一个是( )A .1aB .2x ⋅C .0.5xyD .112mn4.与2xy 是同类项的是( )A .2x yB .2axyC .2()xyD .22y x -5.下列合并同类项正确的是( )A .532y y -=B .22245a b ab ab -=C .770ab ba -=D .4515520x x x +=6.下列合并同类项正确的个数是( )①224a a a +=, ②22321xy xy -=,③121-+=,④33ab ab ab -=, ⑤333275x x x -=-A .1个B .2个C .3个D .5个7.a b c -+的相反数是( )A .a b c --B .b a c -+C .c a b -+D .b a c --8.不改变代数式25x x xy y -+-的值,把二次项放在前面带有“+”的括号里,一次项放在前面带有“-”号的括号里,正确的是( )A .2()(5)x xy x y +--B .2()(5)x xy x y ----C .2()(5)x xy y x ----D .2()(5)x xy y x -+--9.当5x =时,22()(21)x x x x ---+等于( )A .14-B .4C .4-D .110.减去2x -等于2639x x +-的代数式是( )A .269x -B .2659x x +-C .2659x x --+D .269x x +-四、解答题:(一)化简:(1)(87)(46)x y x y --- (2)(54)3(35)x x ---(3)(2)2(2)a a b a b --++- (4)22(975)(975)x x x x -+---+(5)222(26)4(353)a a a a --+-(二) 先化简,再求值:(1)2()(4)x y x y --+,其中112x =-,16y =- (2)22274(231)10(2)510x x x x -+--+,其中3x =- (三)某公园的门票价格是:成人20元,学生10元,满40人可以购买团体票(打8折),设一个旅游团共有x (40)x >人,其中学生y 人。
初一数学上册合并同类项计算题
初一数学上册合并同类项计算题1.某学校购买了一批文具,铅笔每支x元,共买了5支;圆珠笔每支y元,共买了3支;钢笔每支z元,共买了2支。
求购买这些文具的总花费的式子,并合并同类项。
2.一个长方形的长为3a+2b,宽为a-b,求这个长方形的周长的表达式,并合并同类项。
3.小明有3x个苹果,小红有2x个苹果,小刚有x个苹果,求他们三人苹果总数的表达式,并合并同类项。
4.某仓库有5箱重量为m千克的货物,3箱重量为n千克的货物,求货物的总重量的表达式,并合并同类项。
5.一辆汽车第一小时行驶了2x千米,第二小时行驶了3x千米,第三小时行驶了x千米,求这辆汽车三小时行驶的总路程的表达式,并合并同类项。
6.三个连续的奇数,中间的奇数为2n+1,求这三个奇数的和的表达式,并合并同类项。
7.有三个单项式:-2x²,3x²,x²,求它们的和的表达式,并合并同类项。
8.一个多项式为4a³+3a²+2a,另一个多项式为-a³-2a²-a,求这两个多项式的和的表达式,并合并同类项。
9.已知A=5x²y-3xy²,B=-2x²y+4xy²,求A+B的表达式,并合并同类项。
10.某班级男生有2m人,女生有3m人,后来转走了m人,求班级现有人数的表达式,并合并同类项。
11.图书馆有文学类书籍x本,科技类书籍2x本,漫画类书籍3x本,有人借走了2x本,求图书馆剩下书籍总数的表达式,并合并同类项。
12.有三个数,第一个数为3x-1,第二个数为2x+1,第三个数为x,求这三个数的和的表达式,并合并同类项。
13.一个三角形的三条边分别为2a+3b,a-2b,3a+b,求这个三角形的周长的表达式,并合并同类项。
14.小明有4x元零花钱,花了x元买文具,又得到2x元的奖励,求他现在零花钱的表达式,并合并同类项。
15.某商店第一天盈利3x元,第二天亏损2x元,第三天盈利x元,求这三天总盈利的表达式,并合并同类项。
合并同类项50题(有答案)
合并同类项50题(有答案)题目1:合并同类项:3x + 2x - 5x解答:3x + 2x - 5x = (3 + 2 - 5)x = 0x = 0题目2:合并同类项:4y + 7y - 2y解答:4y + 7y - 2y = (4 + 7 - 2)y = 9y题目3:合并同类项:2a^2 + 5a^2 - 3a^2解答:2a^2 + 5a^2 - 3a^2 = (2 + 5 - 3)a^2 = 4a^2题目4:合并同类项:6x^2y - 3x^2y + 2x^2y解答:6x^2y - 3x^2y + 2x^2y = (6 - 3 + 2)x^2y = 5x^2y题目5:合并同类项:8xy^2 - 2xy^2 + 3xy^2解答:8xy^2 - 2xy^2 + 3xy^2 = (8 - 2 + 3)xy^2 = 9xy^2题目6:合并同类项:-5a^3b + 2a^3b - 4a^3b解答:-5a^3b + 2a^3b - 4a^3b = (-5 + 2 - 4)a^3b = -7a^3b 题目7:合并同类项:3x^2 - 2x^2 + 6x^2解答:3x^2 - 2x^2 + 6x^2 = (3 - 2 + 6)x^2 = 7x^2题目8:合并同类项:4xy - 3xy + 5xy解答:4xy - 3xy + 5xy = (4 - 3 + 5)xy = 6xy题目9:合并同类项:7a^2b^2 - 2a^2b^2 + 3a^2b^2解答:7a^2b^2 - 2a^2b^2 + 3a^2b^2 = (7 - 2 + 3)a^2b^2 =8a^2b^2题目10:合并同类项:-6x^3y^2 + 4x^3y^2 - 2x^3y^2解答:-6x^3y^2 + 4x^3y^2 - 2x^3y^2 = (-6 + 4 - 2)x^3y^2 = -4x^3y^2题目11:合并同类项:3a + 2a - 4a + 5a解答:3a + 2a - 4a + 5a = (3 + 2 - 4 + 5)a = 6a题目12:合并同类项:-2b - 3b + 7b - 4b解答:-2b - 3b + 7b - 4b = (-2 - 3 + 7 - 4)b = -2b题目13:合并同类项:5x^2 + 6x^2 - 3x^2 + 2x^2解答:5x^2 + 6x^2 - 3x^2 + 2x^2 = (5 + 6 - 3 + 2)x^2 =10x^2题目14:合并同类项:8xy - 2xy + 3xy - 6xy解答:8xy - 2xy + 3xy - 6xy = (8 - 2 + 3 - 6)xy = 3xy题目15:合并同类项:-3a^2b + 2a^2b - 4a^2b + 6a^2b解答:-3a^2b + 2a^2b - 4a^2b + 6a^2b = (-3 + 2 - 4 + 6)a^2b = 1a^2b = ab解答:5x^3 - 3x^3 + 2x^3 - 6x^3 = (5 - 3 + 2 - 6)x^3 = -2x^3题目17:合并同类项:4y^2 - 2y^2 + 7y^2 - 3y^2解答:4y^2 - 2y^2 + 7y^2 - 3y^2 = (4 - 2 + 7 - 3)y^2 = 6y^2题目18:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目19:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目20:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目21:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5 + 2 - 4 + 3)a^2b = -4a^2b题目22:合并同类项:3x^3 - 2x^3 + 6x^3 - 4x^3解答:3x^3 - 2x^3 + 6x^3 - 4x^3 = (3 - 2 + 6 - 4)x^3 = 3x^3解答:4y^2 - 3y^2 + 7y^2 - 2y^2 = (4 - 3 + 7 - 2)y^2 = 6y^2题目24:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目25:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目26:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目27:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5。
七年级合并同类项50题计算题
七年级合并同类项50题计算题1. 3x + 2x2. 5y - 3y3. 7a + 3a - 2a4. 6b - 4b + 8b5. 2m^2 + 3m^2 - 5m^26. 4n^2 - 2n^2 + 7n^27. 9p - 5p + 2p8. 8q - 6q + 4q9. 3x^2y + 2x^2y - 4x^2y10. 5xy^2 - 3xy^2 + 2xy^211. 7a^2b + 2a^2b - 3a^2b12. 6x^3 - 4x^3 + 9x^313. 8y^3 - 5y^3 + 2y^314. 3m^3n + 2m^3n - 5m^3n15. 4p^3q - 3p^3q + 7p^3q16. 9r^2s - 6r^2s + 8r^2s17. 5t^2u - 2t^2u + 3t^2u18. 6v^2w - 4v^2w + 5v^2w19. 7x^4 + 3x^4 - 6x^420. 8y^4 - 5y^4 + 2y^421. 2a + 3b - 5a + 7b22. 4x - 6y + 2x + 8y23. 3m^2 + 2n^2 - 5m^2 - 7n^224. 5p^2 - 3q^2 + 7p^2 - 2q^225. 2x^2y + 3xy^2 - 4x^2y + 5xy^226. 6a^2b - 4ab^2 + 8a^2b - 3ab^227. 9m^3 - 5m^2n + 2m^3 + 3m^2n28. 8p^3q - 6p^2q^2 + 4p^3q - 2p^2q^229. 3x^4y^2 - 2x^3y^3 + 5x^4y^2 - 4x^3y^330. 7a^3b^2 - 5a^2b^3 + 9a^3b^2 - 6a^2b^331. 4m^2n + 3mn^2 - 7m^2n - 5mn^232. 6x^2y^2 - 4xy^3 + 8x^2y^2 - 3xy^333. 9a^4 - 6a^3b + 2a^4 + 5a^3b34. 8p^4q^2 - 5p^3q^3 + 4p^4q^2 - 3p^3q^335. 3x^5 - 2x^4 + 5x^5 - 4x^436. 7y^5 - 5y^4 + 9y^5 - 6y^437. 2a^2b + 3ab^2 - 5a^2b + 7ab^238. 4x^3y - 6x^2y^2 + 8x^3y - 5x^2y^239. 5m^4n^2 - 3m^3n^3 + 7m^4n^2 - 2m^3n^340. 6p^5q^3 - 4p^4q^4 + 8p^5q^3 - 3p^4q^441. 9x^6 - 6x^5 + 2x^6 - 5x^542. 8y^6 - 5y^5 + 3y^6 - 2y^543. 3a^3b^2 + 2a^2b^3 - 7a^3b^2 + 5a^2b^344. 4x^4y^3 - 6x^3y^4 + 8x^4y^3 - 5x^3y^445. 7m^5n^3 - 5m^4n^4 + 9m^5n^3 - 6m^4n^446. 6p^6q^4 - 4p^5q^5 + 8p^6q^4 - 3p^5q^547. 9x^7 - 6x^6 + 3x^7 - 5x^648. 8y^7 - 5y^6 + 2y^7 - 4y^649. 5a^4b^3 + 3a^3b^4 - 7a^4b^3 + 2a^3b^450. 6x^5y^4 - 4x^4y^5 + 8x^5y^4 - 3x^4y^5七年级合并同类项 20 题带解析。
