【精品】高考数学一轮复习专题2-4函数图像(测)
2014高考数学典型试题解析2-4二次函数的图像与性质
一、选择题1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-2[答案] A[解析] 由于二次函数的开口向上,对称轴为x =a ,若使其在区间(2,3)上是单调函数,则需所给区间在对称轴的同一侧,即a ≤2或a ≥3.2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .a =13,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 [答案] A[解析] 由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴(a -1)+2a =0,∴a =13.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 的值有关[解析] 根据函数的图像开口向下,对称轴为x =14,又依题意得x 1<0,x 2>0,且x 1与x 2关于y 轴对称,则x 1到x =14的距离大于x 2到x =14的距离,即14-x 1>x 2-14,故f (x 1)<f (x 2),选C.3.设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是( )[答案] D[解析] 若a <0,则只能是A 或B 选项,A 中-b2a <0,∴b <0,从而c >0,与A 图不符;B 中-b2a >0,∴b >0,∴c <0,与B 图不符.若a >0,则抛物线开口向上,只能是C 或D 选项,当b >0时,有c >0与C 、D 图不符,当b <0时,有c <0,此时-b2a >0,f (0)=c <0,故选D.4. “a <0”是“方程ax 2+1=0有一个负数根”的( ) A .必要不充分条件 B .充分必要条件C .充分不必要条件D .既不充分也不必要条件[解析] ①∵a <0,ax 2+1=0,∴x 2=-1a >0,∴ax 2+1=0有一个负根,∴充分性成立.②若ax 2+1=0有一个负根,那么x 2=-1a >0,可得a <0,∴必要性成立.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像大致是( )[答案] C[解析] 选项A 中,一次函数的斜率a >0,而二次函数的开口向下,相矛盾,排除A ,同理排除D.y =ax 2+bx +c 的对称轴为x =-b 2a ,当a >0,b >0时,x =-b2a <0,∴排除B.当a <0,b <0时,x =-b2a <0,∴C 符合.5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .2[答案] C[解析] f (x )=-(x -2)2+4+a .由x ∈[0,1]可知当x =0时,f (x )取得最小值-2,即a =-2,所以f (x )=-(x -2)2+2,当x =1时,f (x )取得最大值1.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫32,3 B.⎣⎢⎡⎦⎥⎤32,3 C .[0,3] D.⎣⎢⎡⎭⎪⎫32,3 [答案] B[解析] f (x )=x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴f ⎝ ⎛⎭⎪⎫32=-254,又f (0)=-4. 由题意结合函数的图像可得⎩⎪⎨⎪⎧32≤mm -32≤32-0解得32≤m ≤3.6.函数y =(cos x -a )2+1,当cos x =a 时有最小值,当cos x =-1时有最大值,则a 的取值范围是( )A .[-1,0]B .[-1,1]C .(-∞,0]D .[0,1][答案] D[解析] ∵函数y =(cos x -a )2+1,当cos x =a 时有最小值,∴-1≤a ≤1, ∵当cos x =-1时有最大值,∴a ≥0,∴0≤a ≤1. 已知f (x )=x 2+x +c ,若f (0)>0,f (p )<0,则( ) A .f (p +1)>0 B .f (p +1)<0C .f (p +1)=0D .f (p +1)的符号不确定[答案] A[解析] 二次函数的对称轴为x =-12 由f (0)>0,知f (-1)>0.又f (p )<0,则必有-1<p <0,∴p +1>0,∴f (p +1)>0. 二、填空题7.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.[答案] [0,2][解析] 依题意知,函数f (x )的图像关于直线x =1对称,且开口方向向上,f (0)=f (2),结合图像可知,不等式f (m )≤f (0)的解集是[0,2].8.若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图像关于直线x =1对称,则b =________.[答案] 6[解析] 二次函数y =x 2+(a +2)x +3的图像关于直线x =1对称,说明二次函数的对称轴为x =1,即-a +22=1,所以a =-4.而f (x )是定义在[a ,b ]上的,即a ,b 关于x =1也是对称的,所以a +b2=1,∴b =6.三、解答题9.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数.[分析] 由题目条件知二次函数过(2,-1),(-1,-1)两点,且知其最大值,所以可应用一般式、顶点式或两根式解题.[解析] 方法1:利用二次函数一般式. 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7,∴所求二次函数为f (x )=-4x 2+4x +7. 方法2:利用二次函数的顶点式. 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12,∴m =12. 又根据题意函数有最大值y =8,∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4.∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法3:利用二次函数的两根式.由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8, 解得a =-4或a =0(舍去).∴所求函数解析式为f (x )=-4x 2+4x -7.一、选择题1.(文)已知二次函数y =f (x )的图像过原点且它的导函数y =f ′(x )的图像如图所示的一条直线,则y =f (x )的图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] f (x )过原点,所以设二次函数为f (x )=ax 2+bx ,(a ≠0),f ′(x )=2ax +b ,由导函数图像知,a <0,b >0,∴f (x )的顶点⎝ ⎛⎭⎪⎪⎫-b 2a,-b 24a 在第一象限. (理)已知函数f (x )满足f (x +4)=f (x ),又f (3+x )=f (3-x ),当1≤x ≤5时,f (x )=x 2-bx +2,若m =f (ln 53),n =f (ln8),p =f (b3),则m 、n 、p 的大小关系是( )A .n <p <mB .n <m <pC .p <m <nD .p <n <m[答案] A[解析] ∵f (3+x )=f (3-x ),∴f (1)=f (5). ∴1-b +2=25-5b +2.∴4b =24,b =6. ∵0<ln 53<1,∴4<4+ln 53<5.∴f (ln 53)=f (4+ln 53).f (b 3)=f (63)=f (2). 2=lne 2<ln8<lne 3<3, ∴f (ln8)<f (b 3)<f (ln 53),即n <p <m .2.二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值为( )A .2B .3C .4D .5 [答案] D[解析] 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1,当a 越大时,y =f (x )的开口越小,当a 越小时,y =f (x )的开口越大,而y =f (x )的开口最大时,y=f(x)过(0,1),(1,1),则c=1,a+b+c=1,a+b=0,a=-b,此时-b2a=12,另外还要满足b2-4ac>0,a(a-4)>0,a>4,则a的最小值为5,故选D.二、填空题3.已知定义在区间[0,3]上的函数f(x)=kx2-2kx的最大值为3,那么实数k的取值集合为________.[答案]{1,-3}[解析]∵f(x)=kx2-2kx=k(x-1)2-k(1)当k>0时,二次函数开口向上,当x=3时,f(x)有最大值,f(3)=k·32-2k×3=3k=3⇒k=1;(2)当k<0时,二次函数开口向下,当x=1时,f(x)有最大值,f(1)=k-2k=-k=3⇒k=-3.故k的取值集合为{1,-3}.4.若二次函数f(x)的导函数f′(x)=2x+2m,且f(0)=m2-m,则f(x)=__________;若x∈[-2,0],存在f(x)≤0,则m的取值范围是________.[答案]f(x)=x2+2mx+m2-m[0,4][解析]设f(x)=x2+2mx+b.由f(0)=m2-m求出b,∴f(x)=x2+2mx +m2-m.先求出[-2,0]内f(x)>0恒成立,m∈(-∞,0)∪(4,+∞),∴m ∈[0,4]. 三、解答题5.已知函数f (x )=-x 2+2ax +1-a 在0≤x ≤1时有最大值2,求a 的值.[分析] 作出函数图像,因对称轴x =a 位置不定,故分类讨论对称轴位置以确定f (x )在[0,1]上的单调情况.[解析] 当对称轴x =a <0时,如图1所示. 当x =0时,y 有最大值,y max =f (0)=1-a . ∴1-a =2,即a =-1,且满足a <0,∴a =-1.图1 图2当0≤a ≤1时,如图2所示.即当x =a 时,y 有最大值, y max =f (a )=-a 2+2a 2+1-a =a 2-a +1. ∴a 2-a +1=2,解得a =1±52.∵0≤a ≤1,∴a =1±52舍去.当a >1,如图3所示.图3由图可知,当x=1时y有最大值,y max=f(1)=2a-a=2,∴a=2,且满足a>1,∴a=2.综上可知,a的值为-1或2.6.已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最大值为正数,求实数a的取值范围.[解析](1)∵f(x)+2x>0的解集为(1,3),∴f(x)+2x=a(x-1)(x-3),且a<0,即f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a. ①由f(x)+6a=0,得ax2-(2+4a)+9a=0. ②∵方程②有两个相等的根,∴Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,故舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)f (x )=ax 2-2(1+2a )x +3a=a ⎝⎛⎭⎪⎪⎫x -1+2a a 2-a 2+4a +1a . 由a <0,可得f (x )的最大值为-a 2+4a +1a>0, 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).7.设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)>0,f (1)>0,求证:(1)a >0且-2<b a <-1;(2)方程f (x )=0在(0,1)内有两个实根.[证明] (1)因为f (0)>0,f (1)>0,所以c >0,3a +2b +c >0.由条件a +b +c =0,消去b ,得a >c >0;由条件a +b +c =0,消去c ,得a +b <0,2a +b >0.故-2<b a <-1.(2)抛物线f (x )=3ax 2+2bx +c 的顶点坐标为(-b 3a ,3ac -b 23a ),在-2<b a <-1的两边乘以-13,得13<-b 3a <23.又因为f (0)>0,f (1)>0,而f (-b 3a )=-a 2+c 2-ac 3a <0,所以方程f (x )=0在区间(0,-b 3a )与(-b3a ,1)内分别有一实根.故方程f (x )=0在(0,1)内有两个实根.。
高考理科数学一轮总复习课标通用版课件:第2章函数2-4
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第26页
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 1.1] 已知 y=f(x)是二次函数,且 f(-32+x)=f(-23-x)对 x∈R 恒成立,f(- 32)=49,方程 f(x)=0 的两实根之差的绝对值等于 7.求此二次函数的解析式.
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第12页
经典品质/超出梦想
高考总复习/新课标版
答案
1.(1)ax2+bx+c (2)a(x-h)2+k
(3)a(x-x1)(x-x2) 2.(1)-2ba (2)(-2ba,4ac4-a b2) (3)向上 向下 (4)[4ac4-a b2,+∞) (-∞,4ac4-a b2]
经典品质/超出梦想
高考总复习/新课标版 数学·理
02 函数的概念、基本初等函数 (Ⅰ)及函数的应用
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第1页
经典品质/超出梦想
高考总复习/新课标版 数学·理
§2.4 二次函数
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第15页
经典品质/超出梦想
高考总复习/新课标版 数学·理
2.(教材改编)若函数 f(x)=4x2-kx-8 在区间[5,20]上是单调函数,则实数 k 的取 值范围是________.
