高考数学一轮复习 第四章 导数及其应用 第22课 变化率与导数、导数的计算 文(含解析)【含答案】

合集下载

高中数学导数的概念及其意义

高中数学导数的概念及其意义

高中数学导数的概念及其意义
导数(Derivative)概念及意义
一、导数的定义
1、导数的定义
导数是一种描述曲线的变化率的度量,它表示的是做一个变量的变化
的大小和另一个变量的变化的方向以及变化的变化率之间的关系。

2、导数的计算公式
导数的计算公式为:y’=limΔx→0 (f(x+Δx)-f(x))/Δx,其中f(x)表示函数,Δx表示x在很小的量度上的变动值。

3、导数的形式表示
导数的形式有两种:一种是函数的图象,用斜率来表示;另一种是用
函数的微分式表示。

二、导数的意义
1、导数的实际意义
导数的实际意义是曲线某一点上的斜率,它表示曲线在该点处的变化率,也就是曲线在该点处的微小位移对应的函数值的变化率。

2、导数的数学意义
数学意义上,导数是一种尺度,也是一种衡量函数变化率的标准,它可以实现曲线的斜率变化规律,从而发现函数的性质,如果曲线的斜率变化率是恒定的,就可以称这种曲线为等差线。

3、导数的应用
导数的应用非常广泛,目前主要在图形科学、机器学习、控制理论和金融计算等领域。

2023年高考数学(文科)一轮复习——导数的概念及运算

2023年高考数学(文科)一轮复习——导数的概念及运算

第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。

高考数学第一轮复习教案导数精选

高考数学第一轮复习教案导数精选

高考数学第一轮复习教案导数复习目标1. 了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的根底上抽象出变化率的概念.2熟记根本导数公式,掌握两个函数四那么运算的求导法那么和复合函数的求导法那么,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大〔小〕值的问题,掌握导数的根本应用.3. 了解函数的和、差、积的求导法那么的推导,掌握两个函数的商的求导法那么.能正确运用函数的和、差、积的求导法那么及已有的导数公式求某些简单函数的导数^4. 了解复合函数的概念.会将一个函数的复合过程进行分解或将几个函数进行复合.掌握复合函数的求导法那么,并会用法那么解决一些简单问题 .三、根底知识梳理:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具.在高中阶段对于导数的学习,主要是以下几个方面:1 .导数的常规问题:〔1〕刻画函数〔比初等方法精确细微〕;〔2〕同几何中切线联系〔导数方法可用于研究平面曲线的切线〕;〔3〕应用问题〔初等方法往往技巧性要求较高,而导数方法显得简便〕等关于n次多项式的导数问题属于较难类型.2 .关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便^3 .导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合水平的一个方向,应引起注意.4 .瞬时速度物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻〔或某一位置〕的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度.5 .导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法那么与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点:(1) Ax是自变量x在X o处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△ x-O 时,—y有极限,那么函数y=f(x)在点x0处x可导或可微,才能得到f(x)在点x0处的导数.(3)如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.由导数定义求导数,是求导数的根本方法,必须严格按以下三个步骤进行:(1)求函数的增量y f(x0x) f(x0);(2)求平均变化率一y ——x)—f-(x^);(3)取极限,得导数f'(x0) lim —y .x x x 0 x6 .导数的几何意义函数y=f(x)在点x o处的导数,就是曲线y=(x)在点P(x o, f (x o))处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:⑴求出函数y=f(x)在点x o处的导数,即曲线y=f(x)在点P(x o, f (x o))处的切线的斜率;(2)在切点坐标和切线斜率的条件下,求得切线方程为y y o f'(x o)(x x o)特别地,如果曲线y=f(x)在点P(x o, f (x o))处的切线平行于y轴,这时导数不存,根据切线定义,可得切线方程为x x o7 .导数与函数的单调性的关系㈠f (x) o与f(x)为增函数的关系.3f (x) 0能推出f(x)为增函数,但反之不一定.如函数f(x) x在(,)上单调递增,但f (x) 0, f (x) 0是f(x)为增函数的充分不必要条件.㈡f (x) 0 时, f (x) 0 与f (x) 为增函数的关系.假设将f (x) 0的根作为分界点,由于规定 f (x) 0 ,即抠去了分界点,此时 f (x) 为增函数,就一定有f (x) 0.,当f (x) 0时,f (x) 0是f(x)为增函数的充分必要条件.㈢f (x) 0 与f (x) 为增函数的关系.f(x) 为增函数,一定可以推出 f (x) 0,但反之不一定,由于 f (x) 0,即为f (x) 0或f (x) 0 .当函数在某个区间内恒有 f (x) 0,那么f(x)为常数,函数不具有单调性..•. f (x) 0是f (x)为增函数的必要不充分条件.㈣单调区间的求解过程y f (x)( 1)分析y f (x) 的定义域;( 2)求导数y f (x)( 3)解不等式 f (x) 0,解集在定义域内的局部为增区间( 4)解不等式 f (x) 0 ,解集在定义域内的局部为减区间我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性. 以下以增函数为例作简单的分析,前提条件都是函数y f (x) 在某个区间内可导.㈤函数单调区间的合并函数单调区间的合并主要依据是函数f(x)在(a,b)单调递增,在(b,c)单调递增,又知函数在f(x) b处连续,因此f(x)在(a,c)单调递增.同理减区间的合并也是如此,即相邻区间的单调性相同, 且在公共点处函数连续,那么二区间就可以合并为以个区间.8 . y f (x) x [a , b](1)f (x) 0恒成立.. y 〞*)为(2,3上•••对任意x (a,b)不等式f(a) f(x) f(b) 恒成立(2) f (x) 0恒成立y f (x)在(a,b)上四、经典例题解析:2 - c(i)求a 和b 的值;(n)讨论 f(x)的单倜性;(出)设 g(x) - x 3 x 2,试比拟 3小.解:(I)由于 f (x) e x 1(2x x 2) 3ax 2 2bx xe x 1 (x 2) x(3ax 2b), 又x 2和x 1为f (x)的极值点,所以f ( 2) f(1) 0,因此6a 2b 0'解方程组得a Lb 1.3 3a 2b 0,3一. 1E)由于 a 3 b 1,所以 f(x)x(x 2)(e1),令 f (x) 0,解得 x 12 , x 2 0 , x 31 .由于当 x (, 2) U(01)时,f (x)当x ( 2,0)U(1,)时,f (x) 0.