辽宁省阜新高二上期末数学测试卷(理)(含答案解析)

合集下载

辽宁省数学高二上学期期末考试试卷(理科)(I)卷

辽宁省数学高二上学期期末考试试卷(理科)(I)卷

辽宁省数学高二上学期期末考试试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)“命题∃x∈R,x2+ax﹣4a≤0为假命题”是“﹣16≤a≤0”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分)已知直线ax﹣by﹣2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则为()A .B .C . -D . -3. (2分) (2017高三下·银川模拟) 已知双曲线﹣ =1的两个焦点分别为F1 , F2 ,以线段F1F2为直径的圆与双曲线渐近线一个交点为(4,3),则该双曲线的实轴长为()A . 6B . 8C . 4D . 104. (2分)已知平面α的法向量为=(1,2,-2),平面β的法向量为=(-2,-4,K),若α⊥β,则k=()A . 4B . -4C . 5D . -55. (2分) (2018高二下·凯里期末) 数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的为()A . 5B . 6C . 7D . 86. (2分)(2013·重庆理) 某质点的运动方程是,则在s时的瞬时速度为()A . -1B . -3C . 7D . 137. (2分)(2018·榆林模拟) 在直四棱柱中,底面是边长为1的正方形,,、分别是、中点,则与所成的角的余弦值为()A .B .C .D .8. (2分)已知动点P(x,y)满足,则点P的轨迹是()A . 圆B . 椭圆C . 双曲线D . 抛物线9. (2分)(2017·榆林模拟) 设函数f(x)= 在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是()A .B . 1﹣C .D .10. (2分)执行如图所示的程序框图,若输出实数k的值为4,则框图中x的值是()A . 4B . 16C . 24D . 12011. (2分)若点O和点F分别为椭圆的中心和左焦点,点P{为椭圆上的任意一点,则的最大值为()A . 8B . 6C . 3D . 212. (2分)已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是()A . 在x=1处取得最大值B . 在区间上是增函数C . 在区间上函数值均小于0D . 在x=4处取得极大值二、填空题 (共4题;共4分)13. (1分)(2012·江苏理) 某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.14. (1分)给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(, 0)对称;③若函数f(x)=ksinx+cosx的图象关于点(, 0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是________ (将正确的判断的序号都填上)15. (1分) (2018高三上·天津月考) 已知函数与的图象上存在关于原点对称的点,则实数的取值范围是________.16. (1分)(2017·泰州模拟) 已知点F,A是椭圆C:的左焦点和上顶点,若点P是椭圆C上一动点,则△PAF周长的最大值为________.三、解答题 (共6题;共50分)17. (5分)(2018·南充模拟) 已知椭圆的中心在原点,离心率等于,它的一个长轴端点恰好是抛物线的焦点,(Ⅰ)求椭圆的方程;(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值.②当运动时,满足,试问直线的斜率是否为定值?请说明理由.18. (5分)“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19. (15分) (2017高二下·高青开学考) 如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD.(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求锐二面角A﹣CD﹣E的余弦值.20. (10分)如图,在某商业区周边有两条公路l1和l2 ,在点O处交汇;该商业区为圆心角、半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1 , l2分别交于A,B,要求AB与扇形弧相切,切点T 不在l1 , l2上.(1)设OA=akm,OB=bkm试用a,b表示新建公路AB的长度,求出a,b满足的关系式,并写出a,b的范围;(2)设∠AOT=α,试用α表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.21. (5分)已知圆F1:(x+1)2+y2=1,圆F2:(x﹣1)2+y2=25,动圆P与圆F1外切并且与圆F2内切,动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若曲线C与x轴的交点为A1 , A2 ,点M是曲线C上异于点A1 , A2的点,直线A1M与A2M的斜率分别为k1 , k2 ,求k1k2的值.22. (10分) (2015高三上·平邑期末) 已知函数f(x)=lnx+ (a>0).(1)求函数f(x)在[1,+∞)上的最小值;(2)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.(i)证明:∀a∈(0,1),f()>;(ii)求实数a的取值范围及x1•x2•x3的值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、。

辽宁省阜新高二上期末数学测试卷(理)(含答案解析)

辽宁省阜新高二上期末数学测试卷(理)(含答案解析)

