2020届高考数学大二轮复习冲刺创新专题仿真模拟卷 共六套 文
2020届高考数学大二轮复习冲刺创新专题仿真模拟卷一文(最新整理)
仿真模拟卷一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<1},B={x|3x<1},则()A.A∪B={x|x>1} B.A∪B=RC.A∩B={x|x〈0} D.A∩B=∅答案C解析集合B={x|3x<1},即B={x|x〈0},而A={x|x〈1},所以A∪B={x|x<1},A∩B={x|x<0}.2.记复数z的共轭复数为错误!,若错误!(1-i)=2i(i为虚数单位),则|z|=()A.错误!B.1C.2错误!D.2答案A解析由错误!(1-i)=2i,可得错误!=错误!=错误!=-1+i,所以z=-1-i,|z|=2.3.设a=ln 13,b=20。
3,c=错误!2,则()A.a<c〈b B.c〈a<b C.a<b〈c D.b〈a<c 答案A解析由对数函数的性质可知a=ln 13<0,由指数函数的性质可知b=20。
3>1,又0〈c=错误!2〈1,故选A。
4.设θ∈R,则“错误!〈错误!"是“sinθ<错误!”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案A解析由错误!〈错误!可得0<θ〈错误!,所以由“错误!〈错误!”可得“sinθ〈错误!",但由“sinθ〈错误!"推不出“错误!〈错误!”,所以“错误!<错误!”是“sinθ〈错误!"的充分不必要条件.5.在如图所示的计算1+5+9+…+2021的程序框图中,判断框内应填入的条件是()A.i≤2021? B.i<2021?C.i〈2017? D.i≤2025?答案A解析由题意结合流程图可知当i=2021时,程序应执行S=S+i,i=i+4=2025,再次进入判断框时应该跳出循环,输出S的值;结合所给的选项可知判断框内应填入的条件是i≤2021?.6.已知函数f(x)=e|x|+cos x,若f(2x-1)≥f(1),则x的取值范围为( )A.(-∞,0]∪[1,+∞)B.[0,1]C.(-∞,0] D.[1,+∞)答案A解析解法一:(直接法)因为f(-x)=f(x),且x≥0时f(x)=e x+cos x⇒f′(x)=e x-sin x〉e0-1=0,所以函数f(x)为偶函数,且在[0,+∞)上单调递增,因此f(2x-1)≥f(1)⇒f(|2x-1|)≥f(1)⇒|2x-1|≥1⇒2x-1≥1或2x-1≤-1⇒x≥1或x≤0.故选A.解法二:(排除法)由题知f(1)=e+cos1。
2020届全国金太阳联考新高考押题仿真模拟(六)文科数学
2020届全国金太阳联考新高考押题仿真模拟(六)数学(文)试题★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题相应答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题相应答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持答题卡卡面清洁,无污渍,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在复平面内与复数21izi=+所对应的点关于实轴对称的点为A,则A对应的复数为()A. 1i+B. 1i-C. 1i-- D. 1i-+【答案】B【解析】【分析】用两个复数代数形式的乘除法法则,化简复数得到复数的共轭复数,从而得到复数在复平面内的对应点的坐标,得到选项.【详解】Q复数()()()2121111i iiz ii i i-===+++-,∴复数的共轭复数是1i-,就是复数21izi=+所对应的点关于实轴对称的点为A对应的复数;故选:B.【点睛】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时乘以分母的共轭复数,考查复数与复平面内对应点之间的关系,是一个基础题.2.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,若(),3A x 是角θ终边上一点,且cos θ=,则x =( )A. -B.C. 1D. -1【答案】D 【解析】 【分析】根据三角函数定义可得0x <10=-,解方程得到结果.【详解】因为cos 0θ=<,及(),3A x 是角θ终边上一点 0x ⇒<10=-解得:1x =- 本题正确选项:D【点睛】本题考查三角函数的定义,属于基础题. 3.已知132a =,4log 5b =,322c =,则a ,b ,c 满足 A. a <b <c B. b <a <c C. c <a <b D. c <b <a【答案】B 【解析】 【分析】根据对数的运算性质,化简得2log 3a =,2log b =,进而得12b a <<<,又由2>c ,即可得到答案.【详解】由题意,可得21log 32a ===,42log 5log b ==又由2log y x =为单调递增函数,且432>>>,所以222log 3log 1>>>,所以21a b >>>,又由312222c =>= ,所以b a c <<,故选B .【点睛】本题主要考查了对数函数的图象与性质的应用,其中解答中合理应用对数函数的单调性进行比较是解答的关键,着重考查了推理与运算能力,属于基础题. 4.在长方体1111ABCD A B C D -中,2AB AD ==,12AA =,则异面直线1AB 与1BC 所成角的余弦值为( ) A.23B.56C.33D.66【答案】A 【解析】 【分析】画出图形分析,先根据定义找出异面直线1AB 与1BC 所成的角,然后通过解三角形的方法求解即可. 【详解】画出图形,如图所示.连111,AD B D ,则11//AD BC ,所以11B AD ∠即为1AB 与1BC 所成的角或其补角. 在11B AD n 中,116AB AD =112B D =,所以由余弦定理得116642cos 263B AD +-∠==⨯,所以异面直线1AB 与1BC 所成角的余弦值为23.故选A .【点睛】用几何法求空间角的步骤为:“找、证、求”,即先根据定义确定出所求角,并给出证明,再通过解三角形的方法求出所求角(或三角函数值).解题时容易出现的问题是忽视两条异面直线所成角的范围,属于基础题.5.已知p q ,是两个命题,那么“p q ∧是真命题”是“p ⌝是假命题”的( ) A. 既不充分也不要必要条件 B. 充分必要条件 C. 充分不必要条件 D. 必要不充分条件【答案】C 【解析】 【分析】由充分必要条件及命题的真假可得:“p ∧q 是真命题”是“¬p 是假命题”的充分不必要条件,得解 【详解】因为“p ∧q 是真命题”则命题p ,q 均为真命题,所以¬p 是假命题, 由“¬p 是假命题”,可得p 为真命题,但不能推出“p ∧q 是真命题”, 即“p ∧q 是真命题”是“¬p 是假命题”的充分不必要条件, 故选:C .【点睛】本题考查了充分必要条件及命题的真假,属简单题.6.已知双曲线()222102y x a a -=>的一条渐近线方程为y =,则双曲线的焦点坐标为( )A. ()B. ()C. (0,D. (0,【答案】D 【解析】 【分析】根据解析式可知双曲线的焦点在y 轴上,结合渐近线方程及b 的值,可得a 的值.由双曲线中a b c 、、的关系即可求得c ,得焦点坐标.【详解】由双曲线()222102y x a a -=>可知双曲线的焦点在y 轴上,所以渐近线方程可表示为ay x b=±由22b =及渐近线方程y ==解得2a =双曲线中a b c 、、满足222+=a b c 则()222226c =+=解得6c =,则焦点坐标为()0,6± 故选:D【点睛】本题考查了双曲线渐近线方程的简单应用,双曲线中a b c 、、的关系,属于基础题. 7.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==u u u r u u u r u u u r u u u r ,则AE BF ⋅u u u r u u u r=( )A. 83- B. 1- C. 2D.103【答案】C 【解析】试题分析:2233AE AB BE AB BC AB AD =+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,1122BF BC CF BC CD AD AB =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以222112232233AE BF AB AD AD AB AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-=-++⋅ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221221434322332=-⨯+⨯+⨯⨯⨯=,故选C.考点:1.向量加减法的几何意义;2.向量数量积定义.【名师点睛】本题主要考查向量的向量加减法的几何意义、向量数量积定义,属中档题;向量的几何运算主要是利用平面向量基本定理,即通过平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用,当基底确定后,任一向量的表示都是唯一的.8.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2x y x =⋅的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A. ①④②③B. ①④③②C. ④①②③D. ③④②①【答案】A 【解析】 【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是; ②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫⎪⎝⎭上的值为正数, 在,2ππ⎛⎫⎪⎝⎭上的值为负数,故第三个图象满足; ③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足;④2xy x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:A .【点睛】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.9.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=)2223S b a c =+-,则B ∠= A. 90︒ B. 60︒ C. 45︒ D. 30︒【答案】D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值.【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及()2223S b a c =+-,得13sin 2cos 2ab C ab C =⋅, 整理得tan 3C =,又00090C <<,所以060C =,故030B =. 故选:D【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.10.我国古代科学家祖冲之儿子祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”(“幂”是截面积,“势”是几何体的高),意思是两个同高的几何体,如在等高处截面的面积恒相等,则它们的体积相等.已知某不规则几何体与如图所示的三视图所表示的几何体满足“幂势既同”,则该不规则几何体的体积为( )A. 12π-B. 8π-C. 122π-D. 122π-【答案】A 【解析】 【分析】首项把三视图转换为几何体,得该几何体表示左边是一个棱长为2的正方体,右边是一个长为1,宽和高为2的长方体截去一个底面半径为1,高为2的半圆柱,进一步利用几何体的体积公式,即可求解,得到答案. 【详解】根据改定的几何体的三视图,可得该几何体表示左边是一个棱长为2的正方体,右边是一个长为1,宽和高为2的长方体截去一个底面半径为1,高为2的半圆柱,所以几何体的体积为2122222112122V ππ=⨯⨯+⨯⨯-⨯⨯=-,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.11.三棱锥S ABC -的各顶点均在球O 上,SC 为该球的直径,1,120AC BC ACB ︒==∠=,三棱锥S ABC -的体积为12,则球的表面积为( )A. 4πB. 6πC. 8πD. 16π【答案】D 【解析】 【分析】由体积公式求出三棱锥S ABC-的高,可得O 到平面ABC ,由正弦定理可得三角形ABC 的外接圆的半径,由勾股定理可得球半径,从而可得结果.【详解】如图, 1324ABC S AC BC sin ACB ∆=⋅⋅∠=, Q 三棱锥S ABC -的体积为12, 所以13132h =,解得三棱锥S ABC -的高为23 设H 为三角形ABC 的外接圆的圆心,连接OH ,则OH ⊥平面ABC , 因为SC 为该球的直径,所以12OH h ==, 连接CH ,由正弦定理可知三角形ABC 的外接圆的直径为22AB CH sin ACB ===∠,1,CH ∴=由勾股定理可得球半径2CO ==∴球O 的表面积为24216ππ⨯=,故选D.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.12.已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,关于x 的方程()22[()](12)0f x m f x m +--=,有5个不同的实数解,则m 的取值范围是( )A. 11,e ⎧⎫-⎨⎬⎩⎭B. (0,)+∞C.1(0,)e D.(10,]e【答案】C 【解析】 【分析】利用导数研究函数ln xy x=的单调性并求最值,求解方程()()()22120f x m f x m ⎡⎤+--=⎣⎦得到()f x m =或1()2f x =,画出函数()f x 的图象,数形结合即可求解. 【详解】设ln x y x = ,则21ln xy x-'=,由0y '=解得x e =,当(0,)x e ∈时0y '>,函数为增函数,当(,)x e ∈+∞时0y '<,函数为减函数,当x e =时,函数取得极大值也最大值为1()f e e=.方程()()()22120f x m f x m ⎡⎤+--=⎣⎦化为[()][2()1]0f x m f x -+=解得()f x m =或1()2f x =. 画出函数()f x 的图象如图:根据图象可知e 的取值范围是10,e ⎛⎫ ⎪⎝⎭时,方程由5个解. 故选C.【点睛】本题主要考查了利用导数求函数的最值,函数零点,函数与方程,数形结合,属于中档题.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.直线2y kx =+与圆224x y +=相交于M ,N 两点,若22MN =k =______. 【答案】±1 【解析】 【分析】根据圆截直线的弦长,结合垂径定理及点到直线距离公式即可求得k 的值. 【详解】直线2y kx =+可化为20kx y -+= 圆224x y +=,则圆心()0,0,半径2r =根据垂径定理可知圆心到直线距离()22222d =-=又根据点到直线距离可得2221d k ==+解方程可得1k =±故答案为: ±1【点睛】本题考查了直线与圆的位置关系,垂径定理及点到直线距离公式的应用,属于基础题.14.已知实数,x y 满足210320220x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩,则2x y +的最小值是______.【答案】-4 【解析】 【分析】先作出不等式组对应的可行域,再利用数形结合分析得到2x+y 的最小值. 【详解】先作出不等式组对应的可行域,如图所示,设z=2x+y,所以y=-2x+z,当直线经过点A 时,直线的纵截距最小,z 最小,联立320220x y x y -+=⎧⎨++=⎩得A(-2,0),所以z 最小=2×(-2)+0=-4. 故答案为:-4【点睛】本题主要考查线性规划求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 15.已知函数()f x 对于任意实数x 都有()()f x f x -=,且当0x ≥时,()sin xf x e x =-,若实数a 满足()()2log 1f a f <,则a 的取值范围是______.【答案】1,22⎛⎫ ⎪⎝⎭【解析】 【分析】先证明函数在[0,+∞ )上单调递增,在,0)(-∞上单调递减,再利用函数的图像和性质解不等式|2log a |<1得解.【详解】由题得,当x ≥0时,()cos xf x e x '=-,因为x ≥0,所以01,cos 0x xe e e x ≥=∴-≥, 所以函数在[0,+∞ )上单调递增, 因为()()f x f x -=,所以函数是偶函数,所以函数在,0)(-∞上单调递减, 因为()()2log 1f a f <,所以|2log a |<1,所以-1<2log a <1, 所以122a <<. 故答案为:1,22⎛⎫⎪⎝⎭【点睛】本题主要考查利用导数研究函数的单调性,考查函数的奇偶性和单调性的应用,考查对数不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力. 16.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2a =,cos cos tan sin sin A CA A C+=+,则sin sin b c B C ++的取值范围是__________.【答案】4) 【解析】 【分析】由cos cos tan sin sin A C A A C+=+结合三角恒等变换知识可得cos2cos A B =,即2B A =,从而得到64A ππ<<,又sin sin sin b c aB C A+=+,进而可得结果.【详解】由已知得()()sin sin sin cos cos cos A A C A A C +=+,∴22cos sin sin sin cos cos A A A C A C -=-,∴()cos2cos cos A A C B =-+=. ∵ABC ∆是锐角三角形, ∴2B A =且022A π<<,032A ππ<-<,∴64A ππ<<.∵2a =,∴)sin a A ⎡∈⎣.又sin sin sin b c a B C A+=+,∴()sin sin b cB C+∈+.故答案为:()4【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理的应用.考查了学生对三角函数基础知识的理解和灵活运用.三、解答题(本大题共6小题,共70分)17.已知等差数列{}n a 中,33a =,22a +,4a ,62a -顺次成等比数列. (1)求数列{}n a 的通项公式; (2)记()2111nn nn n a b a a ++=-,{}n b 的前n 项和n S ,求2n S .【答案】(1)n a n =;(2)221nn -+ 【解析】 【分析】(1)利用三项成等比数列可得()()242622a a a =+-,利用3a 和d 来表示该等式,可求得d ;利用等差数列通项公式求得结果;(2)由(1)可得()1111nn b n n ⎛⎫=-+ ⎪+⎝⎭,则2n S 可利用裂项相消方法来进行求解. 【详解】(1)设等差数列{}n a 的公差为d22a +Q ,4a ,62a -顺次成等比数列 ()()242622a a a ∴=+- ()()()2333232a d a d a d ∴+=-++-,又33a =()()()23513d d d ∴+=-+,化简得:2210d d -+=,解得:1d =()()33331n a a n d n n ∴=+-=+-⨯=(2)由(1)得:()()()()211211111111nnn n nn n a n b a a n n n n +++⎛⎫==-=-+ ⎪++⎝⎭-212321111111122334221n n S b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫∴=+++⋅⋅⋅+=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n -=-+=++ 【点睛】本题考查等差数列通项公式的求解、裂项相消法求数列的前n 项和的问题,关键是熟练掌握关于通项中涉及到()1n-的裂项方法.18.在某次测验中,某班40名考生的成绩满分100分统计如图所示.(Ⅰ)估计这40名学生的测验成绩的中位数0x 精确到0.1;(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?合格优秀合计男生 16附:22()()()()()n ad bc a b c d a c b d χ-=++++【答案】(Ⅰ) 71.7 (Ⅱ)见解析 【解析】 【分析】(Ⅰ)根据频率分布直方图,找到矩形面积和为0.5时横坐标的取值即为中位数;(Ⅱ)根据频率分布直方图计算频数可补足列联表,根据公式计算出2χ,对比临界值表求得结果.【详解】(Ⅰ)由频率分布直方图易知:0.01100.015100.02100.45⨯+⨯+⨯= 即分数在[)40,70的频率为:0.45所以()00.03700.50.45x ⨯-=-解得:021571.73x =≈ 40∴名学生的测验成绩的中位数为71.7(Ⅱ)由频率分布直方图,可得列联表如下:()2240164146400.135 3.84130102218297χ⨯⨯-⨯∴==≈<⨯⨯⨯ 故没有95%的把握认为数学测验成绩与性别有关【点睛】本题考查利用频率分布直方图估计中位数、独立性检验问题,属于常规题型.19.【2018届北京市海淀区】如图,三棱柱111ABC A B C -侧面11ABB A ⊥底面ABC , ,AC AB ⊥12,AC AB AA === 0160AA B ∠=, ,E F 分别为棱11,A B BC 的中点.(Ⅰ)求证: AC AE ⊥;(Ⅱ)求三棱柱111ABC A B C -的体积;(Ⅲ)在直线1AA 上是否存在一点P ,使得//CP 平面AEF ?若存在,求出AP 的长;若不存在,说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ) 3V =Ⅲ)在直线1AA 上存在点P ,使得//CP 平面AEF ,证明见解析. 【解析】试题分析:(1)根据题目中侧面11ABB A ⊥底面ABC ,2AC AB ,可证得结论;()⊥由条件知AE ⊥底面111A B C ,11123A B C V S AE ∆=⋅=(3)连接BE 并延长,与1AA 的延长线相交,设交点为P ,证线线平行即//EF CP ,进而得到线面平行。
2020年上海市高考数学模拟试卷6套(附答案解析)
高考数学一模试卷一二三总分题号得分一、选择题(本大题共4 小题,共20.0 分)1.若函数在区间(1,e)上存在零点,则常数a的取值范围为()A. 0<a<1B. C. D.2.下列函数是偶函数,且在[0,+∞)上单调递增的是()A. B. f(x)=|x|-2cos xC. D. f(x)=10|lg x|3.已知平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足的是()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面4.提鞋公式也叫李善兰辅助角公式,其正弦型如下:,-π<φ<π,下列判断错误的是()A. 当a>0,b>0 时,辅助角B. 当a>0,b<0 时,辅助角C. 当a<0,b>0 时,辅助角D. 当a<0,b<0 时,辅助角二、填空题(本大题共12 小题,共54.0 分)5.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=______.6.已知,则λ=______.7.函数y=3x-1(x≤1)的反函数是______.8.2019 年女排世界杯共有12 支参赛球队,赛制采用12 支队伍单循环,两两捉对厮杀一场定胜负,依次进行,则此次杯赛共有______场球赛.9.以抛物线y2=-6x的焦点为圆心,且与抛物线的准线相切的圆的方程是______.10.在(1-x)5(1+x3)的展开式中,x3 的系数为______.(结果用数值表示)11.不等式|x-x2-2|>x2-3x-6 的解集是______.12.已知方程x2-kx+2=0(k∈R)的两个虚根为x、x,若|x-x|=2,则k=______.1 2 1 213.已知直线l过点(-1,0)且与直线2x-y=0 垂直,则圆x2+y2-4x+8y=0 与直线l相交所得的弦长为______.14.有一个空心钢球,质量为142g,测得外直径为5cm,则它的内直径是______cm(钢的密度为7.9g/cm3,精确到0.1cm).15.已知{a}、{b}均是等差数列,c=a•b,若{c}前三项是7、9、9,则c=______.n n n n n n1016.已知a>b>0,那么,当代数式取最小值时,点P(a,b)的坐标为______.三、解答题(本大题共5 小题,共76.0 分)17.在直四棱柱ABCD-A B C D中,底面四边形ABCD是边长1 1 1 1为2 的菱形,∠BAD=60°,DD1=3,E是AB的中点.(1)求四棱锥C1-EBCD的体积;(2)求异面直线C1E和AD所成角的大小.(结果用反三角函数值表示)18.已知函数.(1)求函数f(x)的最小正周期及对称中心;(2)若f(x)=a在区间上有两个解x、x,求a的取值范围及x+x的值.1 2 1 219.一家污水处理厂有A、B两个相同的装满污水的处理池,通过去掉污物处理污水,A池用传统工艺成本低,每小时去掉池中剩余污物的10%,B池用创新工艺成本高,每小时去掉池中剩余污物的19%.(1)A池要用多长时间才能把污物的量减少一半;(精确到1 小时)(2)如果污物减少为原来的10%便符合环保规定,处理后的污水可以排入河流,若A、B两池同时工作,问经过多少小时后把两池水混合便符合环保规定.(精确到1 小时)20.已知直线l:x=t(0<t<2)与椭圆象限,M是椭圆上一点.相交于A、B两点,其中A在第一(1)记F、F是椭圆Γ的左右焦点,若直线AB过F,当M到F的距离与到直1 2 2 1线AB的距离相等时,求点M的横坐标;(2)若点M、A关于y轴对称,当△MAB的面积最大时,求直线MB的方程;(3)设直线MA和MB与x轴分别交于P、Q,证明:|OP|•|OQ|为定值.21.已知数列{a}满足a=1,a=e(e是自然对数的底数),且,令n 1 2b=ln a(n∈N*).n n(1)证明:(2)证明:;是等比数列,且{b n}的通项公式是;(3)是否存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立?若存在,求t的取值范围,否则,说明理由.答案和解析1.【答案】C【解析】解:函数在区间(1,e)上为增函数,∵f(1)=ln1-1+a<0,f(e)=ln e- +a>0,可得<a<1故选:C.判断函数的单调性,利用零点判断定理求解即可.本题考查函数与方程的应用,函数的零点的判断,是基本知识的考查.2.【答案】A【解析】解:由偶函数的定义,偶函数的定义域关于原点对称,故D错;A:f(-x)=log2(4-x+1)+x=log2+x=log (4x+1)-log 22x+x=log (4x+1)-x=f(x);2 2 2f(x)=log2(4x+1)-x=log2号成立,故A正确;=log (2x+ )≥log2=1,当且仅当2x= ,即x=0 时等2 2B:x>0 时,f(x)=x-2cos x,令f′(x)=1-2sin x>0,得x∈(0,2kπ+)∪(2kπ+,2kπ+2π)(k∈N*),故B不正确;C:x≠0时,x2+ ≥2,当且仅当x2= ,即x=±1时,等号成立,∴不满足在[0,+∞)上单调递增,故C不正确;故选:A.由偶函数的定义,及在[0,+∞)上单调即可求解;考查偶函数的定义,函数在特定区间上的单调性,属于低档题;3.【答案】B【解析】解:平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,所以直线a、b、c在三个平面内,不会是共面直线,所以:当直线两两平行时,a、b、c为共面直线.与已知条件整理出的结论不符.故选:B.直接利用直线和平面的位置关系的应用求出结果.本题考查的知识要点:直线和平面之间的关系的应用,主要考查学生的空间想象能力,属于基础题型.4.【答案】B【解析】解:因为cosφ=,sinφ=⇒tanφ=,对于A,因为a>0,b>0,则辅助角φ在第一象限⇒0<φ<,因为>0,φ=arctan>0,故A选项正确;对于B,因为a>0,b<0,则辅助角φ在第四象限⇒- <φ<0;,故φ=π-arctan(- )=π+arctan>0,故B选项错误;对于C,因为a<0,b>0,则辅助角φ在第二象限⇒⇒<φ<π;<0,故φ═π-arctan(- )=π+arctan>0,故C选项正确;对于D,因为a<0,b<0,则辅助角φ在第三象限⇒-π<φ<- ,>0,故φ=arctan,又因为φ∈(-π,π],故φ=arctan-π<0,故D选项正确;故选:B.分别判断出a,b的值,对辅助角φ的影响.①a>0,b>0,则辅助角φ在第一象限;②a>0,b<0,则辅助角φ在第四象限;③a<0,b<0,则辅助角φ在第三象限;④a<0,b>0,则辅助角φ在第二象限.本题考查了三角函数的性质,考查学生的分析能力;属于中档题.5.【答案】【解析】解:∵复数z满足z(1+i)=2i,∴(1-i)z(1+i)=2i(1-i),化为2z=2(i+1),∴z=1+i.∴|z|= .故答案为:.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,属于基础题.6.【答案】3【解析】解:=(λ-4)+2λ=5,解之得λ=3,故答案为:3.由行列式的公式化简求解.本题考查行列式,属于基础题.7.【答案】y=1+log3x,x∈(0,1]【解析】解:y=3x-1(x≤1),y∈(0,1],得x-1=log3y,x,y对换,得y=1+log3x,x∈(0,1],故答案为:y=1+log3x,x∈(0,1],利用反函数的求法,先反解x,再对换x,y,求出即可.本题考查了反函数的求法,属于基础题.8.【答案】66【解析】解:根据题意利用组合数得.故答案为:66.直接利用组合数的应用求出结果.本题考查的知识要点:组合数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.9.【答案】(x+ )2+y2=9【解析】解:抛物线y2=-6x的焦点坐标为:(- ,0)准线的方程为x= ,所以叫点到准线的距离为3,所以以焦点为圆心且与抛物线的准线相切的圆的方程是:故答案为:首先求出抛物线的交点坐标和准现方程,进一步求出圆的方程...本题考查的知识要点:圆锥曲线的性质的应用,圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.【答案】6【解析】解:(1-x)5•(1+x)3=(1-x)2•[(1-x)(1+x)]3=(x2-2x+1)•(1-3x2+3x4-x6)∴展开式中x3 的系数为(-2)•(-3)=6.故答案为:6.把(1-x)5•(1+x)3 化为(1-x)2•[(1-x)(1+x)]3,再化为(x2-2x+1)•(1-3x2+3x4-x6),由此求出展开式中x3 的系数.本题考查了二项式系数的性质与应用问题,解题时应根据多项式的运算法则合理地进行等价转化,是基础题目.11.【答案】(-4,+∞)【解析】解:不等式|x-x2-2|>x2-3x-6 转换为不等式|x2-x+2|>x2-3x-6,由于函数y=x2-x+2 的图象在x轴上方,所以x2-x+2>0 恒成立,所以x2-x+2>x2-3x-6,整理得x>-4,故不等式的解集为(-4,+∞).故答案为(-4,+∞)直接利用绝对值不等式的解法及应用求出结果.本题考查的知识要点:不等式的解法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.【答案】±2【解析】解:∵方程程x2-kx+2=0 的两个虚根为x、x,1 2可设x=a+bi,x=a-bi(a,b∈R).1 2∴x+x=2a=k,x x=a2+b2=2,1 2 1 2∵|x-x|=2,∴|2bi|=2,1 2联立解得:b=±1,a=±1.∴k=±2.故答案为:±2.由题意设x=a+bi,x=a-bi(a,b∈R),利用根与系数的关系结合|x-x|=2 求得a与b1 2 1 2的值,则k可求.本题考查了实系数一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.13.【答案】2【解析】解:由题意可得,l的方程为x+2y+1=0,∵x2+y2-4x+8y=0 可化为(x-2)2+(y+4)2=20,圆心(2,-4),半径r=2 ,∴圆心(2,-4)到l的距离d= = ,∴AB=2 =2 =2 .故答案为:2 .先求出直线l的方程,再求出圆心C与半径r,计算圆心到直线l的距离d,由垂径定理求弦长|AB|.本题考查直线与圆的方程的应用问题,考查两条直线垂直以及直线与圆相交所得弦长的计算问题,是基础题.14.【答案】4.5【解析】解:设钢球的内半径为r,所以7.9××3.14×[- ]=142,解得r≈2.25.故内直径为4.5cm.故答案为:4.5.直接利用球的体积公式和物理中的关系式的应用求出结果.本题考查的知识要点:球的体积公式和相关的物理中的关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.【答案】-47【解析】解:设c=a•b=an2+bn+c,n n n则,解得∴c10=-1×102+5×10+3=-47,故答案为:-47.{a}、{b}均是等差数列,故{c}为二次函数,设c=an2+bn+c,根据前3 项,求出a,b n n n n,c的值,即可得到c10.本题考查了等差数列的通项公式,考查分析和解决问题的能力和计算能力,属于基础题.16.【答案】(2,)【解析】解:因为a>b>0:∴b(a-b)≤= ;所以≥a2+ ≥2=16.当且仅当,).⇒时取等号,此时P(a,b)的坐标为:(2故答案为:(2 ,).先根据基本不等式得到b(a-b)≤= ;再利用一次基本不等式即可求解.本题考查的知识点:关系式的恒等变换,基本不等式的应用,属于基础题型.17.【答案】解:(1)在直四棱柱ABCD-A B C D中,1 1 1 1∵底面四边形ABCD是边长为2 的菱形,∠BAD=60°,∴B到DC边的距离为,又E是AB的中点,∴BE=1,则.∵DD1=3,∴= ;(2)在直四棱柱ABCD-A B C D中,1 1 1 1∵AD∥B C,∴∠B C E即为异面直线C E和AD所成角,1 1 1 1 1连接B E,在△C B E中,B C=2,,1 1 1 1 1= .