(2021年整理)最新七年级数学·合并同类项专项练习题
最新七年级数学·合并同类项专项练习题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新七年级数学·合并同类项专项练习题(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新七年级数学·合并同类项专项练习题(推荐完整)的全部内容。
最新七年级数学·合并同类项专项练习题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望最新七年级数学·合并同类项专项练习题(推荐完整) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <最新七年级数学·合并同类项专项练习题(推荐完整)> 这篇文档的全部内容。
合并同类项或按要求计算:1、(3x-5y)-(6x+7y)+(9x—2y)2、2a-[3b—5a-(3a-5b)]3、(6m2n-5mn2)—6(m2n—mn2)4、m2+(—mn)—n2+(-m2)—(-0.5n2)5、2(4an+2—an)—3an+(an+1—2an+1)—(8an+2+3an)6、(x-y)2— (x—y)2-[(x-y)2-2(x-y)2]7、(3x2-2xy+7)—(—4x2+5xy+6) 8、3x2-1—2x—5+3x—x2 9、 -0。
初一合并同类项练习题
初一合并同类项练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN整式训练专题训练1.去括号:(1)a+(-b+c-d); (2)a-(-b+c-d) ;(3)-(p+q)+(m-n); (4)(r+s)-(p-q).2.化简:(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2); (8)3a2+a2-(2a2-2a)+(3a-a2)。
(9)102+199-99 (10)5040-297-15033.已知x+y=2,则x+y+3= ,5-x-y= .4.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)]; (2)3b-2c-[-4a+(c+3b)]+c.5. 化简2-[2(x+3y)-3(x-2y)]的结果是().去括号:-(2m-3); n-3(4-2m);(1) 16a-8(3b+4c);(2)-12(x+y)+14(p+q);(3)-8(3a-2ab+4);(4) 4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 2先去括号,再合并同类项:-2n-(3n-1); a-(5a-3b)+(2b-a);-3(2s-5)+6s; 1-(2a-1)-(3a+3);3(-ab+2a)-(3a-b); 14(abc-2a)+3(6a-2abc).9a3-[-6a2+2(a3-23a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.添括号专题训练A1.观察下面两题:(1)102+199-99;(2)5040-297-1503的简便方法计算解:(1)102+199-99 (2)5040-297-1503=102+(199-99) =5040-(297+1503)=102+100 =5040-1800=202; =3240你能归纳出添括号的法则吗?2.用简便方法计算:(1)214a-47a-53a;(2)-214a+39a+61a.3. 在下列( )里填上适当的项:(1)a+b+c-d=a+( ); (2)a-b+c-d=a-( );(3)x+2y-3z=2y-( )。
初一合并同类项练习题
整式训练专题训练1.去括号:(1)a+(-b+c-d);(2)a-(-b+c-d) ;(3)-(p+q)+(m-n);(4)(r+s)-(p-q).2.化简:(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2); (8)3a2+a2-(2a2-2a)+(3a-a2)。
(9)102+199-99 (10)5040-297-15033.已知x+y=2,则x+y+3= ,5-x-y= .4.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)];(2)3b-2c-[-4a+(c+3b)]+c.5. 化简2-[2(x+3y)-3(x-2y)]的结果是().去括号:-(2m-3);n-3(4-2m);(1)16a-8(3b+4c);(2)-12(x+y)+14(p+q);(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 2先去括号,再合并同类项:-2n-(3n-1);a-(5a-3b)+(2b-a);-3(2s-5)+6s;1-(2a-1)-(3a+3);3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).9a3-[-6a2+2(a3-23a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.添括号专题训练A1.观察下面两题:(1)102+199-99;(2)5040-297-1503的简便方法计算解:(1)102+199-99 (2)5040-297-1503=102+(199-99) =5040-(297+1503)=102+100 =5040-1800=202; =3240你能归纳出添括号的法则吗?2.用简便方法计算:(1)214a-47a-53a;(2)-214a+39a+61a.3. 在下列( )里填上适当的项:(1)a+b+c-d=a+( ); (2)a-b+c-d=a-( );(3)x+2y-3z=2y-( )。