2018-2019学年辽宁省阜新高二(上)期末检测数学试卷一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=( )A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}2.下列结论正确的是( )A.x>1⇒<1B.x+≥2C.x>y⇒=<D.x>y⇒x2>y23.命题“∃x∈R+,lnx>0”的否定是( )A.∃x∈R+,lnx>0B.∀x∈R+,lnx≤0C.∀x∈R+,lnx>0D.∃x∈R+,lnx≥04.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为( )A.5、10、15、20B.2、6、10、14C.2、4、6、8D.5、8、11、145.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=( )A.4B.5C.6D.76.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于( )A.B.C.D.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A.B.C.D.8.已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是( )A.27cm3B.9cm3C. cm3D.3cm310.实数x,y满足,则z=y﹣x的最大值是( )A.1B.2C.3D.411.函数,给出下列结论正确的是( )A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f ()=( )A.0B.1C.D.﹣1二、填空13.若角45°的终边上有一点(4,a),则a的值是 .14.不等式x2﹣3x﹣18≤0的解集为 .15.若与为非零向量,,则与的夹角为 .16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为 .三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.2018-2019学年辽宁省阜新高二(上)期末数学试卷参考答案与试题解析一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=( )A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}【考点】交集及其运算.【专题】集合.【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.2.下列结论正确的是( )A.x>1⇒<1B.x+≥2C.x>y⇒=<D.x>y⇒x2>y2【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】A.x>1⇒<1;B.x<时不成立;C.取x>0,y<0,不成立;D.取x=﹣1,y=﹣2,不成立.【解答】解:对于A.x>1⇒<1,正确;对于B.x<时不成立;对于C.取x>0,y<0,则不成立;对于D.取x=﹣1,y=﹣2,不成立.只有A正确.故选;A.【点评】本题考查了不等式的基本性质,属于基础题.3.命题“∃x∈R+,lnx>0”的否定是( )A.∃x∈R+,lnx>0B.∀x∈R+,lnx≤0C.∀x∈R+,lnx>0D.∃x∈R+,lnx≥0【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:特称命题的否定是全称命题,则命题“∃x∈R+,lnx>0”的否定是:∀x∈R+,lnx≤0,故选:B【点评】本题主要考查含有量词的命题的否定,比较基础.4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为( )A.5、10、15、20B.2、6、10、14C.2、4、6、8D.5、8、11、14【考点】系统抽样方法.【专题】常规题型.【分析】系统抽样,要求编号后,平均分租,每一组只抽一个样本,两个相邻的样本的编号间距相等【解答】解:从20人中用系统抽样抽4个人,须把20人平均分成4组,每一组只抽1人,且所抽取的号码成等差数列只有A选项满足故选A【点评】本题考查系统抽样,要求掌握系统抽样的特点:平均分租,每一组只抽一个样本,号码成等差数列.属简单题5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=( )A.4B.5C.6D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.6.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于( )A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意,|F1F2|==2=2c,2a=+=6,即可求出椭圆的离心率.【解答】解:由题意,|F1F2|==2=2c,2a=+=6,∴e==.故选:C.【点评】本题考查椭圆的定义,考查椭圆的几何性质,考查学生的计算能力,属于中档题.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A.B.C.D.【考点】概率的应用.【专题】计算题.【分析】先求出正方形的面积为22,设阴影部分的面积为x,由概率的几何概型知,由此能求出该阴影部分的面积.【解答】解:设阴影部分的面积为x,则,解得x=.故选B.【点评】本题考查概率的性质和应用,每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.解题时要认真审题,合理地运用几何概型解决实际问题.8.已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.【解答】解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.【点评】本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是( )A.27cm3B.9cm3C. cm3D.3cm3【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是四棱锥,由侧视图知四棱锥的高为1,根据三视图的数据判断底面是边长为1+2=3的正方形,代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是四棱锥,且四棱锥的高为1,底面是边长为1+2=3的正方形,∴几何体的体积V=×32×1=3(cm3).