所以f(x)在(2,0)和(1,)上是单调递增的; 在(,2)和(0,1)上是单调递减的.2 x 113 2 2 x 1 3 2 . x 1(出)由(I)可知 f (x) x e - x x ,故 f (x) g(x) x e x x (e 3 ....................................... - ...........人 x 1 x 1金_h(x) ex,…那么 h (x) e 1 .令 h (x) 0 ,得 x 1 ,由于x ,1时,h (x) 0 0,所以h(x)在x ,1上单调递减.故 x,1 时,h(x)> h(1) 0;由于 x 1,时,h(x)>0,所以h(x)在x 1,上单调递增.故x 1, 时,h(x) > h(1) 0.所以对任意x (,),恒有h(x) > 0 ,又x 2 2 0 ,对任意x (a ,b)不等式f(a)f (x) f(b)恒成立例1设函数f(x)2 x 1 3.2x e ax bx , x2和x 1为f(x)的极值点.f (x)与g(x)的大0;x)说明:此题主要考查函数的极值及利用导数解决函数单调性问题,另外利用导数证实不等式也是高考不科 无视的考查方向.所以,当b 2时,函数f(x)在(,b 1)上单调递减,在(b 1,1)上单调递增, 在(1,)上单调递减.当b 2时,函数f(x)在(,1)上单调递减,在(1, b 1)上单调递增,在(b 1,)上单调递减., r , 2 ~ 一., .................. ...............................当b 1 1,即b 2时,f(x)所以函数f (x)在(,1)上单调递减,在(1,)上单调递减.x 1a例3.函数f x x — b x 0 ,其中a,b R .x(i)假设曲线 y f x 在点P 2, f 2处的切线方程为y 3x 1,求函数f x 的解析式; (n)讨论函数 f x 的单调性;因此f(x) g(x) > 0 ,故对任意x (),恒有 f (x) > g(x).例2.函数f(x )2( x 1)2 解:f (x)- ---- -令 f (x) 0,得 x b 当b 1 1,即b 2时,当b 1 1 ,即b 2时------ ,求导函数 f (x),并确£ (x1)2(2x b) 2(x 1) 2x 2b (x 1)4(x 1)31 .,f (x)的变化情况如下表:x (, b 1) b 1f (x),f (x)的变化情况如下表:x (,1) (1, b 1)f (x)三f(x)的单调区间.22[x (b 1)] 3(b 11)(1,)b 1 (b 1,)从而得b 7,所以满足条件的b 的取值范围是(,7]. 44说明:本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等根底知识,考查运算能 力、综合分析和解决问题的水平.t 表示时间,以月为单位,年初为起点,根据历年数据,某水库1(出)右对于任息的 a — ,2 ,不等式f x2.110在一1上恒成乂, 4求b 的取值范围a解:(I) f (x) 1 一,由导数的几何意义得 f (2) 3,于是a 8. x 由切点P(2, f(2))在直线y 3x 1上可得 2 b 7,解得b 9.所以函数f(x)的解析式为f(x) x - 9. xa(n) f (x) 1 —. x当a 0时,显然f (x) 0(x 0) .这时f(x)在(,0), (0,)内是增函数. 当a 0时,令f (x) 0,解得x B当x 变化时,f (x), f (x)的变化情况如下表:x (, a) 、,a (、.a,0) (0, ■ a)、.a (、. a,)f (x) + 0f (x)/ 极大值 \\ 极小值所以f (x)在(Va) , (ja,)内是增函数,在(ja,0) , (0, Va)内是减函数.(m)由(n)知,,1 ,,…,,… f (x)在[一 1]上的最大值为1 -f(一)与f (1)中的较大者,对于任意的 41 … a [-,2],不等2 1 一 , ,一」式f (x) 10在[1,1]上恒成立,当且仅当,1f(1) 10 即 b 4 5即 f(1) 10 b39 , 4a 一一,, 4 ,对任息的a 9 a1~ [-,2]成立. 2例4.水库的蓄水量随时间而变化,现用的蓄水量(单位:亿立方米)关于t的近似函数关系式为V(t)= ( t2 14t 40)e450,0 t 10,4(t 10)(3t 41) 50,10 t 12(I)该水库的蓄水量小于50的时期称为枯水期.以i—1vtvi表示第i月份(i=1,2, (12),问一年内哪几个月份是枯水期?(n )求一年内该水库的最大蓄水量(取e=2.7计算).…,、…,?…,2 ,1t解:(I)①当0V t 10 时,V(t)=( — t+14t —40) e450 50,化简得t2—14t+40>0,解得t V 4,或t > 10,又0V t 10,故0V tv 4.②当10V t 12 时,V (t) =4 (t—10) (3t —41) +50V 50,41化简彳#(t—10) (3t —41) v 0,解得10vt v —,又10V t 12,故10V t 12.3综合得0v t <4,或10<t 12,故知枯水期为1月,2月,3月,4月,11月,12月共6个月.(n )由(I )知:V(t)的最大值只能在(4, 10)内到达.1t一 3 11t8),由V (t) =e4( -t23t 4) -e4 (t2)(t4 2 4令V (t)=0,解得t=8(t= -2 舍去).当t变化时,V' (t)与V( t)的变化情况如下表:(4,8) (8,10)V' (t)Mt) 极大值由上表,V(t)在t = 8时取得最大值V8) =8e2+50- 108.32(亿立方米).故知一年内该水库白最大蓄水量是108.32亿立方米说明:本小题主要考查函数、导数和不等式等根本知识,考查用导数求最值和综合运用数学知识解决实际 问题水平........ kx 1例5.函数f(x) f (c 0且c 1, k R )恰有一个极大值点和一个极小值点,其中一个是 x c x c.(I)求函数f(x)的另一个极值点;(n)求函数f(x)的极大值M 和极小值m ,并求M m>1时k 的取值范围.-22k(x c) 2x(kx 1) kx 2x ck解:(I) f (x) — ----------------- 2 ----- 2 ------ -------- 2 -----2一,由题意知 f ( c) 0 ,(x c) (x c)2.即得 c k 2c ck 0, (*)Qc 0, k 0., … 2 rr2 (n)由(*)式得 k ---------------- ,即 c 1 -.c 1k当 c 1时,k 0;当 0 c 1时,k 2.M m- k2 1 -"恒成立.综上可知,所求 k 的取值范围为(,2)U[J2,).