解析:二次函数的对称轴方程是 x=8k,
故只需8k≤5 或8k≥20,即 k≤40 或 k≥160. 故所求 k 的取值范围是(-∞,40]∪[160,+∞) 答案:(-∞,40]∪[160,+∞)
高考数学函数图像专题
高考数学函数图像专题高考数学函数图像专题1高考数学函数图像专题高考数学函数图像专题2高考数学函数图像专题高考数学函数图像专题3高考数学函数图像专题高考数学函数图像专题4高考数学函数图像专题高考数学函数图像专题5高考数学函数图像专题高考数学函数图像专题 6例题DCADA DAADC CBADC BDBDA AABAA ACC, 描写谦虚的成语 不骄不躁 功成不居 戒骄戒躁 洗耳恭听 虚怀若谷 慎言谨行描写学习的成语 学无止境 学而不厌 真才实学 学而不倦 发奋图强 废寝忘食 争分夺秒孜孜不倦 笨鸟先飞 闻鸡起舞 自强不息 只争朝夕 不甘示弱 全力以赴 力争上游 披荆斩棘 描写人物品质的成语 奋不顾身 舍己为人 坚强不屈 赤胆忠心 不屈不挠 忠贞不渝 誓死不二 威武不屈 舍死忘生 肝胆相照 克己奉公 一丝不苟 两袖清风 见礼忘义 永垂不朽 顶天立地 豁达大度 兢兢业业 卖国求荣 恬不知耻 贪生怕死 厚颜无耻 描写人物神态的成语 神采奕奕 眉飞色舞 昂首挺胸 惊慌失措 漫不经心垂头丧气没精打采愁眉苦脸 大惊失高考数学函数图像专题高考数学函数图像专题 7色 炯炯有神 含有夸张成分的成语 怒发冲冠 一目十行 一日千里 一字千金 百发百中——一日三秋 一步登天 千钧一发 不毛之地 不计其数 胆大包天 寸步难行 含——比喻成分的成语观者如云 挥金如土 铁证如山 爱财如命 稳如泰山 门庭若市 骨瘦如柴 冷若冰霜 如雷贯耳 守口如瓶 浩如烟海 高手如林 春天 阳春三月 春光明媚 春回大地 春暖花开 春意盎然 春意正浓 风和日丽 春花烂漫 春天的景色 鸟语花香百鸟鸣春百花齐放莺, 歌燕舞 夏天的热 赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓夏天的景色 鸟语蝉鸣 万木葱茏 枝繁叶茂 莲叶满池 秋天 秋高气爽 天高云淡 秋风送爽 秋菊怒放 秋菊傲骨 秋色迷人 秋色宜人 金桂飘香 秋天的景色 果实累累 北雁南飞 满山红叶 五谷丰登 芦花飘扬 冬天——天寒地冻北风呼啸 滴水成冰 寒冬腊月 瑞雪纷飞 冰天雪, 地冬天的景色 冰封雪盖 漫天飞雪 白雪皑皑冰封大地冰天雪地早晨 东方欲晓 旭日东升 万, 物初醒 空气清醒 雄鸡报晓 晨雾弥漫 晨光绚丽 中午 烈日当头 丽日临空艳阳高照万里无云碧空如洗傍晚 日落西山 夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂 日薄西山 夜晚 夜深人静 月明星稀 夜色柔美 夜色迷人 深更半夜 漫漫长夜 城镇 风光秀丽 人山人海 车水马龙 宁静和谐 村庄 草木苍翠 竹篱瓦舍 山幽路辟 小桥流水 大楼、饭店直指青云古色古香青砖素瓦耸入碧云 工厂机器轰鸣铁流直泻热气腾腾 钢花飞溅 商店 粉饰一新 门可罗雀 冷冷清清 错落有致 馆场 富丽堂皇 设施齐全 气势雄伟 金碧辉煌 学校 风景如画 闻名遐迩 桃李满天下 车站、码头井然有序 杂乱无章 布局巧妙 错落有致 街道 宽阔平坦 崎岖不平 拥挤不堪 畅通无阻花 花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳绚丽多彩五彩缤纷 草 绿草如茵 一碧千里 杂草丛生 生机勃勃 绿油油 树 苍翠挺拔 郁郁葱葱 枯木逢春秀丽多姿 青翠欲滴 林海雪原 耸入云天 瓜果蔬菜 清香鲜嫩 青翠欲滴 果园飘香 果实累累果实饱满 鲜嫩水灵 鸽子、燕子 象征和平乳燕初飞莺歌燕舞翩然归来 麻雀、喜鹊枝头嬉戏 灰不溜秋 叽叽喳喳 鹦鹉 鹦鹉学舌 婉转悦耳 笨嘴学舌 啄木鸟 利嘴如铁 钢爪如钉 鸡鸭鹅 神气活现昂首挺胸 肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰 膘肥体壮 昂首嘶鸣 牛 瘦骨嶙峋行动迟缓 俯首帖耳 膘肥体壮 车 川流不息 呼啸而过 穿梭往来 缓缓驶离 船 一叶扁舟 扬帆远航 乘风破浪 雾海夜航 追波逐浪 飞机划破云层直冲云霄 穿云而过 银鹰展翅 学习用品 美观实用 小巧玲珑 造型优美 设计独特 玩具 栩栩如生 活泼可爱 惹人喜爱 爱不释手 彩虹 雨后彩虹 彩桥横空 若隐若现 光芒万丈 雪 大雪纷飞 大雪封山 鹅毛大雪 漫天飞雪 瑞雪纷飞 林海雪原 风雪交加 霜雪上加霜寒霜袭人 霜林尽染 露 垂露欲滴 朝露晶莹 日出露干 雷电 电光石火 雷电大作 惊天动地 春雷滚滚 电劈石击 雷电交加 小雨 阴雨连绵 牛毛细雨 秋雨连绵 随风飘洒 大雨 倾盆大雨 狂风暴雨 大雨滂沱 瓢泼大雨 大雨淋漓 暴雨如注 风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾 大雾迷途 云雾茫茫 雾似轻纱 风吹雾散 云消雾散 云 彩云满天 天高云淡 乌云翻滚 彤云密, 布 霞 彩霞缤纷 晚霞如火 朝霞灿烂 丹霞似锦星 最远的地方:天涯海角 最远的分离:天壤之别 最重的话:一言九鼎 最可靠的话:一言为定 其它成语 一、描写人的品质: 平易近人宽宏大度冰清玉洁持之以恒 锲而不舍 废寝忘食 大义凛然 临危不俱 光明磊落 不屈不挠 鞠躬尽瘁 死而后已 二、描写人的智慧: 料事如神 足智多谋 融会贯通 学贯中西 博古通今 才华横溢 出类拔萃 博大精深 集思广益 举一反三三、描写人物仪态、风貌: 憨态可掬 文质彬彬 风度翩翩 相貌堂堂 落落大方 斗志昂扬 意气风发 ,威风凛凛 容光焕发 神采奕奕 四、描写人物神情、情绪: 悠然自得 眉飞色舞 喜笑颜开 神采奕奕 欣喜若狂 呆若木鸡 喜出望外 垂头丧气 无动于衷 勃然大怒 五、 描写人的口才: 能说会道 巧舌如簧 能言善辩 滔滔不绝 伶牙俐齿 , 出口成章 语惊四座 娓娓而谈 妙语连珠 口若悬河 六、 来自历史故事的成语: 三顾茅庐 铁杵成针望梅止渴 完璧归赵 四面楚歌 负荆请罪 精忠报国 手不释卷 悬梁刺股 凿壁偷光七、 描写人物动作: 走马——花 欢呼雀跃 扶老携幼手舞足蹈 促膝谈心 前俯后仰 奔走相告 跋山涉水 前赴后继 张牙舞爪 八、 描写人间情谊: 恩重如山 深情厚谊 手足情深形影不离 血浓于水 志同道合 风雨同舟赤诚相待 肝胆相照 生死相依 九、 说明知事晓理方面: 循序渐进日积月累 温故——新勤能补拙 笨鸟先飞 学无止境 学海无涯 滴水穿石 发奋图强 开卷有益 十、 来自寓言故事的成语:夏天的, 景色 鸟语蝉鸣 万木葱茏 枝繁叶茂 莲叶满池 秋天秋高气爽 天高云淡 秋风送爽 秋菊怒放 秋菊傲骨 秋色迷人秋色宜人金桂飘香 秋天的景色 果实累累 北雁南飞 满山红叶 五谷丰登 芦花飘扬 冬天 天寒地冻 北风呼啸滴水成冰 寒冬腊月 瑞雪纷飞 冰天雪地 冬天的景色 冰封雪盖 漫天飞雪 白雪皑皑 冰封大地 冰天雪地 早晨 东方欲晓 旭日东升 万物初醒 空气清醒 雄鸡报晓 晨雾弥漫晨光绚丽中午 烈日当头 丽日临空 艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林 华灯初上 夜幕低垂 日薄西山 夜晚夜深人静月明星稀 夜色柔美 夜色迷人 深更半夜 漫漫长夜 城镇 风光秀丽 人山人海 车水马龙 宁静和谐 村庄 草木苍翠 竹篱瓦舍 山幽路辟 小桥流水 大楼、饭店直指青云古色古香青砖素瓦耸入碧云 工厂 机器轰鸣 铁流直泻 热气腾腾 钢花飞溅 商店 粉饰一新 门可罗雀 冷冷清清 错落有致 馆场 富丽堂皇 设施齐全 气势雄伟 金碧辉煌 学校 风景如画 闻名遐迩 桃李满天下车站、码头 井然有序 杂乱无章 布局巧妙 错落有致 街道 宽阔平坦 崎岖不平 拥挤不堪 畅通无阻花 花红柳绿 花色迷人 花香醉人 花枝招展 百花齐放 百花盛开 百花争艳, 绚丽多彩 五彩缤纷 草 绿草如 , 标准答案 一、填空题。
高考数学第一轮复习教案-专题2函数概念与基本初等函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
高中数学《函数的图像》高考一轮复习
高考数学一轮复习第10讲:函数的图像学习目标:1.会运用函数图像理解和研究函数的性质.2.熟记基本初等函数的图像,掌握函数作图的基本方法及函数图像的基本变换,能结合图像研究函数的性质学习方法:观察归纳;类比,转化教学重点:会运用函数图像理解和研究函数的性质.教学难点:应用函数图像求参数范围课前准备:1.教师准备:三角板、多媒体课件2.学生自备:笔、三角板考情分析:函数的图像作为函数性质的研究工具,频频在高考题中出现.主要考点及考查方向如下表:教学过程知识聚焦:(自主学习以下知识点)1.作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2.三种图象变换:平移变换、对称变换和伸缩变换等等3.识图:分布范围、变化趋势、对称性、周期性等等方面.4.平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到.① y=f(x)y=f(x+h); ② y=f(x) y=f(x -h);③y=f(x) y=f(x)+h; ④y=f(x) y=f(x)-h.5.对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到; 6.翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到.7.伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;()y f x a =+()y f x =x (0)a >(0)a <||a ()y f x a =+()y f x =x (0)a >(0)a <||a h 左移→h 右移→h 上移→h 下移→()y f x =-()y f x =y ()y f x =-()y f x =x ()y f x =--()y f x =|()|y f x =()y f x =x x x x ()y f x =x (||)y f x =()y f x =y y y ()y f x =y ()y af x =(0)a >()y f x =(1)a >01a <<a(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到. ①y=f(x)y=f();②y=f(x)y=ωf(x). 链接教材:(学生自主回答)例题教学:考点一 函数图象的辨识【例1】函数y =x cos x +sin x 的图象大致为( ).规律方法 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.【练习1】 (1)函数y =x sin x 在[-π,π]上的图象是( ).(2)函数y =x +cos x 的大致图象是( ).考点二 函数图象的变换【例2】函数f (x )=⎩⎪⎨⎪⎧3x (x ≤1),log 13x (x >1),则y =f (1-x )的图象是( ). ()y f ax =(0)a >()y f x =(1)a >01a <<1a ω⨯→x ωxω⨯→y规律方法 作图象平移时,要注意不要弄错平移的方向,必要时,取特殊点进行验证;平移变换只改变图象的位置,不改变图象的形状.【练习2】设函数f(x)的定义域为R ,则函数y=f(x-1)与y=f(1-x)的图像关系为( )A .直线y=0对称B .直线x=0对称C .直线y=1对称D .直线x=1对称 考点三 函数图象的应用【例3】已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ).A .10个B .9个C .8个D .1个练习3:设f(x)是定义在R 上的偶函数,对任意的x ∈R ,f (2-x )=f (x+2)且当x ∈[-2,0]时,f(x)=x )21(-1,若关于x 的方程f(x)-log a (x+2)=0(a>1)在区间(-2,6]内恰有三个不同的实根,则实数a 的取值范围是【例4】已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 练习4:设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________ . 规律方法 (1)利用函数的图象可解决方程和不等式的求解问题,如判断方程是否有解,有多少个解.数形结合是常用的思想方法.(2)利用图象,可观察函数的对称性、单调性、定义域、值域、最值等性质.课堂小结1.掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程.2.识图的要点:重点根据图象看函数的定义域、值域、奇偶性、单调性、特殊点(与x 、y 轴的交点,最高、最低点等).3.识图的方法(1)定性分析法:对函数进行定性分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决;(2)定量计算法:通过定量的计算来分析解决;(3)排除法:利用本身的性能或特殊点进行排除验证.4.研究函数性质时一般要借助于函数图象,体现了数形结合思想;5.方程解的问题常转化为两熟悉的函数图象的交点个数问题来解决.。
2024年高考数学一轮复习考点10函数的图像必刷题理含解析
考点10 函数的图像1.函数2()1sin 1x f x x e ⎛⎫=- ⎪+⎝⎭图象的大致形态是( ).A .B .C .D .【答案】C【解析】()211sin sin 11xx x e f x x x e e -⎛⎫=-=⋅ ⎪++⎝⎭则()()()()111sin sin sin 111xx x x x x e e e f x x x x f x e e e ------=⋅-=⋅-=⋅=+++则()f x 是偶函数,图象关于y 轴对称,解除,B D当1x =时,()11sin101ef e -=⋅<+,解除A本题正确选项:C .2.在下面四个[,]x ππ∈-的函数图象中,函数sin 2y x x =的图象可能是()A .B .C .D .【答案】C【解析】 因为()sin(2)sin 2()f x x x x x f x -=--=-=-,即()f x 是奇函数,图象关于原点对称,解除,B D , 当x π=时,()sin 20f πππ==,解除A .故选:C .3.在同始终角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A . B .C .D .【答案】D【解析】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.4.我国闻名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和探讨中,常用函数的图象来探讨函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441xxf x=-的图象大致是A.B.C.D.【答案】D【解析】因为函数()441xxf x=-,44()()()4141x xx xf x f x----==≠--所以函数()f x不是偶函数,图像不关于y轴对称,故解除A、B选项;又因为81256(3),(4),(3)(4)63255f f f f==∴>,而选项C在0x>是递增的,故解除C故选D.5.函数ln()xf xx=的图象大致为()A.B.C .D .【答案】A【解析】函数的定义定义域为0x ≠,()()()ln ln ln x x x f x f x f x x x x-=⇒-==-=--,所以函数()f x 是奇函数,图象关于原点对称,故可解除B ,当1x >时,()ln ln 0x x f x x x==>,故可解除C; 当0x >时,()ln ln x x f x x x == ()'21ln x f x x -⇒=,明显当1x >时,()'0f x <,函数()f x 是单调递减的,可解除D ,故本题选A.6.函数cos y x x =的大致图像为( )A .B .C .D .【答案】A【解析】函数cos y x x =为奇函数,故解除B D 、,当x 取很小的正实数时,函数值大于零,故选A.7.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】当x →+∞时,()f x →-∞,故解除D ;由于函数()f x 的定义域为R ,且在R 上连续,故解除B ;由1(0)ln 2f e -=-,由于1ln 2ln 2e >= ,112e -< ,所以1(0)ln 20f e -=->,故解除C. 故答案为A.8.下列图象中,可能是函数的图象的是( )A .B .C .D .【答案】D【解析】依据题意,函数f (x )=x a (e x +e ﹣x ),其导数f ′(x )=ax a ﹣1(e x +e ﹣x )+x a (e x ﹣e ﹣x ),又由a ∈Z ,当a =0,f (x )=e x +e ﹣x,(x ≠0)其定义域为{x |x ≠0},f (x )为偶函数,不经过原点且在第一象限为增函数,没有选项符合;当a 为正偶数时,f (x )=x a (e x +e ﹣x ),其定义域为R ,f (x )为偶函数且过原点,在第一象限为增函数,没有选项符合,当a 为正奇数时,f (x )=x a (e x +e ﹣x ),其定义域为R ,f (x )为奇函数且过原点,在第一象限为增函数且增加的越来越快,没有选项符合,当a为负偶数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限先减后增,D选项符合;当a为负奇数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},f(x)为奇函数,不经过原点且在第一象限先减后增,没有选项符合,综合可得:D可能是函数f(x)=x a(e x+e﹣x)(a∈Z)的图象;故选:D.9.函数的大致图像为( ).A.B.C.D.【答案】B【解析】函数的定义域为,,当时,,所以单调递增;当时,,所以单调递减,明显当时,;当时,,综上所述,本题选B.10.函数的图像是()A.B.C.D.【答案】A【解析】,可得f(0)=1,解除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,解除选项B ,故选:A11.函数在上的图象大致是( )A .B .C .D .【答案】A【解析】解:f (﹣x )=(﹣x)cos (﹣x )=﹣(x )cos x =﹣f (x ),函数是奇函数,图象关于原点对称,解除C ,D , f (1)=2cos1>0,解除B ,故选:A .12.设函数()()f x x R ∈满意()()()()0,2f x f x f x f x --==-,则()y f x =的图象可能( )A .B .C .D .【答案】B【解析】 由()()0f x f x --=得()()f x f x =-,即函数()f x 是偶函数,解除,A C由()()2f x f x =-,得()()()2f x f x f x =-=-,即函数关于1x =-对称,解除D本题正确选项:B13.函数ln ||()x x f x e =的大致图象是( ) A . B .C .D .【答案】A【解析】解:由()x ln x f x =e ,得()f 1=0,()f 1=0- 又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可干脆解除B ,C ,D故选:A.14.定义,由集合确定的区域记作,由曲线:和轴围成的封闭区域记作,向区域内投掷12000个点,则落入区域的点的个数为( )A .4500B .4000C .3500D .3000【答案】A【解析】试验包含的全部事务对应的集合 Q ={(x ,y )|0≤x ≤2,0≤y ≤1},则=2×1=2,,画出函数的图象,如图所示;故落入区域M内的概率为P,所以落入区域M的点的个数为120004500(个).