(完整)高中数学导数题型总结,推荐文档

合集下载

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

1 1
2 x 1
x 1
ln
x
x
1 x
1 2
x
1 x
0
x
1时,1 2
x
1 2
x
1 x
ln
x
2 x 1
x 1
x2 x2
1 1
以上所有不等式,考试时需要用的时候,都要先证明之后再使用
7. 常见不等式的应用
如果说高中的圆锥曲线题目总是要找相等关系,那么高中的导数题归根结底就是找不等关系,因此想要攻克导数这 个关口,放缩思想时刻要保持在脑海里,很多题目,仅仅用一些非常粗暴的放缩,就可以简化计算和解题过程。
与要求不等关系矛盾 2.a 0时,考虑切线特性
直线经过定点0,1 ,刚好也是f 0的位置,那么直观的想法是让直线的斜 率超过函数f x 在x 0处的切线斜率,就可能保证直线始终在函数图像上方 f ' 0 1, 于是猜测a 1
进一步要说明a确实为该取值,还要说明函数是凸函数,即其斜率在x 0之后 递减.通过二阶导得到:
1. 存在性问题
高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题
(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:
证明必然存在交点是单纯的找“特殊点”问题
1. 存在性问题
要点
1. 存在性问题
由于只关注零点的存在性,因此就没有 必要对t(x)求导讨论其单调性,直接使 用零点定即可。
分类讨论一般分两种:一种对参数分类讨论,一种对区间分段讨论,分段讨论 在5中已经提及,这里再提及对参数的分类讨论。
高考中分类讨论众多且考察面广,其原因主要在于:容易考察出学生的分析能 力与对复杂情况区的分处理能力;分类讨论可以在一道题中同时考察多个知识点; 由于考纲的限制,分类讨论成了高中阶段非竞赛学生唯一绕开分离变量、洛必达法 则运用问题:0/0型,无穷/无穷型极限计算的办法

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

导数题型分类剖析〔中等难度〕一、变化率与导数函数 y f ( x0 ) 在x0到x0+x之间的平均变化率,即 f ' ( x0 ) =lim y= limf (x0x) f ( x0 ),表示x 0x x x 函数 y f (x0 ) 在x0点的斜率。

注意增量的意义。

例 1:假设函数y f ( x) 在区间 (a,b) 内可导,且A .f' ( x )B.2 f'( x0)例 2:假设f'( x0)3,那么lim f ( xh) f ( xh0hA. 3B.6f ( x0h2 ) f ( x0 )例 3:求lim hh0x0 (a,b) 那么limf ( xh) f (xh)的值为〔〕h0hC.2 f'(x0)D.03h)〕〔C.9D.12二、“隐函数〞的求值将 f ' ( x0 ) 看作一个常数对 f (x0 ) 进行求导,代入x0进行求值。

2例 1: f x x3xf 2 ,那么 f2例 2:函数 f x f cos x sin x ,那么f4的值为.4例 3:函数 f ( x) 在R上满足f ()2f(2x)x2 8x8,那么曲线y f ( x) 在点(1, f (1)) 处的切线方程x为〔〕A. y2x 1B.y xC.y3x2D. y2x3三、导数的物理应用若是物体运动的规律是s=s〔t〕,那么该物体在时辰t 的瞬时速度 v=s′〔t 〕。