故选:D.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.10.实数x,y满足,则z=y﹣x的最大值是( )A.1B.2C.3D.4【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件画出平面区域,如图所示.A(0,1),化目标函数z=y﹣x为y=x+z,由图可知,当直线y=x+z过点A时,目标函数取得最大值.∴z max=1﹣0=1.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.函数,给出下列结论正确的是( )A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数【考点】两角和与差的正弦函数.【专题】转化思想;数形结合法;三角函数的图像与性质.【分析】化简函数f(x),求出f(x)的最小正周期T,判断出A错误;把x=代入2x+中计算,根据正弦函数图象的对称性,判断出B、C错误;化简f(x﹣),得出f(x﹣)是定义域R上的奇函数,判断出D正确.【解答】解:函数=sin(2x+),∴f(x)的最小正周期为T==π,A错误;又当x=时,2x+=≠kπ+,k∈Z,∴x=不是f(x)的对称轴,B错误;同理x=时,2x+=≠kπ,k∈Z,∴(,0)不是f(x)的对称中心,C错误;又f(x﹣)=sin[2(x﹣)+]=sin2x,∴f(x﹣)是定义域R上的奇函数,D正确.故选:D.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒等变换问题,是基础题目.12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f ()=( )A.0B.1C.D.﹣1【考点】函数的值.【专题】函数的性质及应用.【分析】既然3是周期,那么﹣3也是周期,所以f()=f(﹣),代入函数解析式即可.【解答】解:∵f(x)是定义在R上的周期为3的函数,∴f()=f(﹣3)=f(﹣)=4(﹣)2﹣2=﹣1故选:D【点评】本题考查函数的周期性以及分段函数的表示,属于基础题.二、填空13.若角45°的终边上有一点(4,a),则a的值是 4 .【考点】任意角的三角函数的定义.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】直接利用三角函数的定义,即可求出m的值.【解答】解:因为45°角的终边上有一点为(4,a),所以tan45°==1,所以a=4.故答案为:4.【点评】本题考查三角函数的定义,考查计算能力,正确运用利用三角函数是关键.14.不等式x2﹣3x﹣18≤0的解集为 [﹣3,6] .【考点】一元二次不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】不等式可化为(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,由此得到不等式的解集.【解答】解:不等式x2﹣3x﹣18≤0,即(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,故不等式解集为[﹣3,6],故答案为:[﹣3,6].【点评】本题主要考查了一元二次不等式的解法,体现了等价转化的数学思想,属于基础题. 15.若与为非零向量,,则与的夹角为 .【考点】数量积表示两个向量的夹角;向量的模.【专题】平面向量及应用.【分析】利用模的计算公式和数量积即可得出.【解答】解:∵,∴,∴=,∴.∵与为非零向量,∴.∴与的夹角为.故答案为.【点评】熟练掌握模的计算公式和数量积是解题的关键.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为 x=3或3x﹣4y﹣1=0 .【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】根据直线和圆相切的条件进行求解即可.【解答】解:圆的标准方程为(x﹣2)2+y2=1,则圆心坐标为(2,0),半径R=1若直线斜率k不存在,则直线方程为x=3,圆心到直线的距离d=3﹣2=1,满足条件.若直线斜率k存在,则直线方程为y﹣2=k(x﹣3),即kx﹣y+2﹣3k=0,圆心到直线的距离d==1,平方得k=,此时切线方程为3x﹣4y﹣1=0,综上切线方程为x=3或3x﹣4y﹣1=0,故答案为:x=3或3x﹣4y﹣1=0.【点评】本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用椭圆性质求解.【解答】解:椭圆+=1中,∵a=4,b=2,c==2,∴椭圆+=1的长轴2a=8,短轴2b=4,顶点(﹣4,0),(4,0),(0,﹣2),(0,2),焦点(﹣2,0),(2,0).【点评】本题考查椭圆的长轴和短轴的长、顶点和焦点的坐标的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.【考点】双曲线的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由题意可知,双曲线为实轴在x轴上的双曲线,并求得c与a的值,代入隐含条件求得b,则双曲线标准方程、渐近线方程及离心率可求.【解答】解:∵双曲线焦点坐标(﹣5,0),∴双曲线为实轴在x轴上的双曲线,且c=5,又实轴长为6,即2a=6,得a=3,∴b2=c2﹣a2=25﹣9=16,则b=4,∴双曲线标准方程为,渐近线方程为y=±,即4x±3y=0,双曲线的离心率为e=.【点评】本题考查双曲线方程的求法,考查了双曲线的简单性质,是基础题.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题.【分析】(1)设AC∩BD=O,连接EO,证明PD∥EO,利用直线与平面平行的判定定理证明PD∥面AEC.