故选:A.15.设函数是定义在上的函数,且对随意的实数,恒有,,当时,.若在在上有且仅有三个零点,则的取值范围为()A.B.C.D.【答案】C【解析】由题意,函数满意,所以函数是奇函数,图象关于y轴对称,又由,则,即,可得,代入可得,所以函数的图象关于对称,且是周期为4的周期函数,又由当时,,画出函数的图象,如图所示,因为在上有且仅有三个零点,即函数和的图象在上有且仅有三个交点,当时,则满意,解得;当时,则满意,解得; 综上所述,可得实数的取值范围是,故选C.16.如图所示的函数图象,对应的函数解析式可能是( )A .221x y x =--B .2sin y x x =C .ln x y x =D .()22x y x x e =- 【答案】D【解析】 2sin y x x =为偶函数,其图象关于y 轴对称,∴解除B.函数ln xy x =的定义域为{}011x x x <或,∴解除C .对于221x y x =--,当2x =-时,()222210y -=---<,∴解除A 故选:D.17.函数f (x )的图象大致为( )A .B .C .D .【答案】C【解析】由题意,函数满意,即是奇函数,图象关于原点对称,解除B,又由当时,恒成立,解除A,D,故选:C.18.函数的图象大致为()A.B.C.D.【答案】C【解析】,则函数为奇函数,故解除,当时,,故解除,故选:.19.函数的图象大致是()A.B.C.D.【答案】A【解析】,令,则.当时,,单调递减,故.故,即函数在上为增函数.故选A.20.函数的图象大致为().A.B.C.D.【答案】C【解析】因为,所以,因此为偶函数,所以解除选项A,B,又,所以解除D.故选C21.函数的图像大致为()A.B.C.D.【答案】A【解析】因为,所以,所以函数为奇函数,解除C;又,解除D;又,因为所以由可得,解得;由可得,解得或;所以函数在上单调递减,在上单调递增,在上单调递减;故选A22.函数的图象可能是()A.B.C.D.【答案】C【解析】解:∵的定义域为,关于原点对称,又∵,即函数是奇函数,∴的图象关于原点对称,解除A、D,当时,,,∴,解除B,故选:C.23.已知函数,若方程有四个不等实根,时,不等式恒成立,则实数的最小值为()A.B.C.D.【答案】C【解析】函数f(x)的图象如下图所示:当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,|lnx1|=|lnx2|,即x1•x2=1,x1+x22,|ln(4﹣x3)|=|ln(4﹣x4)|,即(4﹣x3)•(4﹣x4)=1,且x1+x2+x3+x4=8,若不等式kx3x4+x12+x22≥k+11恒成立,则k恒成立,由[(x1+x2)﹣48]≤2故k≥2,故实数k的最小值为2,故选:C.24.函数的图像大致为( )A .B .C .D .【答案】C【解析】 定义域为 为定义在上的奇函数,可解除和 又, 当时,,可解除 本题正确选项:25.函数f (x )=3344x x -的大数图象为( ) A . B .C .D . 【答案】A【解析】由题知,函数()f x 满意()333()3()4444x x x x f x f x ---==-=---,所以函数()f x 是奇函数,图象关于原点对称,解除C 、D 项;又由当()0,1x ∈时,函数()f x 的值小于0,解除B ,故选A.26.已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出()f x 的函数图象如图所示,由()2f x a =⎡⎤⎣⎦,可得(),1f x a a =>, 即1a >, 不妨设12x x < ,则2212x x e a == (1)a t t =>,则12,ln 2t x x t ==, 12ln 2t x x t ∴+=-()ln 2t g t t =-42'()t g t -= ∴当 18t <<时,()'0g t >,g t 在()1,8上递增;当8t 时,()'0g t <,g t 在()8,+∞上递减;∴当8t =时,g t 取得最大值g(8)=ln82=3ln22--,故答案为3ln 22-.27.如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此接着,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C (x ,y )滚动时形成的曲线为y =f (x ),则f (2024)=________.【答案】0【解析】由题可得:是周期为的函数,所以.由题可得:当时,点恰好在轴上,所以,所以.。
届高三数学一轮复习-函数的图像及其应用(共58张PPT)
考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是
函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)
考向12 函数的图象【2022·全国·高考真题(理)】函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.【2022·全国·高考真题(文)】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.1.函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. 2.图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.识图的三种常用方法(1).抓住函数的性质,定性分析:①由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. (2).抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3).根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).(1)若()()f m x f m x +=-恒成立,则()y f x =的图像关于直线x m =对称.(2)设函数()y f x =定义在实数集上,则函数()y f x m =-与()y f m x =-(0)m >的图象关于直线x m =对称.(3)若()()f a x f b x +=-,对任意x ∈R 恒成立,则()y f x =的图象关于直线2a bx +=对称. (4)函数()y f a x =+与函数()y f b x =-的图象关于直线2a bx +=对称. (5)函数()y f x =与函数(2)y f a x =-的图象关于直线x a =对称. (6)函数()y f x =与函数2(2)y b f a x =--的图象关于点()a b ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数); 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称. (3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.1.(2022·青海·海东市第一中学模拟预测(理))函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【答案】D 【解析】 【分析】利用函数的单调性,奇偶性和特值点等性质来判断图像. 【详解】易知f (x )是偶函数,排除B ,C 项;当0πx ≤≤时,sin 0x ≥,所以sin cos 0y x x x =≥,排除A 项. 故选:D2.(2022·青海·模拟预测(理))已知函数()f x 的部分图像如图所示,则函数()f x 的解析式可能为( )A .()ln sin f x x x =+B .()ln cos f x x x =-C .()ln cos f x x x =+D .()ln sin f x x x =-【答案】B 【解析】 【分析】判断函数的奇偶性,可判断A,D;利用特殊值可判断C;结合三角函数性质以及函数的奇偶性,可判断B. 【详解】对于A ,()ln sin ,0f x x x x =+≠,()ln sin ()f x x x f x -=--≠,即()ln sin ,0f x x x x =+≠不是偶函数,不符合题意;对于C, ()ln cos ,0f x x x x =+≠,()πln πcos π=ln π11f =+-<,不符合题意; 对于D ,()ln sin ,0f x x x x =-≠,()ln sin ()f x x x f x -=-+≠,不符合题意; 对于B ,()ln cos ,0f x x x x =-≠,()ln cos ()f x x x f x -=--=, 故()f x 为偶函数,结合函数cos y x =的性质,可知B 符合题意, 故选:B3.(2022·浙江·三模)函数1sin 22x xxy -+=+在区间[,]-ππ上的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】直接由特殊点通过排除法求解即可. 【详解】 当0x =时,12y =,排除C 选项;当2x π=-时,0y =,排除B 、D 选项.故选:A.4.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.5.(多选题)(2022·全国·模拟预测)在下列四个图形中,二次函数2y ax bx =+与指数函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .【答案】ABD 【解析】 【分析】根据,,0a b 的关系与各图形一个个检验即可判断. 【详解】当0a b >>时,A 正确;当0b a >>时,B 正确; 当0a b >>时,D 正确;当0b a >>时,无此选项. 故选:ABD .1.(2022·青海·海东市第一中学模拟预测(文))函数()2222x xx xf x -+=+的部分图像大致是( ) A . B .C .D .【答案】B 【解析】 【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案. 【详解】函数的定义域为R ,因为()()2222x xx xf x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .2.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()f x 图象如图所示,那么该函数可能为( )A .ln ()||xf x x =B .()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩C .()()1(0)e 1e (0)xx x x f x x x -⎧>⎪=⎨⎪+<⎩D .ln ||()x f x x=【答案】D 【解析】 【分析】根据所给函数的图象,利用排除法分析ABC 即可得解. 【详解】由图象可知,函数定义域为(,0)(0,)-∞+∞,图象关于原点对称,函数是奇函数, 1x >时()0f x >, 据此,ln ()||xf x x =定义域不符合,排除A; 若 ()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩,则1x >时,()0f x <,不符合图象,故排除B ;若()()1(0)e 1e (0)x x x x f x x x -⎧>⎪=⎨⎪+<⎩,则当x 趋向于0+时,1()e x x f x -=趋向于1-,当x 趋向于0-时,()(1)e xf x x =+趋向于1,不符合图象,故排除C; 故选:D3.(2022·湖北·模拟预测)函数()[]()0,1y f x x =∈对任意()10,1a ∈,由()()*1n n a f a n +=∈N 得到的数列{}n a 均是单调递增数列,则下列图像对应的函数符合上述条件的是( )A .B .C .D .【答案】A 【解析】 【分析】由题可得()n n f a a >,进而可得函数()f x 的图像在直线y x =的图像上方,即得. 【详解】由题可知()()*1n n a f a n +=∈N ,1n n a a +>,∴()n n f a a >,故函数()f x 满足()f x x >,即函数()f x 的图像在直线y x =的图像上方,故排除BCD. 故选:A.4.(2022·浙江湖州·模拟预测)已知函数()2ln1(),cos x x f x a R x a+=∈+的图像如图所示,则实数a 的值可能是( )A .2-B .12-C .12D .2【答案】C 【解析】 【分析】根据函数的定义域分析即可 【详解】由题意,2210x x x x x x +->-=-≥,故210x x +->,分子一定有意义.又根据图象可得,当23x π=时分式无意义,故此时分母为0,故2cos 03a π+=,即102a -+=,12a =故选:C5.(2022·浙江绍兴·模拟预测)下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--【答案】A 【解析】 【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.6.(2022·河南·平顶山市第一高级中学模拟预测(文))函数sin 22cos x xy x=-的部分图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】 设()sin 22cos x x f x x =-,分析函数()f x 的定义域、奇偶性及其在0,2π⎛⎫⎪⎝⎭上的函数值符号,结合排除法可得出合适的选项. 【详解】 设()sin 22cos x xf x x=-,则对任意的x ∈R ,2cos 0x ->,则()()()()sin 2sin 22cos 2cos x x x xf x f x x x---===---,所以函数()f x 是偶函数,排除B 、D .当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,则sin 20x >,所以()0f x >,排除C .故选:A .7.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-【答案】C 【解析】 【分析】由图象确定函数的性质,验证各选项是否符合要求即可. 【详解】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数, 与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭,当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错,若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭,当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,又2()44f ππ=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致,故选:C .8.(2022·福建省福州第一中学三模)已知函数()()2()ln 1cos 3f x x x x ϕ=++⋅+.则当[0,]ϕπ∈时,()f x 的图象不可能是( )A .B .C .D .【答案】D 【解析】 【详解】首先设()()2ln 1g x x x =+,得到()g x 为奇函数,再分别令0,,2πϕπ=,依次判断选项即可.【点睛】设()(2ln 1g x x x =+,定义域为R ,()()((()2222ln 1ln 1ln 10g x g x x x x x x x +-=++-+=+-=, 所以()()g x g x -=-,()g x 为奇函数.当0ϕ=时,cos3y x =为偶函数,(2()ln 1cos3f x x x x =+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫> ⎪⎝⎭,所以选项B 可能. 当ϕπ=时,()cos 3cos3y x x π=+=-为偶函数,(2()ln 1cos3f x x x x =-+⋅为奇函数.()0062f f f ππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,所以选项A 可能. 当2ϕπ=时,cos 3sin 32y x x π⎛⎫=+=- ⎪⎝⎭为偶函数,(2()ln 1sin3f x x x x =-+⋅为偶函数.因为()20033f f f ππ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,018f π⎛⎫< ⎪⎝⎭,,所以选项C 可能. 故选:D9.(2022·吉林·三模(理))下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x=A .④②①③B .②④①③C .②④③①D .④②③①【答案】A 【解析】 【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值. 【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x=>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数 故选:A .10.(2022·浙江·镇海中学模拟预测)图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =【答案】A 【解析】 【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论. 【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A .11.(2022·浙江·模拟预测)已知函数()f x 的部分图像如图所示,则该函数的解析式可能是( )A .22cos ()ln 2cos xf x x x +=+-B .32cos ()ln 2cos xf x x x+=-C .32sin ()ln 2sin xf x x x+=+-D .22sin ()ln2sin xf x x x+=-【答案】B 【解析】 【分析】观察图象确定函数的性质,结合函数的性质和特殊点的取值判断各选项. 【详解】观察函数图象可得该函数图象关于原点对称,所以函数()f x 为奇函数,由图象可得(2)0f <,对于函数22cos ()ln2cos xf x x x+=+-,因为()()()222cos 2cos ()lnln ()2cos 2cos x xf x x x f x x x+-+-=-+=+=---,所以函数22cos ()ln2cos xf x x x+=+-为偶函数,A 错,对于函数32sin ()ln2sin x f x x x+=+-,()32sin ()ln()2sin x f x x f x x --=-+=-+, 所以函数32sin ()ln2sin x f x x x+=+-为奇函数,又32sin 2(2)2ln02sin 2f +=+>-,与图象不符,故C 错误, 对于函数22sin ()ln2sin x f x x x+=-,()22sin ()ln()2sin x f x x f x x --=-=-+, 所以函数22sin ()ln2sin x f x x x+=-为奇函数,又22sin 2(2)2ln02sin 2f +=>-,与图象不符,故D 错误, 对于函数32cos ()ln2cos x f x x x+=-,因为()32cos ()ln()2cos x f x x f x x +-=-=--, 所以函数32cos ()ln2cos x f x x x+=-为奇函数,且32cos 2(2)2ln02cos 2f +=<-,与图象基本相符,B 正确, 故选:B.12.