∴cos∠B C E= ,1 1∴异面直线C1E和AD所成角的大小为arccos .【解析】(1)求解三角形求出底面梯形BCDE的面积,再由棱锥体积公式求解;(2)在直四棱柱ABCD-A B C D中,由题意可得AD∥B C,则∠B C E即为异面直线1 1 1 1 1 1 1 1C1E和AD所成角,求解三角形得答案.本题考查多面体体积的求法及异面直线所成角的求法,考查空间想象能力与思维能力,是中档题.18.【答案】解:(1)函数= == .所以函数的最小正周期为,令(k∈Z),解得(k∈Z),所以函数的对称中心为()(k∈Z).(2)由于,所以,在区间上有两个解x、x,1 2所以函数时,函数的图象有两个交点,故a的范围为[0,).由于函数的图象在区间 上关于 x = 对称,故.【解析】(1)直接利用三角函数关系式的恒等变换的应用,把函数的关系式变形成正 弦型函数,进一步求出函数的周期和对称中心.(2)利用函数的定义域求出函数的值域,进一步求出参数 a 的范围和 x +x 的值. 1 2本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考 查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(1)A 池用传统工艺成本低,每小时去掉池中剩余污物的 10%,剩余原来的 90%,设 A 池要用 t 小时才能把污物的量减少一半, 则 0.9x =0.5,可得 x = ≈7,则 A 池要用 7 小时才能把污物的量减少一半;(2)设 A 、B 两池同时工作,经过 x 小时后把两池水混合便符合环保规定, B 池用创新工艺成本高,每小时去掉池中剩余污物的 19%,剩余原来的 81%, 可得 =0.1,即 0.92x +0.9x -0.2=0, 可得 0.9x = 可得 x =, ≈17.则 A 、B 两池同时工作,经过 17 小时后把两池水混合便符合环保规定.【解析】(1)由题意可得 A 池每小时剩余原来的 90%,设 A 池要用 t 小时才能把污物 的量减少一半,则 0.9x =0.5,两边取对数,计算可得所求值; (2)设 A 、B 两池同时工作,经过 x 小时后把两池水混合便符合环保规定,B 池每小时 剩余原来的 81%,可得=0.1,由二次方程的解法和两边取对数可得所求值.本题考查对数在实际问题的应用,考查方程思想和运算能力,属于基础题.20.【答案】解:(1)设 M (x ,y ),-2≤x ≤2,F 1(-过 F 2,),F 2( ,0),直线 AB所以 t = 由题意得:=|x - |⇒y 2=-4 x ,联立椭圆方程: + =1⇒y 2=2- ,解得 x =-6+4 即 M 的横坐标是:-6+4 (2)设 A (t ,y ),B (t ,-y ),M (-t ,y ), ,. 1 1 1则 S △MAB = 2t •|2y |=2t •|y |,而 A 在椭圆上,所以, + =1 1 1 ∴1≥2• ⇒ty 1≤ ,∴S △MAB ≤2 ,当且仅当 t = ,即 t = y 1 时取等号,∴t = ,这时 B ( ,-1),M (- ,1),所以直线 MB 方程:y =- x ;(3)设点A(t,y),B(t,-y),M(x,y),则直线MA:y= •(x-t)+y1,1 1 0 0所以P的坐标(同理直线MB:y= 所以|OP|•|OQ|=| 代入|OP|•|OQ|=|,0)(x-t)-y1,所以Q的坐标(|,又因为A,M在椭圆上,所以y2=2- t2,y2=2- x2,0)1 0 0 |=4,恒为定值.【解析】(1)由题意可得焦点F,F的坐标,进而可求出A的坐标,设M的坐标,1 2注意横坐标的范围[-2,2],在椭圆上,又M到F1 的距离与到直线AB的距离相等,可求出M的横坐标;(2)M,A,B3 个点的位置关系,可设一个点坐标,写出其他两点的坐标,写出面积的表达式,根据均值不等式可求出横纵坐标的关系,又在椭圆上,进而求出具体的坐标,再求直线MB的方程;(3)设M,A的坐标,得出直线MA,MB的方程,进而求出两条直线与x轴的交点坐标,用M,A的坐标表示,而M,A又在椭圆上,进而求出结果.考查直线与椭圆的综合应用,属于中难度题.21.【答案】(1)证明:由已知可得:a n>1.∴ln a n+1+ln a n≥2,∴ln≥,∵,b=ln a(n∈N*).n n∴ln a n+2≥,∴.(2)证明:设c n=b n+1-b n,∵,b=ln a(n∈N*).∴= =n n= =- .∴是等比数列,公比为- .首项b-b=1.2 1∴b n+1-b n= .∴b=b+(b-b)+(b-b)+……+(b-b)n 1 2 1 3 2 n n-1=0+1+ =+ +……+ = .∴{b n}的通项公式是;(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.∴n=1 时,1≥t•0,解得t∈R.n≥2时,t≤,∵= = =1- .取得最小值,= .当n=2 时,∴t≤.【解析】(1)由已知可得:a n>1.利用基本不等式的性质可得:ln a n+1+ln a n≥2,可得ln ≥,代入化简即可得出.(2)设c n=b n+1-b n,由,b=ln a(n∈N*).可得= =- .即n n可证明是等比数列,利用通项公式、累加求和方法即可得出.(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.n=1 时,1≥t•0,解得t∈R.n≥2时,t≤,利用单调性即可得出.本题考查了数列递推关系、数列的单调性、等比数列的定义通项公式求和公式,考查了推理能力与计算能力,属于难题.高考数学三模试卷题号得分一 二 三 总分一、选择题(本大题共 4 小题,共 12.0 分)1. 关于三个不同平面 α,β,γ 与直线 l ,下列命题中的假命题是( )A. 若 α⊥β,则 α 内一定存在直线平行于 βB. 若 α 与 β 不垂直,则 α 内一定不存在直线垂直于 βC. 若 α⊥γ,β⊥γ,α∩β=l ,则 l ⊥γD. 若 α⊥β,则 α 内所有直线垂直于 β2. 在一次化学测试中,高一某班 50 名学生成绩的平均分为 82 分,方差为 8.2,则下 列四个数中不可能是该班化学成绩的是( )A. 60B. 70C. 80D. 100 3. 已知双曲线 : ,过点 作直线 ,使 与 有且仅有一个公共点,则满 足上述条件的直线 共有()A. 1 条B. 2 条C. 3 条D. 4 条4. 有红色、黄色小球各两个,蓝色小球一个,所有小球彼此不同,现将五球排成一行 ,颜色相同者不相邻,不同的排法共有()种A. 48B. 72C. 78D. 84 二、填空题(本大题共 12 小题,共 36.0 分) 5. 若全集为实数集 R ,,则∁R M =______ 的准线方程为______. =0 的解为______ . 的反函数 f -1(x )=______ 6. 抛物线7. 关于 x 方程8. 函数 f (x )=2sin x +1,9. 函数的图象相邻的两条对称轴之间的距离是______ ,则二项式(x -2a )10 展开式的系数和是______10. 若 11. 某校要从 名男生和 名女生中选出 人担任某游泳赛事的志愿者工作,则在选出的 志愿者中,男、女都有的概率为______(结果用数值表示).12. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是______13.设实数x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为2,则2a+3b的值为______14.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A、B两点,则线段AB的长是______15.定义在R上的偶函数f(x)对任意的x∈R有f(1+x)=f(1-x),且当x∈[2,3]时,f(x)=-x2+6x-9.若函数y=f(x)-log a x在(0,+∞)上有四个零点,则a的值为______ .16.已知向量、满足三、解答题(本大题共5 小题,共60.0 分)17.如图,已知多面体ABC-A B C,A A,B B,C C均垂直于平面ABC,∠ABC=120°,,,则的取值范围是______1 1 1 1 1 1A A=4,C C=1,AB=BC=B B=2.1 1 1(1)证明:AB⊥平面A B C;1 1 1 1(2)求直线AC与平面ABB所成的角的正弦值.1 118. 在△ABC中,角A,B,C的对边分别为a,b,c,向量,,(1)求sin A的值;(2)若,b=5,求角B的大小及向量在方向上的投影.19. 某单位有员工1000 名,平均每人每年创造利润10 万元,为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后这x名员工他们平均每人创造利润为万元,剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000 名员工创造的年总利润,则最多调整多少名员工从事第三产业?(2)设x≤400,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求a的最大值.20. 如图,以椭圆=1(a>1)的右焦点F为圆心,1-c为半径作圆F(其中c为2 2已知椭圆的半焦距),过椭圆上一点P作此圆的切线,切点为T.(1)若a= ,P为椭圆的右顶点,求切线长|PT|;(2)设圆F2 与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A、B两点,若|PT|≥(a-c)恒成立,且OA⊥OB.求:①c的取值范围;②直线l被圆F2 所截得弦长的最大值.21. 给定数列{a},记该数列前i项a,a,…,a中的最大项为A,即A=max{a,an 1 2 i i i 1 2,…,a};该数列后n-i项a,a,…,a中的最小项为B,即B=min{a,ai i+1 i+2 n i i i+1 i+2,…,a};d=A-B(i=1,2,3,…,n-1)n i i i(1)对于数列:3,4,7,1,求出相应的d,d,d;1 2 3(2)若S是数列{a}的前n项和,且对任意n∈N*,有,n n其中λ为实数,λ>0 且.①设,证明数列{b n}是等比数列;②若数列{a}对应的d满足d>d对任意的正整数i=1,2,3,…,n-2 恒成立,n i i+1 i求实数λ的取值范围.答案和解析1.【答案】D【解析】解:对于A,假设α∩β=a,则α内所有平行于a的直线都平行β,故A正确;对于B,假设α内存在直线a垂直于β,则α⊥β,与题设矛盾,故假设错误,故B正确;对于C,设α∩γ=c,β∩γ=d,在γ内任取一点P,作PM⊥c于点M,PN⊥d于点N则PM⊥α,PN⊥β,且PM、PN不可能共线.又l⊂α,l⊂β,∴PM⊥l,PN⊥l.又PM∩PN=P,PM⊂γ,PN⊂γ,∴l⊥γ.故C正确.对于D,假设α∩β=a,则α内所有平行于a的直线都平行β,故D错误.故选:D.根据空间线面位置关系的判定和性质判断或距离说明.本题主要考查了直线与平面位置关系的判定,考查了空间想象能力和推理论证能力,属于中档题.2.【答案】A【解析】解:高一某班50 名学生成绩的平均分为82 分,方差为8.2,根据平均数、方差的意义,可知60 分不可能是该班化学成绩.故选A.根据平均数、方差的意义,可知结论.本题考查平均数、方差的意义,比较基础.3.【答案】D【解析】【分析】本题主要考查了双曲线的简单性质.考查了学生数形结合和转化和化归的思想的运用,属于一般题.先确定双曲线的右顶点,进而根据图形可推断出当l垂直x轴时与C相切,与x轴不垂直且与C相切,与渐近线平行且与C较与1 点(两种情况)满足l与C有且只有一个公共点.【解答】解:根据双曲线方程可知a=1,①当直线l斜率不存在时,直线l方程为:x=1,满足与曲线C只有一个公共点;②当直线l斜率存在时,设直线l方程为:y-1=k(x-1),即:y=k(x-1)+1,联立,整理可得:,当,即k= 时,此时方程有且仅有一个实数根,∴直线l: 与曲线C有且仅有一个公共点,当时,,解得:∴直线l: ,与曲线C有且仅有一个公共点,综上所述:满足条件的直线l有4 条.故选:D.4.【答案】A【解析】解:将五个球排成一行共有种不同的排法,当两个红色球相邻共有当两个黄色球相邻共有种不同的排法,种不同的排法,当两个黄色球、两个红色球分别相邻共有种不同的排法,则将五球排成一行,颜色相同者不相邻,不同的排法共有- - +=120-48-48+24=48(种),故选:A.由排列组合及简单的计数问题得:将五球排成一行,颜色相同者不相邻,不同的排法共有- - + =48(种),得解.本题考查了排列组合及简单的计数问题,属中档题.5.【答案】【解析】解:∵∴;.故答案为:.可以求出集合M,然后进行补集的运算即可.考查描述法、区间表示集合的定义,对数函数的单调性及对数函数的定义域,以及补集的运算.6.【答案】y=1【解析】解:由,得x2=-4y,∴2p=4,即p=2,则抛物线的准线方程为y= =1.故答案为:y=1.化抛物线方程为标准式,求得p,则直线方程可求.本题考查抛物线的简单性质,是基础题.7.【答案】x= 或x= ,k∈Z【解析】解:由=0,得4sin x cosx-1=0,即sin2x= .∴2x= 则x= 或x=或x=,,k∈Z.或x=故答案为:x= ,k∈Z.由已知可得sin2x= .求出2x的值,则原方程的解可求.本题考查二阶矩阵的应用,考查了三角函数值的求法,是基础题.8.【答案】,x∈[1,3]【解析】解:由y=2sin x+1,得sin x=,∴x=把x与y互换,可得f-1(x)=故答案为:,x∈[1,3].,∵,,x∈[1,3].由已知利用反正弦求得x,把x与y互换得答案.本题考查三角函数的反函数的求法,注意原函数的定义域是关键,是基础题.9.【答案】【解析】解:=(sin x+cos x)cos x== ,所以f(x)的周期T= ,所以f(x)的图象相邻的两条对称轴之间的距离为,故答案为:.化简f(x),然后根据f(x)图象相邻的两条对称轴之间的距离为即可得到结果.本题考查了三角函数的图象与性质,属基础题.10.【答案】1024【解析】解:由,知a≠1,∴= == ,∴a= ,∴(x-2a)10=(x+1)10,∴其展开式系数之和为C100+C101+C102+…+C1010=210=1024,故答案为:1024.根据数列的极限求出a的值,然后代入二项式(x-2a)10 中求其展开式的系数和即可.本题考查了数列的极限和二项式展开式系数和的求法,属基础题.11.【答案】【解析】【分析】本题考查等可能事件的概率计算,在求选出的志愿者中,男、女生都有的情况数目时,可以先求出只有男生、女生的数目,进而由排除法求得.根据题意,首先计算从2 名男生和4 名女生中选出4 人数目,再分析选出的4 人中只有男生、女生的数目,由排除法可得男、女生都有的情况数目,进而由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从2 名男生和4 名女生中选出4 人,有C64=15 种取法,其中全部为女生的有C44=1 种情况,没有全部为男生的情况,则选出的4 名志愿者中,男、女生都有的情况有15-1=14 种,则其概率为.故答案为.12.【答案】【解析】解:由已知可得该几何体是以俯视图为底面的锥体,(也可以看成是一个三棱锥与半圆锥的组合体),= ,其底面积:S= ×2×1+高h=3,故棱锥的体积V= = ,故答案为:由已知可得该几何体是以俯视图为底面的锥体,(也可以看成是一个三棱锥与半圆锥的组合体),代入锥体体积公式,可得答案.本题考查的知识点是由三视图求体积和表面积,难度中档.13.【答案】1【解析】解:由z=ax+by(a>0,b>0)得y=- x+,∵a>0,b>0,∴直线的斜率- <0,作出不等式对应的平面区域如图:平移直线得y=- x+ ,由图象可知当直线y=- x+经过点B时,直线y=- x+ 的截距最大,此时z最大.由,解得,即B(4,6),此时目标函数z=ax+by(a>0,b>0)的最大值为2,即4a+6b=2,即2a+3b=1,故答案为:1.作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,即可得到结论.本题主要考查线性规划的基本应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.14.【答案】【解析】解:由得x2+ =1,将代入到x2+ =1 并整理得:t2+4t=0,设A,B对应的参数为t,t,1 2则t=0,t=- ,1 2∴|t-t|=1 2故答案为:.联立直线的参数方程与曲线C的普通方程,利用参数的几何意义可得.本题考查了参数方程化成普通方程,属中档题.15.【答案】【解析】【分析】由已知中f(x+1)=f(1-x),故可能函数是以2 为周期的周期函数,又由函数f(x)是定义在R上的偶函数,结合当x∈[2,3]时,f(x)=-x2+6x-9.我们易得函数f(x)的图象,最后利用图象研究零点问题即可.本题考查的知识点是函数奇偶性与单调性的综合应用,函数的周期性,考查函数的零点与方程的根的关系,体现了化归与转化与数形结合的数学思想,属于中档题.【解答】解:由函数f(x)是定义在R上的偶函数,且f(x+1)=f(1-x)成立,可得f(x+2)=f(-x)=f(x),∴函数f(x)是定义在R上的周期为2 的偶函数,当x∈[2,3]时,f(x)=-x2+6x-9.函数y=f(x)-log x在(0,+∞)上的零点个数等于函数y=f(x)和函数y=log x的图象a a在(0,+∞)上的交点个数,如图所示:当y=log x的图象过点A(4,-1)时,函数y=f(x)-log x在(0,+∞)上有四个零点,a a∴-1=log a4,∴a= .故答案为:.16.【答案】【解析】解:向量、满足,,由题意可设,=(0,1)、=(x,y);、满足则:+ =(x,1+y);- =(-x,1-y);,,且x2+y2=4;则= +转换成所求为点(x.y)到(0,-1)与点(0,1)的距离之和大小,且(x,y)可看成在x2+y2=4 表示的圆周上的点;由数形结合法知即:当(x,y)在(2,0)或(-2,0)时,则值最小为3+1=4;当(x,y)在(0,2)或(0,-2)时,则值最大为2 =2 ;则的取值范围是故答案为:.利用设向量、的坐标表示法,利用向量模长转换成函数求最值,利用数形结合法求转换后的最值即可.本题考查了向量模长应用的问题,采用数形结合法,分类讨论解题时应根据平面向量的线性运算法则进行化简..17.【答案】(1)证明:由余弦定理得,所以,∵A A⊥平面ABC,B B⊥平面ABC,AB⊂平面ABC,1 1∴AA∥BB,AB⊥BB,1 1 1∵AA=4,BB=2,AB=2,1 1∴A B= =2 ,1 1又AB1= =2 ,∴,∴AB⊥A B,1 1 1, ,即即AB⊥B C,1 1 1又A B∩B C=B,A B,B C平面A B C,1 1 1 1 1 1 1 1 1 1 1 1∴AB⊥平面A B C.1 1 1 1(2)解:取AC中点O,过O作平面ABC的垂线OD,交A C于D,1 1∵AB=BC,∴OB⊥OC,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,- ,0),B(1,0,0),B(1,0,2),C(0,,1),1 1∴=(1,,0),=(0,0,2),=(0,2 ,1),设平面ABB1 的法向量为=(x,y,z),则,∴,令y=1 可得=(- ,1,0),∴cos = = = .设直线AC与平面ABB所成的角为θ,则sinθ=|cos|= .1 1∴直线AC与平面ABB所成的角的正弦值为.1 1【解析】本题主要考查了线面垂直的判定定理,线面角的计算与空间向量的应用,考查计算能力与空间想象能力,属于中档题.(1)利用勾股定理的逆定理证明AB⊥A B,AB⊥B C,从而可得AB⊥平面A B C;1 1 1 1 1 1 1 1 1 1 (2)以AC的中点为坐标原点建立空间坐标系,求出平面ABB1 的法向量,计算与的夹角即可得出线面角的正弦值.18.【答案】解:(1)由题意可得=cos[(A-B)+B]=cos A=∴sin A= = ;(2)由正弦定理可得∴sin B= = ,∵a>b,∴A>B,∴B= ,由余弦定理可得解得c=1,或c=-7(舍去),故向量方向上的投影为=cos(A-B)cos B-sin(A-B)sin B,,== ,在cos B=c cos B=1×= .【解析】(1)由数量积的坐标表示和涉及函数的公式可得=cos A= ,由同角三角函数的基本关系可得sin A;(2)由正弦定理可得sin B=,由余弦定理可得c值,由投影的定义可得.,结合大边对大角可得B值本题考查平面向量的数量积和两角和与差的三角函数公式,属中档题.19.【答案】解:(1)由题意得:10(1000-x)(1+0.2x%)≥10×1000,即x2-500x≤0,又x>0,所以0<x≤500.即最多调整500 名员工从事第三产业.(2)由题意得:10x(a- )≤10(1000-x)(1+0.2x%),即ax≤+1000+x,因为x>0,所以a≤在(0,400]恒成立,令f(x)= ,则f(x)= ≥2×2+1=5,当仅当时取等,此时x=500,但因为x≤400,且函数f(x)= 在(0,500)上单调递减,所以x=400 时,f(x)取最小值为f(400)= ,所以a最大值为.【解析】本题考查函数的实际应用,涉及不等式、函数基本性质等知识点,属于中档题.(1)根据题意列出不等式10(1000-x)(1+0.2x%)≥10×1000,求出解集即可;(2)根据题意可列10x(a- )≤10(1000-x)(1+0.2x%),化成a≤在(0,400]恒成立,构造函数令f(x)= 20.【答案】解:(1)由a= ,得c= ,则当P为椭圆的右顶点时|PF2|=a-c= ,故此时的切线长|PT|=,利用对勾函数性质求出最值即可.;(2)①当|PF2|取得最小值时|PT|取得最小值,而|PF| =a-c,2 min由|PT|≥(a-c)恒成立,得≥(a-c),解得≤c<1;②由题意Q点的坐标为(1,0),则直线l的方程为y=k(x-1),代入,得(a2k2+1)x2-2a2k2x+a2k2-a2=0,设A(x,y),B(x,y),1 12 2则有可得,,= ,又OA⊥OB,则=0,得k=a.可得直线l的方程为ax-y-a=0,圆心F2(c,0)到直线l的距离d= ,半径r=1-c,则直线l被圆F2 所截得弦长为L=2设1-c=t,则0<t≤,= ,又= ,∴当t= 时,的最小值为,。
2020届高考数学大二轮刷题首选卷理数文档:第三部分 2020高考仿真模拟卷(六) Word版含解析
2020高考仿真模拟卷(六)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( ) A .-1+i B .-1-i C .1+i D .1-i答案 C解析 由z (1+i)=|-1+3i|=(-1)2+(3)2=2,得z =21+i =2(1-i )(1+i )(1-i )=1-i ,∴z -=1+i.故选C.2.已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集的个数为( )A .1B .3C .5D .7答案 B解析 依题意,在同一平面直角坐标系中分别作出x 2=4y 与y =x 的图象,观察可知,它们有2个交点,即A ∩B 有2个元素,故A ∩B 的真子集的个数为3,故选B.3.已知命题p :“∀a >b ,|a |>|b |”,命题q :“∃x 0<0,2x 0 >0”,则下列为真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .p ∨qD .p ∨(綈q ) 答案 C解析 对于命题p ,当a =0,b =-1时,0>-1, 但是|a |=0,|b |=1,|a |<|b |,所以命题p 是假命题. 对于命题q ,∃x 0<0,2x 0 >0,如x 0=-1,2-1=12>0. 所以命题q 是真命题,所以p ∨q 为真命题.4.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A-b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3答案 A解析 由题意,得a 2-b 2=4c 2,则-14=cos A =b 2+c 2-a 22bc ,∴c 2-4c 22bc =-14,∴3c 2b =14,∴b c =32×4=6,故选A.5.执行如图所示的程序框图,则输出的T =( )A .8B .6C .7D .9答案 B解析 由题意,得T =1×log 24×log 46×…×log 6264=lg 4lg 2×lg 6lg 4×…×lg 64lg 62=lg 64lg 2=6,故选B.6.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =2sin x cos x 的图象( )A .向左平移π3个单位 B .向右平移π3个单位 C .向左平移π6个单位 D .向右平移π6个单位 答案 C解析 将函数y =2sin x cos x =sin2x 的图象向左平移π6个单位可得到y =sin2⎝ ⎛⎭⎪⎫x +π6,即y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,故选C.7.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,且经过点(2,2),则双曲线的实轴长为( )A .12B .1C .2 2D . 2答案 C解析 由题意双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,即ca =3⇒c 2=3a 2.又由c 2=a 2+b 2,即b 2=2a 2,所以双曲线的方程为y 2a 2-x 22a 2=1,又因为双曲线过点(2,2),代入双曲线的方程,得4a 2-42a 2=1,解得a =2,所以双曲线的实轴长为2a =2 2.8.若x ,y 满足⎩⎨⎧x -2y +7≥0,2x +y ≥3,3x -y +1≤0,则x 2+y 2的最大值为( )A .5B .11.6C .17D .25答案 C解析 作出不等式组所表示的可行域如下图所示,则x 2+y 2的最大值在点B (1,4)处取得,故x 2+y 2的最大值为17.9.设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( )A .M >N >QB .M >Q >NC .N >Q >MD .N >M >Q答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |, ∴lg a +lg b =0,即ab =1, ∵⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14, ∴N =log 2⎝⎛⎭⎪⎫1a +b 2<-2, 又a 2+b 28>ab 4=14,∴a 2+b 28>14>⎝⎛⎭⎪⎫1a +b 2, ∴M =log 2a 2+b 28>-2, 又Q =ln 1e 2=-2,∴M >Q >N .10.正三棱柱ABC -A 1B 1C 1中,各棱长均为2,M 为AA 1的中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是( )A .10B .4+ 3C .2+ 3D .4+ 3答案 D解析 ①从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =AM 2+AN 2=12+(2+1)2=10.②从底面到N 点,沿棱柱的AC ,BC 剪开、展开,如图2. 则MN =AM 2+AN 2-2AM ·AN cos120°=12+(3)2+2×1×3×12=4+3,∵4+3<10,∴MN min =4+ 3.11.(2019·江西景德镇第二次质检)已知F 是抛物线x 2=4y 的焦点,点P 在抛物线上,点A (0,-1),则|PF ||P A |的最小值是( )A .22B .32C .1D .12答案 A解析 由题意可得,抛物线x 2=4y 的焦点F (0,1),准线方程为y =-1,过点P 作PM 垂直于准线,垂足为M ,由抛物线的定义可得|PF |=|PM |,则|PF ||P A |=|PM ||P A |=sin ∠P AM ,因为∠P AM 为锐角,故当∠P AM 最小时,|PF ||P A |最小,即当P A 和抛物线相切时,|PF ||P A |最小,设切点P (2a ,a ),由y =14x 2,得y ′=12x ,则切线P A 的斜率为12×2a =a =a +12a ,解得a =1,即P (2,1),此时|PM |=2,|P A |=22,所以sin ∠P AM =|PM ||P A |=22,故选A.12.(2019·天津部分区一模联考)已知函数y =f (x )的定义域为(-π,π),且函数y =f (x +2)的图象关于直线x =-2对称,当x ∈(0,π)时,f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x (其中f ′(x )是f (x )的导函数),若a =f (log π3),b =f (log 139),c =f (π13 ),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a答案 D解析 ∵f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x ,∴f ′(x )=πx -f ′⎝ ⎛⎭⎪⎫π2cos x ,则f ′⎝ ⎛⎭⎪⎫π2=2-f ′⎝ ⎛⎭⎪⎫π2cos π2=2,即f ′(x )=πx -2cos x ,当π2≤x <π时,2cos x ≤0,f ′(x )>0;当0<x <π2时,πx >2,2cos x <2,∴f ′(x )>0,即f (x )在(0,π)上单调递增,∵y =f (x +2)的图象关于x =-2对称,∴y =f (x +2)向右平移2个单位得到y =f (x )的图象关于y 轴对称,即y =f (x )为偶函数,b =f (log 139)=f (-2)=f (2),0=log π1<log π3<log ππ=1,1=π0<π13<π12 <2,即0<log π3<π13 <2<π,∴f (2)>f (π13 )>f (log π3),即b >c >a .二、填空题:本题共4小题,每小题5分,共20分.13.平面向量a 与b 的夹角为45°,a =(1,-1),|b |=1,则|a +2b |=________. 答案10解析 由题意,得a ·b =|a ||b |cos45°=2×1×22=1,所以|a +2b |2=a 2+4a ·b +4b 2=2+4×1+4×1=10,所以|a +2b |=10.14.已知函数f (x )=ax -log 2(2x +1)(a ∈R )为偶函数,则a =________. 答案 12解析 由f (x )=f (-x ),得ax -log 2(2x +1)=-ax -log 2(2-x +1),2ax =log 2(2x+1)-log 2(2-x+1)=log 22x +12-x +1=x ,由于x 的任意性,所以a =12.15.如图,为测量竖直旗杆CD 的高度,在旗杆底部C 所在水平地面上选取相距421 m 的两点A ,B 且AB 所在直线为东西方向,在A 处测得旗杆底部C 在西偏北20°的方向上,旗杆顶部D 的仰角为60°;在B 处测得旗杆底部C 在东偏北10°方向上,旗杆顶部D 的仰角为45°,则旗杆CD 的高度为________ m.答案 12解析 设CD =x ,在Rt △BCD 中,∠CBD =45°,∴BC =x ,在Rt △ACD 中,∠CAD =60°,∴AC =CD tan60°=x 3,在△ABC 中,∠CAB =20°,∠CBA =10°,AB =421, ∴∠ACB =180°-20°-10°=150°,由余弦定理可得AB 2=AC 2+BC 2-2AC ·BC ·cos150°, 即(421)2=13x 2+x 2+2·x 3·x ·32=73x 2,解得x =12.即旗杆CD 的高度为12 m.16.已知腰长为2的等腰直角△ABC 中, M 为斜边AB 的中点,点P 为该平面内一动点,若|PC →|=2,则(P A →·PB →)·(PC →·PM→) 的最小值是________.答案 32-24 2解析 根据题意,建立平面直角坐标系, 如图所示,则C (0,0),B (2,0),A (0,2),M (1,1),由|PC→|=2,知点P 的轨迹为圆心在原点,半径为2的圆,设点P (2cos θ,2sin θ),θ∈[0,2π); 则P A →=(-2cos θ,2-2sin θ), PB→=(2-2cos θ,-2sin θ),PC →=(-2cos θ,-2sin θ), PM→=(1-2cos θ,1-2sin θ), ∴(P A →·PB →)·(PC →·PM →)=[(-2cos θ)(2-2cos θ)+(-2sin θ)(2-2sin θ)]·[(-2cos θ)(1-2cos θ)+(-2sin θ)(1-2sin θ)]=(4-4cos θ-4sin θ)(4-2cos θ-2sin θ) =8(3-3cos θ-3sin θ+2sin θcos θ), 设t =sin θ+cos θ,∴t =2sin ⎝ ⎛⎭⎪⎫θ+π4∈[-2,2],∴t 2=1+2sin θcos θ, ∴2sin θcos θ=t 2-1,∴y =8(3-3t +t 2-1)=8⎝ ⎛⎭⎪⎫t -322-2,当t =2时,y 取得最小值为32-24 2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知等比数列{a n }中,a n >0,a 1=164,1a n -1a n +1=2a n +2,n ∈N *.(1)求{a n }的通项公式;(2)设b n =(-1)n ·(log 2a n )2,求数列{b n }的前2n 项和T 2n . 解 (1)设等比数列{a n }的公比为q ,则q >0, 因为1a n -1a n +1=2a n +2,所以1a 1q n -1-1a 1q n =2a 1q n +1,因为q >0,解得q =2,所以a n =164×2n -1=2n -7,n ∈N *.4分(2)b n =(-1)n ·(log 2a n )2=(-1)n ·(log 22n -7)2=(-1)n ·(n -7)2, 设c n =n -7,则b n =(-1)n ·(c n )2,6分T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =-(c 1)2+(c 2)2+[-(c 3)2]+(c 4)2+…+[-(c 2n -1)2]+(c 2n )2=(-c 1+c 2)(c 1+c 2)+(-c 3+c 4)·(c 3+c 4)+…+(-c 2n -1+c 2n )(c 2n -1+c 2n )=c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =2n [-6+(2n -7)]2=n (2n -13)=2n 2-13n .12分18.