(2)连接PO,证明AC⊥PO,AC⊥BD,通过PO∩BD=O,证明AC⊥面PBD,然后证明面AEC⊥面PBD【解答】解:(1)证明:设AC∩BD=O,连接EO,因为O,E分别是BD,PB的中点,所以PD∥EO…(4分)而PD⊄面AEC,EO⊂面AEC,所以PD∥面AEC…(7分)(2)连接PO,因为PA=PC,所以AC⊥PO,又四边形ABCD是菱形,所以AC⊥BD…(10分)而PO⊂面PBD,BD⊂面PBD,PO∩BD=O,所以AC⊥面PBD…(13分)又AC⊂面AEC,所以面AEC⊥面PBD…(14分)【点评】本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.【考点】频率分布直方图.【专题】计算题;图表型.【分析】(1)根据各个小矩形的面积之比,做出第二组的频率,再根据所给的频数,做出样本容量.(2)从频率分步直方图中看出次数子啊110以上的频数,用频数除以样本容量得到达标率,进而估计高一全体学生的达标率.(3)这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,得到中位数落在第四小组.【解答】解:(1)∵各小长方形面积之比为2:4:17:15:9:3∴第二小组的频率是=0.08∵第二小组频数为12,∴样本容量是=150(2)∵次数在110以上(含110次)为达标,∴高一学生的达标率是=88%即高一有88%的学生达标.(3)∵这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,∵测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,∴中位数落在第四小组,即跳绳次数的中位数落在第四小组中.【点评】本题考查频率分步直方图,考查用样本的频率分布估计总体的频率分布,本题解题的关键是读懂直方图,本题是一个基础题.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(1)根据题意和等差数列的前n项和公式、通项公式,求出公差和首项,再求出数列{a n}的通项公式;(2)由(1)求出b n,由分组求和法和等差、等比数列的前n项和公式求出T n.【解答】解:(1)由S7=56得=56,则7a4=56,解得a4=8,因为a5=10,所以公差d=a5﹣a4=10﹣8=2,则a4=a1+3d,解得a1=8﹣6=2,所以a n=2+2(n﹣1)=2n;(2)由(1)得,b n=a n+()=2n+3n,所以T n=(2+3)+(4+32)+(6+33)+…+(2n+3n)=(2+4+6+…+2n)+(3+32+33+…+3n)=+=,所以T n=.【点评】本题考查等差数列的通项公式,等差、等比数列的前n项和公式,及数列的求和方法:分组求和法,属于中档题.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.【考点】三角函数中的恒等变换应用;正弦定理.【专题】计算题;三角函数的图像与性质;解三角形.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=.由,可得单调递增区间.(2)由得.又,则可求得,由AB=AD可求得:AD+DC=BD+DC=BC,又由正弦定理可得BC=8sin∠BAC.由,可得.故可得周长最大值.【解答】解:(1)===.由,得(k∈Z).∴单调递增区间为,k∈Z(2)由得.又,则,从而,∴.由AB=AD知△ABD是正三角形,AB=AD=BD,∴AD+DC=BD+DC=BC,在△ABC中,由正弦定理,得,即BC=8sin∠BAC.∵D是BC边上一点,∴,∴,知.当时,AD+CD取得最大值8,周长最大值为.【点评】本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,综合性较强,属于中档题. 。

辽宁省阜新2018-2019年高二上期末数学试卷(理)含答案解析

辽宁省阜新2018-2019年高二上期末数学试卷(理)含答案解析

2018-2019学年辽宁省阜新二中高二(上)期末数学试卷一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y2 3.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥0 4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14 5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.76.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于()7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为()A.B.C.D.8.已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是()A.27cm3B.9cm3C.cm3D.3cm310.实数x,y满足,则z=y﹣x的最大值是()A.1 B.2 C.3 D.411.函数,给出下列结论正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()二、填空13.若角45°的终边上有一点(4,a),则a的值是.14.不等式x2﹣3x﹣18≤0的解集为.15.若与为非零向量,,则与的夹角为.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.2018-2019学年辽宁省阜新二中高二(上)期末数学试卷参考答案与试题解析一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 【考点】交集及其运算.【专题】集合.【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y2【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】A.x>1⇒<1;B.x<时不成立;C.取x>0,y<0,不成立;D.取x=﹣1,y=﹣2,不成立.【解答】解:对于A.x>1⇒<1,正确;对于B.x<时不成立;对于C.取x>0,y<0,则不成立;对于D.取x=﹣1,y=﹣2,不成立.只有A正确.故选;A.【点评】本题考查了不等式的基本性质,属于基础题.3.