(2022·四川眉山·三模(理))四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是( ) A .类似递增的双曲线 B .类似递增的对数曲线 C .类似递减的指数曲线 D .是一条S 形曲线【答案】A 【解析】 【分析】 依题意可得1311y x -=++,()0x >,整理得341y x -=++,()0x >,再根据函数的变换规则判断可得; 【详解】解:依题意可得拟合函数为1311y x -=++,()0x >, 即()31333 114111x x y x x x +--=+=+=++++,()0x >, 由3y x -=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >, 因为3y x-=在()1,+∞上单调递增,所以拟合函数图象是类似递增的双曲线; 故选:A13.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x x x x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.14.(2022·浙江绍兴·模拟预测)在同一直角坐标系中,函数()log a y x =-,()10a y a x-=>,且1a ≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称,根据对数函数的图象与性质及反比例函数的单调性即可求解. 【详解】解:因为函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称, 所以函数()log a y x =-的图象恒过定点()1,0-,故选项A 、B 错误;当1a >时,函数log a y x =在()0,∞+上单调递增,所以函数()log a y x =-在(),0∞-上单调递减, 又()11a y a x-=>在(),0∞-和()0,∞+上单调递减,故选项D 错误,选项C 正确. 故选:C.15.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案.【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A16.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解.【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =, 于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒ 而,,r H v 2323H v r π是常数, 所以盛水的高度h 与注水时间t 的函数关系式是23323H v h t r π=203r H t v π≤≤,223323103H v h t r π-'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A1.(2022·全国·高考真题(理))函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-, 所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C. 故选:A.2.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x x y x -+=+B .321x x y x -=+C .22cos 1x x y x =+D .22sin 1x y x =+ 【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<, 所以()222cos 2111x x x h x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A. 3.(2021·天津·高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .【答案】B【解析】【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.4.(2021·浙江·高考真题)已知函数21(),()sin 4f x x g x x =+=,则图象为如图的函数可能是()A .1()()4y f x g x =+- B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭, 当4x π=时,22120221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.(2020·天津·高考真题)函数241x y x =+的图象大致为( ) A . B .C .D .【答案】A【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6.(2020·浙江·高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .【答案】A【解析】【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.7.(2019·浙江·高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( ) A . B .C .D .【答案】B【解析】【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.9.(2017·全国·高考真题(文))函数y =1+x +2sin x x 的部分图象大致为( ) A . B . C . D .【答案】D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ;当x →+∞时,y →+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.10.(2015·浙江·高考真题(文))函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C .D .【答案】D【解析】【详解】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 考点:1.函数的基本性质;2.函数的图象.11.(2018·浙江·高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .【答案】D【解析】【详解】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令||()2sin 2x f x x =,因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.12.(2018·全国·高考真题(理))函数422y x x =-++的图像大致为 A . B .C .D .【答案】D【解析】【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<, 得22x <-或202x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.13.(2017·全国·高考真题(文))函数sin21cos x y x=-的部分图像大致为 A . B . C . D .【答案】C【解析】【详解】由题意知,函数sin 21cos x y x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos2y =>-,故排除A .故选C .点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.14.(2015·安徽·高考真题(理))函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C【解析】【详解】试题分析:函数在P 处无意义,由图像看P 在y 轴右侧,所以0,0c c -><,()200,0b f b c =>∴>,由()0,0,f x ax b =∴+=即b x a =-,即函数的零点000.0,0b x a a b c a=->∴<∴<,故选C . 考点:函数的图像。
2020年高考数学一轮复习讲练测专题2.4函数的图象(练)文(含解析)
专题2.4 函数的图象1.(2019·湖南长郡中学月考)函数f (x )=1-x2ex 的图象大致为( )【答案】D【解析】因为f (-x )=1-x2e -x ≠f (x )知f (x )的图象不关于y 轴对称,排除选项B ,C.又f (2)=1-4e 2=-3e2<0.排除A ,故选D.2. (2019·河北衡水二中月考)若函数f (x )=a x-b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1 【答案】D【解析】由图象从左向右下降,知0<a <1. 又y =f (x )与y 轴的交点(0,1-b ), 所以0<1-b <1,则0<b <1.3.(2019·陕西咸阳一中期中)函数f (x )=2|x |-x 2的图象大致为( )【答案】C【解析】由题意知,当x >0时,f ′(x )=2xln 2-2x ,当x →0时,2x→1,2x →0,f ′(x )>0,说明函数f (x )的图象在y 轴右侧开始时是递增的,故排除选项A ,B ,D ,选C.4.(2019·广东韶关一中月考)函数y =2xln |x |的图象大致为( )【答案】B【解析】函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},A 错;因为f (-x )=-2xln |x |=-f (x ),f (x )是奇函数,排除C 项;当x =2时,y =4ln 2>0,排除D 项,只有B 项适合.5.(2019·山东青岛二中期末)已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )【答案】D【解析】在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.6. (2019·江西上饶一中期末)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2} 【答案】C【解析】令g (x )=y =log 2(x +1),作出函数g (x )的图象如图所示.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1. 所以结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.7.(2019·福建宁德一中期末)函数f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x 的图象大致为( )【答案】A【解析】∵f (x )=⎝ ⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x )=-⎝ ⎛⎭⎪⎫2e x1+e x -1·sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x =2时,f (2)=⎝ ⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B ,选A.8. (2019·安徽安庆一中月考)若函数f (x )=(ax 2+bx )e x的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2 【答案】B【解析】令f (x )=0,则(ax 2+bx )e x=0,解得x =0或x =-ba ,由图象可知,-b a >1,又当x >-b a时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.9. (2019·浙江衢州一中期末)已知在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),该函数的图象与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )【答案】B【解析】由题意知,当-1<t <0时,S 越来越大,但增长的速度越来越慢.当t >0时,S 的增长速度会越来越快,故在S 轴右侧图象的切线斜率逐渐增大,选B.10. (2019·江苏泰州一中期末)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.【答案】{x |-1<x ≤1}【解析】令y =log 2(x +1),作出函数y =log 2(x +1)图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.11.(2019·北师大实验中学模拟)如图,矩形ABCD 的周长为8,设AB =x (1≤x ≤3),线段MN 的两端点在矩形的边上滑动,且MN =1,当N 沿A →D →C →B →A 在矩形的边上滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 围成的区域的面积为y ,则函数y =f (x )的图象大致为( )【答案】D【解析】由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x 2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分,且当x =2时,y =4-π4∈(3,4),故选D.12.(2019·安徽江淮十校联考)若直角坐标系内A 、B 两点满足:(1)点A 、B 都在f (x )图象上;(2)点A 、B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,2ex ,x ≥0,则f (x )的“和谐点对”有( )A .1个B .2个C .3个D .4个 【答案】B【解析】作出函数y =x 2+2x (x <0)的图象关于原点对称的图象,看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.13.(2019·吉林省实验中学模拟)函数f (x )=x +1x的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________.【答案】2【解析】因为f (x )=x +1x =1x+1,所以f (x )的图象关于点(0,1)对称,而直线y =kx +1过(0,1)点,故两图象的交点(x 1,y 1),(x 2,y 2)关于点(0,1)对称,所以y 1+y 22=1,即y 1+y 2=2.14.(2019·福建双十中学模拟)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.【答案】{x |x ≤0或1<x ≤2}【解析】画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f (x )≤0,或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.15.(2019·河北衡水中学模拟)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 【解析】(1)因为f (4)=0,所以4|m -4|=0,即m =4. (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4, f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞).1.【2019年高考全国Ⅰ卷文数】函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为( )A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .2.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )ay x =+ (a >0,且a ≠1)的图象可能是( )【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a =的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合.综上,选D. 3. (2018·全国卷Ⅱ)函数f (x )=e x-e-xx2的图象大致为( )【答案】 B【解析】 ∵y =e x -e -x 是奇函数,y =x 2是偶函数, ∴f (x )=e x-e-xx2是奇函数,图象关于原点对称,排除A 选项. 当x =1时,f (1)=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e-1e>1,排除C 选项.故选B.4. (2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )【答案】 D【解析】 令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x , 令f ′(x )=0,得x =0或x =±22, 则f ′(x )>0的解集为⎝⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22, f (x )在⎝ ⎛⎭⎪⎫-∞,-22,⎝ ⎛⎭⎪⎫0,22上单调递增;f ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,f (x )在⎝ ⎛⎭⎪⎫-22,0,⎝ ⎛⎭⎪⎫22,+∞上单调递减,结合图象知选D. 5.(2018·全国Ⅲ卷)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )【答案】B【解析】法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.6. (2018·浙江卷)函数y =2|x |·sin 2x 的图象可能是( )【答案】D【解析】设f (x )=2|x |sin 2x ,其定义域为R 且关于坐标原点对称,又f (-x )=2|-x |·sin(-2x )=-f (x ),所以y =f (x )是奇函数,故排除选项A ,B ;令f (x )=0,所以sin 2x =0,所以2x =k π(k ∈Z),即x =k π2(k ∈Z),故排除选项C.故选D.7.(2017·全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )【答案】C 【解析】令f (x )=sin 2x1-cos x,定义域为{x |x ≠2k π,k ∈Z},又f (-x )=-f (x ),所以f (x )在定义域内为奇函数,图象关于原点对称,B 不正确. 又f (1)=sin 21-cos 1>0,f (π)=0.选项A ,D 不正确,只有选项C 满足.11。
【创新设计】高考数学一轮总复习第四篇第2讲同角三角函数之间的关系与诱导公式课件理湘教版
(2)法一
sin12-x+ta2nsxin2x=2sin
xcos x+sin
1-csoins
x x
x
=2sin
x·cos cos
x·cos x+sin x-sin x
x=-22457×15=-12745.