(2019·四川百校模拟冲刺)(本小题满分12分)如图,在三棱柱A 1B 1C 1-ABC 中,D 是棱AB 的中点.(1)证明:BC 1∥平面A 1CD ;(2)若AA 1⊥平面ABC ,AB =2,BB 1=4,AC =BC ,E 是棱BB 1的中点,当二面角E -A 1C -D 的大小为π4时,求线段DC 的长度.解 (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1的中点,连接DF ,而D 是AB 的中点,则BC 1∥DF ,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .4分(2)因为AA 1⊥平面ABC ,所以AA 1⊥CD ,又AC =BC ,E 是棱BB 1的中点, 所以DC ⊥AB ,所以DC ⊥平面ABB 1A 1,5分以D 为坐标原点,过D 作AB 的垂线为x 轴,DB 为y 轴,DC 为z 轴建立如图所示的空间直角坐标系Dxyz ,设DC 的长度为t ,则C (0,0,t ),E (2,1,0),A 1(4,-1,0),D (0,0,0),所以EA 1→=(2,-2,0),A 1C →=(-4,1,t ),DA 1→=(4,-1,0),DC →=(0,0,t ), 分别设平面EA 1C 与平面DA 1C 的法向量为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2), 由⎩⎨⎧2x 1-2y 1=0,-4x 1+y 1+tz 1=0,令x 1=1,得m =⎝ ⎛⎭⎪⎫1,1,3t ,同理可得n =(1,4,0),9分 由cos 〈m ,n 〉=1+417×2+9t 2=22,解得t =3174, 所以线段DC 的长度为3174.12分19.(2019·湖南长沙统一检测)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于点B ,|AB |=|F 2B |,|OB |=43.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)与l 1,l 2交于M ,N 两点,求证:∠MF 1N =∠MF 2N .解 (1)连接AF 2,由题意,得|AB |=|F 2B |=|F 1B |, 所以BO 为△F 1AF 2的中位线,又因为BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |=b 2a =83, 又e =c a =13,a 2=b 2+c 2,得a 2=9,b 2=8, 故所求椭圆C 的标准方程为x 29+y 28=1.4分 (2)证明:由题意可知,l 1的方程为x =-3, l 2的方程为x =3.直线l 与直线l 1,l 2联立可得M (-3,-3k +m ),N (3,3k +m ),又F 1(-1,0), 所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ),所以F 1M →·F 1N →=-8+m 2-9k 2. 联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx +9m 2-72=0.7分 因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简,得m 2=9k 2+8. 所以F 1M →·F 1N →=-8+m 2-9k 2=0, 则F 1M →⊥F 1N →,故∠MF 1N 为定值π2.10分 同理F 2M →=(-4,-3k +m ),F 2N →=(2,3k +m ), 因为F 2M →·F 2N →=0,所以F 2M →⊥F 2N →,∠MF 2N =π2. 故∠MF 1N =∠MF 2N .12分20.(本小题满分12分)某快递公司收取快递费用的标准是:重量不超过1 kg 的包裹收费10元;重量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每超出1 kg(不足1 kg ,按1 kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?解 (1)样本中包裹件数在101~400之间的天数为48,频率f =4860=45,故可估计概率为45.显然未来3天中,包裹件数在101~400之间的天数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,45, 故所求概率为C 23×⎝ ⎛⎭⎪⎫452×15=48125.4分(2)①样本中快递费用及包裹件数如下表:10×43+15×30+20×15+25×8+30×4100=15(元),故该公司对每件包裹收取的快递费的平均值可估计为15元.6分②根据题意及①,揽件数每增加1,可使前台工资和公司利润增加15×13=5(元),将题目中的天数转化为频率,得;8分 若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:10分 因975<1000,故公司将前台工作人员裁员1人对提高公司利润不利.12分 21.(2019·江西南昌一模)(本小题满分12分)已知函数f (x )=e x (-x +ln x +a )(e 为自然对数的底数,a 为常数,且a ≤1).(1)判断函数f (x )在区间(1,e)内是否存在极值点,并说明理由; (2)若当a =ln 2时,f (x )<k (k ∈Z )恒成立,求整数k 的最小值. 解 (1)f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +a -1,令g (x )=ln x -x +1x +a -1,x ∈(1,e), 则f ′(x )=e x g (x ),2分 g ′(x )=-x 2-x +1x 2<0恒成立, 所以g (x )在(1,e)上单调递减, 所以g (x )<g (1)=a -1≤0, 所以f ′(x )=0在(1,e)内无解.所以函数f (x )在区间(1,e)内无极值点.5分(2)当a =ln 2时,f (x )=e x (-x +ln x +ln 2),定义域为(0,+∞), f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +ln 2-1, 令h (x )=ln x -x +1x +ln 2-1, 由(1)知,h (x )在(0,+∞)上单调递减, 又h ⎝ ⎛⎭⎪⎫12=12>0,h (1)=ln 2-1<0,所以存在x 1∈⎝ ⎛⎭⎪⎫12,1,使得h (x 1)=0,且当x ∈(0,x 1)时,h (x )>0,即f ′(x )>0,当x ∈(x 1,+∞)时,h (x )<0,即f ′(x )<0.所以f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减,所以f (x )max =f (x 1)=e x 1(-x 1+ln x 1+ln 2).8分由h (x 1)=0,得ln x 1-x 1+1x 1+ln 2-1=0,即ln x 1-x 1+ln 2=1-1x 1,所以f (x 1)=e x 1⎝ ⎛⎭⎪⎫1-1x 1,x 1∈⎝ ⎛⎭⎪⎫12,1,令r (x )=e x ⎝ ⎛⎭⎪⎫1-1x ,x ∈⎝ ⎛⎭⎪⎫12,1,则r ′(x )=e x ⎝ ⎛⎭⎪⎫1x 2-1x +1>0恒成立,所以r (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,所以r ⎝ ⎛⎭⎪⎫12<r (x )<r (1)=0,所以f (x )max <0,又因为f ⎝ ⎛⎭⎪⎫12=e 12 ⎝ ⎛⎭⎪⎫-12-ln 2+ln 2=-e 2>-1,所以-1<f (x )max <0,所以若f (x )<k (k ∈Z )恒成立,则k 的最小值为0.12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =2-12t ,y =1+32t (t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y 得到曲线C ′,设曲线C ′上任一点为M (x 0,y 0),求3x 0+12y 0的取值范围.解 (1)由直线l 的参数方程消去参数可得它的普通方程为3x +y -23-1=0,由ρ=2两端平方可得曲线C 的直角坐标方程为x 2+y 2=4.4分(2)曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y得到曲线C ′的方程为x ′2+y ′24=4,即x ′24+y ′216=1,则点M 的参数方程为⎩⎨⎧x 0=2cos θ,y 0=4sin θ(θ为参数),代入3x 0+12y 0,得3×2cos θ+12×4sin θ=2sin θ+23cos θ=4sin ⎝ ⎛⎭⎪⎫θ+π3,由三角函数的基本性质,知4sin ⎝ ⎛⎭⎪⎫θ+π3∈[-4,4].10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -a |-|3x +2|(a >0). (1)当a =1时,解不等式f (x )>x -1;(2)若关于x 的不等式f (x )>4有解,求a 的取值范围. 解 (1)当a =1时,即解不等式|x -1|-|3x +2|>x -1.当x >1时,不等式可化为-2x -3>x -1,即x <-23,与x >1矛盾,无解. 当-23≤x ≤1时,不等式可化为-4x -1>x -1, 即x <0,所以解得-23≤x <0.当x <-23时,不等式可化为2x +3>x -1,即x >-4,所以解得-4<x <-23.综上所述,所求不等式的解集为(-4,0).5分(2)f (x )=⎩⎪⎨⎪⎧2x +a +2,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -a -2,x >a ,7分因为函数f (x )在⎝ ⎛⎭⎪⎫-∞,-23上单调递增,在⎝ ⎛⎭⎪⎫-23,+∞上单调递减,所以当x =-23时,f (x )max =23+a ,8分 不等式f (x )>4有解等价于f (x )max =23+a >4, 解得a >103.故a 的取值范围为⎝ ⎛⎭⎪⎫103,+∞.10分。
(浙江选考)2020版高考化学二轮复习考前仿真模拟卷(六)(含解析)
考前仿真模拟卷(六)(时间:90分钟 满分:100分)相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 Mg 24 S 32 Cl 35.5 K 39 Fe 56 Ba 137一、选择题(本大题共25小题,每小题2分,共50分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.光纤(光导纤维的简称)的主要成分是( )A .晶体硅B .二氧化硅C .硅酸钠D .铝硅合金2.下列仪器名称为“蒸馏烧瓶”的是( )3.下列物质,属于强电解质的是( )A .NH 3·H 2OB .H 2OC .CH 3COONH 4D .CH 3COOH4.下列属于氧化还原反应的是( )A .2KI +Br 2===2KBr +I 2B .CaCO 3=====△CaO +CO 2↑C .SO 3+H 2O===H 2SO 4D .MgCl 2+2NaOH===Mg(OH)2↓+2NaCl5.下列物质的水溶液因水解呈碱性的是( )A .AlCl 3B .Na 2CO 3C .NH 4ClD .K 2SO 46.下列有关物质的性质与应用不相对应的是( )A .SO 2具有氧化性,可用于漂白纸浆B .液氨气化时要吸收大量的热,可用作制冷剂C .明矾能水解生成Al(OH)3 胶体,可用作净水剂D .FeCl 3溶液能与Cu 反应,可用于蚀刻印刷电路7.下列有关化学用语使用正确的是( )A .Ca 2+的结构示意图:B .纯碱的化学式:NaOHC .原子核内有8个中子的氧原子:188OD .氯化镁的电子式: 8.下列有关硫元素及其化合物的说法或描述正确的是( )A .硫黄矿制备硫酸经历两步:S→SO 3→H 2SO 4B .酸雨与土壤中的金属氧化物反应后,硫元素以单质的形式进入土壤中C .在燃煤中加入石灰石可减少SO 2排放,发生的反应为2CaCO 3+2SO 2+O 2===2CO 2+2CaSO 4D .土壤中的闪锌矿(ZnS)遇到硫酸铜溶液转化为铜蓝(CuS),说明CuS 很稳定、不具有还原性9.下列能源中,属于无污染能源的是( )A .煤气B .核能C .太阳能D .石油10.下列说法不正确的是( )A .烧杯、烧瓶、酒精灯的液体盛装量不超过容积的23,蒸发皿蒸发液体时液体盛装量也不超过容积的23B .中和滴定时,需要润洗的仪器为滴定管、移液管、锥形瓶C .集气瓶可用作灼热固体物质与气体燃烧的反应容器,集气瓶与毛玻璃片组合,可用于收集或暂时存放气体D .用排水法收集气体时,盛水的集气瓶中不应有气泡,以保证所收集气体的纯度11.下列说法不正确的是( )A .白磷与红磷互为同素异形体B .乙酸和软脂酸(C 15H 31COOH)互为同系物C .丙烷与氯气反应,可得到沸点不同的3种一氯代物D.2412Mg 2+、2312Mg 2+是两种核素对应的微粒12.将4 mol C 气体和2 mol B 气体在2 L 的容器中混合并在一定条件下发生如下反应:2A(g)+B(g)2C(g)。
2020高考数学仿真试题(文科数学)含答案
一、选择题(每小题5分,共60分)最小正周期是;(2)函数3在区间y sin(x )221.设A {x|x 3|4},B {y|y x 22x},则A B 3()[,)A.{0}B.{2} C.φD.{x2|2≤x≤7}552.要完成下列 2 项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家APQB与三棱柱ABC—A B C 的体积之比是1 1 1A.1B.1C.1D.1234611.曲线 f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P 点的坐标为()A.(1,0)B.(2,8)(庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况。
应采用的抽样方法是A.①用随机抽样法②用系统抽样法B.①用分层抽样法②用随机抽样法C.①用系统抽样法②用分层抽样法D.①、②都用分层抽样法31sin ( ),t a n()则522其中正确命题的个数是A.0B.1 C.2D.3(7.以)椭圆1的右焦点为圆心,且与双曲1691441的渐近线相切的圆的方程是916A.x2+y2-10x+9=0B.x2+y2-10x-9=0C.x2+y2+10x+9=0D.x2+y2+10x-9=0()C.(1,0)和(-1,-4)D.(2,8)和(-1,-4)12.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则F(x)=[f-1(x)]2-f-1(x2)的值域为A.[2,5] B.[1,)C.[2,10] D.[2,13]二、填空题(每小题4分,共16分)(于()A.-7 4.等比数列{B.-C.D.24a}中,a 、a 是方程x2-5x+98.已知直线l⊥平面α,直线m 平面β,有下面四个13.在条件0x 10y 1命题:1y x2//l m l//m l//m下,W=4-2x+y 的最大值= 0的两根,则a = A.5B.562C.9D.±35.已知xy<0 且x+y=2,而(x+y)7按x的降幂排列的展开式中,第三项不大于第四项,那么x 的取值范围是555 (,0)(0,[,)(,0)(,]444 6.给出下面的3个命题:(1)函数的y |s in(2x )|3④l m //.其中正确的两个命题是()a (2,1),b (3,),若(2a b)bA.①与②B.①与③C.②与④D.③15.正方形ABCD中,E、F分别是AB、CD的中点,沿EF将正方形折成60°的二面角,则异面A、B,其中点A的坐标是(1,2).设抛物线的焦点为F,则|FA|+|FB|等于()A.7B.35C.6 D.10.三棱柱ABC—A B C中,P、Q分别为侧棱y log a x(a 0且a 1)的定义域相同:AA、BB 上的点,且 A P=BQ,则四棱锥 C —1 1 1 1上单调递增;(3)是函数的图象的一条对x y sin(2x )42称轴.3.设,t an(2)的值等x y22线x y22()247724247n 2 10①;②; ③;是.A.B.C.D.)14.已知,则λ的值是.与④9.抛物线y2=2px与直线ax+y-4=0交于两点直线BF与DE所成角的余弦值是.()16.给出下列四个命题:(1y a a a≠1)与函数)函数= x(>0且1 1 1a(2 y x y)函数=与=3x的值域相同;3(3)函数y(4)函数y =( 与y 都是奇函数; (1) 求证:平面 MNC ⊥平面 PBC ;2 2 x 1 x 2x(2)求点 A 到平面 MNC 的距离.2 x -1 [0,)22.(14 分)已知椭圆 C 的焦点是 F (- 3 ,都是增函数.其中正确命题的序号是. (把你认为正确的命题序号都填上).三、解答题:(共 74 分)17.(12 分)甲、乙、丙三位同学独立完成 6 道 数学自测题,他们答及格的概率依次为 4 、 3 、 7 .5510求(1)三人中有且只有 2 人答及格的概率;(2)三人中至少有一人不及格的概率.18.(12分)将函数 f ( x ) x 的图象向右平移 4x 个单位,再向上平移 2 个单位,可得到函数 g (x ) 的图象.(1)写出 g(x )的解析式;(2)解关于 x 的不等式 log g ( x ) log 92 (a 1) .a a19.(12 分)已知数列{a }的前 n 项和为 S ,且n n 满足 . nnn 11(1)求证:{ }是等差数列;(2)求 a 的表nSn达式;( 3 )若 b =2(1 - n) · a (n ≥ 2) 时,求证:nnb 2+b 2+…+b 2<1. 2 3 n20.(12分)已知ABCD 是矩形,PD⊥平面 ABCD ,21.(12 分)某公司欲将一批不易存放的水果从 A 地运往 B 地,有汽车、火车、直升飞机等运输 工具可供选择,三种运输工具的主要参考数据如 下:途中费 装卸时 运输工 速度(千 装卸费 用(元/ 间(小 具米/时) 用(元) 千米) 时)汽 车50 8 2 1000 火 车 100 4 4 2000 飞 机2001621000若这批水果在运输过程中(含装卸时间)的损耗为 300 元/时,问采用哪一种运输工具较好(即 运输过程中费用与损耗之和最小)?0)、F ( 3 ,0),点F 到相应的准线的距离为,3过 F 点且倾斜角为锐角的直线 l 与椭圆 C 交于 A 、2B 两点,使得|F B|=3|F A|.2 2(1)求椭圆 C 的方程;(2)求直线 l 的方程.一、选择题(5 分×12=60 分)1.A2.B3.D4.D5.C6.C7.A8.B9.A 10.B 11.C 12.C二、填空题(4 分×4=16 分)13.5 14.λ=-1 或λ=3 15. 16.(1)(3)10三、解答题(共 74 分)17.解:(文)设甲、乙、丙答题及格分别为事件 A 、B 、C ,则事件A 、B 、C 相互独立……………… 2 分(1)三人中有且只有 2 人答及格的概率为PD=DC=a ,AD= 2a ,M 、NP分别是 AD 、PB 的中点.NP P ( ABC ) P ( ABC ) P ( ABC ) P ( A ) P ( B ) P (C ) P ( A ) P ( B ) P (C ) P ( A ) P ( B 1M DCAB1 1 (12 ) x 2 x -1)与 y =2 在区间 上 1 3 2 1 11 a2SS0(n 2), a 2174 3 7 4 3 7 4 3 7 113 (1 ) (1 ) (1 )5 5 10 5 5 10 5 5 10 250分(2 )三人中至少有一人不及格的概率为 P =1 - P(ABC)=1 -2P(A)P(B)P(C)=4 3 7 83 12 分 15 5 10 12518 . 解 : ( 1 ) 依 题 意 ,g (x ) f (x 4)2x 4 2x 2 .4 分x 4 x 4( 2 ) 不 等 式x 2 0 … 6 分x 14 9x 2 x 4 2(x 3) 2 x 4 9 9 22x 4 x 6 ………………11 分2∴ a 1 时,不等式解集为 {x | 9 x 6} (12)2分19.(1 ) 证明 :a 2S S ,S S 2S S (n 2),S 0(n 1,2,3) nn n 1n n 1 n n 1 n1 1……2 分 又 1 1 1 是以 222{ } SSSaSnn 111n为首项,2 为公差的等差数列……4 分(3) (或 n ≥2 时, 1 )BN ⊥平面 MNC ∴EF⊥平面 MNC ,EF 长为 E2n (n 1)点到平面 MNC 的距离……9 分 ∵PD ⊥平面 当 n=1 时 , S a… … … … 7 分 2ABCD ,BC ⊥DC ∴BC ⊥PC.1………………8 分 11 a 即点 APB BC 2PC 22a , EF BNPB n1 24 22n (n 1)到平面 MNC 的距离为 ……12 分(3 ) 由 ( 2 ) 知 ,21.解:设 A 、B 两地的距离为 S 千米,分别用nn2n (n 1) nF 、F 、F 表示汽车、火车、飞机运输时的总支 1 1 1 1 11b 2 b 2b 222 32 n 2 12 23(n 1)n分则 有 F 1=8S+1000+300 ( S2) =14S+160050(1 2 ) ( 2 3 )( n 1 n )(元) F 2=4S+2000+300 ( S4)=7S+3200(元)1001 n 1 ………………12 分F 3=16S+1000+300( 200S 2)=17.5S+160020.解:(1)连 P M 、MB ∵PD (元)……7 分 ∵S>0,∴F <F 由 F -131⊥平面 ABCD ∴PD⊥MD …1 分F =7S -16002PM 2 PD 2 MD 22a 2又BM 2 AB 2 AM 2 2a 2N1600 千米时 F 1<F 2,F 1 最小, D采用汽车运输较好;……10 分∴MN⊥PB………3 分A2 1 3PD DC a,B C 2aPC 2a BC,得NC ⊥PB ∴PB⊥平面 MNC ……5 分当 S= 千米时,采用汽车与火车运输的费用 P B 平面 PBC7一样,但比飞机运输费用少.……………………12 分(2) 解:由(1)12 (n 1) 22nSn5分当 n ≥ 21 11a S S2n 2(n 1)2n (n 1)1 1 …S2nn时 ,(2)取 BC 中点 E ,连 AE ,则 AE//MC ∴AE// 平面 MNC ,A 点与 E 点到平面 MNC 的距离相等…7 分取 NC 中点 F ,连EF ,则EF 平行且等于 BN ∵22.解(1)依题意,椭圆中心为 O (0,0),c 3 …1 分点 F 到相应准线的距离为 b 23 ,3, b 23 1c32... (7)a2S Snn n 111 1(n 1) 2a(n 2)a21 1b2(1 n )a2(1 n ) [ ] …………………9 分1 2 3 1 110 …10 分x 4x 4或 x 6( x 6)( x )9 ...1 分 (10)出…1 分2 3n ... (11)分1 1 11 1 1P∴当 0<S <3 3 F7∴PM=BM 又 PN=NBCM E当千米时 F <F <F ,采用火车运B1600 S 7输较好;1600 ∴平面 MNC ⊥平面 PBC ……6 分nn n11 1a 2=b2+c2=1+3=4 (3)y l分P∴所求椭圆方程为4分x24y21……F1OFA2Mx(2)设椭圆的右准线l 与l交B N 于点P,作AM⊥l ,AN⊥l ,垂足分别为M、N.由椭圆第二定义,得|AF|2 |AM|e |AF |e|AM|2同理|BF |=e|BN|……6分由Rt△PAM~Rt△2PBN,得1|PA ||AB |2|F A |2e|AM|2…9分c os PAM |AM|1|PA|2e113233l的斜率k tan PAM 2.………………12分∴直线l的方程y 2(x 3)即2x y 60………14分2。
2020届高考数学大二轮复习冲刺创新专题保温卷一文
保温卷一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |-1≤x ≤2,x ∈N },集合B ={2,3},则A ∪B 等于( ) A .{-1,0,1,2,3} B .{0,1,2,3} C .{1,2,3} D .{2}答案 B解析 因为集合A ={x |-1≤x ≤2,x ∈N }={0,1,2},B ={2,3},所以A ∪B ={0,1,2,3}. 2.设i 为虚数单位,复数z 满足(1+3i)z =(-3+i)2,则共轭复数z -的虚部为( ) A.3i B .-3i C. 3 D .- 3答案 C 解析 ∵(1+3i)z =(-3+i)2=2-23i ,∴z =21-3i 1+3i=21-3i21+3i 1-3i=-1-3i ,∴z -=-1+3i ,∴复数z -的虚部为 3.3.设a ,b 为非零向量,则“a ∥b ”是“a 与b 方向相同”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 因为a ,b 为非零向量,所以a ∥b 时,a 与b 方向相同或相反,因此“a ∥b ”是“a 与b 方向相同”的必要而不充分条件.4.函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)答案 B解析 易知函数f (x )=2x +3x 在定义域上单调递增且连续,且f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0).5.执行如图所示的程序框图,则输出x 的值为( )A .-2B .-13C .12D .3答案 A解析 ∵x =12,∴当i =1时,x =-13;i =2时,x =-2;i =3时,x =3;i =4时,x=12,即x 的值周期性出现,周期数为4,∵2018=504×4+2,∴输出x 的值为-2. 6.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,x ≥1,则目标函数z =y -2x +1的最小值为( )A .-23B .-54C .-43D .-12答案 B解析 作出不等式组对应的平面区域如图,则目标函数z =y -2x +1的几何意义为动点M (x ,y )到定点D (-1,2)的斜率,当M 位于A ⎝⎛⎭⎪⎫1,-12时,DA 的斜率最小,此时z min =-12-21+1=-54. 7.数列{a n }中,a 1=2,且a n +a n -1=na n -a n -1+2(n ≥2),则数列⎩⎨⎧⎭⎬⎫1a n -12前2019项和为( )A.40362019 B .20191010 C.40372019D .40392020答案 B解析 ∵a n +a n -1=na n -a n -1+2(n ≥2),∴a 2n -a 2n -1-2(a n -a n -1)=n , 整理得(a n -1)2-(a n -1-1)2=n ,∴(a n -1)2-(a 1-1)2=n +(n -1)+…+2,又a 1=2, ∴(a n -1)2=n n +12,可得,1a n -12=2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1a n -12的前2019项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+12019-12020=2⎝ ⎛⎭⎪⎫1-12020=20191010. 8.下列四个图中,函数y =ln |x +1|x +1的图象可能是( )答案 C解析 ∵y =ln |x |x是奇函数,其图象向左平移1个单位所得图象对应的函数解析式为y=ln |x +1|x +1,∴y =ln |x +1|x +1的图象关于(-1,0)中心对称,故排除A ,D ,当x <-2时,y<0恒成立.故选C.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1+a 5=10,a 1a 5=a 24,则S na n( ) A .有最大值9 B .有最大值25 C .没有最小值 D .有最小值-24答案 D解析 易知a n =-2n +11,S n =-n 2+10n ,∴S n a n =n 2-10n 2n -11,n ∈N *, ∴当n >10时,S n a n >0,且n →+∞时,S n a n →+∞,无最大值,当5<n <10时,S n a n<0,逐一计算易知,⎝ ⎛⎭⎪⎫S n a n min =S 6a 6=-24,当0<n ≤5时,S n a n>0.故选D.10.已知在正四棱柱ABCD -A 1B 1C 1D 1中,AB =BC ,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23 B .33C .23D .13答案 A解析 设AC ∩BD =O ,连接OC 1,过C 点作CH ⊥OC 1于点H ,连接DH .∵BD ⊥AC ,BD ⊥AA 1,AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1,∴BD ⊥平面ACC 1A 1,又CH ⊂平面ACC 1A 1, ∴BD ⊥CH ,又CH ⊥OC 1,BD ∩OC 1=O ,BD ,OC 1⊂平面C 1BD ,∴CH ⊥平面C 1BD ,则∠CDH 为CD 与平面BDC 1所成的角, 设AA 1=2AB =2, 则OC 1=CC 21+OC 2=4+⎝⎛⎭⎪⎫222=322, 由等面积法得OC 1·CH =OC ·CC 1, 代入得CH =23,∴sin ∠CDH =CH CD =23.11.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (c,0).圆C :(x -c )2+y 2=1上所有点都在椭圆E 的内部,过椭圆上任一点M 作圆C 的两条切线,A ,B 为切点,若∠AMB =θ,θ∈⎣⎢⎡⎦⎥⎤π3,π2,则椭圆C 的离心率为( ) A .2- 2 B .3-2 2 C.32- 2 D .2-1答案 B解析 如图可知,当且仅当点M 为椭圆的左顶点时,∠AMB 最小,即∠AM 1B =π3,在Rt △AM 1C 中,|AC |=1,∠AM 1C =π6,则|M 1C |=a +c =2,同理,当点M 为椭圆的右顶点时,∠AMB 最大, 可得|M 2C |=a -c =2, 解得a =2+22,c =2-22,离心率e =c a=3-22,故选B.12.已知函数f (x )=ln x -x 2与g (x )=(x -2)2+122-x-m (m ∈R )的图象上存在关于(1,0)对称的点,则实数m 的取值范围是( )A .(-∞,1-ln 2)B .(-∞,1-ln 2]C .(1-ln 2,+∞)D .[1-ln 2,+∞)答案 D解析 ∵函数f (x )=ln x -x 2与g (x )=(x -2)2+122-x -m (m ∈R )的图象上存在关于(1,0)对称的点,∴f (x )=-g (2-x )有解,∴ln x -x 2=-x 2-12x +m 在(0,+∞)上有解,即m =ln x +12x 在(0,+∞)上有解,令h (x )=ln x +12x ,则h ′(x )=2x -12x2,x >0,∴h (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增,∴h (x )min =h ⎝ ⎛⎭⎪⎫12=ln 12+1, ∴m ≥ln 12+1=1-ln 2.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量a ,b 满足(a +b )·(2a -b )=-4,且|a |=2,|b |=4,则a 与b 的夹角为________.答案π3解析 由题意可得(a +b )·(2a -b )=2a 2-b 2+a ·b =8-16+a ·b =-4,解得a ·b =4, 设a 与b 的夹角为θ,所以cos θ=a ·b |a ||b |=12,又因为θ∈[0,π],所以θ=π3.14.已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式为________.答案 a n =n n +12(n ∈N *)解析 ∵a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列, ∴当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=n n +12,又∵a 1=1满足上式,∴a n =n n +12(n ∈N *).15.在三棱锥D -ABC 中,AB =BC =DB =DC =1,当三棱锥体积最大时,其外接球的表面积为________.答案7π3解析 在三棱锥D -ABC 中,当且仅当AB ⊥平面BCD 时,三棱锥体积达到最大,此时,设外接球的半径为R ,外接球的球心为O ,点F 为△BCD 的中心,则有R 2=OB 2=OF 2+BF 2=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫332=712,所以表面积S =4πR 2=7π3.16.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A =2B ,则b c +⎝ ⎛⎭⎪⎫a b 2的最小值是________.答案 3解析 由A =2B 及正弦定理可得,b c +⎝ ⎛⎭⎪⎫a b 2=sin B sin π-A -B +⎝ ⎛⎭⎪⎫sin A sin B 2 =sin B sin B +2B +⎝ ⎛⎭⎪⎫2sin B cos B sin B 2 =sin B sin B cos2B +cos B sin2B +4cos 2B=1cos2B +2cos 2B+4cos 2B=14cos 2B -1+4cos 2B-1+1≥3⎝ ⎛⎭⎪⎫∵A +B =3B <180°,则0°<B <60°,∴12<cos B <1,∴4cos 2B -1>0, 当且仅当14cos 2B -1=4cos 2B -1,即cos B =22, 即B =45°时取等号. 所以b c +⎝ ⎛⎭⎪⎫a b 2的最小值为3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知等差数列{a n }满足a 6=6+a 3,且a 3-1是a 2-1,a 4的等比中项.