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥0 【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:特称命题的否定是全称命题,则命题“∃x∈R+,lnx>0”的否定是:∀x∈R+,lnx≤0,故选:B【点评】本题主要考查含有量词的命题的否定,比较基础.4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14 【考点】系统抽样方法.【专题】常规题型.【分析】系统抽样,要求编号后,平均分租,每一组只抽一个样本,两个相邻的样本的编号间距相等【解答】解:从20人中用系统抽样抽4个人,须把20人平均分成4组,每一组只抽1人,且所抽取的号码成等差数列只有A选项满足故选A【点评】本题考查系统抽样,要求掌握系统抽样的特点:平均分租,每一组只抽一个样本,号码成等差数列.属简单题5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.6.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意,|F1F2|==2=2c,2a=+=6,即可求出椭圆的离心率.【解答】解:由题意,|F 1F 2|==2=2c ,2a=+=6,∴e==.故选:C .【点评】本题考查椭圆的定义,考查椭圆的几何性质,考查学生的计算能力,属于中档题.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A .B .C .D .【考点】概率的应用. 【专题】计算题.【分析】先求出正方形的面积为22,设阴影部分的面积为x ,由概率的几何概型知,由此能求出该阴影部分的面积. 【解答】解:设阴影部分的面积为x ,则,解得x=.故选B .【点评】本题考查概率的性质和应用,每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型. 解题时要认真审题,合理地运用几何概型解决实际问题.8.已知直线a ,b ,平面α,β,且a ⊥α,b ⊂β,则“a ⊥b ”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.【解答】解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.【点评】本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是()A.27cm3B.9cm3C.cm3D.3cm3【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是四棱锥,由侧视图知四棱锥的高为1,根据三视图的数据判断底面是边长为1+2=3的正方形,代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是四棱锥,且四棱锥的高为1,底面是边长为1+2=3的正方形,∴几何体的体积V=×32×1=3(cm3).故选:D.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.10.实数x,y满足,则z=y﹣x的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件画出平面区域,如图所示.A(0,1),化目标函数z=y﹣x为y=x+z,由图可知,当直线y=x+z过点A时,目标函数取得最大值.∴z max=1﹣0=1.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.函数,给出下列结论正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数【考点】两角和与差的正弦函数.【专题】转化思想;数形结合法;三角函数的图像与性质.【分析】化简函数f(x),求出f(x)的最小正周期T,判断出A错误;把x=代入2x+中计算,根据正弦函数图象的对称性,判断出B、C错误;化简f(x﹣),得出f(x﹣)是定义域R上的奇函数,判断出D正确.【解答】解:函数=sin(2x+),∴f(x)的最小正周期为T==π,A错误;又当x=时,2x+=≠kπ+,k∈Z,∴x=不是f(x)的对称轴,B错误;同理x=时,2x+=≠kπ,k∈Z,∴(,0)不是f(x)的对称中心,C错误;又f(x﹣)=sin[2(x﹣)+]=sin2x,∴f(x﹣)是定义域R上的奇函数,D正确.故选:D.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒等变换问题,是基础题目.12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()A.0 B.1 C.D.﹣1【考点】函数的值.【专题】函数的性质及应用.【分析】既然3是周期,那么﹣3也是周期,所以f()=f(﹣),代入函数解析式即可.【解答】解:∵f(x)是定义在R上的周期为3的函数,∴f()=f(﹣3)=f(﹣)=4(﹣)2﹣2=﹣1故选:D【点评】本题考查函数的周期性以及分段函数的表示,属于基础题.二、填空13.若角45°的终边上有一点(4,a),则a的值是4.【考点】任意角的三角函数的定义.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】直接利用三角函数的定义,即可求出m的值.【解答】解:因为45°角的终边上有一点为(4,a),所以tan45°==1,所以a=4.故答案为:4.【点评】本题考查三角函数的定义,考查计算能力,正确运用利用三角函数是关键.14.不等式x2﹣3x﹣18≤0的解集为[﹣3,6].【考点】一元二次不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】不等式可化为(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,由此得到不等式的解集.【解答】解:不等式x2﹣3x﹣18≤0,即(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,故不等式解集为[﹣3,6],故答案为:[﹣3,6].【点评】本题主要考查了一元二次不等式的解法,体现了等价转化的数学思想,属于基础题.15.若与为非零向量,,则与的夹角为.【考点】数量积表示两个向量的夹角;向量的模.【专题】平面向量及应用.