5
法二
sin 由(1),得
sin
x+cos x-cos
x=15, x=-75
sin ⇒
cos
x
=-cos x·tan x=-sin x,
∴f-313π=-sin-313π=sin
31π 3
=sin10π+π3=sin π3= 23.
答案
(1)-1
3 (2) 2
方法优化4——灵活运用同角三角函数的基本关系式求值
【命题研究】 通过近三年的高考试题分析,主要考查用
同角三角函数关系及诱导公式进行化简、求值,多数
=tanπ4=….
三点提醒 (1)利用诱导公式进行化简求值时,先利用公式化任意角 的三角函数为锐角三角函数,其步骤:去负-脱周-化 锐,特别注意函数名称和符号的确定. (2)在利用同角三角函数的平方关系时,若开方,要特别 注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式 化.
考点自测
考向二 利用诱导公式求值
【例 2】►(1)已知 sinπ3-α=12,则 cosπ6+α=________; (2)已知 tanπ6-α= 33,则 tan56π+α=________. [审题视点] 已知条件或待求式比较复杂,需对比诱导公式 寻找已知角和待求角之间的关系.
2020届高考数学一轮复习2.4函数的图象课件
考点 20
考点 21
考点 22
解析 y=f(x)
y=f(-x)
y=f[-(x-2)]=f(2-x)
y=-f(2-x),故选 B.
本题求解时注意由f(-x)→f(2-x)时不是向左平移两个单位, 而需将f(2-x)化为f[-(x-2)],再分析平移的方向与大小.
考点 20
考点 21
考点 22
考点22函数图象的应用
2.4 函数的图象
2010—2019年高考全国卷考情一览表
年份 题号 考 点
考向
2012
理 10 函数图象的识别 根据解析式识别函数图象
2013 1 卷 文 9 函数图象的识别 根据解析式识别函数图象
2015 2 卷
理 10 文 11
函数图象的识别
动点轨迹的识别
2016 1 卷 理 7 文 9 函数图象的识别 根据解析式确定函数图象
考点
考点
考点
20
21
22
9.(2016·全国1,理7文9,5分,难度★★)函数y=2x2-e|x|在[-2,2]的图象大
致为( D )
解析特殊值验证法,取x=2,则y=2×4-e2≈8-2.7182≈0.6∈(0,1),排除
A,B;当0<x<2时,y=2x2-ex,则y'=4x-ex, 由函数零点的判定可知,y'=4x-ex在(0,2)内存在零点,即函数y=2x2-ex 在(0,2)内有极值点,排除C,故选D.
π
0,4
时,f(x)=tan x+
4 + tan2������,图象不是线段,从而排除
A,C;
∵f
π 4
=f
34π
高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数课件理北师大版
►考法 3 二次函数中的恒成立问题
【例 4】 (1)已知函数 f(x)=ax2-2x+2,若对一切 x∈12,2,f(x)>0 都成立,则实数 a 的取值范围为( )
A.12,+∞ C.[-4,+∞)
B.12,+∞ D.(-4,+∞)
(2)已知函数 f(x)=x2+mx-1,若对于任意 x∈[m,m+1],都有 f(x)<0
幂函数的图像及性质
1.幂函数 y=f(x)的图像经过点(3, 3),则 f(x)是( ) A.偶函数,且在(0,+∞)上是增函数 B.偶函数,且在(0,+∞)上是减函数 C.奇函数,且在(0,+∞)上是减函数 D.非奇非偶函数,且在(0,+∞)上是增函数
D
[设幂函数 f(x)=xα,则 f(3)=3α=
二次函数的图像与性质
►考法 1 二次函数的单调性
【例 2】 函数 f(x)=ax2+(a-3)x+1 在区间[-1,+∞)上是递减的,
则实数 a 的取值范围是( )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
D [当 a=0 时,f(x)=-3x+1 在[-1,+∞)上递减,满足题意. 当 a≠0 时,f(x)的对称轴为 x=3- 2aa, 由 f(x)在[-1,+∞)上递减知 a<0, 3- 2aa≤-1, 解得-3≤a<0. 综上,a 的取值范围为[-3,0].]
1
1
3.若(a+1)2<(3-2a)2,则实数 a 的取值范围是________.
-1,23
1
[易知函数 y=x2的定义域为[0,+∞),在定义域内为增函数,
a+1≥0, 所以3-2a≥0,
a+1<3-2a,
解之得-1≤a<23.]
【走向高考】(2013春季发行)高三数学第一轮总复习 2-4指数与指数函数 新人教A版
2-4指数与指数函数基础巩固强化1.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) A .|a |>1 B .|a |<2 C .|a |< 2 D .1<|a |< 2[答案] D[解析] 由题意知,0<a 2-1<1, ∴1<a 2<2,∴1<|a |< 2.2.(文)若指数函数y =a x的反函数的图象经过点(2,-1),则a 等于( ) A.12 B .2 C .3 D .10 [答案] A[解析] 运用原函数与反函数图象关于直线y =x 对称,则函数y =a x过点(-1,2),故选A.(理)(2011·山东文,3)若点(a,9)在函数y =3x的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 3[答案] D[解析] 由点(a,9)在函数y =3x图象上知3a=9, 即a =2,所以tana π6=tan π3= 3. 3.(2012·北京文,5)函数f (x )=x 12 -(12)x的零点个数为( )A .0B .1C .2D .3 [答案] B[解析] 函数f (x )=x 12-(12)x 的零点个数即为方程x 12 =(12)x的实根个数,在平面直角坐标系中画出函数y =x 12 和y =(12)x的图象,易得交点个数为1个.[点评] 本题考查函数零点问题和指数函数与幂函数的图象. 4.(文)在同一平面直角坐标系中,函数f (x )=2x +1与g (x )=21-x的图象关于( )A .原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称[答案] C [解析] y =2x +1的图象关于y 轴对称的曲线对应函数为y =21-x,故选C.(理)(2011·聊城模拟)若函数y =2|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m <0C .m ≥1D .0<m ≤1[答案] A[解析] ∵|1-x |∈[0,+∞),∴2|1-x |∈[1,+∞),欲使函数y =2|1-x |+m 的图象与x 轴有公共点,应有m ≤-1.5.(文)(2011·浙江省台州市模拟)若函数f (x )=⎩⎨⎧2x, x <1,x -1, x ≥1,且f (a )>1,则实数a 的取值范围是( )A .(0,1)B .(2,+∞)C .(0,1)∪(2,+∞)D .(1,+∞)[答案] C[解析] 由⎩⎪⎨⎪⎧a <1,2a>1,得0<a <1,由⎩⎨⎧a ≥1,a -1>1,得a >2,所以实数a 的取值范围是(0,1)∪(2,+∞).(理)函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1)D .(0,2)[答案] C[解析] 由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1.6.f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x x ≥4,f x +1 x <4.则f (2+log 23)的值为( )A.13 B.16 C.112D.124[答案] D[解析] ∵1<log 23<2,∴3<2+log 23<4, ∴f (2+log 23)=f (3+log 23)7.(文)(2011·青岛模拟)若定义运算a *b =⎩⎪⎨⎪⎧a a <b ,b a ≥b ,则函数f (x )=3x *3-x的值域是________.[答案] (0,1][解析] 由a *b 的定义知,f (x )取y =3x 与y =3-x的值中的较小的,∴0<f (x )≤1. (理)(2011·广东省汕头市四校联考)如图所示的算法流程图中,若f (x )=2x,g (x )=x 2,则h (3)的值等于________.[答案] 9[解析] 由程序框图可知,h (x )的值取f (x )与g (x )的值中较大的,∵f (3)=23=8,g (3)=32=9,9>8,∴h (3)=9.8.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0.则不等式|f (x )|≥13的解集为________.[答案] [-3,1] [解析]f (x )的图象如图.|f (x )|≥13⇒f (x )≥13或f (x )≤-13.∴⎝ ⎛⎭⎪⎫13x ≥13或1x≤-13∴0≤x ≤1或-3≤x <0,∴解集为{x |-3≤x ≤1}.9.定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]的长度的最大值为______,最小值为______.[答案] 4 2[解析] 由3|x |=1得x =0,由3|x |=9得x =±2,故f (x )=3|x |的值域为[1,9]时,其定义域可以为[0,2],[-2,0],[-2,2]及[-2,m ],0≤m ≤2或[n,2],-2≤n ≤0都可以,故区间[a ,b ]的最大长度为4,最小长度为2.10.(文)已知f (x )是定义在R 上的奇函数,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,1)上的解析式; (2)证明:f (x )在(0,1)上是减函数.[解析] (1)∵f (x )是R 上的奇函数,∴f (0)=0, 又当x ∈(-1,0)时,-x ∈(0,1), ∴f (-x )=2-x 4-x +1=2x1+4x ,∵f (-x )=-f (x ),∴f (x )=-2x1+4x ,∴f (x )在(-1,1)上的解析式为f (x )=⎩⎪⎨⎪⎧2x4x+1x ∈0,1,-2x 4x+1 x ∈-1,0,0 x =0.(2)当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1,则f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=2x 2-2x 12x 1+x 2-14x 1+14x 2+1,∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,1)上是减函数.(理)已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.[分析] (1)判断奇偶性应先求定义域后计算f (-x ),看是否等于f (x )(或-f (x )); (2)可用单调性定义,也可用导数判断f (x )的单调性;(3)b ≤f (x )恒成立,只要b ≤f (x )min ,由f (x )的单调性可求f (x )min . [解析] (1)函数定义域为R ,关于原点对称. 又因为f (-x )=aa 2-1(a -x -a x)=-f (x ), 所以f (x )为奇函数. (2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x 为增函数,所以f (x )为增函数.当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x 为减函数,所以f (x )为增函数.故当a >0,且a ≠1时,f (x )在定义域内单调递增. (3)由(2)知f (x )在R 上是增函数,∴在区间[-1,1]上为增函数,∴f (-1)≤f (x )≤f (1), ∴f (x )min =f (-1)=a a 2-1(a -1-a )=aa 2-1·1-a2a=-1.∴要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1,故b 的取值范围是(-∞,-1].能力拓展提升11.(文)(2012·四川文)函数y =a x-a (a >0,且a ≠1)的图象可能是( )[答案] C[解析] 根据函数y =a x-a 过定点(1,0),排除A 、B 、D 选项,得C 项正确. (理)函数f (x )=1+log 2x 与g (x )=2-x +1在同一直角坐标系内的图象大致是( )[分析] 函数f (x )=1+log 2x 的图象可由函数y =log 2x 的图象变换得到;函数y =2-x+1可由函数y =(12)x的图象变换得到.[答案] C[解析] f (x )=1+log 2x 的图象是由y =log 2x 的图象向上平移一个单位长度得到的;g (x )=2-x +1=(12)x -1的图象可由y =(12)x 的图象向右平移一个单位长度得到.[点评] 幂、指、对函数的图象与性质是高考又一主要命题点,解决此类题的关键是熟记一次函数、二次函数,含绝对值的函数、基本初等函数的图象特征分布规律,相关性质,掌握平移伸缩变换和常见的对称特征,掌握识、画图的主要注意事项,学会识图、用图.12.(文)(2011·广州市综合测试)函数f (x )=e x+e -x(e 为自然对数的底数)在(0,+∞)上( )A .有极大值B .有极小值C .是增函数D .是减函数[答案] C[解析] 设0<x 1<x 2,则f (x 2)-f (x 1)=ex 2+1ex 2-ex 1-1ex 1=(ex 2-ex 1)-ex 2-ex 1ex 2ex 1=(ex 2-ex 1)(1-1ex 2ex 1)>0,所以函数f (x )=e x +e -x(e 为自然对数的底数)在(0,+∞)上是增函数.(理)(2011·大连模拟)已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n=f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .[94,3)B .(94,3)C .(2,3)D .(1,3)[答案] C[解析] ∵{a n }是递增数列, ∴f (n )为单调增函数,∴⎩⎪⎨⎪⎧a >1,3-a >0,a 8-6>3-a ×7-3,∴2<a <3.13.(2011·陕西师大附中一模)设2a =5b=m ,且1a +1b=2,则m =________.[答案] 10[解析] ∵2a=5b=m , ∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.14.(文)(2011·南通六校联考)已知a =5-12,函数f (x )=a x,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.[答案] m <n [解析] ∵a =5-12∈(0,1),∴y =a x是减函数, 故a m>a n⇒m <n .(理)已知⎝ ⎛⎭⎪⎫2x -229的展开式的第7项为214,则x 的值为________. [答案] -13[解析] T 7=C 69(2x )3·⎝ ⎛⎭⎪⎫-226=212×8x =214, ∴3x =-1,∴x =-13.15.(文)(2011·上海吴淞中学月考)已知函数f (x )=a ·2x +a -22x+1是奇函数.(1)求a 的值;(2)判断函数f (x )的单调性,并用定义证明; (3)求函数的值域.[解析] (1)∵f (x )的定义域为R ,且为奇函数. ∴f (0)=0,解得a =1.(2)由(1)知,f (x )=2x-12x +1=1-22x +1,∴f (x )为增函数.证明:任取x 1,x 2∈R ,且x 1<x 2.f (x 1)-f (x 2)=1-22x 1+1-1+22x 2+1=22x 1-2x 22x 1+12x 2+1,∵x 1<x 2,∴2x 1-2x 2<0,且2x 1+1>0,2x 2+1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )为R 上增函数.(3)令y =2x-12x +1,则2x=-1-y y -1,∵2x>0,∴-1-y y -1>0,∴-1<y <1.∴函数f (x )的值域为(-1,1).(理)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫12x+⎝ ⎛⎭⎪⎫14x . (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.[解析] (1)当a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x.因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,即f (x )在(-∞,0)上的值域为(3,+∞).故不存在常数M >0,使|f (x )|≤M 成立. 所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[0,+∞)上恒成立.∴-3≤f (x )≤3,即-4-⎝ ⎛⎭⎪⎫14x ≤a ·⎝ ⎛⎭⎪⎫12x ≤2-⎝ ⎛⎭⎪⎫14x,∴-4·2x -⎝ ⎛⎭⎪⎫12x ≤a ≤2·2x-⎝ ⎛⎭⎪⎫12x 在[0,+∞)上恒成立,设2x=t ,h (t )=-4t -1t ,p (t )=2t -1t,由x ∈[0,+∞)得t ≥1, 设1≤t 1<t 2,h (t 1)-h (t 2)=t 2-t 14t 1t 2-1t 1t 2>0p (t 1)-p (t 2)=t 1-t 22t 1t 2+1t 1t 2<0所以h (t )在[1,+∞)上递减,p (t )在[1,+∞)上递增,h (t )在[1,+∞)上的最大值为h (1)=-5,p (t )在[1,+∞)上的最小值为p (1)=1,所以实数a 的取值范围为[-5,1].1.若关于x 的方程|a x-1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞) D .