(1)求数列{a n }的通项公式; (2)设b n =1a n a n +1(n ∈N *),数列{b n }的前n 项和为T n ,求使T n <17成立的最大正整数n 的值. 解 (1)设等差数列{a n }的公差为d ,∵a 6-a 3=3d =6,即d =2,∴a 3-1=a 1+3,a 2-1=a 1+1,a 4=a 1+6, ∵a 3-1是a 2-1,a 4的等比中项,∴(a 3-1)2=(a 2-1)·a 4,即(a 1+3)2=(a 1+1)(a 1+6),解得a 1=3. ∴数列{a n }的通项公式为a n =2n +1. (2)由(1)得b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.∴T n =b 1+b 2+…+b n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3=n32n +3,由n 32n +3<17,得n <9.∴使得T n <17成立的最大正整数n 的值为8.18.(本小题满分12分)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.解 (1)证明:如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°, 故BC ⊥A 1F . 所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 的中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1, 则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.19.(本小题满分12分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.项目A B C D E F①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解 (1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{B ,C },{B ,D },{B ,E },{B ,F },{C ,D },{C ,E },{C ,F },{D ,E },{D ,F },{E ,F },共15种.②由表格知,符合题意的所有结果为{A ,B },{A ,D },{A ,E },{A ,F },{B ,D },{B ,E },{B ,F },{C ,E },{C ,F },{D ,F },{E ,F },共11种.所以,事件M 发生的概率P (M )=1115.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆C 的方程;(2)过点N (1,0)的直线l 交椭圆C 于A ,B 两点,当MA →·MB →取得最大值时,求△MAB 的面积.解 (1)由题意可得a =2,c a =22, 得c =2,则b 2=a 2-c 2=2. 所以椭圆C :x 24+y 22=1.(2)当直线l 与x 轴重合时,不妨取A (-2,0),B (2,0),此时MA →·MB →=0;当直线l 与x 轴不重合时,设直线l 的方程为x =ty +1,设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =ty +1,x 24+y22=1得(t 2+2)y 2+2ty -3=0,显然Δ>0,y 1+y 2=-2t t 2+2,y 1·y 2=-3t 2+2. 所以MA →·MB →=(x 1+2)(x 2+2)+y 1y 2 =(ty 1+3)(ty 2+3)+y 1y 2 =(t 2+1)y 1y 2+3t (y 1+y 2)+9 =(t 2+1)-3t 2+2+3t -2tt 2+2+9 =-3t 2-3-6t2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2. 当t =0时,MA →·MB →取最大值152.此时直线l 方程为x =1, 不妨取A ⎝ ⎛⎭⎪⎫1,62,B ⎝ ⎛⎭⎪⎫1,-62, 所以|AB |= 6. 又|MN |=3,所以△MAB 的面积S =12×6×3=362.21.(本小题满分12分)已知函数f (x )=14x 4-12ax 2,a ∈R .(1)当a =1时,求曲线f (x )在点(2,f (2))处的切线方程;(2)设函数g (x )=(x 2-2x +2-a )e x-e f (x ),其中e =2.71828…是自然对数的底数,讨论g (x )的单调性并判断有无极值,有极值时求出极值.解 (1)由题意f ′(x )=x 3-ax ,所以当a =1时,f (2)=2,f ′(2)=6, 因此曲线y =f (x )在点(2,f (2))处的切线方程是y -2=6(x -2), 即6x -y -10=0.(2)因为g (x )=(x 2-2x +2-a )e x-e f (x ),所以g ′(x )=(2x -2)e x +(x 2-2x +2-a )e x-e f ′(x ) =(x 2-a )e x -e(x 3-ax )=(x 2-a )(e x-e x ), 令h (x )=e x -e x ,则h ′(x )=e x-e , 令h ′(x )=0得x =1,当x ∈(-∞,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增, 所以当x =1时,h (x )min =h (1)=0, 也就说,对于∀x ∈R 恒有h (x )≥0. 当a ≤0时,g ′(x )=(x 2-a )h (x )≥0,g (x )在(-∞,+∞)上单调递增,无极值;当a >0时,令g ′(x )=0,可得x =±a .当x <-a 或x >a 时,g ′(x )=(x 2-a )h (x )≥0,g (x )单调递增, 当-a <x <a 时,g ′(x )<0,g (x )单调递减,因此,当x =-a 时,g (x )取得极大值g (-a )=(2a +2)e -a+e 4a 2; 当x =a 时,g (x )取得极小值g (a )=(-2a +2)e a+e 4a 2. 综上所述:当a ≤0时,g (x )在(-∞,+∞)上单调递增,无极值;当a >0时,g (x )在(-∞,-a )和(a ,+∞)上单调递增,在(-a ,a )上单调递减, 函数既有极大值,又有极小值, 极大值为g (-a )=(2a +2)e -a+e 4a 2, 极小值为g (a )=(-2a +2)ea+e 4a 2. 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =t +1(t 为参数),曲线C 的参数方程是⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)已知射线OP :θ1=α⎝ ⎛⎭⎪⎫其中0<α<π2与曲线C 交于O ,P 两点,射线OQ :θ2=α+π2与直线l 交于Q 点,若△OPQ 的面积为1,求α的值和弦长|OP |.解 (1)直线l 的普通方程为x -y +1=0,极坐标方程为ρcos θ-ρsin θ+1=0, 曲线C 的普通方程为(x -2)2+y 2=4,极坐标方程为ρ=4cos θ.(2)依题意,∵α∈⎝⎛⎭⎪⎫0,π2,∴|OP |=4cos α,|OQ |=1⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π2-cos ⎝ ⎛⎭⎪⎫α+π2=1sin α+cos α,S △OPQ =12|OP ||OQ |=2cos αcos α+sin α=1,∴tan α=1,α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π4,|OP |=2 2.23.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x -1|,g (x )=|x -2|. (1)解不等式f (x )+g (x )<2;(2)对于实数x ,y ,若f (x )≤1,g (y )≤1,求证:|x -2y +1|≤5. 解 (1)令y =|x -1|+|x -2|,则y =⎩⎪⎨⎪⎧3-2x ,x ≤1,1,1<x <2,2x -3,x ≥2,作出函数y =|x -1|+|x -2|的图象(如图),它与直线y =2的交点为⎝ ⎛⎭⎪⎫12,2和⎝ ⎛⎭⎪⎫52,2.所以f (x )+g (x )<2的解集为⎝ ⎛⎭⎪⎫12,52. (2)证明:因为|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+2|(y -2)+1|≤|x -1|+2(|y-2|+1)=f(x)+2g(y)+2≤5,所以|x-2y+1|≤5.。
2020年全国高考仿真模拟文科数学试卷(二)解析版
四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).二十四
个节气及晷长变化如图所示,若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十
-1-
尺,一尺等于十寸),则夏至后的那个节气(小暑)晷长为( )
11.若 x,y,z∈R+,且 3x=4y=12z,x+y∈(n,n+1),n∈N,则 n 的值是( ) z
2
3
6
12
答案 C
解析 ∵等边三角形 ABC 的边长为 2,∴A→B·A→C=B→A·B→C=C→A·C→B=2,
-3-
又A→E=λA→B,A→F=μA→C,
∴E→C=E→B+B→C=B→C+(1-λ)A→B,F→B=F→C+C→B=(1-μ)A→C-B→C,
∴E→B·F→C=(1-λ)·A→B·(1-μ)A→C=(1-μ)(1-λ)A→B·A→C =2(1-μ)(1-λ)=2, 3
7.已知函数 f(x)=Asin(ωx+φ)·e-|x|(A>0,ω>0,0<φ<π)的图象如图所示,则 Aω的可能取值 为( )
-2-
A.π
B.π
C.3π
象关于 y 轴对称,∴f(x)为偶函数,∴φ=kπ+π,k∈Z,∵0<φ<π,∴φ 2
=π,∴f(x)=Acosωx·e-|x|,∵f(0)=2,∴A=2,∵f(1)=f(3)=0, 2 ∴cosω·1e=cos3ω·e13=0,∴cosω=cos3ω=0,取ω=π2,则 Aω=π.故选 B.
2020 年全国高考仿真模拟试卷(二)
数学(文科)解析版
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分,考试时间 120 分钟.
2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:高考仿真模拟(三) Word版含解析
2020高考仿真模拟(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为实数集R,集合A={x|x2-3x<0},B={x|log2x>0},则(∁R A)∩B =()A.(-∞,0]∪(1,+∞) B.(0,1]C.[3,+∞) D.∅答案 C解析因为A=(0,3),所以∁R A=(-∞,0]∪[3,+∞).又B=(1,+∞),所以(∁R A)∩B=[3,+∞).2.复数z=2i1-i的共轭复数是()A.1+i B.1-i C.-1+i D.-1-i 答案 D解析∵z=2i1-i=2i(1+i)2=-1+i,∴z-=-1-i,故选D.3.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值答案 D解析A错误,并无周期变化;B错误,并不是不断减弱,中间有增强;C错误,10月份的波动大于11月份,所以方差要大;D正确,由图可知,12月份起到1月份有下降的趋势,所以12月份的平均值大于1月份.故选D.4.阅读下面的程序框图,运行相应的程序,若输入N的值为19,则输出N 的值为()A.0 B.1 C.2 D.3答案 C解析阅读流程图可得,程序执行过程如下:首先初始化数值为N=19,第一次循环:N=N-1=18,不满足N≤3;第二次循环:N=N3=6,不满足N≤3;第三次循环:N=N3=2,满足N≤3;此时跳出循环体,输出N=2.故选C.5.已知等差数列{a n}前9项的和为27,a10=8,则a100=() A.100 B.99 C.98 D.97答案 C解析 设{a n }的公差为d ,由等差数列前n 项和公式及通项公式,得⎩⎪⎨⎪⎧S 9=9a 1+9×82d =27,a 10=a 1+9d =8,解得⎩⎨⎧a 1=-1,d =1,a n =a 1+(n -1)d =n -2,∴a 100=100-2=98.故选C.6.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+2π3B.13+2π3C.13+2π6 D .1+2π6答案 C解析 由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径为正四棱锥底面正方形的外接圆的直径,所以球的直径2R =2,则R =22,所以半球的体积为2π3R 3=2π6,又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+2π6.故选C.7.已知数列{a n }是等差数列,且a 1+a 4+a 7=2π,则tan(a 3+a 5 )的值为( ) A. 3 B .- 3 C.33 D .-33 答案 A解析 a 1+a 4+a 7=2π,所以3a 4=2π,a 4=2π3,a 3+a 5=2a 4=4π3,tan(a 3+a 5)=tan 4π3= 3.8.如图,在圆O 中,已知弦AB =4,弦AC =6,那么A O →·B C →的值为( )A .10B .213 C.10 D .-10 答案 A9.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 答案 B解析 取a =b =20,即知A ,C ,D 错误;从而选B.事实上,假设5号学生不能进入30秒跳绳决赛,则1号和4号学生也都不能进入30秒跳绳决赛,于是至多只能有5人同时进入立定跳远决赛和30秒跳绳决赛,与“同时进入立定跳远决赛和30秒跳绳决赛的有6人”矛盾.故选B.10.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若|AB |=6,则△AOB 的面积为( )A. 6 B .2 2 C .2 3 D .4 答案 A解析 由题意,易知直线AB 的斜率存在且不为0,设直线AB 的方程为y =k (x-1),与抛物线方程联立可得y 2-4k y -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4,则|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+1k 2,由弦长公式可得 1+1k 2×|y 1-y 2|=4⎝ ⎛⎭⎪⎫1+1k 2=6,∴k 2=2,|y 1-y 2|=2 6.三角形的面积为S =12|OF |×|y 1-y 2|=12×1×26= 6.故选A.11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形(这个矩形的长不小于宽),上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A.392B.752 C .39 D.6018答案 B解析 设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)·(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+172×92+392=752.故选B.12.已知函数f (x )=x 3-4x ,若f (x 1)=f (x 2)=f (x 3)=m ,其中x 1<x 2<x 3,m <0,则( )A .x 1>-2B .x 21+x 22<4C .x 22+x 23<6D .x 3>2答案 C解析 因为f (x )=x 3-4x ,所以f ′(x )=3x 2-4,令f ′(x )>0,得x <-233或x >233,令f ′(x )<0,得-233<x <233,所以f (x )在⎝ ⎛⎭⎪⎫-∞,-233,⎝ ⎛⎭⎪⎫233,+∞上单调递增,在⎝⎛⎭⎪⎫-233,233上单调递减,令f (x )=0,得x =0或x =-2或x =2,所以函数f (x )=x 3-4x 的大致图象如图所示,由f (x 1)=f (x 2)=f (x 3)=m ,m <0,知直线y =m 与函数f (x )=x 3-4x 的图象的三个交点的横坐标分别为x 1,x 2,x 3,结合图象知,x 1<-2,0<x 2<233,233<x 3<2,所以A ,D 不正确.又x 21>4,0<x 22<43,43<x 23<4,所以x 21+x 22>4,x 22+x 23<163<6,所以C 正确,B 不正确.故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________.答案 ⎝ ⎛⎭⎪⎫13,+∞解析 f (-x )=e -x -e x =-(e x -e -x )=-f (x ),则函数f (x )是奇函数,因为f ′(x )=e x +e -x >0,所以f (x )在定义域R 上是增函数,则不等式f (2x +1)+f (x -2)>0等价为f (2x +1)>-f (x -2)=f (-x +2), 则2x +1>-x +2,即x >13, 故不等式的解集为⎝ ⎛⎭⎪⎫13,+∞.14.若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =4x +3y 的最大值为________.答案 8解析由约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0作出可行域如图中阴影部分所示.又目标函数z =4x +3y 可化为y =-43x +z 3,因此,当直线y =-43x +z3在y 轴上截距最大时, z =4x +3y 取最大值,由图象可得,令直线y =-43x +z3过点A 时,截距最大,由x -2y -2=0,令y =0,易得A (2,0),此时z max =8.15. 如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.答案255解析 过P 点作底面ABCD 的垂线PQ ,垂足为Q .则“点P 到直线CC 1的距离”就转化为“两条平行线PQ 与直线CC 1之间的距离”,进而转化为“点Q 到直线CC 1的距离,即QC ”.当CQ ⊥DE 时,QC 有最小值为255,即点P 到直线CC 1的距离的最小值为255.16.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第________天,两马相逢.答案 16解析 设两匹马n 天之后相遇,则两匹马合计行走的路程为6000里.依题意,⎣⎢⎡⎦⎥⎤193n +12n (n -1)×13+⎣⎢⎡⎦⎥⎤97n +12n (n -1)×⎝ ⎛⎭⎪⎫-12=6000.经估算可知,15<n <16,故n 取16.即离开长安后的第16天,两马相逢.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图,ABCD 是边长为2的菱形,∠DAB =60°,EB ⊥平面ABCD ,FD ⊥平面ABCD ,EB =2FD =4.(1)求证:EF ⊥AC ;(2)求几何体EF ABCD 的体积.解 (1)证明:如图,连接BD , ∵FD ⊥平面ABCD ,EB ⊥平面ABCD , ∴EB ∥FD ,∴E ,F ,D ,B 四点共面, ∵AC ⊂平面ABCD ,∴AC ⊥EB .设DB ∩AC =O ,∵四边形ABCD 为菱形, ∴AC ⊥DB .∵DB ∩EB =B ,∴AC ⊥平面EFDB , ∵EF ⊂平面EFDB ,∴AC ⊥EF .(2)∵EB ∥FD ,EB ⊥BD .∴四边形EFDB 为直角梯形,在菱形ABCD 中,∠DAB =60°,AB =2,BD =2,AO =CO =3, ∴梯形EFDB 的面积S =(2+4)×22=6, ∵AC ⊥平面EFDB ,∴V 几何体EF ABCD =V 四棱锥C -EFDB +V 四棱锥A -EFDB =13S ·AO +13S ·CO =4 3.18.(本小题满分12分)已知△ABC的内角A,B,C所对边分别为a,b,c,且2a cos C=2b-c.(1)求角A的大小;(2)若AB=3,AC边上的中线BD的长为13,求△ABC的面积.解(1)∵2a cos C=2b-c,由正弦定理可得sin A cos C+12sin C=sin B,∴sin B=sin(A+C)=sin A cos C+cos A sinC.∴12sin C=cos A sin C,∵sin C≠0,∴cos A=12,∴由A∈(0,π),可得A=π3.(2)在△ABD中,AB=3,BD=13,cos A=1 2,由余弦定理可得13=9+AD2-3AD,解得AD=4(负值舍去),∵BD为AC边上的中线,∴D为AC的中点,∴AC=2AD=8,∴S△ABC =12AB·AC·sin A=12×3×8×32=6 3.19.(本小题满分12分)在某区“创文明城区”(简称“创城”)活动中,教委对本区A,B,C,D四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值假设每名高中学生是否参与“创城”活动是相互独立的.(1)若该区共2000名高中学生,估计A学校参与“创城”活动的人数;(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;(3)在上表中从B,C两校没有参与“创城”活动的同学中随机抽取2人,求恰好B,C两校各有1人没有参与“创城”活动的概率.解(1)A学校高中生的总人数为50÷1002000=1000,A 学校参与“创城”活动的人数为1000×4050=800. (2)设恰好该生没有参与“创城”活动这一事件为M , 则P (M )=100-40-10-9-15100=1350.(3)B 校没有参与“创城”活动的这5人分别记为B 1,B 2,B 3,B 4,B 5,C 校没有参与“创城”活动的这1人记为C 1,任取2人共15种情况,如下:B 1B 2,B 1B 3,B 1B 4,B 1B 5,B 1C 1,B 2B 3,B 2B 4,B 2B 5,B 2C 1,B 3B 4,B 3B 5,B 3C 1,B 4B 5,B 4C 1,B 5C 1,这15种情况发生的可能性是相等的.设事件N 为抽取2人中B ,C 两校各有1人没有参与“创城”活动,有B 1C 1,B 2C 1,B 3C 1,B 4C 1,B 5C 1,共5种情况.则P (N )=515=13.故恰好B ,C 两校各有1人没有参与“创城”活动的概率为13.20.(本小题满分12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,1),右焦点到直线x =a 2c 的距离为33.(1)求椭圆E 的标准方程;(2)过点A 作两条互相垂直的直线l 1 ,l 2分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P ⎝ ⎛⎭⎪⎫0,-35. 解 (1)由题意知,a 2c -c =33,b =1,a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆的标准方程为x 24+y 2=1. (2)证明:显然直线l 1,l 2的斜率存在. 设直线l 1的方程为y =kx +1, 联立方程组⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,得(4k 2+1)x 2+8kx =0, 解得x 1=-8k4k 2+1,x 2=0,所以x M =-8k4k 2+1,y M =1-4k 24k 2+1.由l 1,l 2垂直,可得直线l 2的方程为y =-1k x +1. 用-1k 替换前式中的k ,可得x N =8kk 2+4,y N =k 2-4k 2+4.则k MP =1-4k 24k 2+1+35-8k 4k 2+1=-8k 25+85-8k =k 2-15k , k NP =k 2-4k 2+4+358k k 2+4=8k 25-858k =k 2-15k ,所以k MP =k NP ,故直线MN 恒过定点P ⎝ ⎛⎭⎪⎫0,-35.21.(本小题满分12分)已知函数f (x )=ln x -1x -ax (a ∈R ).(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a <-1,求函数f (x )的单调区间; (3)若1<a <2,求证:f (x )<-1.解 (1)若a =0,则f (1)=-1,f ′(x )=2-ln xx 2, f ′(1)=2,所以f (x )在点(1,-1)处的切线方程为2x -y -3=0. (2)x ∈(0,+∞),f ′(x )=2-ax 2-ln xx 2.令g (x )=2-ax 2-ln x ,则g ′(x )=-2ax 2-1x.令g ′(x )=0,得x =± -12a ⎝ ⎛⎭⎪⎫依题意-12a >0.由g ′(x )>0,得x > -12a ;由g ′(x )<0,得0<x < -12a .所以,g (x )在区间⎝ ⎛⎭⎪⎫0, -12a 上单调递减,在区间⎝⎛⎭⎪⎫-12a ,+∞上单调递增,所以,g (x )min =g ⎝ ⎛⎭⎪⎫-12a =52-ln-12a . 因为a <-1,所以0<-12a <12,ln -12a <0. 所以g (x )>0,即f ′(x )>0.所以函数f (x )的单调递增区间为(0,+∞).(3)证明:由x >0,f (x )<-1,等价于ln x -1x -ax <-1,等价于ax 2-x +1-ln x >0. 设h (x )=ax 2-x +1-ln x ,只须证h (x )>0成立. 因为h ′(x )=2ax -1-1x =2ax 2-x -1x ,1<a <2,由h ′(x )=0,得2ax 2-x -1=0有异号两根. 令其正根为x 0,则2ax 20-x 0-1=0.在(0,x 0)上h ′(x )<0,在(x 0,+∞)上h ′(x )>0. 则h (x )的最小值为h (x 0)=ax 20-x 0+1-lnx 0=1+x 02-x 0+1-ln x 0=3-x 02-lnx 0.又h ′(1)=2a -2>0,h ′⎝ ⎛⎭⎪⎫12=2⎝ ⎛⎭⎪⎫a 2-32=a -3<0,所以12<x 0<1.则3-x 02>0,-ln x 0>0.因此3-x 02-ln x 0>0,即h (x 0)>0. 所以h (x )>0,所以f (x )<-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的极坐标方程是ρsin ⎝ ⎛⎭⎪⎫θ-π3=0,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,曲线C 的参数方程是⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).(1)求直线l 被曲线C 截得的弦长;(2)从极点作曲线C 的弦,求各弦中点轨迹的极坐标方程.解 (1)直线l 的极坐标方程是ρsin ⎝ ⎛⎭⎪⎫θ-π3=0,展开可得ρ⎝ ⎛⎭⎪⎫12sin θ-32cos θ=0,化为直角坐标方程为y -3x =0.曲线C 的参数方程是⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),消去参数α可得,x 2+(y -2)2=4, 圆心C (0,2),半径r =2. ∴圆心C 到直线l 的距离d =|2-0|12+(-3)2=1,∴直线l 被曲线C 截得的弦长为 2r 2-d 2=2×22-12=2 3.(2)设Q 是圆C 上的任意一点,P (x ,y )为线段OQ 的中点,则Q (2x,2y ),代入圆C 的方程可得,(2x )2+(2y -2)2=4,化为x 2+y 2-2y =0,可得ρ2-2ρsin θ=0,即ρ=2sin θ为各弦中点轨迹的极坐标方程. 23.(本小题满分10分)选修4-5:不等式选讲 设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1. 解 (1)因为[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],所以由已知得(x -1)2+(y +1)2+(z +1)2≥43, 当且仅当x =53,y =-13,z =-13时等号成立. 所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:因为[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)·(z -a )+(z -a )(x -2)]≤3[(x -2)2+(y -1)2+(z -a )2],所以由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.所以(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.(2+a)23≥13,解得a≤-3或a≥-1.由题设知。
2020高三高考数学二轮复习专题训练+06+Word版含答案
说明:一般分布列的求法分三步:(1)首先确定随机变量的取值哟哪些;(2)求出每种取值下的随机事件的概率;(3)列表对应,即为分布列。
ξ
8、关于取球的随机变量的值和概率
例:袋中有1个红球,2个白球,3个黑球,现从中任取一球观察其颜色。
确定这个随机试验中的随机变量,并指出在这个随机试验中随机变量可能取的值及取每个值的概率。
分析:随机变量变量是表示随机试验结果的变量,随机变量的可能取值是随机试验的所有可能的结果组成。
解: 设集合,其中为“取到的球为红色的球”,为“取到的球为白
色的球”,为“取到的球为黑色的球”。
},,{321x x x
M =1x 2x 3x 我们规定:,即当时,,这样,我们确定就是一个随机变量,它的自变是量取值不是一个实数,而是集合中的一个元素,即,而随机变量本身的取值则为1、2、3三个实数,并且我们很容易求得分别取1、
2、3三个值的概率,)3,2,1()(===i i x
i ξ ξ i x x =i x =)(ξ )(x ξ x M 即
说明:确定随机变量的取值是根据随机试验的所有可能的结果。
2020年高考数学(文科)金太阳模拟冲刺卷(一)
2020年高考数学(文科)模拟冲刺卷(一)考生注意事项:1.答题前,先将自己的姓名、考号填写在试题卷和答题卡上。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{}11A x x =-<<,{}220B x x x =--<,则()A B =R I ð( )A .(1,0]-B .[1,2)-C .[1,2)D .(1,2]2.已知1a >,则“log log a a x y <”是“2x xy <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数2()(2)g x f x x =-是减函数,且(1)2f =,则(1)f -=( ) A .32-B .1-C .32D .744.已知α是第一象限角,24sin 25α=,则tan 2α=( ) A .43- B .43 C .34- D .345.设向量(2,2)=a ,b 与a 的夹角为3π4,且2⋅=-a b ,则b 的坐标为( )A .(0,1)-B .(1,0)-C .(0,1)-或(1,0)-D .以上都不对6.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =( )A .12n -B .13()2n -C .12()3n -D .11()2n -7.已知α为锐角,则32tan tan 2αα+的最小值为( )A .1B .2 C. D.8.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥ B .若c ⊥平面α,则a α∥,b α∥C .若存在平面α,使得c α⊥,a α⊂,b α∥D .若存在平面α,使得c α∥,a α⊥,b α⊥9.已知两点(,0)A a ,(,0)(0)B a a ->,若圆22((1)1x y -+-=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(0,3]B .[1,3]C .[2,3]D .[1,2]10.在区间[0,2]上随机取一个数x,使πsin 2x ≥的概率为( ) A .13B .12C .23D .3411.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>,过右顶点A 作一条渐近线的垂线交另一条渐近线于点B ,若OB OA =,则双曲线的离心率为( )A.B. C.D.12.已知函数2()ln(||1)f x x x =++,若对于[1,2]x ∈-,22(22)9ln 4f x ax a +-<+恒成立,则实数a 的取值范围是( ) A.212a -<<B .11a -<<C.a >或a <D.a <<第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知i 为虚数单位,复数3i2ia +的实部与虚部相等,则实数a = . 14.执行如图所示的程序框图,则输出的n 的值为 .15.某工厂为了解某车间生产的每件产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在[96,106]内,将所得数据按[96,98),[98,100),[100,102),[102,104),[104,106]分成五组,其频率分布直方图如图所示,且五个小矩形的高构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)内的产品件数是 .16.在平面直角坐标系xOy 中,(1,2)P 是双曲线22221(0,0)x y a b a b-=>>的一条渐近线l 上的一点1F ,2F 分别为双曲线的左右焦点,若1290F PF ∠=︒,则双曲线的左顶点到直线l 的距离为 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,E 是BC 的中点,3AC =,AE =2213cos 7cos 60ABE AEB ∠-∠-=.(1)求AB ; (2)求C .18.(12分)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y bx a =+,②bxy ae =分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计了的值:残差图(1)根据残差图,比较模型①②的拟合效果,应选则那个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除: (ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)广告投入量18x =时,(1)中所选模型收益的预报值是多少?附:对于一组数据11(,)x y ,22(,)x y ,L ,(,)n n x y ,其回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()n niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.19.(12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(1)求证:AB CG ⊥;(2)若ABC △和梯形BCGF的面积都等于G ABE -的体积.20.(12分)已知抛物线21:2(0)C y px p =>的焦点是椭圆22222:1(0)x y C a b a b+=>>的右焦点,且两条曲线相交于点2(3. (1)求椭圆2C 的方程;(2)过椭圆2C 右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C 和点B ,D ,且12l l ⊥, 设M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.21.(12分)已知函数()(ln )xf x xe a x x =-+,a ∈R .(1)当a e =时,判断()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 是过坐标原点且倾斜角为α的直线,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且点,A B 均异于坐标原点O,AB =,求α的值.23.(10分)【选修4-5:不等式选讲】 已知函数()f x x =.(1)解关于x 的不等式(2)(1)2f x f x --+<;(2)存在0x ∈R ,使得不等式00(2)()(1)2f x f x a f a -++<--,求实数a 的取值范围.。