【分析】利用模的计算公式和数量积即可得出.【解答】解:∵,∴,∴=,∴.∵与为非零向量,∴.∴与的夹角为.故答案为.【点评】熟练掌握模的计算公式和数量积是解题的关键.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为x=3或3x﹣4y﹣1=0.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】根据直线和圆相切的条件进行求解即可.【解答】解:圆的标准方程为(x﹣2)2+y2=1,则圆心坐标为(2,0),半径R=1若直线斜率k不存在,则直线方程为x=3,圆心到直线的距离d=3﹣2=1,满足条件.若直线斜率k存在,则直线方程为y﹣2=k(x﹣3),即kx﹣y+2﹣3k=0,圆心到直线的距离d==1,平方得k=,此时切线方程为3x﹣4y﹣1=0,综上切线方程为x=3或3x﹣4y﹣1=0,故答案为:x=3或3x﹣4y﹣1=0.【点评】本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用椭圆性质求解.【解答】解:椭圆+=1中,∵a=4,b=2,c==2,∴椭圆+=1的长轴2a=8,短轴2b=4,顶点(﹣4,0),(4,0),(0,﹣2),(0,2),焦点(﹣2,0),(2,0).【点评】本题考查椭圆的长轴和短轴的长、顶点和焦点的坐标的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.【考点】双曲线的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由题意可知,双曲线为实轴在x轴上的双曲线,并求得c与a的值,代入隐含条件求得b,则双曲线标准方程、渐近线方程及离心率可求.【解答】解:∵双曲线焦点坐标(﹣5,0),∴双曲线为实轴在x轴上的双曲线,且c=5,又实轴长为6,即2a=6,得a=3,∴b2=c2﹣a2=25﹣9=16,则b=4,∴双曲线标准方程为,渐近线方程为y=±,即4x±3y=0,双曲线的离心率为e=.【点评】本题考查双曲线方程的求法,考查了双曲线的简单性质,是基础题.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题.【分析】(1)设AC∩BD=O,连接EO,证明PD∥EO,利用直线与平面平行的判定定理证明PD∥面AEC.(2)连接PO,证明AC⊥PO,AC⊥BD,通过PO∩BD=O,证明AC⊥面PBD,然后证明面AEC⊥面PBD【解答】解:(1)证明:设AC∩BD=O,连接EO,因为O,E分别是BD,PB的中点,所以PD∥EO…(4分)而PD⊄面AEC,EO⊂面AEC,所以PD∥面AEC…(7分)(2)连接PO,因为PA=PC,所以AC⊥PO,又四边形ABCD是菱形,所以AC⊥BD…(10分)而PO⊂面PBD,BD⊂面PBD,PO∩BD=O,所以AC⊥面PBD…(13分)又AC⊂面AEC,所以面AEC⊥面PBD…(14分)【点评】本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.【考点】频率分布直方图.【专题】计算题;图表型.【分析】(1)根据各个小矩形的面积之比,做出第二组的频率,再根据所给的频数,做出样本容量.(2)从频率分步直方图中看出次数子啊110以上的频数,用频数除以样本容量得到达标率,进而估计高一全体学生的达标率.(3)这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,得到中位数落在第四小组.【解答】解:(1)∵各小长方形面积之比为2:4:17:15:9:3∴第二小组的频率是=0.08∵第二小组频数为12,∴样本容量是=150(2)∵次数在110以上(含110次)为达标,∴高一学生的达标率是=88%即高一有88%的学生达标.(3)∵这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,∵测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,∴中位数落在第四小组,即跳绳次数的中位数落在第四小组中.【点评】本题考查频率分步直方图,考查用样本的频率分布估计总体的频率分布,本题解题的关键是读懂直方图,本题是一个基础题.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(1)根据题意和等差数列的前n项和公式、通项公式,求出公差和首项,再求出数列{a n}的通项公式;(2)由(1)求出b n,由分组求和法和等差、等比数列的前n项和公式求出T n.【解答】解:(1)由S7=56得=56,则7a4=56,解得a4=8,因为a5=10,所以公差d=a5﹣a4=10﹣8=2,则a4=a1+3d,解得a1=8﹣6=2,所以a n=2+2(n﹣1)=2n;(2)由(1)得,b n=a n+()=2n+3n,所以T n=(2+3)+(4+32)+(6+33)+…+(2n+3n)=(2+4+6+…+2n)+(3+32+33+…+3n)=+=,所以T n=.【点评】本题考查等差数列的通项公式,等差、等比数列的前n项和公式,及数列的求和方法:分组求和法,属于中档题.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.【考点】三角函数中的恒等变换应用;正弦定理.【专题】计算题;三角函数的图像与性质;解三角形.(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=.由【分析】,可得单调递增区间.(2)由得.又,则可求得,由AB=AD可求得:AD+DC=BD+DC=BC,又由正弦定理可得BC=8sin∠BAC.由,可得.故可得周长最大值.【解答】解:(1)===.由,得(k∈Z).∴单调递增区间为,k∈Z(2)由得.又,则,从而,∴.由AB=AD 知△ABD 是正三角形,AB=AD=BD ,∴AD+DC=BD+DC=BC ,在△ABC 中,由正弦定理,得,即BC=8sin ∠BAC .∵D 是BC 边上一点,∴,∴,知.当时,AD+CD 取得最大值8,周长最大值为.【点评】本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,综合性较强,属于中档题.。

辽宁高二上学期期末考试数学试题(解析版)