由 f (x) 0得 kx 22x ck 0,由韦达定理知另一个极值点为(i)当 k 0时,f(x)在(,c)和(1,)内是减函数,在(c,1)内是增函数. k 1 k f ⑴.2 °, m f( c)kc 1 k 22~~cc 2(k 2)k 22(k 2)0,解得(ii )当 k 2 时,f(x)在(,c)和(1,)内是增函数,在(c,1)内是减函数.f( c)k 2 2(k 2)kf (1) — 02求证以下不等式(1)2xx ——ln( 1 x) x2 2(1 x)x (0,(2)2x ,一、sin x ——x (0 ,—) 2(3) x sin x tanx x (0, 一)2证实: f (x) ln(1 x) (x2-)2f(0) 0x2 1------- 0x 1f(x)为(0, )上x (0, f(x) 0 恒成立••• ln(12 x x) x —2g(x) --------- ln( 12(1 x)x) g(0)g (x)4x24x 2x21 -------------- 2-4(1 x)22x24(1g(x)在(0 , )上x (0,2(1 x)ln(1 x) 0恒成立(2)原式sin x令f (x) sin x/xx (0,2) cosx x tanx•• f (x)cosx(x tanx)(0;f(x) 0 (0,-)• sin x2x(3)令f(x) tanx 2x sin x f(0)f (x) sec2 x 八(1 cosx)(cos x2 cosx ----------------- --- 2-cos xsin2 x)x (0,-) f (x) 0 (0,-)2 2tanx x x sin x说明:利用导数证实不等式这一局部内容不可无视,它本质是还是考查利用导数研究函数的单调性及最值问题.五、强化跟踪:x 0x1 .设函数f(x)在*0处可导,那么lim f(x0 x)f(x0)等于A f'(x.)B . f'( x0)C , f'( x0)D . f( x0)f(x0 2 x) f(x.)2.右lim ------------------------------ 1 ,那么f (x0)等于( )x 0 3 xA. 2 B .3 C . 3 D . 23 23 .曲线y x3 3x上切线平行于x轴的点的坐标是( )A (-1,2)B , (1,-2)C . (1,2)D . ( -1 , 2)或(1 , -2 )4 .假设函数f(x)的导数为f ' (x)=-sinx ,那么函数图像在点(4, f (4))处的切线的倾斜角为()A 90°B .0°C .锐角D .钝角5 .函数y 2x33x2 12x 5在[0 , 3]上的最大值、最小值分别是( )A. 5, —15B. 5,-4C. —4, —15D. 5, —16s6 . 一直线运动的物体,从时间t到t+ At时,物体的位移为△ s,那么lim ——为( )0 ttA从时间t至ij t+ At时,物体的平均速度 B.时间t时该物体的瞬时速度C.当时间为^ t时该物体的速度 D .从时间t到t+ At时位移的平均变化率7 .关于函数f(x)2x3 6x2 7 ,以下说法不正确的选项是A.在区间( ,0)内,f(x)为增函数B .在区间(0, 2)内,f(x)为减函数D.在区间( ,0)(2,)内,f(x)为增函数 8 .对任意x,有f'(x)4x 3, f(1)=-1 ,那么此函数为()4_4___4_4 一A f (x) xB . f(x) x 2C . f(x) x 1D . f(x) x 29 .函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是()A.5 , -15B.5,4C.-4 , -15D.5 ,-1610 .设f(x)在X O 处可导,以下式子中与f'(x .)相等的是⑴ l …:(xo2x);..f(X o X) f (X O X) lim -----------x 0 V11 . f ( x )是定义在区间[—c,c ]上的奇函数,其图象如下图:令 g (x)的表达正确的选项是()A.假设a <0,那么函数g ( x)的图象关于原点对称.B.假设a=-1, — 2<b<0,那么方程g (x) =0有大于2的实根.C.假设awo,b=2,那么方程g ( x) =0有两个实根D.假设a>1,b<2,那么方程g ( x) =0有三个实根12 .假设函数f(x)在点X O 处的导数存在,那么它所对应的曲线在点 13 .设f(x) x 1,那么它与x 轴交点处的切线的方程为 . x14 .设 f'(x 0)3,那么 limf(Xo h)-f(Xo 3h).h 0h15 .垂直于直线2x-6y+1=0 ,且与曲线y x 3 3x 2 5相切的直线的方程是⑶lx mf (X O 2 x) f (X Ox)(4)lx mf (X O x) f (X O 2 x)A (1) (2)B . (1) (3) C(2) (3) D (1) (2) (3) (4)C.在区间(2,)内,f(x)为增函数+b,那么以下关于函数(X O , f(X o ))处的切线方程是16 .曲线y17 . y=x 2e x 的单调递增区间是18 .曲线y 3]3x2—1在点(1,3/4)处的切线方程为1 ...............................19 . P 是抛物线y X 2上的点,假设过点 P 的切线方程与直线 y -x 1垂直,那么过P 点处的切线方程是220 .在抛物线y x 2上依次取两点,它们的横坐标分别为X 1 1, X 2 3,假设抛物线上过点 P 的切线与过这两点的割线平行,那么 P 点的坐标为 .21 .曲线f(x) x 3在点A 处的切线的斜率为 3,求该曲线在 A 点处的切线方程.22 .在抛物线y x 2上求一点P,使过点P 的切线和直线3x-y+1=0的夹角为一.4__ x(x 0)23 .判断函数f(x) ')在x=0处是否可导.x(x 0)24 .求经过点(2, 0)且与曲线y 1相切的直线方程. x25 .曲线C 1 : y x 2与C 2: y (x 2)2 .直线l 与C 1、C 2«W,求直线l 的方程. 六.参考答案:1 — 5 CBDCA 6 —10 BDBAB 11 B 12 . y f (X O ) f'(X O )(X X O )1317. (-8,-2)与(0,+ oo) 18. x V2y 1 019 . 2x-y-1=020. ( 2, 4) 21 .由导数定义求得f'(x) 3x 2,y=2(x-1)或 y=2(x+1)14 . -6 153x+y+6=0 16令 3x 2 3 ,那么 x= ± 1.当x=1时,切点为(1,1),所以该曲线在(1, 1)处的切线方程为 y-1=3(x-1)即3x-y-2=0 ; 当x=-1时,那么切点坐标为(-1,-1),所以该曲线在(-1,-1)处的切线方程为 y+1=3(x+1)即3x- y+2=0.22.由导数定义得f' (x)=2x,设曲线上 P 点的坐标为(x 0,y 0),那么该点处切线的斜率为 k p 2x 0,根据2x .3limx 0y二•lim ——不存在.x 0x,函数f(x)在x=0处不可导.1lim --------------- x 0x 0(x 0x)夹角公式有2x o 3 解得x 01或x o由x 0得y 016, 一 八 1 1、 那么P (-1, 1)或 P(-,—).4 1623- limx 0limx 0f(0f(0)limx 0limx 0limx 0f(0 x) f(0)xlimx 024.可以验证点 (2, 0)不在曲线上,故设切点为P (x 0, y 0).由 y'|x x 0lim xxx .x 0xlim ------------- x ------ x 0x (x 0 x) x 01~~2, x 01 得所求直线方程为y y0 」2(x x o).X.由点(2, 0)在直线上,得x:y. 2 X o,再由P(X o,y.)在曲线上,得x.y. 1,联立可解得x0 1 , y01.所求直线方程为x+y-2=0.25.解:设l与G相切于点P(x1,x;),与C2相切于Q(x2,① 2)2).对C1 : y' 2x ,那么与C1相切于2 2点P的切线方程为y x1 2x1( x x1),即y 2x1x x1 . ①2对C2:y' 2(x 2),那么与C2相切于点Q的切线方程为y (x2 2) 2(x2 2)(x x2),即2y 2( x22)x x2 4. ②2x1 2M 2) x 0, x 2•••两切线重合,・•.12 2 2,解得1 ,或1 ,x;x2 4 x22; x20「•直线方程为y=0或y=4x-4.。