若是物体运动的速度随时间的变化的规律是v=v 〔 t〕,那么该物体在时辰t 的加速度 a=v′〔 t〕。

例 1:一个物体的运动方程为s 1t t 2其中 s 的单位是米,t的单位是秒,求物体在 3 秒末的瞬时速度。

例 2:汽车经过启动、加速行驶、匀速行驶、减速行驶此后停车,假设把这一过程中汽车的行驶行程s 看作时间t 的函数,其图像可能是〔〕s s s sO t O t O t O tA.B.C.D.四、根本导数的求导公式① C0; 〔C为常数〕②x n nx n 1;③ (sin x)cos x ;④ (cos x)sin x ;1;⑧l o g a x 1 log a e.⑤ (e x ) e x ;⑥ (a x)a x ln a ;⑦ln xx x例 1:以下求导运算正确的选项是( )A . x1 11B . log 2x=1 C . 3 x3 xlog 3 e D . x 2 cosx2xsin xx 2x ln 2x例 2:假设f x x f x f x f xf x, fxf x n N ,那么 fx0 sin ,1 0,2 1,n 1n ,2005五、导数的运算法那么常数乘积: (Cu )' Cu ' . 和差: ( u v)' u ' v ' .乘积: (uv ) 'u ' v uv ' .除法: uu' v uv 'vv 2例 1:〔 1〕函数 yx 3 log 2 x 的导数是〔 2〕函数 x n e 2 x 1 的导数是六、复合函数的求导f [ ( x)] f ( )* (x) ,从最外层的函数开始依次求导。

导数的基本题型归纳

导数的基本题型归纳

导数基础题型题型一 导数与切线利用两个等量关系解题:①切点处的导数=切线斜率,即()k x f o =';②切点()o o y x ,代入曲线方程或者代入切线方程.切点坐标或切点横坐标是关键例1:曲线y =错误!在点-1,-1处的切线方程为A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 例2:已知函数的图象在点1,f 1处的切线方程是x -2y +1=0,则f 1+2f ′1的值是B .1 D .2例3 求曲线132+=x y 过点1,1的切线方程练习题:1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =D .12.曲线y =x 3+11在点P 1,12处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .153.设曲线y =错误!在点3,2处的切线与直线ax +y +1=0垂直,则a 等于A .2B .-2C .-错误!4.设曲线y =ax 2在点1,a 处的切线与直线2x -y -6=0平行,则a =________.5.已知直线l 1为曲线y =x 2+x -2在点1,0处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.求直线l 2的方程;题型二 用导数求函数的单调区间①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间注意:定义域参与区间的划分;⑤判断导数在各个区间的正负.例1:求函数c x x x y +-+=33123的单调区间.例2 求函数x a x a x x f )1(ln 21)(2+-+=的单调区间其中a >0例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围.练习题:1.求函数x x x f ln 2)(2-=的单调增区间.2.已知331)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围.题型三 求函数极值和最值①求定义域;②求导;③令0)(='x f 求出x 的值;④列表注意:定义域参与区间的划分;⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值例:求函数x x y ln 2-=的极值.例:求函数y =x +2cos x 在区间错误!上的最大值.例:已知函数fx =2x 3-6x 2+mm 为常数在-2,2上有最大值3,那么此函数在-2,2上的最小值为A .-37B .-29C .-5D .-11例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是A .)1,0(B .)1,(-∞C .),0(∞+D .)21,0(练习题:1.设函数x xx f ln 2)(+=则 =21为fx 的极大值点 =21为fx 的极小值点 =2为fx 的极大值点 =2为fx 的极小值点2. 已知函数xbx a x x f +-=ln )(在1=x 处取得极值,则a 与b 满足 .,题型四、函数与导数图象的关系▲函数看增减,导数看正负例:若函数c=2)(的图象的顶点在第四象限,则函数f′x的图象是+bxxxf+练习题:1.下图是函数y=fx的导函数y=f′x的图象,则下面判断正确的是A.在区间-2,1内fx是增函数B.在1,3内fx是减函数C.在4,5内fx是增函数D.在x=2时fx取到极小值2. f′x是fx的导函数,f′x的图象如右图所示,则fx的图象只可能是A B C D。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结
1.设函数 f x ex (2x 1) ax a ,其中 a 1 ,若存在唯一的整数 x0 ,使得 f (x0 ) 0 ,则 a 的取值
范围是( )
A.
3 2e
,1
B.
3 2e
,
3 4
【解析】方法一:分离函数---数形结合法
C.
3 2e
,
3 4
D.
3 2e
,1
-7-
巧辨“任意性问题”与“存在性问题” 一.方法综述
注意:当 x=x0 时,函数有极值 f/(x0)=0。但是,f/(x0)=0 不能得到当 x=x0 时,函数有极值;
判断极值,还需结合函数的单调性说明。
题型一、求极值与最值
题型二、导数的极值与最值的应用
题型四、导数图象与原函数图象关系
导函数
原函数
f '(x) 的符号
f (x) 单调性
f '(x) 与 x 轴的交点且交点两侧异号
(2)分离参数:将含参不等式转化为转化为 f (x) a; f (x) a ,进而研究直线 y a与y f (x) 图像位
置关系,寻找临界状态,求参数的范围。
(3)分离函数:通过变形将不等式转化为形如( f (x) 或 g(x); f (x) 或 g(x) 的形式,参数通常
在直线形式的函数里),进而研究两个函数图像的位置关系,寻找临界状态,求解参数的范围。 (4)特殊点法:根据图形从特殊点的值入手求参数范围。 【典例分析】
(3)下结论
① f '(x) 0 f (x) 该区间内为增函数; ② f '(x) 0 f (x) 该区间内为减函数;
题型二、利用导数求单调区间
求函数 y f (x) 单调区间的步骤为: (1)分析 y f (x) 的定义域; (2)求导数 y f (x) (3)解不等式 f (x) 0 ,解集在定义域内的部分为增区间 (4)解不等式 f (x) 0 ,解集在定义域内的部分为减区间