(0,12)[答案] D[解析] 若a >1,如图(1)为y =|a x-1|的图象,与y =2a 显然没有两个交点;当0<a <1时,如图(2),要使y =2a 与y =|a x-1|的图象有两个交点,应有2a <1,∴0<a <12.2.设函数f (x )=|2x-1|的定义域和值域都是[a ,b ](b >a ),则a +b 等于( ) A .1 B .2 C .3 D .4 [答案] A[解析] 因为f (x )=|2x-1|的值域为[a ,b ],所以b >a ≥0,而函数f (x )=|2x-1|在[0,+∞)内是单调递增函数,因此应有⎩⎪⎨⎪⎧|2a-1|=a ,|2b-1|=b ,解得⎩⎪⎨⎪⎧a =0,b =1,所以有a +b =1,选A.[点评] 本题解题的关键在于首先由函数的值域推出b >a ≥0,从而避免了对a 、b 的各种可能存在情况的讨论,然后根据函数的单调性,建立关于a 、b 的方程组求解.3.(2011·石家庄一中模拟)若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2xB .log 12xC.12x D .x 2[答案] B[解析] 函数y =a x的反函数是f (x )=log a x , ∵其图象经过点(a ,a ),∴a =log a a ,∴a =12,∴f (x )=log 12x .4.已知所有的点A n (n ,a n )(n ∈N *)都在函数y =a x(a >0,a ≠1)的图象上,则a 3+a 7与2a 5的大小关系是( )A .a 3+a 7>2a 5B .a 3+a 7<2a 5C .a 3+a 7=2a 5D .a 3+a 7与2a 5的大小关系与a 的值有关 [答案] A[解析] 因为所有的点A n (n ,a n )(n ∈N *)都在函数y =a x(a >0,a ≠1)的图象上,所以有a n =a n ,故a 3+a 7=a 3+a 7,由基本不等式得:a 3+a 7>2a 3·a 7=2a 10=2a 5,∴a 3+a 7>2a 5(因为a >0,a ≠1,从而基本不等式的等号不成立),故选A.5.(2011·山东济南一模)若实数x ,y 满足4x+4y=2x +1+2y +1,则t =2x +2y的取值范围是( )A .0<t ≤2B .0<t ≤4C .2<t ≤4D .t ≥4[答案] C[解析] 由4x+4y=2x +1+2y +1,得(2x+2y )2-2×2x×2y =2(2x+2y). 即t 2-2·2x +y=2t ,t 2-2t =2·2x +y.又由2x+2y≥22x +y,得2x +y≤14(2x +2y )2, 即2x +y≤14t 2. 所以0<t 2-2t ≤12t 2.解得2<t ≤4.6.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x x ≤1,log 2x -1 x >1,则f (x )≤12的解集为________.[答案] [1,2+1] [解析] 由f (x )≤12得,⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ≤12,x ≤1,或⎩⎪⎨⎪⎧log 2x -1≤12,x >1,∴x =1或1<x ≤2+1,∴1≤x ≤2+1,故解集为[1,2+1].7.(2011·潍坊模拟)设f (x )是定义在实数集R 上的函数,满足条件y =f (x +1)是偶函数,且当x ≥1时,f (x )=2x-1,则f (23)、f (32)、f (13)的大小关系是________.[答案] f (23)<f (32)<f (13)[解析] 由f (x +1)=f (-x +1)知f (x )的图象关于直线x =1对称,x ≥1时,f (x )为单调增函数,则x ≤1时,f (x )为单调减函数.又f (32)=f (1+12)=f (1-12)=f (12),13<12<23,∴f (23)<f (32)<f (13).8.已知函数f (x )=a x+a -x(a >0,a ≠1),若f (-1)=3,则f (0)+f (2)的值为________. [答案] 9[解析] 由f (-1)=3得a +1a=3,于是f (2)=a 2+1a 2=(a +1a)2-2=32-2=7.又∵f (0)=1+1=2,∴f (0)+f (2)=9.。
高考数学第一轮复习:《函数的图象》
高考数学第一轮复习:《函数的图象》最新考纲1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题.【教材导读】若函数y=f(x+a)是偶函数(奇函数),那么y=f(x)的图象的对称性如何?提示:由y=f(x+a)是偶函数可得f(a+x)=f(a-x),故f(x)的图象关于直线x=a对称(由y=f(x+a)是奇函数可得f(x+a)=-f(a-x),故f(x)的图象关于点(a,0)对称).1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.图象变换(1)平移变换(2)对称变换①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称;③y=f(x)与y=-f(-x)关于原点对称;④y=a x(a>0且a≠1)与y=log a x(a>0且a≠1)关于y=x对称.(3)翻折变换①y=f(x)――→保留x轴上方图象将x轴下方图象翻折上去y=|f(x)|.②y=f(x)――→保留y轴右边图象,并作其关于y轴对称的图象y=f(|x|).(4)伸缩变换①y=f(x) y=f(ax).②y=f(x)――→a>1,纵向伸长为原来的a倍0<a<1,纵向缩短为原来的a倍y=af(x).【重要结论】1.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=f(b-x),则函数f(x)的图象关于直线x=a+b2对称.特别地,若f(a+x)=f(a-x),则函数f(x)的图象关于直线x=a对称.2.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=-f(b-x),则函数f(x)的图象关于点a+b2,0中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)的图象关于点(a,0)中心对称.1.为了得到函数y=lg x+310的图象,只需把函数y=lg x的图象上所有的点()(A)向左平移3个单位长度,再向上平移1个单位长度(B)向右平移3个单位长度,再向上平移1个单位长度(C)向左平移3个单位长度,再向下平移1个单位长度(D)向右平移3个单位长度,再向下平移1个单位长度答案:C2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()答案:B3.函数f(x+2)的图象关于直线x=2对称,则函数f(x)的图象关于()(A)原点对称(B)直线x=2对称(C)直线x=0对称(D)直线x=4对称答案:D4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).答案:④5.使log2(-x)<x+1成立的x的取值范围是________.答案:x∈(-1,0)考点一作函数的图象作出下列函数的图象.(1)y=x2-2x(|x|>1);(2)y=|x-2|·(x+2);(3)y=2x-1x-1;(4)y=|log2x-1|.解:(1)因为|x|>1,所以x<-1或x>1,图像是两段曲线,如图.(2)函数式可化为y =⎩⎪⎨⎪⎧x 2-4,x ≥2,-x 2+4,x <2,其函数图像如图(3)y =2x -1x -1=2+1x -1,故函数图像可由函数y =1x 的图像向右平移1个单位长度,再向上平移2个单位长度得到,如图.(4)先作出函数y =log 2x 的图像,再将该图像向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图像翻折到x 轴上方,即得到y =|log 2x -1|的图像,如图.【反思归纳】 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.(2)图象变换法.若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本初等函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.提醒:可先化简函数解析式,再利用图象的变换作图. 【即时训练】 作出下列函数的图象: (1)y =sin |x |;(2)y =e ln x .解:(1)当x ≥0时,y =sin |x |与y =sin x 的图象完全相同, 又y =sin |x |为偶函数,其图象关于y 轴对称,其图象如图.(2)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图像如图所示.考点二 函数图象的识别(1)函数f (x )=ln ⎝ ⎛⎭⎪⎫x -1x 的图象是( )(2)如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O 沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:(1)B(2)如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,由0≤t≤1,知|AO|=1-t,cos x2=|OA||OM|=1-t,∴y=cos x=2cos2x2-1=2(t-1)2-1.故选B.【反思归纳】知式选图的策略(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特殊点(与坐标轴的交点、经过的定点、极值点等),排除不合要求的图象.提醒:注意联系基本初等函数图象的模型,当选项无法排除时,代特殊值,或从某些量上寻找突破口.【即时训练】(2018全国Ⅱ卷)函数f(x)=e x-e-xx2的图象大致为()A BC DB解析:∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项.当x=1时,f(1)=e-e-11=e-1e>0,排除D选项.又e>2,∴ 1e <12,∴ e -1e >1,排除C 选项. 故选B.考点三 函数图象的应用(高频考点) 考查角度1:研究函数的性质.(2016高考全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )(A)各月的平均最低气温都在0 ℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20 ℃的月份有5个 解析:依据给出的雷达图,逐项验证.对于选项A ,由图易知各月的平均最低气温都在0 ℃以上,A 正确;对于选项B ,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B 正确;对于选项C ,三月和十一月的平均最高气温均为10 ℃,所以C 正确;对于选项D ,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D 错误.【反思归纳】 知图选式或选性质的策略(1)从图象的左右、上下分布,观察函数的定义域、值域; (2)从图象的变化趋势,观察函数的单调性; (3)从图象的对称性方面,观察函数的奇偶性; (4)从图象的循环往复,观察函数的周期性; (5)从图象与x 轴的交点情况,观察函数的零点. 利用上述方法,排除、筛选错误与正确的选项. 考查角度2:确定函数零点(方程根)的个数.已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,恒有f (x )<12,则实数a 的取值范围是________.解析:由题意知,当x ∈(-1,1)时,f (x )=x 2-a x <12,即x 2-12<a x .在同一平面直角坐标系中分别作出二次函数y =x 2-12,指数函数y =a x 的图像(图略).当x ∈(-1,1)时,要使指数函数的图像恒在二次函数图像的上方,则⎩⎪⎨⎪⎧a -1≥12,a ≥12,a ≠1,所以12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.答案:[12,1)∪(1,2]【反思归纳】 构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.考查角度3:求参数的取值范围.已知函数f (x )=⎩⎨⎧1-|x +1|,x ∈[-2,0]f x -2,x ∈0,+∞,若函数g (x )=13x -f (x )+b 在区间[-2,6]内有3个零点,则实数b 的取值范围是________.解析:若0≤x ≤2,则-2≤x -2≤0,∴f(x)=f(x-2)=1-|x-2+1|=1-|x-1|,0≤x≤2. 若2≤x≤4,则0≤x-2≤2,∴f(x)=f(x-2)=1-|x-2-1|=1-|x-3|,2≤x≤4. 若4≤x≤6,则2≤x-2≤4,∴f(x)=f(x-2)=1-|x-2-3|=1-|x-5|,4≤x≤6. ∴f(1)=1,f(2)=0,f(3)=1,f(5)=1,设y=f(x)和y=13x+b,则方程f(x)=13x+b在区间[-2,6]内有3个不等实根,等价为函数y=f(x)和y=13x+b在区间[-2,6]内有3个不同的零点.作出函数f(x)和y=13x+b的图象,如图:当直线经过点F(4,0)时,两个图象有2个交点,此时直线y=13x+b为y=13x-43,当直线经过点D(5,1),E(2,0)时,两个图象有3个交点;当直线经过点O(0,0)和C(3,1)时,两个图象有3个交点,此时直线y=13x+b为y=13x,当直线经过点B(1,1)和A(-2,0)时,两个图象有3个交点,此时直线y=13x+b为y=1 3x+2 3,∴要使方程f(x)=13x+b,在区间[-2,6]内有3个不等实根,两个图象有3个交点,则b ∈(-43,23], 故答案为:(-43,23].【反思归纳】 由函数零点的个数或由方程根的个数确定参数的取值(范围),常常转化为两函数图象交点个数问题;利用数形结合可求出参数取值(范围).考查角度4:求不等式的解集.已知f (x )=⎩⎨⎧-x -a 2,x ≥0,-x 2-2x -3+a ,x <0,若∀x ∈R ,f (x )≤f (0)恒成立,则实数a 的取值范围为________.解析:由题意,若∀x ∈R ,f (x )≤f (0)即函数f (x )max =f (0)=-a 2, 要使得函数的最大值为-a 2,当x ≥0时,f (x )=-(x -a )2,此时函数的对称轴x =a ≤0,当x <0时,f (x )=-x 2-2x -3+a ,开口向下,对称的方程x =-1, 则f (-1)=-1+2-3+a ≤-a 2,即a 2+a -2≤0,解得-2≤a ≤1, 综上所述,实数a 的取值范围是[-2,0]. 答案:[-2,0]【反思归纳】 当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.利用函数的变化趋势识别函数图象函数y =2|x |sin 2x 的图象可能是( )(A)(B)(C)(D) 审题指导关键点所获信息函数的解析式函数的奇偶性解题突破:用解析式找出函数图象的特殊点.解析:由y=2|x|sin 2x知函数的定义域为R,令f(x)=2|x|sin 2x,则f(-x)=2|-x|sin (-2x)=-2|x|sin 2x.∵f(x)=-f(-x),∴f(x)为奇函数.∴f(x)的图象关于原点对称,故排除A,B.令f(x)=2|x|sin 2x=0,解得x=kπ2(k∈Z),∴当k=1时,x=π2,故排除C.故选D.答案:D命题意图:本题主要考查函数的奇偶性及函数的特殊点坐标,考查学生的识图、读图以及转化能力.课时作业基础对点练(时间:30分钟)1.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,那么它的图象可能是( )答案:D2.若当x ∈R 时,y =1-a |x |均有意义,则函数y =log a |1x |的图象大致是( )答案:B3.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) (A)0<a -1<b <1 (B)0<b <a -1<1 (C)0<b -1<a <-1 (D)0<a -1<b -1<1答案:A4.若直角坐标平面内A 、B 两点满足条件:①点A 、B 都在f (x )的图象上;②点A 、B 关于原点对称,则对称点对(A ,B )是函数的一个“兄弟点对”(点对(A ,B )与(B ,A )可看作一个“兄弟点对”).已知函数f (x )=⎩⎨⎧cos x x ≤0,lg x x >0,则f (x )的“兄弟点对”的个数为( )(A)2 (B)3 (C)4 (D)5 D解析:设P (x ,y )(x <0),则点P 关于原点的对称点为(-x ,-y ),于是cos x =-lg(-x ),只要判断方程根的个数,即y =cos x 与y =-lg(-x )(x <0)图象的交点个数,在同一个坐标系中作出它们的图象,如图所示.所以f (x )的“兄弟点对”的个数为5.故选D. 5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则y =f (2-x )的图象大致是( )A 解析:由题可得y =f (2-x )=⎩⎨⎧32-x ,x ≥1,log 132-x ,x <1,故函数y =f (2-x )仍是分段函数,且以x =1为界分段,只有A 符合条件.6.已知函数f (x )=⎩⎪⎨⎪⎧1x-x ,x <0|ln x |,x >0,则关于x 的方程[f (x )]2-f (x )+a =0(a ∈R )的实根个数不可能为( )(A)2 (B)3 (C)4 (D)5A 解析:当x <0时,f ′(x )=-1x 2-1<0, ∴f (x )在(-∞,0)上是减函数,当x >0时,f (x )=|ln x |=⎩⎪⎨⎪⎧-ln x ,0<x <1ln x ,x ≥1,∴f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,做出f (x )的大致函数图象如图所示:设f (x )=t ,则当t <0时,方程f (x )=t 有一解, 当t =0时,方程f (x )=t 有两解, 当t >0时,方程f (x )=t 有三解. 