高考总复习一轮数学精品课件 第四章 一元函数的导数及其应用 第一节 导数的概念、几何意义及运算

高考总复习一轮数学精品课件 第四章 一元函数的导数及其应用 第一节 导数的概念、几何意义及运算

(+1)
(+1)
(+1)
e
e
e
e
y-2 = 4(x-1),即 y=4x+4.故选 C.
e
e
y'|x=1= =k.在点(1, )处的切
4
2
(2)当 x>0 时,y=ln x,设切点坐标为(x1,ln x1)(x1>0),则由
1
y'=,得切线斜率
1
1
k= ,从而切线方程为 y-ln x1= (x-x1).∵该切线经过原点,
f'(x)= -sin x
f'(x)= axln a
f(x)=ex
f'(x)= ex
f(x)=cos x
f(x)=logax(a>0,且a≠1)
f'(x)=
f(x)=ln x
f'(x)=
1
ln
1

4.导数的四则运算法则
(1)[f(x)±g(x)]'= f'(x)±g'(x) .
(2)[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x)
,特别地,[cf(x)]'=
'()()-()'()
(3)
()
()
'=
[()]2
(g(x)≠0).
cf'(x) .
5.复合函数的导数
(1)复合函数的概念:一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变
量u,y可以表示成 x 的函数,那么称这个函数为函数y=f(u)和u=g(x)的复
时,f'(x)就是x的函数,我们称它为函数y=f(x)的导函数(简称为导数),即

导数与函数的单调性高三数学一轮复习课件

导数与函数的单调性高三数学一轮复习课件
答案: g'(x)=3x^26x+2,g'(x)在 [1,2]上单调递减, 所以g(x)在[1,2]
上单调递减
答案:g'(x)=3x^2-6x+2,g'(x)在[1,2]上单调递减,所以g(x)在[1,2]上单调递减
题目:求函数 h(x)=x^33x^2+2x+1在区 间[-2,2]上的极值
答案: h'(x)=3x^26x+2,h'(x)^26x+2,g'(x)在 区间[1,2]上单调 递减,所以g(x) 在区间[1,2]上单 调递减
综合练习题三及答案
题目:求函数f(x)=x^33x^2+2x+1在区间[-1,1]上的单 调性
题目:求函数g(x)=x^33x^2+2x+1在区间[-1,1]上的极 值
添加标题
上单调递增
综合练习题二及答案
题目:求函数 f(x)=x^33x^2+2x+1在 区间[-1,1]上的 单调性
答案: f'(x)=3x^26x+2,f'(x)在 区间[-1,1]上单 调递增,所以f(x) 在区间[-1,1]上 单调递增
题目:求函数 g(x)=x^33x^2+2x+1在 区间[1,2]上的单 调性

导数的应用举例
判断函数的单调性:通过导 数判断函数的增减性
求函数的极值:通过导数求 解函数的最大值和最小值
求函数的切线:通过导数求 解函数的切线方程
求函数的凹凸性:通过导数 判断函数的凹凸性
03
函数的单调性
单调性的定义与判断方法
判断方法:利用导数判断,如果 导数大于0,则函数在该区间内 单调递增;如果导数小于0,则 函数在该区间内单调递减

人教版高考总复习一轮数学精品课件 主题二 函数 第四章 第一节 导数的概念及其意义、导数的运算

人教版高考总复习一轮数学精品课件 主题二 函数 第四章 第一节 导数的概念及其意义、导数的运算

(2)过点处的切线,该点不一定是切点,切线至少有一条.
1
3.[

]′ =
−′
[ ]2
≠0 .
4.奇函数的导数是偶函数,偶函数的导数是奇函数.
自测诊断
1.下列函数的求导正确的是( B )
A. −2 ′ = −2B. cos ′ = cos − sin
C. ln 10 ′ =
A.6.8 m/s2 B.7.6 m/s2 C.7 m/s 2 D.7.8 m/s 2
[解析]因为 = . + . ,所以′ = . + . .令 = ,得
. + . = ,解得 = 或 = −

(舍去),则当

= 时,
′ = . + . × = . ,即速度首次达到 /时的加速度为. / .故选B.
函数 = 在点0 处的导数的几何意义就是曲线 = 在点 0 , 0 处的
切线的斜率
′ 0
_____________.也就是说,曲线
= 在点 0 , 0 处的切线的斜率是_______.
− 0 = ′ 0 − 0
相应的切线方程为______________________.
三、导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
= (为常数)
0
′ =___
= ( ∈ ,且 ≠ 1)
−1
′ =_______
= sin
cos
′ =______
= cos
−sin
′ =________
= ′ ⋅ .
知识拓展

高考数学一轮总复习课件:导数的概念与运算

高考数学一轮总复习课件:导数的概念与运算

(4)f(x)= 1-1 2x2;
π (5)f(x)=cos(3x2- 6 ).
【解析】 (1)∵f′(x)=(2x5+8x4-5x3+2x2+8x-5)′,
∴f′(x)=10x4+32x3-15x2+4x+8.
(2)∵f(x)=11+ -
xx+11+-
x x
=(1+ 1-xx)2+(1- 1-xx)2
π 5.设正弦函数y=sinx在x=0和x= 2 处的瞬时变化率为
k1,k2,则k1,k2的大小关系为( A )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
解析 ∵y=sinx,∴y′=(sinx)′=cosx. π
k1=cos0=1,k2=cos 2 =0,∴k1>k2.
授人以渔
题型一 导数的概念(自主学习)
(3)设切点为(x0,y0),则切线的斜率为k=x02=1, 解得x0=±1,故切点为1,53或(-1,1). 故所求切线方程为y-53=x-1或y-1=x+1. 即3x-3y+2=0或x-y+2=0.
【答案】 (1)4x-y-4=0 (2)4x-y-4=0或x-y+2=0 (3)3x-3y+2=0或x-y+2=0
状元笔记
求曲线的切线方程的两种类型 (1)在求曲线的切线方程时,注意两个“说法”:求曲线在 点P处的切线方程和求曲线过点P的切线方程,在点P处的切线, 一定是以点P为切点;过点P的切线,不确定点P在不在曲线上, 点P不一定是切点. (2)求曲线过点P(x0,y0)的切线方程的步骤为: 第一步,设出切点坐标P′(x1,f(x1));
数的平均变化率Δ Δyx的极限是否存在.
(2)利用导数定义求函数的导数时,先算函数的增量Δy,