导数知识点总结及例题

导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。

这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。

对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。

利用导数的定义,我们可以计算得到函数在某一点处的变化率。

1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。

例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。

这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。

1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。

也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。

二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。

例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。

2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。

我们把这个过程称为求导,求出的导数称为导函数。

导函数的值就是原函数在对应点处的导数值。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。

这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。

三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。

(完整)高二数学导数知识点总结及习题练习,推荐文档

(完整)高二数学导数知识点总结及习题练习,推荐文档
高三专题复习——导数
在解题中常用的有关结论(需要熟记):
(1)曲线 y f (x) 在x x0 处的切线的斜率等于 f (x0 ) ,切线方程为 y f (x0 )(x x0 ) f (x0 ) (2)若可导函数 y f (x) 在 x x0 处取得极值,则 f (x0 ) 0 。反之,不成立。 (3)对于可导函数 f (x) ,不等式 f (x) 0() 0 的解集决定函数 f (x) 的递增(减)区间。
若对 x1 I1 , x2 I2 ,使得 f (x1 ) g(x2 ) ,则 f (x)max g(x)max .
(11)已知 f (x) 在区间I1 上的值域为 A,, g(x) 在区间I2 上值域为 B, 若 对 x1 I1 , x2 I2 ,使得 f (x1 ) = g(x2 ) 成立,则 A B 。
(4)函数 f (x) 在区间 I 上递增(减)的充要条件是: x I f (x) 0 ( 0) 恒成立 (5)函数 f (x) 在区间 I 上不单调等价于 f (x) 在区间 I 上有极值,则可等价转化为方程
f (x) 0 在区间 I 上有实根且为非二重根。(若 f (x) 为二次函数且 I=R,则有 0 ) 。 (6) f (x) 在区间 I 上无极值等价于 f (x) 在区间在上是单调函数,进而得到 f (x) x2
考点一:导数几何意义:
角度一 求切线方程
(π)
1.(2014·洛阳统考)已知函数 f(x)=3x+cos 2x+sin 2x,a=f′ 4 ,f′(x)是 f(x)的导函数,则
过曲线 y=x3 上一点 P(a,b)的切线方程为( )
A.3x-y-2=0 C.3x-y-2=0 或 3x-4y+1=0 解析:选 A 由 f(x)=3x+cos 2x+sin