由[f (x )]2-f (x )+a =0,得t 2-t +a =0.若方程t 2-t +a =0有两解t 1,t 2,则 t 1+t 2=1, ∴方程t 2-t +a =0不可能有两个负实数根, ∴方程[f (x )]2-f (x )+a =0,不可能有2个解. 故选A.7.设函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,x 12, x >0若f (x 0)>1,则x 0的取值范围是________.解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.解析:当-1≤x ≤0时, 设解析式为y =kx +b , 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. 所以y =x +1.当x >0时,设解析式为y =a (x -2)2-1, 因为图象过点(4,0), 所以0=a (4-2)2-1, 得a =14,所以y =14(x -2)2-1. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >09.设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称. 其中正确的是________.解析:y =2x -1x -2=2x -2+3x -2=2+3x -2, 图象如图所示.可知②③正确. 答案:②③10.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2x +22x ,x ≥2,若0<a <b <c ,且f (a )=f (b )=f (c ),则abfc 的范围为________.解析:函数图象如图:若f (a )=f (b )=f (c ),则|log 2a |=|log 2b |,即-log 2a =log 2b ,∴log 2(ab )=0,ab =1,f (c )∈(12,1), ∴abf c ∈(1,2). 答案:(1,2)能力提升练(时间:15分钟)11.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )(A)a >0,b >0,c <0 (B)a <0,b >0,c >0 (C)a <0,b >0,c <0 (D)a <0,b <0,c <0C 解析:由图可知-c >0,∴c <0,令x =0,f (0)=b c 2>0,∴b >0,令y =0,x =-ba >0,∴a <0,故选C.12.已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎨⎧x ,x ∈[0,1]-x 2+2x ,x ∈[1,2],则函数y =f (x )在[2,4]上的大致图象是( )A 解析:当2≤x <3,0≤x -2<1. ∵f (x +2)=2f (x ), ∴f (x )=2f (x -2)=2x -4; 当3≤x ≤4,1≤x -2≤2. ∵f (x +1)=2f (x ),∴f (x )=2f (x -2)=-2(x -2)2+4(x -2)=-2x 2+12x -16; ∴f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[2,3,-2x 2+12x -16,x ∈[3,4].故选A.13.函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )(x ∈[-π,π])的图象大致是( )B 解析:因为f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )=-x e cos x ,则f (-x )=x e cos(-x )=x e cos x =-f (x ),所以函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )为奇函数,根据图象排除A 、C ;由于f ⎝ ⎛⎭⎪⎫π2=-π2f (π)=-πe ,即f ⎝ ⎛⎭⎪⎫π2<f (π),排除D ,故选B.14.(2019新余二模)函数y =2xln|x |的图象大致为( )B 解析:函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},故排除A. ∵f (-x )=-2xln|x |=-f (x ),排除C. 当x =2时,y =4ln 2>0,排除D.故选B.15.已知函数y =|x 2-1|x -1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是________. 解析:y =|x 2-1|x -1=|x +1x -1|x -1=⎩⎪⎨⎪⎧-x -1,x ∈-1,1,x +1,x ∈-∞,-1]∪1,+∞,函数图象如图实线部分所示,结合图象知k ∈(0,1)∪(1,2).答案:(0,1)∪(1,2)16.(2019银川模拟)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数.求实数a 的取值范围.解:(1)设f (x )的图象上任一点的坐标为P (x ,y ),点P 关于点A (0,1)的对称点P ′(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x . (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 在[1,2]上恒成立,注意到函数r (x )=3x +1x 在[1,2]上单调递增.故r (x )min =r (1)=4.于是2a ≤4,a ≤2.。
(通用版)2020高考数学一轮复习2.4函数的图象讲义(理)
第四节函数的图象1.描点法作函数图象通过列表、描点、连线三个步骤,画出函数图象.用描点法在选点时往往选取特殊点,有时也可利用函数的性质(如单调性、奇偶性、周期性)画出图象.“左加右减,上加下减”.左加右减只针对x 本身,与x 的系 数无关;上加下减指的是在f (x ) 整体上加减.2.函数图象的变换(1)平移变换(2)对称变换y =f (x )的图象――→关于x 轴对称 y =-f (x )的图象; y =f (x )的图象――→关于y 轴对称 y =f (-x )的图象; y =f (x )的图象――→关于原点对称y =-f (-x )的图象; y =a x (a >0,且a ≠1)的图象――→关于直线y =x 对称 y =log a x (a >0,且a ≠1)的图象. (3)翻折变换y =f (x )的图象――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; y =f (x )的图象――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.图象变换的注意点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次变换所得图象对应的解析式,这样才能避免出错.[熟记常用结论]1.对于函数y =f (x )定义域内任意一个x 的值,若f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b 2对称.2.对于函数y =f (x )定义域内任意一个x 的值,若f (a +x )=-f (b -x ),则函数f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0中心对称. [小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )答案:(1)× (2)× (3)× (4)√二、选填题1.下列图象是函数y =⎩⎪⎨⎪⎧ x 2,x <0,x -1,x ≥0的图象的是( )答案:C2.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A .1B .2C .3D .4解析:选A 将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h 和时间t 之间的关系可以从高度随时间的变化率上反映出来.图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 解析:选D 与曲线y =e x 关于y 轴对称的图象对应的解析式为y =e -x ,将函数y =e-x 的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e-(x +1)=e -x -1,故选D. 4.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8]. 答案:(2,8]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意得a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧ 2x ,x ≥0,0,x <0,其图象如图所示,故要使a =|x |+x 只有一个解,则a >0.答案:(0,+∞)考点一 函数图象的识别[全析考法过关][考法全析]考法(一) 知式选图[例1] (2018·全国卷Ⅱ)函数f (x )=e x -e -x x2的图象大致为( )[解析] ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x2是奇函数,图象关于原点对称,排除A 选项. 当x =1时,f (1)=e -1e>0,排除D 选项.又e>2,∴1e <12,∴e -1e>1,排除C 选项.故选B. [答案] B[例2] (2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )[解析] 令f (x )=-x 4+x 2+2,则f ′(x )=-4x 3+2x ,令f ′(x )=0,得x =0或x =±22, 则f ′(x )>0的解集为⎝⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22, f (x )在⎝ ⎛⎭⎪⎫-∞,-22,⎝ ⎛⎭⎪⎫0,22上单调递增;f ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,f (x )在⎝ ⎛⎭⎪⎫-22,0,⎝ ⎛⎭⎪⎫22,+∞上单调递减,结合图象知选D. [答案] D考法(二) 借助动点探究函数图象[例3] 广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为O ,O 1,O 2,若一动点P 从点A 出发,按路线A →O →B →C →A →D →B 运动(其中A ,O ,O 1,O 2,B 五点共线),设P 的运动路程为x ,y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象为( )[解析] 根据题图中信息,可将x 分为4个区间,即[0,π),[π,2π),[2π,4π),[4π,6π],当x ∈[0,π)时,函数值不变,y =f (x )=1;当x ∈[π,2π)时,设O 2P ―→与O 2O 1―→的夹角为θ,∵|O 2P ―→|=1,|O 2O 1―→ |=2,θ=x -π,∴y =(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,∴y =f (x )的图象是曲线,且单调递增;当x ∈[2π,4π)时,O 1P ―→=OP ―→-OO 1―→,设OP ―→与OO 1―→的夹角为α,|OP ―→|=2,|OO 1―→|=1,α=π-⎝⎛⎭⎪⎫x -2π2=2π-12x ,∴y =|O 1P |2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos x 2,函数y =f (x )的图象是曲线,且单调递减.结合选项知选A.[答案] A考法(三) 图象变换问题[例4] 已知函数y =f (1-x )的图象如图,则y =|f (x +2)|的图象是( )[解析] (1)把函数y =f (1-x )的图象向左平移1个单位得y =f (-x )的图象;(2)作出f (-x )关于y 轴对称的函数图象得y =f (x )的图象;(3)将f (x )向左平移2个单位得y =f (x +2)的图象;(4)将y =f (x +2)的图象在x 轴下方的部分关于x 轴对称翻折到x 轴上方得到|f (x +2)|的图象.[答案] A[规律探求]看个性考法(一)是知式选图,解决此类问题常有以下策略:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性(有时可借助导数),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特殊点(与坐标轴的交点、经过的定点、极值点等),排除不合要求的图象.考法(二)是求解因动点变化而形成的函数图象问题,既可以根据题意求出函数解析式后判断图象,也可以将动点处于某特殊位置时考查图象的变化特征后作出选择.考法(三)图象变换问题,只需遵守图象变换规则即可找共性 解决函数图象的识别问题, 注意“三关”:(1)取“特殊点关”,即根据已知函数的解析式选取特殊的点,判断选项中的图象是否经过这些点,若不满足则排除;(2)用“性质关”,即根据选项中的图象特点,结合函数的奇偶性、单调性等来排除选项; (3)用“极限思想关”,即应用极限思想来处理,达到巧解妙算的效果,使解题过程费时少,准确率高[过关训练]1.函数y =(x 3-x )2|x |的图象大致是( )解析:选B 易判断函数为奇函数,由y =0得x =±1或x =0.当0<x <1时,y <0;当x >1时,y >0.故选B.2.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C.当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4=1+5,f ⎝ ⎛⎭⎪⎫π2=2 2.∵22<1+5,∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B. 3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )解析:选A 先作出函数f (x )=log a x (0<a <1)的图象,当x >0时,y =f (|x |+1)=f (x +1),其图象由函数f (x )的图象向左平移1个单位得到,又函数y =f (|x |+1)为偶函数,所以再将函数y =f (x +1)(x >0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象,故选A.考点二 函数图象的应用[全析考法过关][考法全析]考法(一) 研究函数的性质[例1] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)[解析] 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.[答案] C考法(二) 研究不等式的求解问题[例2] (1)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -x x<0的解集为( ) A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1) (2)若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2]B.⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)[解析] (1)因为f (x )为奇函数,所以不等式f x -f -x x <0可化为f x x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).(2)要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].故选A.[答案] (1)D (2)A考法(三) 研究方程根的问题[例3] (2019·沈阳质量监测)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎪⎫22x -1,则关于x 的方程f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( )A .1B .2C .3D .4[解析] 因为对任意的x ∈R ,都有f (x +2)=f (2-x ),所以f (x )的图象关于直线x =2对称,又f (x )是定义在R 上的偶函数,所以f (x +2)=f (2-x )=f (x -2),f (x +4)=f (x ),函数f (x )是周期为4的函数,则函数y =f (x )的图象与y =log 8(x +2)的图象交点的个数即方程f (x )-log 8(x +2)=0根的个数.作出y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,易知两个函数在区间(-2,6)上的图象有3个交点,所以方程f (x )-log 8(x +2)=0在区间(-2,6)上有3个根,故选C.[答案] C[规律探求]看个性 考法(一)是利用函数图象研究函数性质.常从以下几个角度分析研究:(1)从图象的最高点、最低点,分析函数的最值、极值;(2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.考法(二)利用函数图象研究不等式.通过函数图象把不等式问题转化为两函数图象的上下关系或函数图象与坐标轴的位置关系来解决问题.