初中合并同类项计算题(3篇)
第1篇一、题目1. 计算:3a - 2a + 4b - 5b + 6c - 7c2. 计算:2(x + 3) - 5(x - 2) + 4x3. 计算:3(2x - 4y + 5z) - 4(3x + 2y - z)4. 计算:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z)5. 计算:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^26. 计算:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x7. 计算:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2)8. 计算:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2)9. 计算:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2)10. 计算:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2)二、解答1. 首先合并同类项,即合并含有相同字母的项:3a - 2a + 4b - 5b + 6c - 7c = (3 - 2)a + (4 - 5)b + (6 - 7)c = a - b - c所以,计算结果为:a - b - c2. 首先去括号,然后合并同类项:2(x + 3) - 5(x - 2) + 4x = 2x + 6 - 5x + 10 + 4x= (2x - 5x + 4x) + (6 + 10)= x + 16所以,计算结果为:x + 163. 首先去括号,然后合并同类项:3(2x - 4y + 5z) - 4(3x + 2y - z) = 6x - 12y + 15z - 12x - 8y + 4z= (6x - 12x) + (-12y - 8y) + (15z + 4z)= -6x - 20y + 19z所以,计算结果为:-6x - 20y + 19z4. 首先去括号,然后合并同类项:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z) = -5x + 10y - 15z + 6x + 24y - 12z - 2x + 6y - 10z= (-5x + 6x - 2x) + (10y + 24y + 6y) + (-15z - 12z - 10z)= -x + 40y - 37z所以,计算结果为:-x + 40y - 37z5. 首先合并同类项:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^2 = (2a^2 + 4a^2) + (3ab - 2ab) + (-5b^2 + b^2)= 6a^2 + ab - 4b^2所以,计算结果为:6a^2 + ab - 4b^26. 首先合并同类项:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x = (-3x^2 + 4x^2) + (2x - 2x) + (-5y^2 + 3y)= x^2 + 3y - 5y^2所以,计算结果为:x^2 + 3y - 5y^27. 首先去括号,然后合并同类项:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2) = 4x^2 - 12xy + 8y^2 - 3x^2 - 6xy + 3y^2= (4x^2 - 3x^2) + (-12xy - 6xy) + (8y^2 + 3y^2)= x^2 - 18xy + 11y^2所以,计算结果为:x^2 - 18xy + 11y^28. 首先去括号,然后合并同类项:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2) = -2a^2 + 6ab - 4b^2 + 5a^2 + 20ab - 5b^2= (-2a^2 + 5a^2) + (6ab + 20ab) + (-4b^2 - 5b^2)= 3a^2 + 26ab - 9b^2所以,计算结果为:3a^2 + 26ab - 9b^29. 首先去括号,然后合并同类项:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2) = 6x^2 - 15xy + 9y^2 -12x^2 - 8xy + 8y^2= (6x^2 - 12x^2) + (-15xy - 8xy) + (9y^2 + 8y^2)= -6x^2 - 23xy + 17y^2所以,计算结果为:-6x^2 - 23xy + 17y^210. 首先去括号,然后合并同类项:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2) = -4a^2 + 8ab - 12b^2 + 3a^2 + 15ab - 12b^2= (-4a^2 + 3a^2) + (8ab + 15ab) + (-12b^2 - 12b^2)= -a^2 + 23ab - 24b^2所以,计算结果为:-a^2 + 23ab - 24b^2通过以上解答,我们可以看到合并同类项的计算方法。