(完整版)高考导数题型归纳,推荐文档

(完整版)高考导数题型归纳,推荐文档

高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。

)(x f y =0x x =方法:为在处的切线的斜率。

)(0x f '0x x =题型2 过点的直线与曲线的相切问题。

),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。

将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。

(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。

答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。

x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。

)(x f y =)(x g y =。

导数题型总结知识点高中

导数题型总结知识点高中

导数题型总结知识点高中一、导数的定义导数是用来描述函数变化率的概念,它表示函数在某一点附近的平均变化率,即函数值随自变量变化的速率。

导数的定义是在数学上对于函数在某一点的极限定义,即:设函数y=f(x),在x=a处可导的充分必要条件是存在有限的数f'(a),使得当x趋近a时,有f'(a)=lim(Δx→0)(f(a+Δx)-f(a))/Δx其中f'(a)表示函数f(x)在x=a处的导数,Δx表示自变量的增量。

函数在x=a处可导的充分必要条件是该点的左导数和右导数存在且相等。

根据导数的定义,我们可以知道函数在某一点处的导数表示函数在该点处的变化率,在数学上导数的定义还包括相邻导数之间的关系。

在这里我们不再详细阐述,下面我们将重点讨论导数的性质。

二、导数的性质1. 导数的代数运算性质导数具有线性性质,即导数的和等于导数的和,导数的积等于导数的积,导数的常数倍等于常数乘以导数。

具体而言,设函数y=f(x),g(x)分别在点x=a处可导,c为常数,则有:(a) (f(x)±g(x))' = f'(x)±g'(x)(b) (cf(x))' = cf'(x)2. 复合函数的导数设函数y=f(u),u=g(x)两个函数都可导,则复合函数y=f(g(x)) 在点x处的导数为f'(u)·g'(x),即:(f(g(x)))' = f'(g(x))·g'(x)3. 反函数的导数设函数y=f(x)在区间I上有反函数x=g(y),如果f'(x)存在且不等于0,则g'(y)=1/f'(g(y))。

导数的代数运算性质和复合函数的导数是导数计算的重要基础,对于学生来说,熟练掌握这些性质对于计算导数是非常有帮助的。

三、导数的计算为了更好地理解导数的计算,我们将分别从常用函数的导数、隐函数和参数方程的导数、高阶导数和导数的应用等方面进行详细的讲解。

高二数学导数模块知识点总结(3篇)

高二数学导数模块知识点总结(3篇)

高二数学导数模块知识点总结(3篇)高二数学导数模块知识点总结(精选3篇)高二数学导数模块知识点总结篇1导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作:2、导数的几何物理意义:曲线在点处切线的斜率①=f/(_0)表示过曲线=f(_)上P(_0,f(_0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数=f(_)的自变量_在一点_0上产生一个增量Δ_时,函数输出值的增量Δ与自变量增量Δ_的比值在Δ_趋于0时的极限a如果存在,a即为在_0处的导数,记作f(_0)或df(_0)/d_。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

高中数学导数题型归纳总结

高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它描述了函数在某一点的变化率。

在学习导数的过程中,我们需要掌握各种不同类型的导数题型。

下面我将对高中数学导数题型进行归纳总结,并为每种题型提供一些相关的例题。

1. 函数的基本导数公式:- f(x) = k (常数函数)的导数为0;- f(x) = x的导数为1;- f(x) = x^n的导数为nx^(n-1) (n为整数);- f(x) = e^x的导数为e^x;- f(x) = a^x的导数为a^x * ln(a) (a为正实数);- f(x) = sin(x)的导数为cos(x);- f(x) = cos(x)的导数为-sin(x);- f(x) = tan(x)的导数为sec^2(x)。