2020届高考数学大二轮专题复习冲刺方案-文数(创新版)文档:仿真模拟卷四 Word版含解析
仿真模拟卷四本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x ≥1},B ={x |2x -3>0},则A ∪B =( ) A .[0,+∞) B .[1,+∞) C.⎝ ⎛⎭⎪⎫32,+∞ D .⎣⎢⎡⎭⎪⎫0,32答案 B 解析 因为B ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,A ={x |x ≥1},所以A ∪B =[1,+∞).2.已知复数z 满足(1-i)z =2i(i 为虚数单位),则z -=( ) A .-1-i B .-1+i C .1+i D .1-i答案 A解析 由(1-i)z =2i ,得z =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,∴z -=-1-i.3.设a ,b 是空间两条直线,则“a ,b 不平行”是“a ,b 是异面直线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由a ,b 是异面直线⇒a ,b 不平行.反之,若直线a ,b 不平行,也可能相交,不一定是异面直线.所以“a ,b 不平行”是“a ,b 是异面直线”的必要不充分条件.4.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,令m 2=-1.45,m 1=-26.7,则lg E 1E 2=25(m 2-m 1)=25×(-1.45+26.7)=10.1,从而E 1E 2=1010.1.5.执行如图所示的程序框图,若输出结果为1,则可输入的实数x 的值的个数为( )A .1B .2C .3D .4答案 B解析 根据题意,该框图的含义是:当x ≤2时,得到函数y =x 2-1;当x >2时,得到函数y =log 2x , 因此,若输出的结果为1时,若x ≤2,得到x 2-1=1,解得x =±2, 若x >2,得到log 2x =1,无解,因此,可输入的实数x 的值可能为-2,2,共有2个.6.把函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+1图象上各点的横坐标缩短为原来的12(纵坐标不变),那么所得图象的一条对称轴方程为( )A .x =2π3 B .x =π2 C .x =π4 D .x =π8 答案 D解析 根据题中变换,所得图象对应的函数解析式为y =2sin ⎝ ⎛⎭⎪⎫2x +π4+1,令2x +π4=π2+k π(k ∈Z ),则x =π8+k π2(k ∈Z ),取k =0,得x =π8,故选D.7.在矩形ABCD 中,AB =3,AD =4,AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为E ,则AE →·EC→=( )A.725 B .14425C.125 D .1225答案 B解析 如图,由AB =3,AD =4,得BD =9+16=5,AE =AB ·AD BD =125. 又AE →·EC →=AE →·(EO →+OC →)=AE →·EO →+AE →·OC →=AE →·EO →+AE →·AO→, ∵AE ⊥BD ,∴AE →·EO →=0,又AE →·AO →=|AE →||AO →|·cos ∠EAO =|AE→||AO →|·|AE →||AO →|=|AE →|2=14425, ∴AE →·EC→=14425. 8.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .8+π2+7 B .8+3π2+7 C .6+3π2+ 3 D .6+π2+ 3答案 B解析 由三视图可知,该几何体是由半个圆锥与一个四棱锥组合而成,如图所示,其中圆锥的底面半径为1,高为3,母线长为2,四棱锥的底面是边长为2的正方形,高为3,取BC 的中点N ,连接MN ,PN ,则该几何体的表面积为S =12π×1×2+12×π×12+2×2+2×⎝ ⎛⎭⎪⎫12×2×2+12×2×3+4=3π2+8+7.9.若函数y =f (x )的大致图象如图所示,则f (x )的解析式可以是( )A .f (x )=xe x +e -x B .f (x )=xe x -e -x C .f (x )=e x +e -xx D .f (x )=e x -e -xx 答案 C解析 当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ;当x <0时,f (x )<0,而B 中x <0时,f (x )=xe x -e-x >0,D 中,f (x )=e x-e -xx >0,排除B ,D.10.已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是( )A .[1,+∞)B .[-1,4)C .[-1,+∞)D .[-1,6]答案 C解析 不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x -2⎝ ⎛⎭⎪⎫y x 2对于x ∈[1,2],y ∈[2,3]恒成立,令t =y x ,则1≤t ≤3,∴a ≥t -2t 2在[1,3]上恒成立,∵y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18,∴t =1时,y max =-1,∴a ≥-1,故a 的取值范围是[-1,+∞).11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,e 为双曲线的离心率,P 是双曲线右支上的点,△PF 1F 2的内切圆的圆心为I ,过F 2作直线PI 的垂线,垂足为B ,则|OB |等于( )A .aB .bC .eaD .eb答案 A解析 如图,延长F 2B 交PF 1于点C ,在△PCF 2中,由题意,得它是一个等腰三角形,|PC |=|PF 2|,B 为CF 2的中点, ∴在△F 1CF 2中,有|OB |=12|CF 1|=12(|PF 1|-|PC |)=12(|PF 1|-|PF 2|)=12×2a =a . 12.设min{m ,n }表示m ,n 二者中较小的一个,已知函数f (x )=x 2+8x +14,g (x )=min ⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫12x -2,log 2(4x )(x >0).若∀x 1∈[-5,a ](a ≥-4),∃x 2∈(0,+∞),使得f (x 1)=g (x 2)成立,则a 的最大值为( )A .-4B .-3C .-2D .0答案 C解析 由题意得g (x )=⎩⎪⎨⎪⎧log 2(4x ),0<x <1,⎝ ⎛⎭⎪⎫12x -2,x ≥1,则g (x )max =g (1)=2.在同一坐标系作出函数f (x )(-5≤x ≤a )和g (x )(x >0)的图象,如图所示.由f (x )=2,得x =-6或-2,∵∀x 1∈[-5,a ],∃x 2∈(0,+∞),使得f (x 1)=g (x 2)成立, ∴-4≤a ≤-2,∴a 的最大值为-2.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知点P (x ,y )满足条件⎩⎨⎧x -y -1≤0,x +2y -1≥0,y ≤3,则点P 到原点O 的最大距离为________.答案34解析画出⎩⎨⎧x -y -1≤0,x +2y -1≥0,y ≤3表示的可行域如图阴影部分所示(含边界),由⎩⎨⎧ y =3,x +2y -1=0,得⎩⎨⎧x =-5,y =3,由图得,当点P 的坐标为(-5,3)时,点P 到原点的距离最大,且最大值为25+9=34.14.函数f (x )=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π6+sin x ·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π6-sin x 的最小正周期为________,最大值为________.答案 π 12解析 f (x )=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π6+sin x ·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π6-sin x =12⎝ ⎛⎭⎪⎫12cos2x +32sin2x =12cos ⎝ ⎛⎭⎪⎫2x -π3,∴f (x )的最小正周期为T =2π2=π,最大值为12. 15.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆上存在点P ,使得∠APB =90°,则m 的取值范围是________.答案 [4,6]解析 由已知,以AB 为直径的圆与圆C 有公共点,又AB 的中点为原点,则|AB |=2m ,则|m -1|≤(0-3)2+(0-4)2≤m +1,解得4≤m ≤6,即m 的取值范围是[4,6].16.如图,在△ABC 中,sin ∠ABC 2=33,点D 在线段AC 上,且AD =2DC ,BD =433,则△ABC 的面积的最大值为________.答案 3 2解析 由sin ∠ABC 2=33,可得cos ∠ABC 2=63,则sin ∠ABC =2sin ∠ABC 2cos ∠ABC 2=223.由sin ∠ABC 2=33<22可知,0°<∠ABC 2<45°, 则0°<∠ABC <90°,由同角三角函数基本关系可知,cos ∠ABC =13. 设AB =x ,BC =y ,AC =3z (x >0,y >0,z >0), 在△ABD 中,由余弦定理可得,cos ∠BDA =163+(2z )2-x 22×433×2z ,在△CBD 中,由余弦定理可得,cos ∠BDC =163+z 2-y22×433×z ,由∠BDA +∠BDC =180°, 故cos ∠BDA =-cos ∠BDC , 即163+(2z )2-x 22×433×2z =-163+z 2-y 22×433×z ,整理可得16+6z 2-x 2-2y 2=0. ①在△ABC 中,由余弦定理可知,x 2+y 2-2xy ×13=(3z )2, 则6z 2=23x 2+23y 2-49xy ,代入①式整理计算可得,13x 2+43y 2+49xy =16, 由基本不等式可得, 16≥213x 2×43y 2+49xy =169xy ,故xy ≤9,当且仅当x =32,y =322时等号成立, 据此可知,△ABC 面积的最大值为 S max =12(AB ·BC )max ·sin ∠ABC =12×9×223 =3 2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{a n }满足:a n ≠1,a n +1=2-1a n(n ∈N *),数列{b n }中,b n =1a n -1,且b 1,b 2,b 4成等比数列.(1)求证:数列{b n }是等差数列; (2)若S n 是数列{b n }的前n项和,求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解 (1)证明:b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n a n -1-1a n -1=1,∴数列{b n }是公差为1的等差数列.(2)由题意可得b 22=b 1b 4,即(b 1+1)2=b 1(b 1+3),∴b 1=1,∴b n =n , ∴S n =n (n +1)2,∴1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,T n =2×⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 18.(本小题满分12分)如图,在正三棱柱A 1B 1C 1-ABC 中,AB =AA 1,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ∥平面BCC 1B 1;(2)若AB =2,求点A 到平面BEF 的距离.解 (1)证明:如图,取AB 中点M ,连接EM ,FM ,则ME ∥BC ,FM ∥BB 1, ∵ME ∩FM =M ,BC ∩BB 1=B , ∴平面EFM ∥平面BCC 1B 1, ∵EF ⊂平面EFM , ∴EF ∥平面BCC 1B 1.(2)连接AF ,设点A 到平面BEF 的距离为h , ∵EF 2=FM 2+EM 2=5, ∴EF = 5.又BE =3,BF =5,结合余弦定理, 可知cos ∠EBF =1510,所以sin ∠EBF =8510,因而S △BEF =12BE ·BF ·sin ∠EBF =514.易知S △ABE =12S △ABC =12×12AB ·BC ·sin π3=32. ∵V F -ABE =V A -BEF , ∴13×32×2=13×514×h ,解得h =41717,∴点A 到平面BEF 的距离为41717.19.(本小题满分12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.解 (1)由题知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人). 估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1000=400. (2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2000元”,则P (C )=125=0.04.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2000元”.假设样本仅使用B 的学生中,本月支付金额大于2000元的人数没有变化,则由(2)知,P (E )=0.04.答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2000元的人数发生了变化.所以可以认为有变化,答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.20.(本小题满分12分)已知A ,F 分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点、右焦点,点P 为椭圆C 上一动点,当PF ⊥x 轴时,|AF |=2|PF |.(1)求椭圆C 的离心率;(2)若椭圆C 上存在点Q ,使得四边形AOPQ 是平行四边形(点P 在第一象限),求直线AP 与OQ 的斜率之积;(3)记圆O :x 2+y 2=ab a 2+b 2为椭圆C 的“关联圆”.若b =3,过点P 作椭圆C 的“关联圆”的两条切线,切点为M ,N ,直线MN 在x 轴和y 轴上的截距分别为m ,n ,求证:3m 2+4n2为定值.解 (1)由PF ⊥x 轴,知x P =c ,代入椭圆C 的方程, 得c 2a 2+y 2Pb 2=1,解得y P =±b 2a .又|AF |=2|PF |,所以a +c =2b 2a , 所以a 2+ac =2b 2, 即a 2-2c 2-ac =0,所以2e 2+e -1=0, 由0<e <1,解得e =12.(2)因为四边形AOPQ 是平行四边形, 所以PQ =a 且PQ ∥x 轴,所以x P =a 2,代入椭圆C 的方程,解得y P =±32b , 因为点P 在第一象限,所以y P =32b ,同理可得x Q =-a 2,y Q =32b ,所以k AP k OQ =3b 2a 2-(-a )·3b 2-a 2=-b 2a 2,由(1)知e =c a =12,得b 2a 2=34,所以k AP k OQ =-34.(3)证明:由(1)知e =c a =12, 又b =3,解得a =2,所以椭圆C 的方程为x 24+y 23=1,圆O 的方程为x 2+y 2=237.①连接OM ,ON (图略),由题意可知,OM ⊥PM ,ON ⊥PN ,所以四边形OMPN 的外接圆是以OP 为直径的圆,设P (x 0,y 0),则四边形OMPN 的外接圆方程为⎝ ⎛⎭⎪⎫x -x 022+⎝ ⎛⎭⎪⎫y -y 022=14(x 20+y 20),即x 2-xx 0+y 2-yy 0=0.②①-②,得直线MN 的方程为xx 0+yy 0=237,令y =0,则m =237x 0,令x =0,则n =237y 0.所以3m 2+4n 2=49⎝ ⎛⎭⎪⎫x 204+y 203,因为点P 在椭圆C 上,所以x 204+y 23=1,所以3m 2+4n 2=49(为定值).21.(本小题满分12分)已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R . (1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围. 解 (1)f (x )=ln x -ax 的定义域为(0,+∞), f ′(x )=1x -a ,当a ≤0时,f ′(x )=1x -a >0,所以f (x )在(0,+∞)上单调递增,无极值点; 当a >0时,令f ′(x )=1x -a >0得0<x <1a , 令f ′(x )=1x -a <0得x >1a ,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以函数f (x )有极大值点,为x =1a ,无极小值点. (2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln xx -x 恒成立,令h (x )=ln xx -x (x >0),则h ′(x )=1-x 2-ln x x 2,令k (x )=1-x 2-ln x (x >0),则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上为减函数.又k (1)=0,所以在(0,1)上,h ′(x )>0;在(1,+∞)上,h ′(x )<0. 所以h (x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以h (x )max =h (1)=-1,所以a ≥-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =e t+e -t ,y =e t-e-t (其中t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π3-θ= 2.(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标.解 (1)消去参数t ,得曲线C 的直角坐标方程x 2-y 2=4(x ≥2). 将x =ρcos θ,y =ρsin θ代入x 2-y 2=4,得ρ2(cos 2θ-sin 2θ)=4.所以曲线C 的极坐标方程为 ρ2cos2θ=4⎝ ⎛⎭⎪⎫-π4<θ<π4.(2)将l 与C 的极坐标方程联立, 消去ρ得4sin 2⎝ ⎛⎭⎪⎫π3-θ=2cos2θ.展开得3cos 2θ-23sin θcos θ+sin 2θ=2(cos 2θ-sin 2θ). 因为cos θ≠0,所以3tan 2θ-23tan θ+1=0. 于是方程的解为tan θ=33,即θ=π6.代入ρsin ⎝ ⎛⎭⎪⎫π3-θ=2,得ρ=22,所以点P 的极坐标为⎝ ⎛⎭⎪⎫22,π6.23.(本小题满分10分)选修4-5:不等式选讲 已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y ≥|a +2|-|a -1|恒成立,求实数a 的取值范围;(2)求证:x 2+2y 2≥323,并指出等号成立的条件. 解 (1)因为x ,y ∈R +,x +y =4, 所以x 4+y4=1.由基本不等式,得1x +1y =⎝ ⎛⎭⎪⎫1x +1y ⎝ ⎛⎭⎪⎫x 4+y 4=12+14⎝ ⎛⎭⎪⎫y x +x y ≥12+12y x ·x y =1, 当且仅当x =y =2时取等号.要使不等式1x +1y ≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可. 构造函数f (a )=|a +2|-|a -1|, 则等价于解不等式f (a )≤1.因为f (a )=⎩⎨⎧-3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0]. (2)证明:因为x ,y ∈R +,x +y =4, 所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝ ⎛⎭⎪⎫x -832+323≥323,当x =83,y =43时等号成立.。
2020高三二轮数学模拟卷理.doc
2020年普通高等学校招生全国统一考试高考仿真模拟卷(一) (时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |(x +1)(x -2)≤0},B ={-1,0,1,2,3},则A ∩B =( ) A .{-1,0,1} B .{-1,0,1,2} C .{0,1,2}D .{0,1,2,3}2.已知i 是虚数单位,则复数i -1i +1在复平面上所对应的点的坐标为( )A .(0,1)B .(-1,0)C .(1,0)D .(0,-1)3.已知随机变量X 服从正态分布N (3,σ2),且P (X ≤4)=0.84,则P (2<X <4)=( ) A .0.84 B .0.68 C .0.32D .0.164.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD →=DC →,则BA →·BD →的值是( )A .48B .24C .12D .65.执行如图所示的程序框图,输出S 的值为ln 5,则在判断框内应填( )A .i ≤5?B .i ≤4?C .i <6?D .i >5?6.设等差数列{a n }的前n 项和为S n ,若a 3+a 6=23,S 5=35,则{a n }的公差为( ) A .2 B .3 C .6D .97.函数f (x )=⎝ ⎛⎭⎪⎫1-2x1+2x cos x 的图象大致为( )8.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则该手工制品的表面积为( )A .5πB .10πC .12+5πD .24+12π9.已知函数f (x )=sin(2x +φ)⎝⎛⎭⎫0<φ<π2的图象的一个对称中心为⎝⎛⎭⎫3π8,0,则函数f (x )的单调递减区间是( )A.⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z ) B.⎣⎡⎦⎤2k π+π8,2k π+5π8(k ∈Z ) C.⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z ) D.⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 10.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( )A .P 1·P 2=14B .P 1=P 2=13C .P 1+P 2=56D .P 1<P 211.设F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,过F 2的直线交双曲线的右支于点P ,N ,直线PO 交双曲线C 于另一点M ,若|MF 2|=3|PF 2|,且∠MF 2N =60°,则双曲线C 的离心率为( )A .3B .2 C.52D.7212.设点P 在曲线y =2e x 上,点Q 在曲线y =ln x -ln 2上,则|PQ |的最小值为( ) A .1-ln 2 B.2(1-ln 2) C .2(1+ln 2) D.2(1+ln 2)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知100名学生某月零用钱消费支出情况的频率分布直方图如图所示,则在这100名学生中,该月零用钱消费支出超过150元的人数是__________.14.在直角坐标系xOy 中,点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧2x -y -1≥0,x +y -5≤0,x -2y +1≤0,向量a =(1,-1),则a·OP →的最大值是________.15.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是A (0,0,5),B (3,0,0),C (0,1,0),D (3,1,5),则该四面体的外接球的体积为__________.16.已知数列{a n }的首项a 1=1,函数f (x )=x 3+⎝⎛⎭⎫a n +1-a n -cos n π2为奇函数,记S n 为数列{a n }的前n 项和,则S 2 019的值为____________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知3(b 2+c 2)=3a 2+2bc .(1)若sin B =2cos C ,求tan C 的大小;(2)若a =2,△ABC 的面积S =22,且b >c ,求b ,c .18.(本小题满分12分)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率P (A );(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.19.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=π3.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.20.(本小题满分12分)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .21.(本小题满分12分)已知函数f (x )=x ln x -k (x -1). (1)若函数h (x )=f (x )x,求h (x )的极值;(2)若f (x )=0有一根为x 1(x 1>1),f ′(x ) =0的根为x 0,则是否存在实数k ,使得x 1=kx 0?若存在,求出k 的取值范围;若不存在,请说明理由.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎨⎧x =1+2ty =2t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=sin θ1-sin 2θ.(1)写出直线l 的极坐标方程与曲线C 的直角坐标方程;(2)若点P 是曲线C 上的动点,求P 到直线l 距离的最小值,并求出此时P 点的坐标. 23.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x +2|-|x -2|. (1)解不等式f (x )≥2;(2)当x ∈R ,0<y <1时,证明:|x +2|-|x -2|≤1y +11-y .2020年普通高等学校招生全国统一考试高考仿真模拟卷(二)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-x -2>0},B ={x |0<log 2x <2},则A ∩B =( )A .(2,4)B .(1,1)C .(-1,4)D .(1,4)2.i 为虚数单位,复数z 满足z (1+i)=i ,则|z |=( ) A.12 B.22C .1D. 23.已知向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ) A. 5 B.10 C .2 5D .104.函数f (x )=|x |ln|x |x4的图象大致为( )5.若sin ⎝⎛⎭⎫π2-α=35,α∈⎝⎛⎭⎫0,π2,则tan 2α=( )A .-247B.32 C .-32D.2476.我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( )A.1415B.115C.29D.797.如图程序框图输出的结果是S =720,则判断框内应填的是( )A .i ≤7B .i >7C .i ≤9D .i >98.设a =log 2 018 2 019,b =log 2 019 2 018,c =2 01812 019,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a9.已知数列a 1=1,a 2=2,且a n +2-a n =2-2(-1)n ,n ∈Z *,则S 2 017的值为( ) A .2 016×1 010-1 B .1 009×2 017 C .2 017×1 010-1D .1 009×2 01610.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与函数y =x 的图象交于点P ,若函数y =x 的图象在点P 处的切线过双曲线的左焦点F (-1,0),则双曲线的离心率是( )A.5+12 B.5+22C.3+12D.3211.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且BC 边上的高为36a ,则c b+bc的最大值是( ) A .8 B .6 C .3 2D .412.已知四棱锥S -ABCD 的所有顶点都在球O 的球面上,SD ⊥平面ABCD ,底面ABCD 是等腰梯形,AB ∥CD 且满足AB =2AD =2DC =2,且∠DAB =π3,SC =2,则球O 的表面积是( )A .5πB .4πC .3πD .2π第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知等差数列{a n }的前n 项和为S n ,a 1=13,S 3=S 11,则S n 的最大值为________. 14.若在(a +3x )(1-3x )8关于x 的展开式中,常数项为4,则x 2的系数是________. 15.在平行四边形ABCD 中,AC 与BD 交于点O ,DE →=12DO →,CE 的延长线与AD 交于点F ,若CF →=λAC →+ μBD →(λ,μ∈R ),则λ+μ=________.16.对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=3sin(3π+x )·cos(π-x )+cos 2⎝⎛⎭⎫π2+x .(1)求函数f (x )的单调递增区间;(2)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,a =2,b +c =4,求b ,c .18.(本小题满分12分)某次有1 000人参加的数学摸底考试,成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(1)下表是这次考试成绩的频数分布表,求正整数a,b的值;成绩区间[75,80)[80,85)[85,90)[90,95)[95,100) 人数50 a 350300b的40名学生中,随机选取2名学生参加座谈会,记选取的2名学生中成绩为优秀的人数为X,求X的分布列与数学期望.19.(本小题满分12分)如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,FB=10,M,N分别为EF,AB的中点.(1)求证:MN∥平面FCB;(2)若直线AF与平面FCB所成的角为30°,求平面MAB与平面FCB所成角的余弦值.20.(本小题满分12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4.(1)若以原点为圆心,椭圆短半轴长为半径长的圆与直线y =x +2相切,求椭圆C 的焦点坐标;(2)若过原点的直线l 与椭圆C 相交于M ,N 两点,点P 是椭圆C 上使直线PM ,PN 的斜率存在的任意一点,记直线PM ,PN 的斜率分别为k PM ,k PN ,当k PM ·k PN =-14时,求椭圆C 的方程.21.(本小题满分12分)已知函数f (x )=ln x +kx(k ∈R ).