考法(三)是利用图象研究方程根的问题.其依据是:方程f (x )=0的根就是函数f (x )图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标找共性求解函数图象的应用问题,其实质是利用数形结合思想解题,其思维流程一般是:1.(2019·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 如图,画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.2.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析:选D 函数f (x )的图象如图所示.f (-x )=f (x ),则函数f (x )是偶函数,且在[0,+∞)上是增函数.又0<|x 1|<|x 2|,则f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.3.已知直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.解析:y =⎩⎪⎨⎪⎧ x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出其图象,如图所示.此曲线与y 轴交于点(0,a ),最小值为a -14,要使直线y =1与其有四个交点,只需a -14<1<a ,所以1<a <54. 答案:⎝ ⎛⎭⎪⎫1,54 [课时跟踪检测]一、题点全面练1.函数f (x )=x e -|x |的图象可能是( )解析:选C 因为函数f (x )的定义域为R ,f (-x )=-f (x ),所以函数f (x )为奇函数,排除A 、B ;当x ∈(0,+∞)时,f (x )=x e -x ,因为e -x >0,所以f (x )>0,即f (x )在x ∈(0,+∞)时,其图象恒在x 轴上方,排除D ,故选C.2.若函数f (x )=⎩⎪⎨⎪⎧ ax +b ,x <-1,ln x +a ,x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选 C 由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧ 2x +5,x <-1,ln x +2,x ≥-1,故f (-3)=2×(-3)+5=-1,故选C.3.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:选B 函数y =f (x )的图象与函数y =f (a -x )的图象关于直线x =a2对称,令a =2可得与函数y =ln x 的图象关于直线x =1对称的是函数y =ln(2-x )的图象.故选B. 4.已知f (x )=⎩⎨⎧ -2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D 在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.5.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析:选C 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后向左平移一个单位长度得到y =-f (x +1)的图象,根据上述步骤可知C 正确.6.(2019·汉中模拟)函数f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x 的图象大致为( )解析:选 A ∵f (x )=⎝⎛⎭⎪⎫21+e x -1·sin x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1·sin(-x )=-⎝ ⎛⎭⎪⎫2e x1+e x -1·sin x =⎝ ⎛⎭⎪⎫21+e x -1·sin x =f (x ),∴函数f (x )为偶函数,故排除C 、D ;当x=2时,f (2)=⎝⎛⎭⎪⎫21+e 2-1·sin 2<0,故排除B ,选A.7.若函数f (x )=(ax 2+bx )e x的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B 令f (x )=0,则(ax 2+bx )e x=0,解得x =0或x =-ba ,由图象可知,-b a>1,又当x >-b a时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B.8.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x,2x -3,6-x },则M 的最小值是( )A .2B .3C .4D .6解析:选C 画出函数M =max{2x,2x -3,6-x }的图象如图中实线部分所示,由图可得,函数M 在点A (2,4)处取得最小值,最小值为4,故选C.9.已知在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),该函数的图象与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )解析:选B 由题意知,当-1<t <0时,S 越来越大,但增长的速度越来越慢.当t >0时,S 的增长速度会越来越快,故在S 轴右侧图象的切线斜率逐渐增大,选B.10.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案:{x |-1<x ≤1}11.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)12.已知函数f (x )=|x |(x -a ),a >0. (1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧x x -a ,x ≥0,-x x -a ,x <0,其图象如图所示.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝ ⎛⎭⎪⎫a 2,+∞;单调递减区间是⎝ ⎛⎭⎪⎫0,a2.(3)由图象知,当a2>1,即a >2时,f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 24.综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·大同质检)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象关于下列哪个点成中心对称( )A .(1,0)B .(-1,0)C.⎝ ⎛⎭⎪⎫12,0D.⎝ ⎛⎭⎪⎫-12,0 解析:选C 因为f (2x +1)是奇函数,所以图象关于原点成中心对称,而f (2x )的图象是由f (2x +1)的图象向右平移12个单位得到的,故f (2x )关于⎝ ⎛⎭⎪⎫12,0成中心对称. 2.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).3.(2019·合肥质检)对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x-a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是________.解析:依题意,知f (x )=-f (-x )有非零解,由f (x )=-f (-x )得,e x-a =-(e -x-a ),即a =12⎝⎛⎭⎪⎫e x+1ex >1(x ≠0),所以当f (x )=e x -a 存在奇对称点时,实数a 的取值范围是(1,+∞).答案:(1,+∞)(二)素养专练——学会更学通4.[数学建模]如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (图中阴影部分),若函数y =f (x )的大致图象如右图所示,那么平面图形的形状不可能是( )解析:选C 由y =f (x )的图象可知面积递增的速度先快后慢,对于选项C ,后半程是匀速递增,所以平面图形的形状不可能是C.5.[直观想象]已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0]B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 当x >0时,f (x )=f (x -1),所以f (x )是以1为周期的函数.又当0<x ≤1时,x -1≤0,所以f (x )=f (x -1)=21-x-1=2⎝ ⎛⎭⎪⎫12x-1.方程f (x )=x +a 的根的个数可看成是两个函数y =f (x )与y =x +a 的图象的交点个数,画出函数的图象,如图所示,由图象可知实数a 的取值范围是(-∞,1).(三)难点专练——适情自主选6.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x2. ∵g (x )在(0,2]上为减函数,∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞). 7.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于ax -1<34x -1. 令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2),即a2-1≤34×2-1, 解得a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12.。
高考数学一轮复习专题2.4函数图像(测)(2021年整理)
(江苏专版)2019年高考数学一轮复习专题2.4 函数图像(测)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019年高考数学一轮复习专题2.4 函数图像(测))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019年高考数学一轮复习专题2.4 函数图像(测)的全部内容。
专题2.4 函数图像班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分).1.已知f(x)=错误!x,若f(x)的图象关于直线x=1对称的图象对应的函数为g(x),则g(x)的表达式为________.【答案】g(x)=3x-2【解析】设g(x)上的任意一点A(x,y),则该点关于直线x=1的对称点为B(2-x,y),而该点在f(x)的图象上.所以y=错误!2-x=3x-2,即g(x)=3x-2.2.已知函数f(x)=|2x-2|(x∈(-1,2)),则函数y=f(x-1)的值域为________.【答案】[0,2)3.方程x2-|x|+a=1有四个不同的实数解,则a的取值范围是________.【答案】错误!【解析】方程解的个数可转化为函数y=x2-|x|的图象与直线y=1-a交点的个数,作出两函数的图象如图,易知-错误!<1-a〈0,所以1〈a<错误!.4.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f x-f-xx<0的解集为________.【答案】(-1,0)∪(0,1)【解析】因为f(x)为奇函数,所以不等式错误!<0可化为错误!〈0,即xf(x)〈0,f(x)的大致图象如图所示.所以xf(x)〈0的解集为(-1,0)∪(0,1).`若方程f(x)=x+a有5.已知函数f(x)的定义域为R,且f(x)={2-x-1,x≤0,f x-1,x>0,两个不同实根,则a的取值范围为________.【答案】(-∞,1)6.若函数y=f(x+3)的图象经过点P(1,4),则函数y=f(x)的图象必经过点________.【答案】(4,4)【解析】法一:函数y=f(x)的图象是由y=f(x+3)的图象向右平移3个单位长度而得到的.故y=f(x)的图象经过点(4,4).法二:由题意得f(4)=4成立,故函数y=f(x)的图象必经过点(4,4).7.如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,则f(x)的解析式为________.【答案】f(x)=错误!8.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.【答案】[-1,+∞)【解析】如图,作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).9.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示.对满足0<x1〈x2<1的任意x1,x,给出下列结论:2①f(x1)-f(x2)>x1-x2;②f(x1)-f(x2)<x1-x2;③x2f(x1)〉x1f(x2);④错误!<f(错误!).其中正确结论的序号是________.【答案】③④【解析】10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.4 函数图像
班级__________ 姓名_____________ 学号___________ 得分__________
(满分100分,测试时间50分钟)
一、填空题:请把答案直接填写在答题卡相应的位置........
上(共10题,每小题6分,共计60分). 1.已知f (x )=⎝ ⎛⎭
⎪⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.
【答案】g (x )=3x -2
【解析】设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点为B (2-x ,y ),而该点在f (x )的
图象上.所以y =⎝ ⎛⎭
⎪⎫132-x =3x -2,即g (x )=3x -2. 2.已知函数f (x )=|2x
-2| (x ∈(-1,2)),则函数y =f (x -1)的值域为________.
【答案】[0,2)
3.方程x 2
-|x |+a =1有四个不同的实数解,则a 的取值范围是________.
【答案】⎝ ⎛⎭
⎪⎫1,54 【解析】方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,作出两函数的图象如
图,易知-14<1-a <0,所以1<a <54
. 4.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -x x
<0的解集为________. 【答案】(-1,0)∪(0,1)
【解析】因为f (x )为奇函数,所以不等式f x -f -x x <0可化为f x x
<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).`
5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧ 2-x -1,x ≤0,f x -,x >0,若方程f (x )=x +a 有两个不同实根,则a
的取值范围为________.
【答案】(-∞,1)
6.若函数y =f (x +3)的图象经过点P (1,4),则函数y =f (x )的图象必经过点________.
【答案】(4,4)
【解析】法一:函数y =f (x )的图象是由y =f (x +3)的图象向右平移3个单位长度而得到的. 故y =f (x )的图象经过点(4,4).
法二:由题意得f (4)=4成立,故函数y =f (x )的图象必经过点(4,4).
7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.
【答案】f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],14x -2-1,x ∈0,+∞
8.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.
【答案】[-1,+∞)
【解析】
如图,作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).
9.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示.对满足0<x1<x2<1的任意x1,x2,给出下列结论:
①f(x1)-f(x2)>x1-x2;
②f(x1)-f(x2)<x1-x2;
③x2f(x1)>x1f(x2);
④f x1+f x2
2
<f(
x1+x2
2
).
其中正确结论的序号是________.【答案】③④
【解析】
10.函数y=1
1-x
的图象与函数y=2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于________.【答案】8
【解析】
如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.
二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内
.....。
(共
4题,每小题10分,共计40分).
11.利用函数图象讨论方程|1-x |=kx 的实数根的个数.
【答案】当-1≤k<0时,方程没有实数根;当k =0或k<-1或k≥1时,方程只有一个实数根; 当0<k<1时,方程有两个不相等的实数根.
【解析】
在同一坐标系中画出y =|1-x|、y =kx 的图象.由图象可知,
当-1≤k<0时,方程没有实数根;
当k =0或k<-1或k≥1时,方程只有一个实数根;
当0<k<1时,方程有两个不相等的实数根.
12. (1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图象关于直线x =m 对称;
(2)若函数y =log 2|ax -1|的图象的对称轴是x =2,求非零实数a 的值.
【答案】(2) 12
即|-ax +(2a -1)|=|ax +(2a -1)|恒成立.。