2. 导数的四则运算法则:- 若f(x)和g(x)可导,则(f+g)' = f'(x) + g'(x);- 若f(x)和g(x)可导,则(f-g)' = f'(x) - g'(x);- 若f(x)和g(x)可导,则(f*g)' = f'(x)*g(x) + f(x)*g'(x); - 若f(x)和g(x)可导,则(f/g)' = (f'(x)*g(x) - f(x)*g'(x)) / g(x)^2 (g(x) ≠ 0)。

3. 复合函数的导数:- 若y = f(g(x)),且f(x)和g(x)都可导,则y的导数为dy/dx= f'(g(x)) * g'(x)。

4. 高阶导数:- 若y = f(x)的导数f'(x)存在,则f'(x)的导数为f''(x),称为f(x)的二阶导数;- 同理,f(x)的n阶导数记为f^n(x)。

5. 隐函数求导:- 对于方程F(x, y) = 0,若y可以用x表示,即y = f(x),则y的导数dy/dx可以通过对方程两边求导得到。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

(完整版)高中数学函数与导数常考题型整理归纳

(完整版)高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳题型一:利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,实数a 的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.【变式训练】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围.解 (1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立,因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=-x 2+(a -2)x +a ]e x ,所以-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1=32.即a ≥32. 因此实数a 的取值范围为a ≥32.题型二:利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】设函数f(x)=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +e x , 定义域为(0,+∞),则f ′(x )=x -e x 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x =e 时,f (x )取得极小值f (e)=ln e +e e =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【变式训练】函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R .(1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在t ,t +1]上有解.解 (1)因为e x >0,(ax 2+x )e x ≤0.∴ax 2+x ≤0.又因为a >0,所以不等式化为x ⎝ ⎛⎭⎪⎫x +1a ≤0. 所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0. (2)当a =0时,方程即为x e x =x +2,由于e x >0,所以x =0不是方程的解,所以原方程等价于e x -2x -1=0.令h (x )=e x -2x -1,因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根且分别在区间1,2]和-3,-2]上,所以整数t 的所有值为{-3,1}.题型三:利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.【例3】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .【类题通法】1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.【变式训练】 已知函数f (x )=ax +ln x (a ∈R ).(1)若a =2,求曲线y =f (x )在x =1处的切线方程;(2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈0,1]使得f (x 1)<g (x 2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0,故曲线y =f (x )在x =1处的切线方程为3x -y -1=0.(2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞. (3)由已知得所求可转化为f (x )max <g (x )max ,g (x )=(x -1)2+1,x ∈0,1],所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e 3.。

导数各类题型方法总结(含答案)

导数各类题型方法总结(含答案)

导数各种题型方法总结一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=--(1) ()y f x =Q 在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立,当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围. (二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<Q令,0)(>'x f 得)(x f 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a <<Q 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

导数知识点及题型总结

导数知识点及题型总结

导数知识点及题型总结导数是微积分中的重要概念,它是描述函数变化速率的一种数学工具。

在现代数学和科学中,导数广泛应用于各个领域,如物理学、工程学、经济学等。

本文将对导数的基本知识点和常见的题型进行总结。

一、导数的定义导数的定义是函数在某一点处的变化率。

对于函数y=f(x),如果函数在x点处的导数存在,那么它的导数可以用极限的概念来定义:\[f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\]其中f'(x)表示函数f(x)在点x处的导数。

这个定义可以直观地理解为函数在x点处的切线的斜率。

二、导数的性质1. 导数的基本性质导数满足加法性、乘法性和常数因子的规则。

具体来说,如果函数f(x)和g(x)都在x点处可导,那么它们的和函数、积函数和常数倍函数也在x点处可导,并分别有如下公式:\[ (f+g)'(x) = f'(x) + g'(x) \]\[ (f\cdot g)'(x) = f(x)g'(x) + g(x)f'(x) \]\[ (cf)'(x) = cf'(x) \]这些性质对于导数的计算和应用都非常重要。