(1)若f (x )存在极小值h (k ),且不等式h (k )≤ak 对f (x )存在极小值的任意k 恒成立,求实数a 的取值范围;(2)当k >0时,如果存在两个不相等的正数α,β使得f (α)=f (β),求证:α+β>2k .请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2sin ⎝⎛⎭⎫α+π4y =sin 2α+1(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ2=4ρsin θ-3.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)求曲线C 1上的点与曲线C 2上的点的距离的最小值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x |+|x -1|.(1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ; (2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M , 证明:a +b ≥2ab .2020年普通高等学校招生全国统一考试高考仿真模拟卷(三)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2+x -2<0},B ={x |-x 2+x <0},则A ∩(∁R B )=( ) A .(-∞,0)∪[1,+∞) B .(-∞,0]∪(1,+∞) C .[0,1)D .[0,1]2.已知复数z 1=3+4i ,复平面内,复数z 1与z 3所对应的点关于原点对称,z 3与z 2关于实轴对称,则z 1·z 2=( )A .-25B .25C .-7D .73.抛掷红、蓝两枚骰子,当已知红色骰子的点数为偶数时,两颗骰子的点数之和不小于9的概率是( )A.12B.29C.13D.1124.《张丘建算经》是早于《九章算术》的我国另一部数学著作,在《算经》中有一题:某女子善于织布,一天比一天织的快,而且每天增加的数量相同,已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )A.47尺B.1629尺C.815尺 D.1631尺 5.函数f (x )=x ln |x |的大致图象是( )6.已知角α的顶点为坐标原点O ,始边为x 轴正半轴,终边在第二象限,A (x ,y )是其终边上一点,向量m =(3,4),若m ⊥OA →,则tan ⎝⎛⎭⎫α+π4=( )A .7B .-17C .-7D.177.已知数列{a n }的奇数项依次成等差数列,偶数项依次成等比数列,且a 1=1,a 2=2,a 3+a 4=7,a 5+a 6=13,则a 7+a 8=( )A .4+ 2B .19C .20D .238.如图所示的程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”.若输入的m ,n 分别为385,105,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数,例:11 MOD 7=4),则输出的m 等于( )A .0B .15C .35D .709.在△ABC 中,点D 为边AB 上一点,若BC ⊥CD ,AC =32,AD =3,sin ∠ABC =33,则△ABC 的面积是( ) A .6 2B.1522C.922D .12 210.已知点A ,B ,C ,D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 外接球的球心O 恰好在侧棱DA 上,DC =23,则四面体ABCD 的体积为( )A.33B.32C.233D.311.如图,已知点P 在以F 1,F 2为焦点的双曲线x 2a 2-y 2b 2=1(a >0,b >0)上,过P 作y 轴的垂线,垂足为Q ,若四边形F 1F 2PQ 为菱形,则该双曲线的离心率为( )A. 3B.3+12C .2D .23-112.已知函数f (x )在(0,1)恒有xf ′(x )>2f (x ),其中f ′(x )为函数f (x )的导数,若α,β为锐角三角形的两个内角,则( )A .sin 2βf (sin α)>sin 2αf (sin β)B .cos 2βf (sin α)>sin 2αf (cos β)C .cos 2βf (cos α)>cos 2αf (cos β)D .sin 2βf (cos α)>sin 2αf (cos β) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本题共4小题,每小题5分.13.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________.14.如图是某班8位学生诗词比赛得分的茎叶图,那么这8位学生得分的众数和中位数分别为________.89⎪⎪⎪6 60 1 3 3 3 615.已知△ABC 中,AB >AC ,AB →·AC →=6,BC =13,∠A =60°,若M 是BC 的中点,过M 作MH ⊥AB 于H ,则MH →·BC →=________.16.若函数f (x )=a ln x -x +a +3x在定义域内无极值,则实数a 的取值范围为________. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)甲、乙两名射击运动员进行射击比赛,射击次数相同,已知两名运动员击中的环数稳定在7环、8环、9环、10环,他们比赛成绩的统计结果如下:请你根据上述信息,解决下列问题:(1)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;(2)若从甲、乙运动员中只能挑选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?18.(本小题满分12分)已知等比数列{a n }的前n 项和S n =2n -a ,n ∈N *.设公差不为零的等差数列{b n }满足:b 1=a 1+2,且b 2+5,b 4+5,b 8+5成等比数列.(1)求a 的值及数列{b n }的通项公式; (2)设数列{log 2a n }的前n 项和为T n .求使T n >b n 的最小正整数n .19.(本小题满分12分)如图1,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2所示).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大;(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.20.(本小题满分12分)已知函数f (x )=(x -1)e x +1,x ∈[0,1]. (1)证明:f (x )≥0;(2)若a <e x -1x <b 在x ∈(0,1)上恒成立,求b -a 的最小值.21.(本小题满分12分)已知抛物线C :y 2=2px 的焦点为F (1,0),过F 的直线l 交抛物线C 于A ,B 两点,直线AO ,BO 分别与直线m :x =-2相交于M ,N 两点.(1)求抛物线C 的方程;(2)证明:△ABO 与△MNO 的面积之比为定值.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆O 的参数方程为⎩⎨⎧x =-22+r cos θ,y =-22+r sin θ(θ为参数,r >0).以O为极点,x 轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22.(1)写出圆心的极坐标;(2)求当r 为何值时,圆O 上的点到直线l 的最大距离为3. 23.(本小题满分10分)选修4-5:不等式选讲 设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.2020年普通高等学校招生全国统一考试高考仿真模拟卷(四)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A.{1} B.{1,2}C.{2} D.[1,2]2.若复数z满足(z-1)i=4+2i,则|z|=()A.25 B.17C.5 D.173.某市A,B,C,D四所中学报名参加某高校2017年自主招生考试的学生人数如下表所示:考试的学生中随机抽取50名参加问卷调查.则A,B,C,D四所中学抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,104.等比数列{a n}的前n项和为S n,则“a2<0且a5<0”是“数列{S n}单调递减”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2-c2=ab=3,则△ABC 的面积为()A.34 B.34C.32 D.326.设a=log123,b=⎝⎛⎭⎫130.2,c=⎝⎛⎭⎫12-12,则()A.a<b<c B.c<b<aC.c<a<b D.b<a<c7.若非零向量a、b满足|a|=2|b|=4,(a-2b)·a=0,则a在b方向上的投影为() A.4 B.8488.执行如图所示的程序框图,若输出的n =7,则输入的整数K 的最大值是( )A .18B .50C .78D .3069.已知一个封闭的长方体容器中装有两个大小相同的铁球,若该长方体容器的三个相邻侧面的面积分别为6,8,12,则铁球的直径最大只能为( )A. 3 B .2 C. 5D .410.P 为圆C 1:x 2+y 2=9上任意一点,Q 为圆C 2:x 2+y 2=25上任意一点,PQ 中点组成的区域为M ,在C 2内部任取一点,则该点落在区域M 上的概率为( )A.1325B.35C.1225πD.35π11.已知F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过点F 作垂直于x 轴的直线交该双曲线的一条渐近线于点M ,若|FM |=2a ,记该双曲线的离心率为e ,则e 2=( )A.1+172B.1+174C.2+52D.2+5412.已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f (n )-4an +1(n ∈N *)的最小值为( )A.374B.35834题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知函数f (x )=tan x +sin x +2 017,若f (m )=2,则f (-m )=________.14.已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -5≥0,x +y -7≤0,x -2≥0若z =x +ay 的最小值为4,则实数a 的值为________.15.数列{a n }的前n 项和为S n ,且S n =2n -1,则数列b n =a 2n -7a n +6的最小值为________. 16.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为4,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________.(容器壁的厚度忽略不计,结果保留)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=cos x (23sin x +cos x )-sin 2x . (1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围.18.(本小题满分12分)某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为34,乙队中3人答对的概率分别为45,34,23,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(1)求ξ的分布列和数学期望;(2)求甲、乙两队总得分之和等于30分且甲队获胜的概率.19.(本小题满分12分)如图1,正方形ABCD 的边长为4,AB =AE =BF =12EF ,AB ∥EF ,把四边形ABCD 沿AB 折起,使得AD ⊥底面AEFB ,G 是EF 的中点,如图2.(1)求证:AG ⊥平面BCE ; (2)求二面角C AEF 的余弦值.20.(本小题满分12分)设函数f (x )=ln x ,g (x )=e x ,h (x )=ax 2+bx +c .(1)若a =1,b =c =0,求函数F (x )=f (x )h (x )的单调区间;(2)若a =c =0,b >0,且G (x )=g (x )-h (x )≥m (m ∈R )对任意的x ∈R 都成立,求mb 的最大值.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)在第一象限内的点P (2,t )到焦点F 的距离为52.(1)若N ⎝⎛⎭⎫-12,0,过点N ,P 的直线l 1与抛物线相交于另一点Q ,求|QF ||PF |的值; (2)若直线l 2与抛物线C 相交于A ,B 两点,与圆M :(x -a )2+y 2=1相交于D ,E 两点,O 为坐标原点,OA ⊥OB ,试问:是否存在实数a ,使得|DE |为定值?若存在,求出a 的值;若不存在,请说明理由.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3.(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q ()5,-3,M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.23.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|x -a |,a ∈R .(1)若a =1,解不等式f (x )≥12(x +1);(2)记函数g (x )=f (x )-|x -2|的值域为A ,若A ⊆[-1,3],求a 的取值范围.2020年普通高等学校招生全国统一考试高考仿真模拟卷(五)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |3-x ≥0},B ={2,3,4},则A ∩B =( ) A .{2} B .{3} C .{2,3}D .{2,3,4}2.已知z (2-i)=1+i(i 为虚数单位),则z =( ) A .-15-35iB.15+35i C .-15+35iD.15-35i 3.从[-6,9]中任取一个m ,则直线3x +4y +m =0被圆x 2+y 2=2截得的弦长大于2的概率为( )A.23B.25C.13D.154.已知等比数列{a n }中,若4a 1,a 3,2a 2成等差数列,则公比q =( ) A .1 B .1或2 C .2或-1D .-15.“a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知在△ABC 中,BC →= 2 BD →,AD ⊥AB ,|AB →|=2,则BC →·AB →=( ) A .-4 2 B .4 2 C .-2 2D .2 27.执行如图所示的程序框图,若输出的值为-1,则判断框中可以填入的条件是( )A .n ≥999?B .n ≤999?C .n <999?D .n >999?8.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||F A |-|FB ||的值等于( )A .8 2B .8C .4 2D .49.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]10.如图所示,边长为a 的空间四边形ABCD 中,∠BCD =90°,平面ABD ⊥平面BCD ,则异面直线AD 与BC 所成角的大小为( )A .30°B .45°C .60°D .90°11.已知双曲线M 的焦点F 1、F 2在x 轴上,直线7x +3y =0是双曲线M 的一条渐近线,点P 在双曲线M 上,且PF 1→·PF 2→=0,如果抛物线y 2=16x 的准线经过双曲线M 的一个焦点,那么|PF 1→|·|PF 2→|=( )A .21B .14C .7D .012.已知f (x )=a e xx ,x ∈[1,2],且∀x 1,x 2∈[1,2],x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<1恒成立,则a 的取值范围是( )A.⎣⎡⎭⎫2e ,+∞ B.⎝⎛⎦⎤-∞,9e -22 C.()e 13,+∞ D.⎝⎛⎦⎤-∞,4e 2 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本题共4小题,每小题5分.13.设x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≥2x ≤2,,则z =x +2y 的最大值为________.14.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =______.15.⎝⎛⎭⎫1+1x 2(1-x )6展开式中x 3的系数为______. 16.若函数f (x )=A sin ⎝⎛⎭⎫ωx -π6(A >0,ω>0)的图象如图所示,则图中的阴影部分的面积为________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =1,cos B sin C +(a -sin B )cos(A +B )=0.(1)求角C 的大小; (2)求△ABC 面积的最大值.18.(本小题满分12分)如图,直线P A 与平行四边形ABCD 所在的平面垂直,且P A =AB =AD =2,∠BAD =60°.(1)证明:BD ⊥平面P AC ;(2)求直线P A 与平面PBC 所成角的正弦值.19.(本小题满分12分)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.20.(本小题满分12分)某市教师进城考试分笔试和面试两部分,现把参加笔试的40名教师的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100].得到频率分布直方图如图所示.(1)分别求成绩在第4,5组的教师人数;(2)若考官决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名进入面试,①已知甲和乙的成绩均在第3组,求甲和乙同时进入面试的概率;②若决定在这6名考生中随机抽取2名教师接受考官D的面试,设第4组中有X名教师被考官D面试,求X的分布列和数学期望.21.(本小题满分12分)设函数f(x)=ax2-x ln x-(2a-1)x+a-1(a∈R).(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;(2)若对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,半圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos φy =sin φ(φ为参数,0≤φ≤π).以O为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数n 使f (n )≤m -f (-n )成立,求实数m 的取值范围.2020年普通高等学校招生全国统一考试高考仿真模拟卷(六)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪14≤2x ≤4,B ={y |y =x -2+2-x },则A ∩B =( ) A .{2} B .{0} C .[-2,2] D .[0,2]2.已知复数z =3+i(1+i )2,其中i 为虚数单位,则|z |=( )A.12 B .1 C. 2D .23.在△ABC 中,M 为AC 的中点,BC →=CD →,MD →=xAB →+yAC →,则x +y =( ) A .1 B.12 C.13D.324.已知cos ⎝⎛⎭⎫π12-θ=13,则sin ⎝⎛⎭⎫5π12+θ的值是( ) A.13 B.223C .-13D .-2235.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .2106.执行如图所示的程序框图,若输出s =4,则判断框内应填入的条件是( )A .k ≤14B .k ≤15C .k ≤16D .k ≤177.长方体ABCD -A 1B 1C 1D 1,AB =4,AD =2,AA 1=5,则异面直线A 1B 1与AC 1所成角的余弦值为( )A.25B.35C.45D.128.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF =2AF =4,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.413 B.513 C.926D.3269.抛物线x 2=12y 在第一象限内图象上一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于( )A .64B .42C .32D .2110.已知平面向量a ,b 的夹角为π3,|a -b|=|a|=2 3.若非零向量c -a 与c -b 的夹角为2π3,则|c|的取值范围是( ) A .(3,4] B .(23,4] C .(2,23] D .[23,4]11.已知函数f (x )=A sin(ωx +φ)⎝⎛A >0,ω>0,|φ|<π2,)x ∈R 的图象如图所示,令g (x )=f (x )+f ′(x ),则下列关于函数g (x )的说法中不正确的是( )A .函数g (x )图象的对称轴方程为x =k π-π12(k ∈Z )B .函数g (x )的最大值为2 2C .函数g (x )的图象上存在点P ,使得在P 点处的切线与直线l :y =3x -1平行D .方程g (x )=2的两个不同的解分别为x 1,x 2,则|x 1-x 2|最小值为π212.已知函数f (x )=x 2-ax (1e≤x ≤e ,e 为自然对数的底数)与g (x )=e x 的图象上存在关于直线y =x 对称的点,则实数a 的取值范围是( )A.⎣⎡⎦⎤1,e +1e B.⎣⎡⎦⎤1,e -1e C.⎣⎡⎦⎤e -1e ,e +1e D.⎣⎡⎦⎤e -1e ,e第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.⎝⎛⎭⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).14.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.15.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,且满足4cos 2A 2-cos[2(B +C )]=72,若a =2,则△ABC 的面积的最大值是____________.16.在三棱锥P -ABC 中,P A =PB =22,AB =4,BC =3,AC =5,若平面P AB ⊥平面ABC ,则三棱锥P -ABC 外接球的表面积为________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n .(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫4a n (a n +2)的前n 项和为T n ,求证:12≤T n <1.18.(本小题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:学生序号i 1 2 3 4 5 6 7 数学成绩x i 60 65 70 75 85 87 90 物理成绩y i70778085908693①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01),若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y ^=b ^x +a ^,19.(本小题满分12分)如图,三棱锥P ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.20.(本小题满分12分)设函数f (x )=ln x +x 2-2ax +a 2,a ∈R . (1)当a =0时,曲线y =f (x )与直线y =3x +m 相切,求实数m 的值; (2)若函数f (x )在[1,3]上存在单调递增区间,求a 的取值范围 .21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为3,圆C的方程为(x -a )2+(y -b )2=⎝⎛⎭⎫a b 2.(1)求椭圆及圆C 的方程;(2)过原点O 作直线l 与圆C 交于A ,B 两点,若CA →·CB →=-2,求直线l 被圆C 截得的弦长.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t(t 为参数).在以原点O为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为ρ=25sin θ.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(3,5),圆C 与直线l 交于A 、B 两点,求|P A |+|PB |的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.2020年普通高等学校招生全国统一考试高考仿真模拟卷(七)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(3-4i)z =25,则z =( ) A .-3-4i B .-3+4i C .3-4iD .3+4i2.已知集合M ={x |x 2-2x -8≤0},集合N ={x |lg x ≥0},则M ∩N =( ) A .{x |-2≤x ≤4} B .{x |x ≥1} C .{x |1≤x ≤4}D .{x |x ≥-2}3.中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的一套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是( )A .2018年1月至4月的仓储指数比2017年同期波动性更大B .这两年的最大仓储指数都出现在4月份C .2018年全年仓储指数平均值明显低于2017年D .2018年各仓储指数的中位数与2017年各仓储指数中位数差异明显4.已知直线3x +ay =0(a >0)被圆(x -2)2+y 2=4所截得的弦长为2,则a 的值为( )。
2020年普通高等学校招生全国统一考试仿真卷文科数学(六)含答案
绝密 ★ 启用前2020年普通高等学校招生全国统一考试仿真卷文科数学(六)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数1z 和2z 对应的点分别是()2,1A 和()0,1B ,则12z z =( ) A .12i --B .12i -+C .12i -D .12i +2.已知集合{}|1M x x =<,{}21x N x =>,则M N =I ( ) A .{}|01x x <<B .{}|0x x <C .{}|1x x <D .∅3.已知函数()ln f x x =,若()11f x -<,则实数x 的取值范围是( ) A .(),e 1-∞+B .()0,+∞C .()1,e 1+D .()e 1,++∞4.若π1 tan43α⎛⎫-=-⎪⎝⎭,则cos2α等于()A.35B.12C.13D.3-5.已知向量()2,1=-a,()1,A x-,()1,1B-,若AB⊥u u u va,则实数x的值为()A.5-B.0C.1-D.56.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为112V=⨯(底面圆的周长的平方⨯高),则由此可推得圆周率π的取值为()A.3B.3.1C.3.14D.3.27.已知向量()3,4=-a,2=b,若5⋅=-a b,则向量a与b的夹角为()A.π6B.π4C.π3D.2π38.已知数列{}n a的前n项和为n S,且满足11a=,121n na a n++=+,则20172017S=()A.1009B.1008C.2D.19.设x,y满足约束条件360200,0x yx yx y--≤-+≥≥≥⎧⎪⎨⎪⎩,若目标函数()0z ax y a=+>的最大值为18,则a的值为()A.3B.5C.7D.910.已知某简单几何体的三视图如图所示,若主视图的面积为1,则该几何体最长的棱的长度为()A5B3C.22D611.已知函数()()2e 32x f x x a x =+++在区间()1,0-有最小值,则实数a 的取值范围是( )A .11,e ⎛⎫-- ⎪⎝⎭B .e 1,3⎛⎫-- ⎪⎝⎭C .3,1e ⎛⎫-- ⎪⎝⎭D .11,3e ⎛⎫-- ⎪⎝⎭12.如图,已知1F ,2F 是双曲线22221(0,0)x y a b ab-=>>的左、右焦点,过点2F 作以1F 为圆心,1OF 为半径的圆的切线,P 为切点,若切线段2PF 被一条渐近线平分,则双曲线的离心率为( )A .2B 2C 3D 5第Ⅱ卷卷包括必考题和选考题两部分。
2020届高考数学大二轮复习 冲刺创新专题 仿真模拟卷二 文
仿真模拟卷二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={0,1,2},Q={x|x〈2},则P∩Q=() A.{0}B.{0,1}C.{1,2} D.{0,2}答案B解析因为集合P={0,1,2},Q={x|x〈2},所以P∩Q={0,1}.2.已知复数z满足|z|=错误!,z+错误!=2(错误!为z的共轭复数)(i 为虚数单位),则z=( )A.1+i B.1-iC.1+i或1-i D.-1+i或-1-i答案C解析设z=a+b i(a,b∈R),则错误!=a-b i,z+错误!=2a,所以错误!得错误!所以z=1+i或z=1-i.3.若a>1,则“a x〉a y"是“log a x>log a y”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案A解析由a>1,得a x〉a y等价为x>y,log a x〉log a y等价为x>y>0,故“a x>a y”是“log a x>log a y"的必要不充分条件.4.已知a=log52,b=log0.50.2,c=0.50。
2,则a,b,c的大小关系为( )A.a<c<b B.a〈b<cC.b<c<a D.c〈a<b答案A解析因为a=log52〈log5错误!=错误!,b=log0。
50.2>log0。
50。
25=2,0.51〈c=0。
50.2〈0.50,即错误!<c<1,所以a<c〈b.5.执行如图所示的程序框图,则输出的i的值为()A.4 B.5C.6 D.7答案C解析由题可得S=3,i=2→S=7,i=3→S=15,i=4→S=31,i =5→S=63,i=6,此时结束循环,输出i=6.6.已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=9,b7=21,则由{a n},{b n}公共项组成新数列{c n},则c10=( ) A.18 B.24C.30 D.36答案C解析(直接法)由题意,根据等差数列的通项公式得,数列{a n}的首项为3,公差为1,a n=n+2,数列{b n}的首项为3,公差为3,b n=3n,则易知两个数列的公共项组成的新数列{c n}即为数列{b n},由此c10=b10=30,故选C.7.已知直线y=x+m和圆x2+y2=1交于A,B两点,O为坐标原点,若错误!·错误!=错误!,则实数m=( )A.±1B.±错误!C.±错误!D.±错误!答案C解析联立错误!得2x2+2mx+m2-1=0,∵直线y=x+m和圆x2+y2=1交于A,B两点,O为坐标原点,∴Δ=-4m2+8>0,解得-错误!〈m<错误!,设A(x1,y1),B(x2,y2),则x1+x2=-m,x1x2=错误!,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,错误!=(-x1,-y1),错误!=(x2-x1,y2-y1),∵错误!·错误!=错误!,∴错误!·错误!=x错误!-x1x2+y错误!-y1y2=1-错误!-错误!+m2-m2=2-m2=错误!,解得m=±错误!。
2020年全国高考数学(文科)仿真冲刺模拟试卷2含答案
2020年全国高考数学(文科)仿真冲刺模拟试卷2注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[拉萨中学]已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U A B =I ð( ) A .{}1,3,4B .{}3,4C .{}3D .{}42.[黔东南州一模]12i 12i1i 1i-++=+-( )A .1-B .i -C .1D .i3.[济南模拟]已知双曲线2219x y m-=的一个焦点F 的坐标为()5,0-,则该双曲线的渐近线方程为( ) A .43y x =±B .34y x =±C .53y x =±D .35y x =±4.[贵州适应]2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况。