辽宁高二上学期期末考试数学试题(解析版)

一、单选题1.( ) 3524A A =A .10 B .5 C .20 D .4【答案】B【分析】用排列数公式展开即可求得.A (1)(2)(1)mn n n n n m =⨯-⨯-⨯⨯-+ 【详解】. 3524A 5435A 43⨯⨯==⨯故选:B2.已知圆C :与直线l :相切,则( ) 2225x y +=()3400x y m m -+=>m =A .15 B .5 C .20 D .25【答案】D【分析】根据圆与直线相切的判定列式求解得出答案. 【详解】易知C 的圆心为原点O , 设O 到直线l 的距离为d , 因为圆C 与直线l 相切,则,解得. 5d ==25m =故选:D.3.若抛物线的准线经过双曲线的右焦点,则( ) 22y mx =223x y -=m =A .B .C .D-【答案】A【分析】由双曲线的定义求得双曲线的右焦点,再求得抛物线的准线,即可得到的值. 2mx =-m【详解】由双曲线即得右焦点为,223x y -=22133y x -=)再由抛物线的准线为,22y mx =2m x =-因此,则. 2m-=m =-故选:A.4.在的展开式中,系数为有理数的项是( )72A .第3项B .第4项C .第5项D .第6项【分析】根据二项式定理展开式的通项可确定系数为有理数时的取)2177C kkk k T -+⎛= ⎝k 值,即可得出结果.【详解】在的展开式中,根据通项可知,72)2177C kkk kT -+⎛= ⎝时系数为有理数,即第五项为.4k=)43424157C T T +⎛== ⎝故选:C5.某学习小组共有10名成员,其中有6名女生,为学习期间随时关注学生学习状态,现随机从这10名成员中抽选2名任小组组长,协助老师了解学情,A 表示“抽到的2名成员都是女生”,B 表示“抽到的2名成员性别相同”,则( ) ()|P A B =A .B .C .D .715233457【答案】D【分析】由条件概率计算公式可得答案.【详解】由题可知,,,. ()2264210C C 7C 15P B +==()26210C 1C 3P AB ==()()()5|7P AB P A B P B ==故选:D6.向量在向量上的投影向量为( )()3,2,1m =- ()3,2,3n =-A .B .C .D .646,,111111⎛⎫- ⎪⎝⎭313,,221122⎛⎫-⎪⎝⎭323,,111111⎛⎫- ⎪⎝⎭323,,111111⎛⎫- ⎪⎝⎭【答案】C【分析】根据向量的投影向量求法直接得出答案.【详解】向量在向量上的投影向量为. ()3,2,1m =- ()3,2,3n =-2323,,111111m n n n⋅⎛⎫=- ⎪⎝⎭故选:C.7.某市场供应的电子产品中,甲厂产品占,乙厂产品占,甲厂产品的合格率是,乙73%27%90%厂产品的合格率是.若从该市场供应的电子产品中任意购买一件电子产品,则该产品不是合格80%品的概率为( ) A .B .C .D .17.2%14.3%12.7%87.3%【分析】利用条件概率和事件的独立性求解概率.【详解】设表示买到的产品来自甲,乙厂,表示买到的产品为合格品, ,A B C 则,()73%,()27%P A P B ==|90%,80%(|),()P C A P C B ==所以, ()()(|)()(|)73%90%+27%80%=87.3%P C P A P C A P B P C B =+=⨯⨯所以该产品不是合格品的概率为, 1()=12.7%P C -故选:C.8.某值班室周一到周五的工作日每天需要一人值夜班,该岗位共有四名工作人员可以排夜班,已知同一个人不能连续安排三天夜班,则这五天排夜班方式的种数为( ) A .800 B .842 C .864 D .888【答案】C【分析】采用间接法,先计算没有限制条件的种数,再减去一人连排三天夜班、四天夜班、五天夜班的种数即可.【详解】所有可能值班安排共有种,若连续安排三天夜班,则连续的工作有三种可能, 54(1)从四人中选一人连排三天夜班,若形如▲▲▲□□或□□▲▲▲排列:共有种; 11432C C 24=若形如▲▲▲□▲或▲□▲▲▲排列:共有种;11432C C 24=若形如▲▲▲□○或▲▲▲○□或□○▲▲▲或○□▲▲▲排列:共有种; 12432C A 48=若形如□▲▲▲□排列:共有种;1143C C 12=若形如○▲▲▲□或□▲▲▲○排列:共有种; 1243C A 24=因此,选一人连排三天夜班共有132种.(2)从四人中选一人连排四天夜班,则连续的工作日有两种可能,从四人中选一人连排四天夜班,形如▲▲▲▲□或□▲▲▲▲排列,共有种.11432C C 24=(3)从四人中选一人连排五天夜班,形如▲▲▲▲▲,则只有4种可能. 故满足题意的排夜班方式的种数为. 54132244864---=故选:C.二、多选题9.已知,且,则( ) (),X B n p :()()393927E X D X -=-=A . B .C .D . 18n =16n =14p =34p =【答案】BD【分析】由题得,解方程组即得解.39279(1)27np np p -=⎧⎨-=⎩【详解】由题意可知,则,解得,.()()39927E X D X -==39279(1)27np np p -=⎧⎨-=⎩34p =16n =故选:BD10.已知椭圆C :的一个焦点为F ,P 为C 上一动点,则( )22179x y +=A .C 的短轴长为B .的最大值为PF C .C 的长轴长为6 D .C 【答案】ACD【分析】根据椭圆的几何性质可分别判断ACD ,再利用椭圆性质即可判断B 选项,进而得出结果.【详解】由标准方程可知,,,22179x y +=29a =27b =所以,,3a=b =c==所以短轴长为,即选项AC 正确; 2b =26a =离心率D 正确; c e a ==由椭圆性质得 故选项B 错误. max 3PF a c =+=故选:ACD11.已知关于变量x ,y 的4组数据如表所示:x 6 8 10 12 y a1064根据表中数据计算得到x ,y 之间的线性回归方程为,x ,y 之间的相关系数为r (参ˆ 1.420.6yx =-+考公式:),则( )A . B .