2020年高考数学一轮复习:第22课__导数在实际问题中的应用

2020年高考数学一轮复习:第22课__导数在实际问题中的应用

____第22课__导数在实际问题中的应用____能够运用所学的函数知识、思想和方法,运用所给的函数模型或构造相应的函数模型,将一些简单的实际问题转化为相应的导数问题,会利用导数方法求解有关利润最大、用料最省、效率最高等最优化问题.1. 阅读:选修11第93~98页.2. 解悟:①实际生活中通常有哪些应用背景?构造的函数模型有哪些?②总结求解实际问题的一般步骤,其关键步骤是什么?3. 践习:在教材空白处完成教材第96页练习第3、4题.基础诊断1. 如图,将边长为60cm 的正方形铁片的四角切去边长相等的小正方形,再把它的边沿虚线折起做成一个无盖的方底铁皮盒.当铁皮盒底边长为__40cm __时,盒子的容积最大,最大容积是__16__000cm 3__.解析:设铁皮盒底边长为x cm ,容积为V , 所以V(x)=⎝⎛⎭⎫60-x 2x 2=60x 2-x32(0<x<60),则V′(x)=60x -32x 2(0<x<60).令V′(x)=60x -32x 2=0,解得x =0(舍去)或x =40.因为当x ∈(0,40)时,V′(x)>0;当x ∈(40,60)时,V′(x)<0.所以V(x)在区间(0,40)上为增函数;在区间(40,60)上为减函数,所以V(x)max =V(40)=60×(40)2-4032=16 000.故当铁皮盒底边长40cm 时,最大容积为16 000 cm 3.2. 做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为__3__.解析:设圆柱的底面半径为r ,则高为27r 2.所以S 表面积=πr 2+2πr ×27r 2=πr 2+54πr.令f(r)=πr 2+54πr (r>0),则f′(r)=2πr +-54πr 2=2π(r 3-27)r 2.令f′(x)>0可得r>3,令f′(x)<0可得0<r<3.所以f(r)在(0,3)上单调递减,在(3,+∞)上单调递增,所以f(r)在r =3时取得最小值,所以当圆柱的底面半径为3时,用料最省.3. 将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记S =(梯形的周长)2梯形的面积,则S 的最小值是3.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为34(1-x 2),所以S =(3-x )234(1-x 2)(0<x<1).令S(x)=(3-x )234(1-x 2)(0<x<1),则S′(x)=43·-6x 2+20x -6(1-x 2)2=43·-2(x -3)(3x -1)(1-x 2)2.令S′(x)>0,得13<x<1,令S′(x)<0得0<x<13,所以当x =13时,S(x)取极小值,也是最小值,S ⎝⎛⎭⎫13=3233,故S 的最小值为3233.范例导航考向❶ 利用导数研究用料最省、费用最低问题例1 如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线l 1排,在路南侧沿直线l 2排,现要在矩形区域ABCD 内沿直线EF 将直线l 1与l 2接通.已知AB =60m ,BC =80m ,公路两侧排管费用为每米1万元,穿过公路的EF 部分的排管费用为每米2万元,设EF 与AB 所成的小于90°的角为α.(1) 求矩形区域ABCD 内的排管费用W 关于α的函数关系式; (2) 求排管的最小费用及相应的角α.解析:(1) 如图,过点E 作EM ⊥BC ,垂足为M. 由题意得,∠MEF =α⎝⎛⎭⎫0≤tan α≤43, 故MF =60tan α,EF =60cos α,AE +FC =80-60tan α, 所以W =(80-60tan α)×1+60cos α×2=80-60×sin αcos α+120×1cos α=80-60×sin α-2cos α(其中0≤α<α0<π2,tan α0=43).(2) 设f(α)=sin α-2cos α(其中0≤α<α0<π2,tan α0=43),则f′(α)=1-2sin αcos 2α.令f′(α)=0得sin α=12,即α=π6.列表如下:所以当α=π6时,有f(α)max =-3,此时有W min =80+60 3.故排管的最小费用为80+60 3 万元,相应的角α=π6.已知一罐圆柱形红牛饮料的容积为250 mL ,则它的底面半径等于π时(用含有π的式子表示),可使所用的材料最省.解析:设圆柱的高为h ,表面积为S ,容积为V ,底面半径为r ,则S =2πrh +2πr 2,V =250=πr 2h ,得h =250πr 2,则S =2πr·250πr 2+2πr 2=500r +2πr 2,S′=-500r 2+4πr.令S′=0得r =53π2.因为S 只有一个极值,所以当r =53π2π时,S 取得最小值,即此时所用材料最省.考向❷ 利用导数研究利润最大问题例2 根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率p 与日产量x(件)之间近似地满足关系式p =⎩⎨⎧215-x , 1≤x ≤9,x ∈N *,x 2+60540, 10≤x ≤20,x ∈N*(日产品废品率=日废品量日产量×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.该车间的日利润y =日正品赢利额-日废品亏损额.(1) 将该车间日利润y (千元)表示为日产量x (件)的函数;(2) 当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?解析:(1) 由题意可知,y =2x (1-p )-px =⎩⎨⎧24x -2x 215-x, 1≤x ≤9,x ∈N *,53x -x 3180, 10≤x ≤20,x ∈N *.(2) 考虑函数f (x )=⎩⎨⎧24x -2x 215-x, 1≤x ≤9,x ∈N *,53x -x3180, 10≤x ≤20,x ∈N *,当 1≤x ≤9时,f ′(x )=2-90(15-x )2,令f ′(x )=0,得x =15-35;当1≤x <15-35时,f ′(x )>0,函数f (x )在[1,15-35)上单调递增; 当15-35<x ≤9时,f ′(x )<0,函数f (x )在(15-35,9]上单调递减. 所以当x =15-35时,f (x )取得极大值,也是最大值. 又x 是整数,f (8)=647,f (9)=9,所以当x =8时,f (x )有最大值647;当10≤x ≤20时,f ′(x )=53-x 260=100-x260≤0,所以函数f (x )在[10,20]上单调减,所以当x =10时,f (x )取得最大值1009.由于1009>647,所以当该车间的日产量为10件时,日利润最大.故当该车间的日产量为10件时,日利润最大,最大日利润是1009千元.某产品的销售收入y 1(万元)是产品x (千台)的函数y 1=17x 2,生产总成本y 2(万元)也是x (千台)的函数y 2=2x 3-x 2(x >0),为使利润最大,应生产__6__千台.解析:设利润为W 万元,则W (x )=y 1-y 2=17x 2-2x 3+x 2=18x 2-2x 3,所以W ′(x )=36x -6x 2.令W ′(x )=0,解得x =6或x =0(舍去).当x ∈(0,6),W ′(x )>0,W (x )单调递增;当x ∈(6,+∞),W ′(x )<0,W (x )单调递减,故当x =6时,W (x )取极大值,也是最大值,此时利润最大,即应生产6千台.考向❸ 利用导数研究长度、面积、体积最大(小)问题例3 如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD ,其中BMN 是半径为1百米的扇形,∠ABC =2π3.管理部门欲在该地从M 到D 修建小路.在MN ︵上选一点P(异于M ,N 两点),过点P 修建与BC 平行的小路PQ.(1) 设∠PBC =θ,试用θ表示修建的小路MP ︵与线段PQ 及线段QD 的总长度l ; (2) 求l 的最小值.解析:(1) 延长QP ,交AB 于点E , 则MP ︵=2π3-θ.在△BPE 中,∠EPB =θ,∠EBP =2π3-θ,∠BEP =π3,所以EP =23sin ⎝⎛⎭⎫2π3-θ,EB =23sin θ,所以PQ =2-23sin ⎝⎛⎭⎫2π3-θ,QD =2-23·sin θ, 所以l =2π3-θ+2-23sin ⎝⎛⎭⎫2π3-θ+2-23·sin θ=4-2sin ⎝⎛⎭⎫θ+π6+2π3-θ⎝⎛⎭⎫0<θ<2π3. (2) l′=-2cos ⎝⎛⎭⎫θ+π6-1,令l′<0, 即-2cos ⎝⎛⎭⎫θ+π6-1<0,解得0<θ<π2;令l′>0,即-2cos ⎝⎛⎭⎫θ+π6-1>0, 解得π2<θ<2π3.所以当θ=π2时,l 有最小值4-3+π6,故l 的最小值为⎝⎛⎭⎫4-3+π6百米. 自测反馈1. 设底为等边三角形的直棱柱的体积为V ,当其表面积最小时,底面边长为. 解析:设底面边长为a ,高为h ,表面积为S. V =34a 2×h ,所以h =43V 3a 2,则表面积S =3ah +2×34a 2=32a 2+43Va,所以S′=3a -43V a 2.令S′=3a -43V a 2=0,解得a =34V.当0<a<34V 时,S′<0,当a>34V 时,S′>0,所以当a =34V 时,S 取极小值也是最小值,所以底面边长为34V.2. 要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则其高度应为3cm __.解析:设圆锥的高为h ,则底面半径为202-h 2,所以其体积V =13π(202-h 2)h(0<h<20),所以V′=π3(400-3h 2).令V′=0,即π3(400-3h 2)=0,解得h =2033或h =-2033(舍去).当0<h<2033时,V′>0;当2033<h<20时,V′<0,所以当h =2033时,V 取最大值,故其高度应为2033cm .3. 若球的半径以2cm /s 的速度膨胀,当半径为5cm 时,表面积对时间的变化率是__80π__. 解析:球的表面积为S =4πR 2.由题意得ΔR Δt =2,所以Δt =ΔR 2,所以ΔS Δt =ΔS ΔR 2=2ΔS ΔR,因为ΔS ΔR =S′=8πR ,所以ΔS Δt =16πR.当R =5时,ΔSΔt =80π,所以表面积对时间的变化率为80π.4. 为了保护环境,某工厂在政府部门的鼓励下,进行技术改进,把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为y=⎩⎪⎨⎪⎧125x 3+640, 10≤x<30,x 2-40x +1 600, 30≤x ≤50,且每处理1吨二氧化碳可得价值为20万元的某种化工产品,当处理量为多少吨时,平均每吨的处理成本最少?解析:由题易知,二氧化碳的平均处理成本P(x)=yx =⎩⎨⎧125x 2+640x , x ∈[10,30),x +1 600x-40, x ∈[30,50].①当x ∈[10,30)时,P(x)=125x 2+640x,所以P′(x)=225x -640x 2=2(x 3-8 000)25x 2,所以当x ∈[10,20)时,P′(x)<0,函数P(x)在区间[10,20)上单调递减;当x ∈[20,30)时,P′(x)>0,函数P(x)在区间[20,30)上单调递增, 所以当x =20时,P(x)取得最小值为P(20)=20225+64020=48.②当x ∈[30,50]时,P(x)=x +1 600x-40≥2x·1 600x -40=40,当且仅当x =1 600x,即x =40时,P(x)取得最小值为P(40)=40,因为48>40,所以当处理量为40吨时,每吨的平均处理成本最少.1. 解决实际问题的一般步骤就是四步八个字:审题、建模、求解、还原.2. 最(极)值问题:工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最(极)值,利用导数求解.3. 你还有哪些体悟,写下来:。