2. 导数的几何意义导数的几何意义是函数在某一点的导数即为该点处切线的斜率。

因此,导数可以描述函数在不同点的局部变化情况。

当导数为正时,表示函数在该点处递增;当导数为负时,表示函数在该点处递减;当导数为零时,表示函数在该点处取得极值。

三、导数的计算1. 基本函数的导数常见的基本函数如幂函数、指数函数、对数函数、三角函数等都有相应的导数公式。

例如:\[ (x^n)' = nx^{n-1} \]\[ (e^x)' = e^x \]\[ (\ln x)' = \frac{1}{x} \]\[ (\sin x)' = \cos x \]\[ (\cos x)' = -\sin x \]这些导数公式可以直接应用于函数的求导计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数经典例题剖析 考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

点评:本题考查利用导数求函数的极值。

求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()()()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。

(2)()04231'=-+=-a f ,21=∴a 。

()()()14343'2+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-()291=-f ,275034-=⎪⎭⎫⎝⎛f 。

所以,()x f 在区间[]2,2-上的最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

点评:本题考查可导函数最值的求法。

求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。

(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.(2)3()212f x x x =-。

2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练 (一) 选择题1. 已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A )A .1B .2C .3D .42. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( B )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D ) A .1 B .2 C .3 D .44. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D )(A )2 (B )3 (C )4 (D )56. 函数32()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( A )8. 函数231()23f x x x=-在区间[0,6]上的最大值是( A )A .323B .163C .12D .99. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0B .1C .2D .410. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( A )A . 0>aB .0<aC .1=aD .31=a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D ) A .3 B .2C .1D .0A xDCxB12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个B .2个C .3个D . 4个(二) 填空题13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。

14. 已知曲线31433y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________ 15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n fx =0,则n 的最少值为 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.(三) 解答题17. 已知函数()c bx ax x x f +++=23,当1-=x 时,取得极大值7;当3=x 时,取得极小值.求这个极小值及c b a ,,的值.18. 已知函数.93)(23a x x x x f +++-= (1)求)(x f 的单调减区间;(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。

(1)用t 表示c b a ,,;(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。

(1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?22. 已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(1) 当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.强化训练答案:1.A2.B3.D4.A5.D6.D7.A8.A9.A 10.A 11.D 12.A(四) 填空题 13.3814. 044=+-x y 15. 7 16. 20 (五) 解答题17. 解:()b ax x x f ++=23'2。

据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得⎪⎪⎩⎪⎪⎨⎧=⨯--=+-3313231b a ∴9,3-=-=b a∴()c x x x x f +--=9323∵()71=-f ,∴2=c极小值()25239333323-=+⨯-⨯-=f∴极小值为-25,9,3-=-=b a ,2=c 。

18. 解:(1).963)(2++-='x x x f 令0)(<'x f ,解得,31>-<x x 或所以函数)(x f 的单调递减区间为).,3(),1,(+∞--∞(2)因为,218128)2(a a f +=+-+=- ,2218128)2(a a f +=+++-=所以).2()2(->f f 因为在(-1,3)上0)(>'x f ,所以)(x f 在[-1,2]上单调递增,又由于)(x f 在[-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[]2,2-上的最大值和最小值.于是有2022=+a,解得.2-=a故.293)(23-++-=x x x x f 因此,72931)1(-=--+=-f即函数)(x f 在区间[]2,2-上的最小值为-7.19. 解:(1)因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f ,即03=+at t.因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '='而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以将2t a-=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=(2)))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.当0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由0<'y ,若t x t t <<->3,0则;若.3,0t x t t -<<<则 由题意,函数)()(x g x f y -=在(-1,3)上单调递减,则).3,()3,1(),3()3,1(t t t t -⊂--⊂-或所以.39.333≥-≤≥-≥t t tt 或即或又当39<<-t时,函数)()(x g x f y -=在(-1,3)上单调递减.所以t 的取值范围为).,3[]9,(+∞⋃--∞20. 解:(1)∵()32f x x bx cx =++,∴()232f x x bx c '=++。

相关文档
最新文档