初一合并同类项练习题
整式训练专题训练1.去括号:(1)a+(-b+c-d);(2)a-(-b+c-d) ;(3)-(p+q)+(m-n);(4)(r+s)-(p-q).2.化简:)(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5);!(5)(8x-3y)-(4x+3y-z)+2z;(6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。
(9)102+199-99 (10)5040-297-1503…3.已知x+y=2,则x+y+3= ,5-x-y= .4.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).#(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)];(2)3b-2c-[-4a+(c+3b)]+c.|5. 化简2-[2(x+3y)-3(x-2y)]的结果是().去括号:-(2m-3);n-3(4-2m);(1)16a-8(3b+4c);(2)-12(x+y)+14(p+q);%(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 2;先去括号,再合并同类项:-2n-(3n-1);a-(5a-3b)+(2b-a);-3(2s-5)+6s;1-(2a-1)-(3a+3);;3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).'9a3-[-6a2+2(a3-23a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).\11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么试解释其中的原因.。
7年级合并同类项计算题
7年级合并同类项计算题一、合并同类项计算题。
1. 化简:3x + 2x- 解析:同类项是指所含字母相同,并且相同字母的指数也相同的项。
在3x 和2x中,字母都是x,且指数都是1。
合并同类项就是把同类项的系数相加,字母和指数不变。
所以3x+2x=(3 + 2)x=5x。
2. 化简:4y-3y- 解析:4y和3y是同类项,将系数相减,字母和指数不变,4y-3y=(4 -3)y=y。
3. 化简:2a+3a - 5a- 解析:2a、3a和-5a是同类项,先把前面两项的系数相加,得到(2 +3)a=5a,再与-5a合并,5a-5a=(5 - 5)a = 0。
4. 化简:5x^2+3x^2- 解析:5x^2和3x^2是同类项,因为同类项要求字母相同且相同字母的指数也相同,这里字母是x,指数是2。
合并同类项时系数相加,字母和指数不变,所以5x^2+3x^2=(5 + 3)x^2 = 8x^2。
5. 化简:7y^3 - 4y^3- 解析:7y^3和-4y^3是同类项,合并同类项得(7-4)y^3 = 3y^3。
6. 化简:3ab+2ab - ab- 解析:3ab、2ab和-ab是同类项,先计算3ab+2ab=(3 + 2)ab = 5ab,再与-ab 合并,5ab - ab=(5 - 1)ab=4ab。
7. 化简:2x^2y+3x^2y - 5x^2y- 解析:这三项都是同类项,先算2x^2y+3x^2y=(2 + 3)x^2y = 5x^2y,再与-5x^2y合并,5x^2y-5x^2y=(5 - 5)x^2y = 0。
8. 化简:4a^2b - 2a^2b+3a^2b- 解析:4a^2b、-2a^2b和3a^2b是同类项,先计算4a^2b-2a^2b=(4 - 2)a^2b = 2a^2b,再与3a^2b相加,2a^2b+3a^2b=(2 + 3)a^2b = 5a^2b。
9. 化简:3m^3n - m^3n+2m^3n- 解析:这三项为同类项,先算3m^3n - m^3n=(3 - 1)m^3n = 2m^3n,再加上2m^3n,2m^3n+2m^3n=(2 + 2)m^3n = 4m^3n。
初一合并同类项经典练习题
初一合并同类项经典练习题代数式(复习课)一、典型例题代数式求值例1 当x 2,y 时,求代数式x2 xy y2 1的值。
例2 已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3 5x2y 3xy2 15y3的值。
例3已知合并同类项例1、合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解:(1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (及时合并同类项)=2a+8a-8b (去中括号)=10a-8b教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!1 ***** 2a b 3 a b 2a b的值。
5,求代数式a ba b2a b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。
解:(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3.计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体] 教师寄语:如果想要看得更远,那就需要站在巨人的肩膀上!2=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2。