高三数学一轮复习211变化率与导数、导数的运算课件(理)新人教A

高三数学一轮复习211变化率与导数、导数的运算课件(理)新人教A
第十一节
变化率与导数、导数的运算
1.导数概念及其几何意义 (1)通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过 程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及 其内涵. (2)通过函数图象直观地理解导数的几何意义. 2.导数的运算 (1)能根据导数的定义求函数y=C,y=x,y=x2,y=x3,y= 的导数. (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简 ,y=
Байду номын сангаас
解析:∵y=sinx,∴y′=(sinx)′=cosx, π k1=cos0=1,k2=cos =0,∴k1>k2. 2
答案:A
3.函数y=xcosx-sinx的导数为( A.xsinx C.xcosx
)
B.-xsinx D.-xcosx
解析: y′ = (xcosx)′ - (sinx)′ = x′cosx + x(cosx)′ - cosx = cosx -
7.复合函数的导数 设函数u=φ(x)在点x处有导数ux′=φ′(x),函数y=f(u)在点x的对应 点u处有导数yu′=f′(u),则复合函数y=f[φ(x)]在点x处有导数,且 yx′=yu′·ux或 ′ f′[φ(x)]=f′(u)·φ′(x) .
1.f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值等于( A. 19 3 B. 16 3
xsinx-cosx=-xsinx.
答案:B
4.已知一个物体的运动方程是s=1-t+t2,其中s的单位是米,t
的单位是秒,那么该物体在3秒末的瞬间速度是________.
解析:s′=-1+2t,∴s′|t=3=-1+6=5. 答案:5米/秒
5 .设 f0(x) = sinx , f1(x) = f0′(x) , f2(x) = f1′(x) ,…, fn + 1(x) = fn′(x) , n∈N,则f2008(x)=__________. 解析:f1(x)=cosx,f2(x)=-sinx, f3(x)=-cosx,f4(x)=sinx ∴fn(x)是以4为周期的周期函数,2008被4整除,

高三数学一轮复习导数教案

高三数学一轮复习导数教案

导数又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222n x m y ,消去n m ,得()()92822=++-y x 。

点评:该题是导数与平面向量结合的综合题。

考点六:导数实际应用题例8.请您设计一个帐篷。

它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。

试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。

解析:设OO 1为x m,则由题设可得正六棱锥底面边长为2223(1)82x x x +-=+-(单位:m )。

于是底面正六边形的面积为(单位:m 2):222223333(1)6(82)(82)42x x x x x +-=+-=+-。

帐篷的体积为(单位:m 3):233313()(82)(1)1(1612)232V x x x x x x ⎡⎤=+--+=+-⎢⎥⎣⎦求导数,得23()(123)2V x x '=-; 令()0V x '=解得x=-2(不合题意,舍去),x=2。

当1<x<2时,()0V x '>,V(x)为增函数;当2<x<4时,()0V x '<,V(x)为减函数。

所以当x=2时,V(x)最大。

答:当OO 1为2m 时,帐篷的体积最大。

点评:结合空间几何体的体积求最值,理解导数的工具作用。

例9.已知函数f(x)=x 3+ x 3,数列|x n |(x n >0)的第一项x n=1,以后各项按如下方式取定:曲线x=f(x)在))(,(11++n n x f x 处的切对求极值,应要求学生画表格来单调性情况,这样可避免把不是极值的函数值也作为极值。