为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:根据图中(35岁以上含35岁)的信息,下列结论中不一定正确的是( ) A .样本中男性比女性更关注地铁一号线全线开通 B .样本中多数女性是35岁以上C .35岁以下的男性人数比35岁以上的女性人数多D .样本中35岁以上的人对地铁一号线的开通关注度更高5.[阆中中学]设D 为ABC △的边BC 的延长线上一点,3BC CD =u u u r u u u r,则( )A .1433AD AB AC =-u u u r u u u r u u u rB .4133AD AB AC =+u u u r u u u r u u u rC .1433AD AB AC =-+u u u r u u ur u u u rD .4133AD AB AC =-u u u r u u u r u u u r6.[银川质检]执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为( )A .6B .10C .8D .47.[樟树中学]函数()()sin f x x ωϕ=+(其中π2ϕ<)的图象如图所示,为了得到()y f x =的图象,只需把sin y x ω=的图象上所有点( )A .向右平移π6个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向左平移π12个单位长度 8.[烟台一模]我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .π12+B .1π36+C .12π+D .12π33+9.[临沂质检]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,3a =,23c =,πsin cos 6b A a B ⎛⎫=+ ⎪⎝⎭,b =则( )A .1B .2C .3D .510.[山西冲刺]函数()sin 2cos f x x x x =+的大致图象有可能是( )A .B .C .D .11.[齐齐哈尔模拟]已知三棱锥D ABC -的四个顶点都在球O 的球面上,若DC ⊥平面ABC ,90ACB ∠=︒,32AB =23DC =O 的表面积为( )A .28πB .30πC .32πD .36π12.[四川诊断]已知函数()211x x f x x --=+,()1e ln x g x x a -=--+对任意的[]11,3x ∈,[]21,3x ∈恒有()()12f x g x ≥成立,则a 的取值范围是( ) A .12a ≤B .12a ≥C .102a <≤D .1122a -≤≤第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[宣城期末]log 32381127log 44⎛⎫+-= ⎪⎝⎭_______. 14.[焦作模拟]设x ,y 满足约束条件202300x y x y x y --≤-+≥+≤⎧⎪⎨⎪⎩,则46y x ++的取值范围是__________.15.[海安中学]若cos 24πcos αα⎛⎫=+ ⎪⎝⎭,则an 8πt α⎛⎫+= ⎪⎝⎭______.16.[呼和浩特调研]设抛物线24y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA L ⊥,A 为垂足.如果直线AF 的斜率为3-PF 为直径的圆的标准方程为______.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[济南模拟]已知数列{}n a 的前n 项和为n S ,且22n n S a =-.(1)求数列{}n a 的通项公式;(2)设22log 11n n b a =-,数列{}n b 的前n 项和为n T ,求n T 的最小值及取得最小值时n 的值.18.(12分)[宜宾诊断]在如图所示的几何体中,已知90BAC ∠=︒,PA ⊥平面ABC ,3AB =,4AC =,2PA =.若M 是BC 的中点,且PQ AC ∥,QM ∥平面PAB .(1)求线段PQ 的长度;(2)求三棱锥Q AMC -的体积V .19.(12分)[海淀一模]据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积按造林方式分人工造林飞播造林新封山育林退化林修复人工更新内蒙618484 311052 74094 136006 90382 6950河北583361 345625 33333 135107 65653 3643河南149002 97647 13429 22417 15376 133重庆226333 100600 62400 63333陕西297642 184108 33602 63865 16067甘肃325580 260144 57438 7998新疆263903 118105 6264 126647 10796 2091青海178414 16051 159734 2629宁夏91531 58960 22938 8298 1335北京19064 10012 4000 3999 1053(1)请根据上述数据,分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?(3)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.20.(12分)[上饶模拟]已知椭圆()2222:10x yD a ba b+=>>的离心率为2e,点)2,1-在椭圆D 上.(1)求椭圆D的标准方程;(2)过y轴上一点()0,E t且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为OA k ,OB k ,若对任意实数k ,存在[]2,4λ∈,使得OA OB k k k λ+=,求实数t 的取值范围.21.(10分)[衡阳联考]已知函数()()21ln 12f x x ax a x =-++-,a ∈R .(1)讨论()f x 的单调性;(2)()2,x ∀∈+∞,()0f x >恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[东莞调研]在直角坐标系xOy 中,直线l 的参数方程为()334 3x tt y a t ⎧⎪⎨=+⎪⎩+=为参数, 圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.求直线l 和圆C 的极坐标方程; 若射线π3θ=与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点, 求a 的值.23.(10分)【选修4-5:不等式选讲】 [河南联考]已知函数()2f x x a x a =-+-. (1)当1a =-时,求()4f x ≤的解集;(2)记()f x 的最小值为()g a ,求()g a 在[]0,2a ∈时的最大值.绝密 ★ 启用前 2020年全国高考数学(文科)仿真冲刺模拟试卷1答案一、选择题. 1.【答案】A【解析】集合{}1,2A =,{}2,3B =,则{}2A B =I ,又全集{}1,2,3,4U =,则(){}1,3,4U A B =I ð,故选A . 2.【答案】A 【解析】12i 12i 13i 13i11i 1i 2-+---++==-+-,故答案为A . 3.【答案】A【解析】Q 双曲线2219x y m-=的一个焦点为()5,0F -,∴由222a b c +=,得925m +=,解得16m =,∴双曲线方程为221916x y -=,∴双曲线的渐近线方程为43y x =±.故选A 项.4.【答案】C【解析】由左图知,样本中的男性数量多于女性数量,A 正确; 由右图知女性中35岁以上的占多数,B 正确;由右图知,35岁以下的男性人数比35岁以上的女性人数少,C 错误;由右图知样本中35岁以上的人对地铁一号线的开通关注度更高,D 正确.故选C . 5.【答案】C【解析】()44143333AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,故选C .6.【答案】C【解析】由题意可知,执行如图所示的程序框图,可知: 第一循环:134n =+=,2146S =⨯+=; 第二循环:437n =+=,26719S =⨯+=; 第三循环:7310n =+=,2191048S =⨯+=,要使的输出的结果为48,根据选项可知8k =,故选C . 7.【答案】C【解析】由图知,17ππ1π41234T =-=,()2ππ0T ωω∴==>,2ω∴=,又ππ3ωϕ+=,π2ππππ333ϕω∴=-=-=, 又1A =,()πsin 23y f x x ⎛⎫∴==+ ⎪⎝⎭,()sin 2g x x =,πππsin 2sin 2663g x x x ⎛⎫⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,∴为了得到()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,则只要将()sin 2g x x =的图象向左平移π6个单位长度.故选C . 8.【答案】B【解析】根据三视图知,该几何体是三棱锥与14圆锥体的组合体,如图所示:则该组合体的体积为211111π112π12323436V =⨯⨯⨯⨯+⨯⨯⨯=+,所以对应不规则几何体的体积为1π36+,故选B .9.【答案】C【解析】因为πsin cos 6b A a B ⎛⎫=+ ⎪⎝⎭,展开得31sin cos sin 2b A B a B -,由正弦定理化简得31sin sin cos sin sin 2B A A B A B =-, 3sin cos B B =,即3tan B =, 而三角形中0πB <<,所以π6B =, 由余弦定理可得2222cos b a c ac B =+-,代入(222π3232323cos6b =+-⨯⨯, 解得3b =C . 10.【答案】A【解析】函数()f x 是偶函数,排除D ;由()()2sin cos cos cos 2sin 1f x x x x x x x x =+=+,知当()0,2πx ∈时,cos 0x =有两个解π2,3π2, 令2sin 10x x +=,1sin 2x x =-,而sin y x =与12y x=-在()0,2π有两个不同的交点(如下图所示),故函数在()0,2π上有4个零点,故选A . 11.【答案】B【解析】由于C 处的三条棱两两垂直,可以把三棱锥补成长方体.设球O 半径为R ,则()222230R CD AB =+=,球表面积24π30πS R ==.故选B . 12.【答案】A 【解析】由题得()()22201x xf x x =+'+>,()f x ∴在[]1,3上单调递增,所以()()min 112f x f ==-,由题得()11e 0x g x x -⎛⎫=-+< ⎪⎝⎭',所以函数()g x 在[]1,3上单调递减,所以()()max 11g x g a ==-,由题得()()min max f x g x ≥,112a ∴-≥-,所以12a ≤.故选A .二、填空题. 13.【答案】10 【解析】原式2232log 33232103⨯-=++=.故答案为10. 14.【答案】[]3,1-【解析】作出不等式组对应的平面区域如图所示:则46y x ++的几何意义是区域内的点到定点()6,4P --的斜率, 由2300x y x y -+=+=⎧⎨⎩,得1x =-,1y =,即()1,1A -,则AP 的斜率14116k +==-+,由20230x y x y --=-+=⎧⎨⎩,得5x =-,7y =-,即()5,7B --,则BP 的斜率74356k -+==--+,则46y x ++的取值范围是[]3,1-,故答案为[]3,1-. 15.【答案】21+ 【解析】πcos 2cos 4αα⎛⎫=+ ⎪⎝⎭Q ,ππππcos 2cos 8888αα⎛⎫⎛⎫∴+-=++ ⎪ ⎪⎝⎭⎝⎭,ππππππππcos cos sin sin 2cos cos 2sin sin 88888888αααα⎛⎫⎛⎫⎛⎫⎛⎫∴+++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化为ππππcos cos 3sin sin 8888αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,ππ3tan tan 188α⎛⎫∴+= ⎪⎝⎭,2π2tanπ8tan 1π41tan 8==-Q ,解得πtan 218=-. ()π21tan 8321α+⎛⎫∴+==⎪⎝⎭-,故答案为21+. 16.【答案】()()22234x y -+-=【解析】Q 抛物线24y x =的焦点为F ,准线为l ,P 为抛物线上一点,PF PA ∴=,()1,0F ,准线l 的方程为1x =-, 设F 在l 上的射影为F ',又PA l ⊥,依题意,60AFF '∠=︒,2FF '=,AF '∴=PA x ∥轴,∴点P的纵坐标为设点P 的横坐标为0x,(204x =,03x ∴=,()()01314PF PA x ∴==--=--=.故以PF为直径的圆的圆心为(,半径为2. 以PF 为直径的圆的标准方程为()(2224x y -+=.故答案为()(2224x y -+=.三、解答题.17.【答案】(1)2n n a =;(2)当5n =时,n T 有最小值525T =-. 【解析】(1)当1n =时,11122S a a ==-,解得12a =, 当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-,所以12n n a a -=,所以{}n a 是以2为首项,2为公比的等比数列,所以2n n a =. (2)222log 112log 211211n n n b a n =-=-=-,所以{}n b 为等差数列, 所以()()1292111022n n n b b n n T n n +-+-===-,所以当5n =时,n T 有最小值525T =-. 18.【答案】(1)2;(2)2.【解析】(1)取AB 的中点N ,连接MN ,PN ,MN AC ∴∥,且122MN AC ==,PQ AC Q ∥,P ∴、Q 、M 、N 确定平面α, QM Q ∥平面PAB ,且平面αI 平面PAB PN =,又QM ⊂平面α,QM PN ∴∥,∴四边形PQMN 为平行四边形, 2PQ MN ∴==.(2)解:取AC 的中点H ,连接QH ,PQ AH Q ∥,且2PQ AH ==,∴四边形PQHA 为平行四边形,QH PA ∴∥,PA ⊥Q 平面ABC ,QH ∴⊥平面ABC ,11322AMC S AC AB ⎛⎫=⨯⨯= ⎪⎝⎭Q △,2QH PA ==, ∴三棱锥Q AMC -的体积:1132233AMC V S QH =⋅=⨯⨯=△.19.【答案】(1)甘肃省,青海省;(2)310;(3)56. 【解析】(1)人工造林面积与造林总面积比最大的地区为甘肃省,人工造林面积占造林总面积比最小的地区为青海省.(2)设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值不足50%为事件A ,在十个地区中,有3个地区(重庆、新疆、青海)人工造林面积占总面积比不足50%,则()310P A =. (3)设至少有一个地区退化林修复面积超过五万公顷为事件B ,新封山育林面积超过十万公顷有4个地区:内蒙、河北、新疆、青海,分别设为1a ,2a ,3a ,4a ,其中退化林修复面积超过五万公顷有2个地区:内蒙、河北,即1a ,2a ,从4个地区中任取2个地区共有6种情况,()12,a a ,()13,a a ,()14,a a ,()23,a a ,()24,a a ,()34,a a ,其中至少有一个地区退化林修复面积超过五万公顷共有5种情况,()12,a a ,()13,a a ,()14,a a ,()23,a a ,()24,a a ,则()56P B =.20.【答案】(1)22142x y +=;(2)[]1,1t ∈-. 【解析】(1)椭圆D的离心率2e ==,a ∴,又点)1-在椭圆上,22211a b ∴+=,得2a =,b , ∴椭圆D 的标准方程为22142x y +=.(2)由题意得,直线l 的方程为y kx t =+,由22142x y y kx t +==+⎧⎪⎨⎪⎩,消元可得 ()222214240kx ktx t +++-=,设()11,A x y ,()22,B x y ,则122421kt x x k -+=+,21222421t x x k -⋅=+,()212121222212121242142221242OA OBt x x y y kx t kx t kt k kk k k k t x x x x x x k t t +++-+-+=+=+=+=+⋅⋅=+--,由OA OB k k k λ+=,得242t λ-=-,即242t λ=-, 又[]2,4λ∈,[]20,1t ∴∈,[]1,1t ∴∈-. 21.【答案】(1)见解析;(2)2ln2,4+⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()f x 的定义域为()0,+∞,()()()1111x ax f x ax a x x+-'=-++-=. 若0a ≤,则当()0,x ∈+∞时,()0f x '<,故()f x 在()0,+∞单调递减. 若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.故()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.综上可得:当0a ≤时,()f x 在()0,+∞单调递减.当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.(2)因为()2,x ∈+∞,由()()()222ln 10ln 1022x x f x x ax a x a x x+>⇒-++->⇒>+.令()()22ln 2x x g x x x+=+,()2,x ∈+∞,则()()()()22212ln 202x x x g x xx +--+'=<+.所以()g x 在()2,+∞单调递减,又()2ln224g +=,∴()2ln24g x +<,∴2ln24a +≥, 即实数a 的取值范围是2ln2,4+⎡⎫+∞⎪⎢⎣⎭.22.【答案】(1)直线l 的极坐标方程为3cos sin 04a ρθρθ--+=,圆C 的极坐标方程为26cos 6sin 140ρρθρθ--+=;(2)94a =. 【解析】(1)∵直线l的参数方程为()34 x t y a ⎧⎪⎨=⎪⎩+=为参数, ∴在直线l 的参数方程中消去t 可得直线l 的普通方程为304x y a --+=, 将cos x ρθ=,sin y ρθ=代入以上方程中, 得到直线l 的极坐标方程为3cos sin 04a ρθρθ--+=. Q 圆C 的标准方程为()()22334x y -+-=,∴圆C 的极坐标方程为26cos 6sin 140ρρθρθ--+=.(2)在极坐标系中,由已知可设1π3,M ρ⎛⎫ ⎪⎝⎭,2π3,A ρ⎛⎫ ⎪⎝⎭,3π3,B ρ⎛⎫ ⎪⎝⎭,联立236cos π6sin 140θρρθρθ=⎧--+=⎪⎨⎪⎩,得(23140ρρ-++=,233ρρ∴+=+Q 点M 恰好为AB的中点,1ρ∴=,即3πM ⎫⎪⎪⎝⎭,把3πM ⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(313024a +-+=,解得94a =. 23.【答案】(1){}22x x -≤≤;(2)2.【解析】(1)当1a =-时,原不等式变为114x x ++-≤. ①当1x ≥时,114x x ++-≤,得2x ≤,所以12x ≤≤; ②当1x ≤-时,114x x ---+≤,得2x ≥-,所以21x -≤≤-; ③当11x -<<时,1124x x +-+=≤恒成立,所以11x -<<.综上,得22x -≤≤.故()4f x ≤的解集为{}22x x -≤≤. (2)()()()22f x x a x a a a ≥---=-,所以()2g a a a =-.①当01a ≤<时,()2g a a a =-,最大值为1124g ⎛⎫= ⎪⎝⎭;②当12a ≤≤时,()2g a a a =-,最大值为()22g =. 综上,得()g a 在[]0,2a ∈时的最大值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿真模拟卷一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∪B ={x |x >1} B .A ∪B =R C .A ∩B ={x |x <0} D .A ∩B =∅答案 C解析 集合B ={x |3x<1},即B ={x |x <0},而A ={x |x <1},所以A ∪B ={x |x <1},A ∩B ={x |x <0}.2.记复数z 的共轭复数为z -,若z -(1-i)=2i(i 为虚数单位),则|z |=( ) A. 2 B .1 C .2 2 D .2答案 A解析 由z -(1-i)=2i ,可得z -=2i1-i =+2=-1+i ,所以z =-1-i ,|z |=2.3.设a =ln 13,b =20.3,c =⎝ ⎛⎭⎪⎫132,则( )A .a <c <bB .c <a <bC .a <b <cD .b <a <c答案 A解析 由对数函数的性质可知a =ln 13<0,由指数函数的性质可知b =20.3>1,又0<c =⎝ ⎛⎭⎪⎫132<1,故选A.4.设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 由⎪⎪⎪⎪⎪⎪θ-π6<π6可得0<θ<π3,所以由“⎪⎪⎪⎪⎪⎪θ-π6<π6”可得“sin θ<32”,但由“sin θ<32”推不出“⎪⎪⎪⎪⎪⎪θ-π6<π6”,所以“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的充分不必要条件.5.在如图所示的计算1+5+9+…+2021的程序框图中,判断框内应填入的条件是( )A .i ≤2021?B .i <2021?C .i <2017?D .i ≤2025?答案 A解析 由题意结合流程图可知当i =2021时,程序应执行S =S +i ,i =i +4=2025,再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是i ≤2021?.6.已知函数f (x )=e |x |+cos x ,若f (2x -1)≥f (1),则x 的取值范围为( ) A .(-∞,0]∪[1,+∞) B .[0,1] C .(-∞,0] D .[1,+∞)答案 A解析 解法一:(直接法)因为f (-x )=f (x ),且x ≥0时f (x )=e x +cos x ⇒f ′(x )=ex-sin x >e 0-1=0,所以函数f (x )为偶函数,且在[0,+∞)上单调递增,因此f (2x -1)≥f (1)⇒f (|2x -1|)≥f (1)⇒|2x -1|≥1⇒2x -1≥1或2x -1≤-1⇒x ≥1或x ≤0.故选A.解法二:(排除法)由题知f (1)=e +cos1.取x =π,则f (2π-1)=e |2π-1|+cos(2π-1)=e 2π-1+cos1>f (1),排除B ,C ;取x =-π,则f (-2π-1)=e|-2π-1|+cos(-2π-1)=e2π+1+cos1>f (1),排除D.故选A.7.在△ABC 中,AB →+AC →=2AD →,AE →+DE →=0,若EB →=xAB →+yAC →,则( ) A .y =3xB .x =3yC .y =-3xD .x =-3y答案 D解析 因为AB →+AC →=2AD →,所以点D 是BC 的中点,又因为AE →+DE →=0,所以点E 是AD 的中点,所以有BE →=BA →+AE →=-AB →+12AD →=-AB →+12×12(AB →+AC →)=-34AB →+14AC →,因此EB →=34AB →-14AC →.所以x =34,y =-14,即x =-3y .8.已知函数f (x )=A sin(ωx +φ),A >0,ω>0,|φ|<π2的部分图象如图所示,则使f (a +x )-f (a -x )=0成立的a 的最小正值为( )A.π12B.π6C.π4D.π3答案 B解析 由图象易知,A =2,f (0)=1,即2sin φ=1,且|φ|<π2,即φ=π6,由图可知,f ⎝⎛⎭⎪⎫11π12=0,所以sin ⎝⎛⎭⎪⎫11π12·ω+π6=0,所以11π12·ω+π6=2k π,k ∈Z ,即ω=24k -211,k ∈Z ,又由图可知,周期T >11π12⇒2πω>11π12,得ω<2411,且ω>0,所以k =1,ω=2,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,因为f (a +x )-f (a -x )=0,所以函数f (x )的图象关于x =a 对称,即有2a +π6=k π+π2,k ∈Z ,所以可得a =k π2+π6,k ∈Z ,所以a 的最小正值为π6.9.若函数f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,当x <0时,f (x )=log 2(-x )+m ,则实数m =( )A .-1B .0C .1D .2答案 C解析 ∵f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,且x <0时,f (x )=log 2(-x )+m ,∴f ⎝ ⎛⎭⎪⎫-14=log 214+m =-2+m =-1,∴m =1. 10.在等差数列{a n }中,a 3,a 9是方程x 2+24x +12=0的两根,则数列{a n }的前11项和等于( )A .66B .132C .-66D .-132答案 D解析 因为a 3,a 9是方程x 2+24x +12=0的两根, 所以a 3+a 9=-24,又a 3+a 9=-24=2a 6,所以a 6=-12,S 11=a 1+a 112=11×2a 62=-132.11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点分别为A ,B ,P 为双曲线左支上一点,△ABP 为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A.155B.154C.153D.152答案 C解析 由题意知等腰△ABP 中,|AB |=|AP |=2a ,设∠ABP =∠APB =θ,F 1为双曲线的左焦点,则∠F 1AP =2θ,其中θ必为锐角.∵△ABP 外接圆的半径为5a , ∴25a =2asin θ,∴sin θ=55,cos θ=255, ∴sin2θ=2×55×255=45, cos2θ=2×⎝⎛⎭⎪⎫2552-1=35. 设点P 的坐标为(x ,y ), 则x =-a -|AP |cos2θ=-11a 5,y =|AP |sin2θ=8a 5, 故点P 的坐标为⎝ ⎛⎭⎪⎫-11a 5,8a 5.由点P 在双曲线上,得⎝ ⎛⎭⎪⎫-11a 52a 2-⎝ ⎛⎭⎪⎫8a 52b 2=1,整理得b 2a 2=23,∴e =c a=1+b 2a 2=153. 12.德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”:y =f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,0,x ∈∁R Q ,其中R 为实数集,Q 为有理数集.则关于函数f (x )有如下四个命题:①f [f (x )]=0;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x +T )=f (x )对任意的x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是( )A .1B .2C .3D .4 答案 C解析 当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0.∴当x 为有理数时,f [f (x )]=f (1)=1;当x 为无理数时,f [f (x )]=f (0)=1,∴无论x 是有理数还是无理数,均有f [f (x )]=1,故①不正确;∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x ∈R ,都有f (-x )=f (x ),故②正确;当T ∈Q 时,若x 是有理数,则x +T 也是有理数;若x 是无理数,则x +T 也是无理数,∴根据函数的表达式,任取一个不为零的有理数T ,f (x +T )=f (x )对x ∈R 恒成立,故③正确;取x 1=33,x 2=0,x 3=-33,f (x 1)=0,f (x 2)=1,f (x 3)=0,∴A ⎝⎛⎭⎪⎫33,0,B (0,1),C ⎝ ⎛⎭⎪⎫-33,0,△ABC 恰好为等边三角形,故④正确,故选C. 第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +4≥0,x -2≤0,x +y ≥0,x ,y ∈R ,则x 2+y 2的最大值为________.答案 8解析 画出不等式组表示的可行域如图阴影部分所示(含边界).x 2+y 2表示可行域内的点(x ,y )到原点距离的平方.由图形可得,可行域内的点A 或点B 到原点的距离最大,且A (2,-2),B (2,2),又|OA |=|OB |=22,∴(x 2+y 2)max =8.14.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是________.答案 2 2解析 设AB =AC =AA 1=x , 在△ABC 中,∠BAC =120°, 则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , 又∵球的表面积是40π, ∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有⎝ ⎛⎭⎪⎫12x 2+x 2=10,解得x =22,即AA 1=2 2.∴直三棱柱的高是2 2.15.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图,在一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是________.答案316解析 由七巧板的构造可知,△BIC ≌△GOH ,故黑色部分的面积与梯形EFOH 的面积相等, 而S 梯形EFOH =34S △DOF =34×14S 正方形ABDF =316S 正方形ABDF ,∴所求的概率为P =S 梯形EFOH S 正方形ABDF =316. 16.在数列{a n }中,a 1=1,a n +1=S n +3n(n ∈N *,n ≥1),则数列{S n }的通项公式为________. 答案 S n =3n-2n解析 ∵a n +1=S n +3n=S n +1-S n , ∴S n +1=2S n +3n, ∴S n +13n +1=23·S n 3n +13,∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1,又S 13-1=13-1=-23, ∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列,∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n, ∴S n =3n-2n.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且3b cos A =sin A (a cos C +c cos A ).(1)求角A 的大小;(2)若a =23,△ABC 的面积为534,求△ABC 的周长.解 (1)∵3b cos A =sin A (a cos C +c cos A ),∴由正弦定理可得,3sin B cos A =sin A (sin A cos C +sin C cos A )=sin A sin(A +C )=sin A sin B ,即3sin B cos A =sin A sin B , ∵sin B ≠0,∴tan A =3, ∵A ∈(0,π),∴A =π3.(2)∵A =π3,a =23,△ABC 的面积为534,∴12bc sin A =34bc =534, ∴bc =5,∴由余弦定理可得,a 2=b 2+c 2-2bc cos A , 即12=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-15, 解得b +c =33,∴△ABC 的周长为a +b +c =23+33=5 3.18.(本小题满分12分)如图,在三棱柱ABF -DCE 中,∠ABC =120°,BC =2CD ,AD =AF ,AF ⊥平面ABCD .(1)求证:BD ⊥EC ;(2)若AB =1,求四棱锥B -ADEF 的体积.解 (1)证明:已知ABF -DCE 为三棱柱,且AF ⊥平面ABCD , ∴DE ∥AF ,ED ⊥平面ABCD . ∵BD ⊂平面ABCD ,∴ED ⊥BD ,又四边形ABCD 为平行四边形,∠ABC =120°,故∠BCD =60°,又BC =2CD ,故∠BDC =90°,故BD ⊥CD ,∵ED ∩CD =D ,ED ,CD ⊂平面ECD , ∴BD ⊥平面ECD ,∵EC ⊂平面ECD ,故BD ⊥EC .(2)由BC =2CD 得AD =2AB ,∵AB =1,故AD =2,作BH ⊥AD 于点H ,∵AF ⊥平面ABCD ,BH ⊂平面ABCD ,∴AF ⊥BH ,又AD ∩AF =A ,AD ,AF ⊂平面ADEF , ∴BH ⊥平面ADEF ,又∠ABC =120°, ∴在△ABH 中,∠BAH =60°,又AB =1, ∴BH =32, ∴V B -ADEF =13×(2×2)×32=233.19.(本小题满分12分)某工厂某产品近几年的产量统计如下表:(1)根据表中数据,求y 关于t 的线性回归方程y ^=b ^t +a ^;(2)若近几年该产品每件的价格v (单位:元)与年产量y 满足的函数关系式为v =4.5-0.3y ,且每年该产品都能售完.①根据(1)中所建立的回归方程预测该工厂2020(t =7)年该产品的年产量; ②当t (1≤t ≤7)为何值时,该产品的年销售额S (单位:元)最大?附:对于一组数据(t 1,y 1),(t 2,y 2),…,(t n ,y n ),其回归直线y ^=b ^t +a ^的斜率和截距的最小二乘估计公式分别为b ^=∑i =1nt i -ty i -y-∑i =1nt i -t2,a ^=y --b ^t .解 (1)由题意,得t =1+2+3+4+5+66=3.5,y -=6.6+6.7+7+7.1+7.2+7.46=7,∑i =16(t i -t)(y i -y -)=(-2.5)×(-0.4)+(-1.5)×(-0.3)+0+0.5×0.1+1.5×0.2+2.5×0.4=2.8,∑i =16(t i -t )2=(-2.5)2+(-1.5)2+(-0.5)2+0.52+1.52+2.52=17.5.由b ^=∑i =16t i -ty i -y-∑i =16t i -t2,得b ^=2.817.5=0.16, 由a ^=y --b ^t ,得a ^=7-0.16×3.5=6.44,所以y 关于t 的线性回归方程为y ^=0.16t +6.44.