高三数学一轮复习 变化率与导数 导数的计算课件 北师大版

高三数学一轮复习 变化率与导数 导数的计算课件 北师大版

__________.
解析:曲线y= 和y=x2的交点为A(1,1),在A点处曲线y= 的斜率
.切线l1:y=-1×(x-1)+1.在A点处曲线y=x2的斜率 y′|x=1=2x|x=1=2,切线l2:y=2(x-1)+1.l1与x轴的交点B(2,0),l2与x轴的 交点C( 答案: ,0).故 .
解析: 因为半径为 R 的球的表面积为 S(R) = 4πR2 ,体积 V(R) = V′(R)=S(R),故第一个空填为(
πR3 ,显然
πR3)′=4πR2.从而②式用语言叙述为:球的
体积函数的导数等于球的表面积函数. 答案: ( πR3)′=4πR2 球的体积函数的导数等于球的表面积函数
(1). 函数在x=x0 处的导数是用函数极限定义的 可利用导数的定义判断函数在x=x0处的极 限是否存在.导数与连续的关系是:可导必连续,连续但不一定可 导. (2).函数的导数与在点 x0处的导数不是同一概念;在点 x0处的导数是 函数的导数在x=x0处的函数值.
记作f′(ቤተ መጻሕፍቲ ባይዱ0)或y′|x=x0,即
2.导数的几何意义 如右图所示,设y=f(x)的函数图像是一条平滑的曲线,
从图象上可以看出:当△x取不同的值,可以得到不
同的割线;当△x趋近于零时,点B将沿着曲线y=f(x)
趋向于点A,割线AB将绕点A转动最后趋于直线l.直线l
和曲线y=f(x)在点A处“相切”.称直线l为曲线y=f(x)在点A处的切线.该切
【例1】利用导数的定义求函数f(x)=x3在x=x0处的导数,并求曲线f(x)=x3在x=x0
处切线与曲线f(x)=x3的交点. 解答: 曲线f(x)=x3在x=x0处的切线方程为y-x=3x·(x-x0), 即 得(x-x0)2(x+2x0)=0,解得x=x0,x=-2x0. 若x0≠0,则交点坐标为(x0, ),(-2x0,- );若x0=0,则交点坐标为(0,0).

版高考数学一轮总复习导数应用于函数的平均变化率与微分问题

版高考数学一轮总复习导数应用于函数的平均变化率与微分问题

版高考数学一轮总复习导数应用于函数的平均变化率与微分问题导数是数学中一个重要的概念,在函数研究和应用中有着广泛的应用。

在高考数学中,导数的应用题也是考察的重点之一。

本文将探讨导数应用于函数的平均变化率与微分问题,并为读者提供清晰有效的解题思路。

一、导数与函数的平均变化率对于一个函数f(x),在某一区间[a,b]上的平均变化率可以用函数值的差值除以自变量的差值来表示。

即:平均变化率 = (f(b) - f(a)) / (b - a)然而,当区间[a,b]趋于0时,平均变化率的准确性变得有限。

这时,我们可以引入导数的概念,用导数来刻画函数的变化率。

导数的定义如下:导数= lim (x→a) [(f(x) - f(a)) / (x - a)]导数表示了函数在某一点处的瞬时变化率,也可以理解为切线的斜率。

通过求导数,我们可以计算函数在任意一点的变化率。

二、导数应用于函数的平均变化率问题在实际问题中,有时需要计算函数在某一区间内的平均变化率。

这时,我们可以利用导数的性质来求解。

首先,我们需要通过求导得到函数的导函数。

然后,利用导函数来计算函数在区间内的平均变化率。

举个例子来说明。

假设有一辆汽车以函数f(t)的速度行驶,其中t为时间,f(t)为汽车的速度。

我们需要计算汽车在区间[t1, t2]内的平均速度。

解决这个问题的步骤如下:1. 求函数f(t)的导函数f'(t),表示汽车的加速度。

2. 计算区间[t1, t2]内的平均加速度,即 (f(t2) - f(t1)) / (t2 - t1)。

这个值就是汽车在该区间内的平均速度。

通过这一方法,我们可以应用导数来解决涉及平均变化率的实际问题。

三、导数与微分问题除了应用于平均变化率的计算,导数在微积分中还有许多其他的应用,尤其在极值问题中发挥着重要作用。

下面以求解函数的极值为例,介绍导数在微分问题中的应用。

假设我们需要求解函数f(x)在区间[a, b]上的极大值或极小值。

2022届高三数学一轮复习 第2知识块第22讲变化率与导数课件

2022届高三数学一轮复习 第2知识块第22讲变化率与导数课件
当x0=-1时,∵P(x0,y0)在y=3x+1上, ∴y0=3×(-1)+1=-2,即P(-1,-2). 又P(-1,-2)也在y=x3-a上, ∴-2=(-1)3-a,∴a=1. 综上可知,实数a的值为-3或1.
第十六页,编辑于星期四:十九点 三十九分。 第十六页,编辑于星期四:八点 第十六页,编辑第于十星六期页四,:编点辑三于十星七期分四。:一点 三十八分。 三十五分。
思维点拨:按上面的求导方法.
第九页,第编九辑页第于,九第星编期页九四辑,页:于编,点星辑三编期于十辑四星七:于期分一四。星点:期八三四点十:八三十分十九。五点分。三十九分。
变式1:利用导数的定义,求出函数y=x+ 的导数,并据此求函数在
x=1处的导数.
第十页,编辑于星期四:十九点 三十九分。 第十页,编第辑十于页星,编期辑第四于:星十期点四页三:一,十点七编三分十辑。八分于。 星期四:八点 三十五分。
3.函数y=xcos x-sin x的导数为(
)
A.xsin x
B.-xsin x
C.xcos x
D.-xcos x
解析:∵y′=(xcos x-sin x)′=(xcos x)′-(sin x)′
=x′cos x+x(cos x)′-cos x=cos x-xsin x-cos x=-xsin x.
答案:B
4.(2009·宁夏、海南卷)曲线y=xex+2x+1在点(0,1)处的切线方程
为______________.
解析:∵y′=ex+xex+2=(x+1)ex+2,
∴y′|x=0=1+2=3. ∴切线方程为:y-1=3x,即3x-y+1=0.
答案:3x-y+1=0
第七页,第编辑七于页第星,期第七编四辑七:页于点页,三星,十编期七四编辑分:。辑于一于星点 星三期十期四八四:分:。八十点九三点十三五十分九。分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22课 变化率与导数、导数的计算1.导数的概念:⑴)(x f y =在0x x =处的导数0()f x '=000()()limx f x x f x x∆→+∆-∆.⑵导函数()f x '=0()()limx f x x f x x∆→+∆-∆【例1】若32()21f x x x =++, 则0(12)(1)limx f x f x∆→+∆-=∆( )A 。

8B 。

4C 。

16D 。

14【解析】2()62f x x x '=+Q ,00(12)(1)(12)(1)lim2lim 2x x f x f f x f x x∆→∆→+∆-+∆-∴=∆∆2(1)16f '==,选C2.常用的导数公式C '= (C 为常数) ()n x '= 1()x'= (sin )x '=(cos )x '=()x e '= ()x a '=(ln )x '=(log )a x '=3. 常用的导数运算法则⑴ [])()()()(x v x u x v x u '±'='±⑵ [])()()()()()(x v x u x v x u x v x u '+'='⑶ )0)(()()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u (4)[]()()C u x C u x ''⋅=⋅ 【例2】求下列函数的导数: (1)2cos 2sinxx x y -=; (2)(1)(2)y x x x =++; (3)1111y x x=+-+ . 【解析】(1)x x x x x y sin 212cos 2sin-=-=,111(sin )(sin )1cos 222y x x x x x ''''=-=-=- (2)∵3232y x x x =++,∴2362y x x '=++.(3)∵(1)(1)21(1)(1)x x y x x x ++-==--+,∴222(1)2(1)(1)x y x x '--'==--. 3.导数的几何意义函数)(x f y =在点0x 处的导数的几何意义是曲线)(x f y =在点))(,(00x f x 处的切线的斜率.【例3】已知曲线31y x =+.(1)求曲线在点(1,0)-处的切线方程;(2)求曲线过点(1,0)-的切线方程.【解析】(1)∵ 23y x '=, ∴曲线在1x =-处的斜率213(1)3x k y =-'==⨯-=.∴曲线在点(1,0)-处的切线方程为3(1)y x =+,即330x y -+=. (2) 设过点(1,0)-的切线与曲线相切于点00(,)x y ,则切线的斜率为0203x x k y x ='==,∴20003000311y x x y x -⎧=⎪+⎨⎪=+⎩,整理得32002310x x +-=,∴200(1)(21)0x x +-= , 解得01x =-或 012x =.∴切线的斜率为3k =或34k = , ∴所求的切线方程为3(1)y x =+ 或931()842y x -=- ,即 330x y -+=或3430x y -+=【变式】(1) 求过点(3,5)P 作曲线2y x =的切线l 的方程 【解析】设切点为00(,)x y ,则切线的斜率为002x x k y x ='==00020523y x x y x -⎧=⎪-∴⎨⎪=⎩,解得0011x y =⎧⎨=⎩ 或00525x y =⎧⎨=⎩,所以切线的斜率为2k = 或10k =所以切线l 方程为52(3)y x -=-或510(3)y x -=-即210x y --=或10250x y --= (2)求曲线31y x =+的斜率为3的切线方程【解析】设切点为00(,)x y ,则∵ 23y x '=,∴ 切线的斜率为2033x =,解得01x =±而3001y x =+ ,∴ 切点为(1,2)或(1,0)-所以所求的切线方程为23(1)y x -=- 或03(1)y x -=+ 即 310x y --= 或330x y -+=第22课 变化率与导数、导数的计算1.设()ln f x x x =,若'0()2f x =,则0x =( )A .2e B.e C.ln 22D. ln 2 【答案】B【解析】∵()(ln )ln 1f x x x x ''==+,∴'00()1ln 2f x x =+=,解得0x e =2.(2013全国高考)已知曲线421y x ax =++在点(1,2)a -+处的切线的斜率为8,则a = ( )A .9B .6C .9-D .6- 【答案】D【解析】∵342y x ax '=+,∴34(1)28a ⨯--=,解得6a =-. 3.曲线1xy x =+在2x =-处的切线方程为( ) A.40x y ++= B.40x y -+= C.0x y -= D. 40x y --= 【答案】B【解析】由已知,得切点为(2,2)- ,22(1)(1)1()1(1)(1)x x x x x y x x x ''⋅+-⋅+''===+++,∴ 切线的斜率为221|1(21)x k y =-'===-+ ,切线方程为22y x -=+ ,即40x y -+=4.(2013惠州一模)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处的切线倾 斜角的取值范围为[0,]4π,则点P 横坐标的取值范围为( )A .1[1,]2--B .[]1,0-C .[]0,1D .1[,1]2【答案】A【解析】设00(,)P x y ,倾斜角为α,22y x '=+,则[]0tan 220,1k x α==+∈,解得01[1,]2x ∈--.5.物体的运动方程为3s t =,在4t =时的速度为 .【答案】48【解析】23s t '= ,所以在4t =时的速度为2(4)348s t '==6. (2013年高考)若曲线2ln y ax x =-在点()1,a 处的切线平行于x 轴,则a =______.【答案】12【解析】求导得12y ax x'=-,依题意210a -=,∴12a =.7.(2014年高考)曲线53x y e =-+在点()0,2-处的切线方程为________. 【答案】520x y ++=. 【解析】53x y e =-+,5x y e '∴=-,故所求的切线的斜率为055k e =-=-,故所求的切线的方程为()25y x --=-,即52y x =--或520x y ++=.8.曲线3y x =在点3(,)(0)a a a ≠处切线与x 轴和直线x a =所围成的三角形的面积为16,则实数a 的值为【解析】23y x '=,∴ 切线的斜率为2|3x a k y a ='==,切线方程为323()y a a x a -=- ,即23320a x y a --=,所以三角形的顶点为3(,)a a 、2(,0)3a 、(,0)a ,由已知可得3121||||236a a a -=,解得1a =± 9.求下列函数的导数:(1)2211()y x x x x =+-;(2)ln xy e x =;(3)1cos 1sin x y x+=+. 【解析】(1)∵ 311y x x =-+, ∴ 2213y x x'=+.(2)()ln (ln )ln xxxxe y e x e x e x x'''=+=+.(3)2(1cos )(1sin )(1cos )(1sin )(1sin )x x x x y x ''++-++'=+ 2(sin )(1sin )(1cos )cos (1sin )x x x x x -+-+=+2sin cos 1(1sin )x x x ---=+. 10.已知曲线31433y x =+ .(1)求曲线在点(2,4)P 处的切线方程;(2)求曲线过点(2,4)P 的切线方程;(3)求满足斜率为1的曲线的切线方程.【解析】(1)y x '=2Q ,∴在点(2,4)P 处的切线的斜率|x k y =='=24 .∴曲线在点(2,4)P 处的切线方程为()y x -=-442 ,即x y --=440 .(2)设曲线31433y x =+ 与过点(2,4)P 的切线相切于点00(,)A x y 则切线的斜率20|x x k y x =='=0 .∴2000300421433y x x y x -⎧=⎪-⎪⎨⎪=+⎪⎩,整理得3200340x x -+=,∴200(2)(1)0x x -+= , 解得01x =或 02x =-,∴切线的斜率为1k = 或4k = ,∴所求的切线方程为,故所求的切线方程为x y --=440 或x y -+=20 .(3)设切点为00(,)x y ,故切线的斜率为21k x ==,解得x ±=01 ,切点为5(1,)3,(1,1)- .故所求切线方程为513y x -=- 和11y x -=+ ,即x y -+=3320 和x y -+=20 .11.设函数32()33f x x ax bx =-+,若曲线()y f x =与直线1210x y +-=相切于点(1,11)-,求()f x 的解析式【解析】2()363f x x ax b '=-+,由已知,得13311(1)36312a b f a b -+=-⎧⎨'=-+=-⎩40250a b a b --=⎧⇒⎨--=⎩,解得13a b =⎧⎨=-⎩ 所以()f x 的解析式为32()39f x x x x =-- 12.设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=. (1)求()f x 的解析式;(2)曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值. 【解析】(1)∵()b f x ax x =-,∴2()b f x a x'=+, Q 点(2,(2))f 在切线方程为74120x y --=上,1(2)2f =.∴1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩,∴3()f x x x =-.(2)设00(,)P x y 为曲线上任一点,由23()1f x x'=+知曲线在点00(,)P x y 处的切线方程为 00203(1)()y y x x x -=+-,即0020033()(1)()y x x x x x --=+-. 令0x =,得06y x =-,从而得切线与直线0x =的交点坐标为06(0,)x -. 令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为00(2,2)x x , ∴点00(,)P x y 处的切线与直线0x =,y x =所围成的三角形的面积为0016262S x x =-⋅=. 故曲线()y f x =上任一点的切线与直线0x =,y x =所围成的三角形的面积为定值,且此定值为6.。

相关文档
最新文档