(2)①由(1)知y ^=0.16t +6.44,当t =7时,y ^=0.16×7+6.44=7.56, 所以预测该工厂2020年该产品的年产量为7.56万件. ②当年产量为y 时,年销售额S =(4.5-0.3y )y ×104=(-0.3y 2+4.5y )×104=[-0.3(y -7.5)2+16.875]×104, 由题知y ∈{6.6,6.7,7,7.1,7.2,7.4,7.56},所以当y =7.56,即t =7时,年销售额最大,即2020年的销售额最大.20.(本小题满分12分)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 的坐标. 解 (1)由题意得p2=1,即p =2.所以抛物线的准线方程为x =-1. (2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ), 重心G (x G ,y G ).令y A =2t,2t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 的方程为x =t 2-12ty +1,代入y 2=4x ,得y 2-t 2-ty-4=0,故2ty B =-4,即y B =-2t,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0. 所以直线AC 的方程为y -2t =2t (x -t 2), 得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而 S 1S 2=12|FG |·|y A |12|QG |·|y C | =⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1.令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m+4 ≥2-12m ·3m +4=1+32. 当m =3时,S 1S 2取得最小值1+32,此时G (2,0). 21.(本小题满分12分)设函数f (x )=m e x-x 2+3,其中m ∈R . (1)当f (x )为偶函数时,求函数h (x )=xf (x )的极值;(2)若函数f (x )在区间[-2,4]上有两个零点,求m 的取值范围. 解 (1)由函数f (x )是偶函数,得f (-x )=f (x ),即m e -x-(-x )2+3=m e x -x 2+3对于任意实数x 都成立,所以m =0. 此时h (x )=xf (x )=-x 3+3x ,则h ′(x )=-3x 2+3. 由h ′(x )=0,解得x =±1.当x 变化时,h ′(x )与h (x )的变化情况如下表所示:所以h (x )在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增. 所以h (x )有极小值h (-1)=-2,极大值h (1)=2. (2)由f (x )=m e x-x 2+3=0,得m =x 2-3ex.所以“f (x )在区间[-2,4]上有两个零点”等价于“直线y =m 与曲线g (x )=x 2-3ex,x ∈[-2,4]有且只有两个公共点”.对函数g (x )求导,得g ′(x )=-x 2+2x +3e x. 由g ′(x )=0,解得x 1=-1,x 2=3.当x 变化时,g ′(x )与g (x )的变化情况如下表所示:所以g (x )在(-2,-1),(3,4)上单调递减,在(-1,3)上单调递增. 又因为g (-2)=e 2,g (-1)=-2e ,g (3)=6e 3<g (-2),g (4)=13e4>g (-1),所以当-2e<m <13e 4或m =6e 3时,直线y =m 与曲线g (x )=x 2-3e x ,x ∈[-2,4]有且只有两个公共点.即当-2e<m <13e 4或m =6e3时,函数f (x )在区间[-2,4]上有两个零点.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 1的方程为x 2+y 2=4,直线l 的参数方程为⎩⎨⎧x =-2-t ,y =33+3t(t 为参数),若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32,得曲线C 2.(1)写出曲线C 2的参数方程;(2)设点P (-2,33),直线l 与曲线C 2的两个交点分别为A ,B ,求1|PA |+1|PB |的值.解 (1)若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32,则得到曲线C 2的直角坐标方程为x 2+⎝ ⎛⎭⎪⎫23y 2=4,整理,得x 24+y 29=1,∴曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).(2)将直线l 的参数方程化为标准形式为 ⎩⎪⎨⎪⎧x =-2-12t ′,y =33+32t ′(t ′为参数),将参数方程代入x 24+y 29=1,得⎝ ⎛⎭⎪⎫-2-12t ′24+⎝ ⎛⎭⎪⎫33+32t ′29=1,整理,得74(t ′)2+18t ′+36=0.∴|PA |+|PB |=|t 1′+t 2′|=727,|PA |·|PB |=t 1′t 2′=1447,∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=7271447=12. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +3|+|x -1|的最小值为m . (1)求m 的值以及此时x 的取值范围;(2)若实数p ,q ,r 满足:p 2+2q 2+r 2=m ,证明:q (p +r )≤2.解 (1)依题意,得f (x )=|x +3|+|x -1|≥|x +3-x +1|=4,故m 的值为4. 当且仅当(x +3)(x -1)≤0,即-3≤x ≤1时等号成立,即x 的取值范围为[-3,1]. (2)证明:因为p 2+2q 2+r 2=m , 故(p 2+q 2)+(q 2+r 2)=4.因为p 2+q 2≥2pq ,当且仅当p =q 时等号成立;q 2+r 2≥2qr ,当且仅当q =r 时等号成立,所以(p 2+q 2)+(q 2+r 2)=4≥2pq +2qr , 故q (p +r )≤2,当且仅当p =q =r 时等号成立.仿真模拟卷二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P ={0,1,2},Q ={x |x <2},则P ∩Q =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}答案 B解析 因为集合P ={0,1,2},Q ={x |x <2},所以P ∩Q ={0,1}.2.已知复数z 满足|z |=2,z +z -=2(z -为z 的共轭复数)(i 为虚数单位),则z =( ) A .1+i B .1-iC .1+i 或1-iD .-1+i 或-1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,z +z -=2a ,所以⎩⎪⎨⎪⎧a 2+b 2=2,2a =2,得⎩⎪⎨⎪⎧a =1,b =±1,所以z =1+i 或z =1-i.3.若a >1,则“a x>a y”是“log a x >log a y ”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由a >1,得a x >a y等价为x >y , log a x >log a y 等价为x >y >0,故“a x >a y”是“log a x >log a y ”的必要不充分条件.4.已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <a D .c <a <b答案 A解析 因为a =log 52<log 55=12,b =log 0.50.2>log 0.50.25=2,0.51<c =0.50.2<0.50,即12<c <1,所以a <c <b .5.执行如图所示的程序框图,则输出的i 的值为( )A .4B .5C .6D .7答案 C解析 由题可得S =3,i =2→S =7,i =3→S =15,i =4→S =31,i =5→S =63,i =6,此时结束循环,输出i =6.6.已知{a n },{b n }均为等差数列,且a 2=4,a 4=6,b 3=9,b 7=21,则由{a n },{b n }公共项组成新数列{c n },则c 10=( )A .18B .24C .30D .36 答案 C解析 (直接法)由题意,根据等差数列的通项公式得,数列{a n }的首项为3,公差为1,a n =n +2,数列{b n }的首项为3,公差为3,b n =3n ,则易知两个数列的公共项组成的新数列{c n }即为数列{b n },由此c 10=b 10=30,故选C.7.已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AO →·AB →=32,则实数m =( )A .±1B .±32C .±22D .±12答案 C解析 联立⎩⎪⎨⎪⎧y =x +m ,x 2+y 2=1,得2x 2+2mx +m 2-1=0,∵直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,∴Δ=-4m 2+8>0,解得-2<m <2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-12,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO →=(-x 1,-y 1),AB →=(x 2-x 1,y 2-y 1),∵AO →·AB →=32,∴AO →·AB →=x 21-x 1x 2+y 21-y 1y 2=1-m 2-12-m 2-12+m 2-m 2=2-m 2=32,解得m =±22. 8.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若△ABC 的面积为S ,且43S =(a+b )2-c 2,则sin ⎝⎛⎭⎪⎫C +π4=( )A .1B .22C .6-24D .6+24答案 D解析 由43S =(a +b )2-c 2,得43×12ab sin C =a 2+b 2-c 2+2ab ,∵a 2+b 2-c 2=2ab cos C ,∴23ab sin C =2ab cos C +2ab ,即3sin C -cos C =1,即2sin ⎝ ⎛⎭⎪⎫C -π6=1,则sin ⎝⎛⎭⎪⎫C -π6=12,∵0<C <π, ∴-π6<C -π6<5π6,∴C -π6=π6,即C =π3,则sin ⎝ ⎛⎭⎪⎫C +π4=sin ⎝ ⎛⎭⎪⎫π3+π4=sin π3cosπ4+cos π3sin π4=32×22+12×22=6+24.9.关于函数f (x )=x -sin x ,下列说法错误的是( ) A .f (x )是奇函数B .f (x )在(-∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数 答案 D解析 f (-x )=-x -sin(-x )=-x +sin x =-f (x ),则f (x )为奇函数,故A 正确;由于f ′(x )=1-cos x ≥0,故f (x )在(-∞,+∞)上单调递增,故B 正确;根据f (x )在(-∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确;根据f (x )在(-∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误.10.已知log 2(a -2)+log 2(b -1)≥1,则2a +b 取到最小值时,ab =( ) A .3 B .4 C .6 D .9答案 D解析 由log 2(a -2)+log 2(b -1)≥1,可得a -2>0,b -1>0且(a -2)(b -1)≥2.所以2a +b =2(a -2)+(b -1)+5≥2a -b -+5≥22×2+5=9,当2(a -2)=b -1且(a -2)(b -1)=2时等号成立,解得a =b =3.所以2a +b 取到最小值时,ab =3×3=9.11.已知实数a >0,函数f (x )=⎩⎪⎨⎪⎧ex -1+a2,x <0,ex -1+a 2x 2-a +x +a2,x ≥0,若关于x 的方程f [-f (x )]=e -a+a2有三个不等的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,2+2e B .⎝ ⎛⎭⎪⎫2,2+2eC.⎝ ⎛⎭⎪⎫1,1+1e D .⎝⎛⎭⎪⎫2,2+1e 答案 B解析 当x <0时,f (x )为增函数, 当x ≥0时,f ′(x )=ex -1+ax -a -1,f ′(x )为增函数,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,最小值为f (1)=0. 由此画出函数f (x )的大致图象如图所示.令t =-f (x ),因为f (x )≥0,所以t ≤0,则有⎩⎪⎨⎪⎧f t =e -a +a2,ft =e t -1+a2,解得-a =t -1,所以t =-a +1,所以f (x )=a -1. 所以方程要有三个不同的实数根,则需a 2<a -1<1e +a 2,解得2<a <2e+2.12.已知△ABC 的顶点A ∈平面α,点B ,C 在平面α同侧,且AB =2,AC =3,若AB ,AC 与α所成的角分别为π3,π6,则线段BC 长度的取值范围为( )A .[2-3,1]B .[1,7]C .[7, 7+23]D .[1, 7+23]答案 B解析 如图,过点B ,C 作平面的垂线,垂足分别为M ,N ,则四边形BMNC 为直角梯形.在平面BMNC 内,过C 作CE ⊥BM 交BM 于点E .又BM =AB ·sin∠BAM =2sin π3=3,AM =2cos π3=1,CN =AC ·sin∠CAN =3sin π6=32,AN =3cos π6=32, 所以BE =BM -CN =32,故BC 2=MN 2+34. 又AN -AM ≤MN ≤AM +AN , 即12=AN -AM ≤MN ≤AM +AN =52, 所以1≤BC 2≤7,即1≤BC ≤7,故选B.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a =(1,λ),b =(3,1),c =(1,2),若向量2a -b 与c 共线,则向量a 在向量c 方向上的投影为________.答案 0解析 向量2a -b =(-1,2λ-1),由2λ-1=-2,得λ=-12.∴向量a =⎝ ⎛⎭⎪⎫1,-12, ∴向量a 在向量c 方向上的投影为 |a |cos 〈a ,c 〉=a ·c|c |=1-2×125=0.14.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2ab sin C =3(b 2+c 2-a 2),若a =13,c =3,则△ABC 的面积为________.答案 3 3解析 由题意得2ab sin C 2bc =3·b 2+c 2-a22bc ,即a sin Cc=3cos A ,由正弦定理得sin A =3cos A, 所以tan A =3,A =π3.由余弦定理得13=32+b 2-2×3b cos π3,解得b =4,故面积为12bc sin A =12×4×3×32=3 3.15.已知点M 为单位圆x 2+y 2=1上的动点,点O 为坐标原点,点A 在直线x =2上,则AM →·AO →的最小值为________.答案 2解析 设A (2,t ),M (cos θ,sin θ),则AM →=(cos θ-2,sin θ-t ),AO →=(-2,-t ), 所以AM →·AO →=4+t 2-2cos θ-t sin θ.又(2cos θ+t sin θ)max =4+t 2, 故AM →·AO →≥4+t 2-4+t 2.令s =4+t 2,则s ≥2,又4+t 2-4+t 2=s 2-s ≥2, 当s =2,即t =0时等号成立,故(AM →·AO →)min =2.16.已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________.答案 (3,+∞)解析 当m >0,x <1时,g (x )<0, 所以f (x )<0在(-∞,1)上有解,则⎩⎪⎨⎪⎧f ,m >0或⎩⎪⎨⎪⎧m >0,Δ>0,f ,m <1,即m >3或⎩⎪⎨⎪⎧m >0,m 2-m -2>0,3-m ≥0,m <1,故m >3.当m <0,x >1时,g (x )<0, 所以f (x )<0在(1,+∞)上有解,所以⎩⎪⎨⎪⎧f,m <0,此不等式组无解.综上,m 的取值范围为(3,+∞).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=cos x (3sin x -cos x )+12.(1)求f ⎝ ⎛⎭⎪⎫π3的值; (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin2x -12cos2x=sin ⎝⎛⎭⎪⎫2x -π6, 所以f ⎝ ⎛⎭⎪⎫π3=1. (2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1.由不等式c <f (x )<c +2恒成立,得⎩⎪⎨⎪⎧c <-12,c +2>1,解得-1<c <-12.所以实数c 的取值范围为⎝⎛⎭⎪⎫-1,-12. 18.(本小题满分12分)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF ⊥平面ABC ; (2)是否存在实数λ,使得平面BEF ⊥平面ACD . 解 (1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .∵CD ⊥BC ,AB ∩BC =B ,AB ,BC ⊂平面ABC , ∴CD ⊥平面ABC . 又∵AE AC =AFAD=λ(0<λ<1),∴无论λ为何值,恒有EF ∥CD , ∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴无论λ为何值,总有平面BEF ⊥平面ABC . (2)假设存在λ,使得平面BEF ⊥平面ACD . 由(1)知BE ⊥EF ,∵平面BEF ⊥平面ACD ,平面BEF ∩平面ACD =EF ,BE ⊂平面BEF ,∴BE ⊥平面ACD . 又∵AC ⊂平面ACD , ∴BE ⊥AC .∵BC =CD =1,∠BCD =∠ABD =90°,∠ADB =60°, ∴BD =2,∴AB =2tan60°=6, ∴AC =AB 2+BC 2=7. 由Rt △AEB ∽Rt △ABC , 得AB 2=AE ·AC ,∴AE =67,∴λ=AE AC =67.故当λ=67时,平面BEF ⊥平面ACD .19.(本小题满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.解 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y -=1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s 2=1100∑i =15n i (y i -y -)2=1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7] =0.0296,s =0.0296=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x -1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连接AF 1并延长交圆F 2于点B ,连接BF 2交椭圆C 于点E ,连接DF 1.已知|DF 1|=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.解 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以|F 1F 2|=2,c =1. 又因为|DF 1|=52,AF 2⊥x 轴,所以|DF 2|=|DF 1|2-|F 1F 2|2=⎝ ⎛⎭⎪⎫522-22=32, 因此2a =|DF 1|+|DF 2|=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为x 24+y 23=1.(2)解法一:由(1)知,椭圆C :x 24+y 23=1,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x -1)2+y 2=16, 解得y =±4.因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由⎩⎪⎨⎪⎧y =2x +2,x -2+y 2=16,得5x 2+6x -11=0,解得x =1或x =-115.将x =-115代入y =2x +2,得y =-125,因此B 点坐标为⎝ ⎛⎭⎪⎫-115,-125.又F 2(1,0),所以直线BF 2:y =34(x -1).由⎩⎪⎨⎪⎧y =34x -,x 24+y 23=1,得7x 2-6x -13=0,解得x =-1或x =137.又因为E 是线段BF 2与椭圆的交点,所以x =-1. 将x =-1代入y =34(x -1),得y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32.解法二:由(1)知,椭圆C :x 24+y 23=1. 如图,连接EF 1.因为|BF 2|=2a ,|EF 1|+|EF 2|=2a , 所以|EF 1|=|EB |, 从而∠BF 1E =∠B .因为|F 2A |=|F 2B |,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由⎩⎪⎨⎪⎧x =-1,x 24+y23=1,得y =±32.又因为E 是线段BF 2与椭圆的交点,所以y =-32.因此E 点坐标为⎝⎛⎭⎪⎫-1,-32. 21.(本小题满分12分)已知函数f (x )=ln x -x e x+ax (a ∈R ). (1)若函数f (x )在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f (x )的最大值.解 (1)由题意知,f ′(x )=1x -(e x +x e x )+a =1x-(x +1)e x +a ≤0在[1,+∞)上恒成立,所以a ≤(x +1)e x-1x在[1,+∞)上恒成立.令g (x )=(x +1)e x-1x,则g ′(x )=(x +2)e x +1x2>0,所以g (x )在[1,+∞)上单调递增, 所以g (x )min =g (1)=2e -1, 所以a ≤2e-1.(2)当a =1时,f (x )=ln x -x e x+x (x >0). 则f ′(x )=1x-(x +1)e x+1=(x +1)⎝ ⎛⎭⎪⎫1x -e x ,令m (x )=1x -e x ,则m ′(x )=-1x2-e x<0,所以m (x )在(0,+∞)上单调递减.由于m ⎝ ⎛⎭⎪⎫12>0,m (1)<0,所以存在x 0>0满足m (x 0)=0,即e x0=1x 0.当x ∈(0,x 0)时,m (x )>0,f ′(x )>0;当x ∈(x 0,+∞)时,m (x )<0,f ′(x )<0. 所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f (x )max =f (x 0)=ln x 0-x 0e x0+x 0, 因为e x0=1x 0,所以x 0=-ln x 0,所以f (x 0)=-x 0-1+x 0=-1, 所以f (x )max =-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2+t(t 为参数),曲线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求|MN |.解 (1)因为ρcos 2θ=8sin θ,所以ρ2cos 2θ=8ρsin θ,即x 2=8y , 所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线. (2)设点M (x 1,y 1),点N (x 2,y 2),直线l 过抛物线的焦点(0,2),则直线的参数方程⎩⎪⎨⎪⎧x =2t ,y =2+t 化为一般方程为y =12x +2,代入曲线C 的直角坐标方程,得x 2-4x -16=0,所以x 1+x 2=4,x 1x 2=-16, 所以|MN |=x 1-x 22+y 1-y 22=1+⎝ ⎛⎭⎪⎫122·x 1-x 22=1+⎝ ⎛⎭⎪⎫122·x 1+x 22-4x 1x 2=1+⎝ ⎛⎭⎪⎫122·42--=10.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x +4|,不等式f (x )>8-|2x -2|的解集为M . (1)求M ;(2)设a ,b ∈M ,证明:f (ab )>f (2a )-f (-2b ). 解 (1)将f (x )=|x +4|代入不等式, 整理得|x +4|+|2x -2|>8.①当x ≤-4时,不等式转化为-x -4-2x +2>8, 解得x <-103,所以x ≤-4;②当-4<x <1时,不等式转化为x +4+2-2x >8, 解得x <-2,所以-4<x <-2;③当x ≥1时,不等式转化为x +4+2x -2>8, 解得x >2,所以x >2. 综上,M ={x |x <-2或x >2}.(2)证明:因为f (2a )-f (-2b )=|2a +4|-|-2b +4|≤|2a +4+2b -4|=|2a +2b |, 所以要证f (ab )>f (2a )-f (-2b ), 只需证|ab +4|>|2a +2b |, 即证(ab +4)2>(2a +2b )2,即证a 2b 2+8ab +16>4a 2+8ab +4b 2, 即证a 2b 2-4a 2-4b 2+16>0, 即证(a 2-4)(b 2-4)>0, 因为a ,b ∈M ,所以a 2>4,b 2>4, 所以(a 2-4)(b 2-4)>0成立, 所以原不等式成立.仿真模拟卷三本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x +y ≤2,x ,y ∈N },则A 中元素的个数为( ) A .1 B .5 C .6 D .无数个答案 C解析 由题得A ={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A 中元素的个数为6.2.已知i 是虚数单位,z -是z 的共轭复数,若z (1+i)=1-i 1+i ,则z -的虚部为( )A.12 B .-12C.12i D .-12i答案 A解析 由题意可得z =1-i +2=1-i 2i =12i -12=-12i -12,则z -=-12+12i ,据此可得z -的虚部为12.3.“0<m <2”是“方程x 2m +y 22-m=1表示椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 方程x 2m +y22-m=1表示椭圆,即⎩⎪⎨⎪⎧m >0,2-m >0,m ≠2-m⇒0<m <2且m ≠1,所以“0<m <2”是“方程x 2m +y 22-m=1表示椭圆”的必要不充分条件.4.若a >b ,则( ) A .ln (a -b )>0 B .3a <3bC .a 3-b 3>0 D .|a |>|b |答案 C解析 取a =2,b =1,满足a >b ,但ln (a -b )=0,则A 错误;由9=32>31=3,知B 错误;取a =1,b =-2,满足a >b ,但|1|<|-2|,则D 错误;因为幂函数y =x 3是增函数,a >b ,所以a 3>b 3,即a 3-b 3>0,C 正确.5.阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .30B .31C .62D .63答案 B解析 由流程图可知该算法的功能为计算S =1+21+22+23+24的值,即输出的值为S =1+21+22+23+24=-251-2=31.6.已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .4B .10C .16D .32答案 C解析 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.7.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF ,若AE →·AF →=1,则λ的值为( )A .3B .2C .32D .52答案 B解析 由题意可得AE →·AF →=(AB →+BE →)·(AD →+DF →)=⎝⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=1λAB →2+13BC→2+⎝⎛⎭⎪⎫13λ+1AB →·BC →,且AB →2=BC →2=4,AB →·BC →=2×2×cos120°=-2,故4λ+43+⎝ ⎛⎭⎪⎫13λ+1×(-2)=1,解得λ=2.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,3sin A cos C +(3sin C +b )cos A =0,则角A =( )A.2π3 B.π3 C.π6D.5π6答案 D解析 ∵a =1,3sin A cos C +(3sin C +b )cos A =0, ∴3sin A cos C +3sin C cos A =-b cos A , ∴3sin(A +C )=3sin B =-b cos A , ∴3a sin B =-b cos A ,由正弦定理可得3sin A sin B =-sin B cos A , ∵sin B >0,∴3sin A =-cos A ,即tan A =-33, ∵A ∈(0,π),∴A =5π6.9.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数f (x )=x 4|4x -1|的图象大致是( )答案 D解析 因为函数f (x )=x 4|4x -1|,f (-x )=-x 4|4-x -1|=x4|4-x -1|≠f (x ),所以函数f (x )不是偶函数,图象不关于y 轴对称,故排除A ,B ;又因为f (3)=97,f (4)=256255,所以f (3)>f (4),而C 在x >0时是递增的,故排除C.10.在△ABC 中,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC→≥P 0B →·P 0C →,则( )A .AC =BCB .AB =AC C .∠ABC =π2D .∠BAC =π2答案 A解析 (直接法)由题意,以点A 为原点,AB 所在直线为x 轴,建立平面直角坐标系,取B (4,0),则P 0(3,0),设P (a,0)(a ∈[0,4]),C (x 0,y 0),则PB →=(4-a,0),PC →=(x 0-a ,y 0),P 0B →=(1,0),P 0C →=(x 0-3,y 0),则(4-a )(x 0-a )≥x 0-3,即a 2-(4+x 0)a +3x 0+3≥0恒成立,所以Δ=[-(4+x 0)]2-4(3x 0+3)≤0,即(x 0-2)2≤0,解得x 0=2,则易知点C 在边AB 的垂直平分线上,所以AC =BC ,故选A.11.在正三角形ABC 内任取一点P ,则点P 到A ,B ,C 的距离都大于该三角形边长一半的概率为( )A .1-3π6B .1-3π12C .1-3π9D .1-3π18答案 A解析 满足条件的正三角形ABC 如图所示.设边长为2,其中正三角形ABC 的面积S △ABC =34×4= 3. 满足到正三角形ABC 的顶点A ,B ,C 的距离至少有一个小于等于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆,则S 阴影=π2,则使取到的点到三个顶点A ,B ,C 的距离都大于1的概率P =1-3π6,故选A. 12.若存在m ,使得关于x 的方程x +a (2x +2m -4e x )·[ln (x +m )-ln x ]=0成立,其中e 为自然对数的底数,则非零实数a 的取值范围是( )A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12e C .(-∞,0)∪⎣⎢⎡⎭⎪⎫12e ,+∞D.⎣⎢⎡⎭⎪⎫12e ,+∞答案 C解析 由题意得-12a =⎝ ⎛⎭⎪⎫1+m x -2e ln ⎝ ⎛⎭⎪⎫1+m x =(t -2e)ln t ⎝ ⎛⎭⎪⎫这里t =m x +1>0,令f (t )=(t -2e)ln t (t >0),则f ′(t )=ln t +1-2et,令h (t )=f ′(t ),则h ′(t )=1t +2et2>0,∴h (t )为增函数,即f ′(t )为增函数.当t >e 时,f ′(t )>f ′(e)=0, 当0<t <e 时,f ′(t )<f ′(e)=0,∴f (t )≥f (e)=-e ,且当t →0时,f (t )→+∞, ∴-12a ≥-e ,解得a <0或a ≥12e,故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =yx -3的最小值是________.答案 -2解析 画出满足约束条件的可行域,如图中阴影部分所示(含边界),联立⎩⎪⎨⎪⎧x -2y +2=0,x -y =0,解得A (2,2),z =y x -3的几何意义为可行域内的点与定点P (3,0)的连线的斜率. ∵k PA =2-02-3=-2,∴z =y x -3的最小值是-2.14.已知三棱锥P -ABC 内接于球O ,PA =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为________.答案 12π解析 由于三条侧棱相等,根据三角形面积公式可知,当PA ,PB ,PC 两两垂直时,侧面积之和最大.此时PA ,PB ,PC 可看成正方体一个顶点处的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3×22=12,故球的表面积为4πR 2=12π.15.已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是________.答案2+1解析 设点M 的坐标是(x ,y ), ∵C (0,-2),且|CM →|=1,。