变量x ,y 正相关 C .r 12a =D .r =r =【答案】AC【分析】根据回归直线必过点解得,所以选项A 正确;由回归方程和表格可知选项B()x y 12a =错误;利用相关系数求出,所以选项C 正确,选项D 错误. r =【详解】回归直线必过点,,,解得,所以选项(),x y 9x =10641.420.684a y x +++=-+==12a =A 正确;由回归方程和表格可知,变量x ,y 负相关,所以选项B 错误;C 正确,选项4x y r==D 错误. 故选:AC12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .B .2cos ,3CQPF =122CQ AB AD AA =--+C .点到直线CQD .异面直线CQ 与BD1C 【答案】BCD【分析】利用向量的线性运算求出,所以选项B 正确;以为坐标原点,122CQ AB AD AA =--+1A 所在直线为x 轴,所在直线为y 轴建立空间直角坐标系,利用空间向量求出选项ACD 的1A F 11A B几何量判断即得解.【详解】,所以选项B 正确; ()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+ 如图以为坐标原点,建立空间直角坐标系,则,,,,1A ()10,1,0B ()11,1,0C -()11,0,0D -()0,1,1Q -,,,,()1,1,1C --()11,2,1QC =--()1,2,2CQ =- ()110,1,0PF A B == 则,所以选项A 错误;2cos ,3CQ PF ==- 设,则点到直线CQ 的距离C 正173QC CQ m CQ ⋅==-1C d==确;因为,所以,()111,1,0BD B D ==--cos ,CQ BD ==tan ,CQ BD = 所以选项D 正确. 故选:BCD三、填空题13.已知平面α的一个法向量为,,,则直线AB 与平面α所成(1,m =-()2,1,2A -()1,2,2B 角的正弦值为___________.【分析】根据线面角的向量求法求解即可.【详解】因为,()1,3,0AB =-所以直线AB 与平面α所成角的正弦值为cos ,m AB m AB m AB ⋅=== 14.甲、乙两人各自在1小时内完成某项工作的概率分别为0.6,0.8,两人在1小时内是否完成该项工作相互独立,则在1小时内甲、乙两人中只有一人完成该项工作的概率为___________. 【答案】0.44##1125【分析】由独立事件和互斥事件的概率公式进行求解.【详解】由独立事件概率乘法公式可得:甲完成而乙没有完成工作的概率为, ()0.610.80.12⨯-=乙完成工作而甲没有完成的概率为, ()10.60.80.32-⨯=故概率为. 0.120.320.44+=故答案为:0.44四、双空题15.若,则___________,()()56016221x x a a x a x +-=++⋅⋅⋅+123456a a a a a a -+-+-=2a =___________.【答案】 24170-【分析】第一空,令,可得,再令,可得; 0x =0a =1x -0123456a a a a a a a -+-+-+第二空,所求即为展开式中的系数,又, 2x ()()()()55522121221x x x x x +-=-+-则为展开式中,系数与2倍系数之和. 2a ()521x -x 2x 【详解】令,则,()()()5221f x x x =+-()002f a ==-,()01234561243f a a a a a a a -=-+-+-+=-故; ()1234562243241a a a a a a -+-+-=---=因,()()()()55522121221x x x x x +-=-+-则,所以. ()()()4232432255C 212C 2170a x x x x x =⋅-+⋅-=-270a =-故答案为:241;.70-五、填空题16.已知P 为抛物线C :上一点,F 为焦点,过P 作抛物线的准线的垂线,垂足为H ,216x y =-若的周长不小于30,则点P 的纵坐标的取值范围是___________. PFH △【答案】(],5-∞-【分析】设点P 的坐标为,求出的各边即得的周长为,再利(),m n PFH △PFH △()24n +-用函数的单调性解不等式得解.【详解】如图,设点P 的坐标为,则. 准线与y 轴的焦点为A , (),m n 216m n =-4y =则,4PF PH n ==-==所以的周长为. PFH △()24n -设函数, ()()()240f n n n =-≤则为减函数(减函数+减函数=减函数), ()f n 因为,所以的解为. ()530f -=()30(5)f n f ≥=-5n ≤-故答案为:(],5-∞-六、解答题17.如图,在底面为矩形的四棱锥E -ABCD 中,底面ABCD ,,G 为棱BE 的中点.⊥AE AE AB =(1)证明:平面BCE .AG ⊥(2)若,,,求. 4AB =6AD =3ED EF =AG CF ⋅【答案】(1)证明见解析;(2).83-【分析】(1)根据已知,利用线面垂直的判定定理可得平面ABE ,从而得到,利用BC ⊥BC AG ⊥等腰三角形的中线性质得到,然后利用线面垂直的判定定理证明平面BCE ;AG BE ⊥AG ⊥(2)以A 为坐标原点,的方向为x 轴的正方向,建立如图所示的空间直角坐标系.求出AB,AG CF 的坐标,利用空间向量数量积的坐标表示即得解.【详解】(1)证明:因为底面ABCD ,所以,⊥AE AE BC ⊥又,,平面ABE ,所以平面ABE , AB BC ⊥AB AE A = ,AB AE ⊂BC ⊥则.BC AG ⊥因为G 为棱BE 的中点,,所以, AE AB =AG BE ⊥又,平面BCE . BC BE B = ,BC BE ⊂所以平面BCE .AG ⊥(2)以A 为坐标原点,的方向为x 轴的正方向,建立如图所示的空间直角坐标系. AB依题意可得,,,.()0,0,0A ()4,6,0C ()2,0,2G 80,2,3F ⎛⎫ ⎪⎝⎭因为,, ()2,0,2AG = 84,4,3CF ⎛⎫=-- ⎪⎝⎭ 所以.()()882404233AG CF ⋅=⨯-+⨯-+⨯=-18.已知椭圆C :的左、右焦点分别为,,P 为C 上一点,且,2221(0)5x y a a +=>1F 2F 15PF =.21PF =(1)求,的坐标.1F 2F (2)若直线l 与C 交于A ,B 两点,且弦AB 的中点为,求直线l 的斜率. ()2,1P -【答案】(1),的坐标分别为,1F 2F ()2,0-()2,0(2) 109【分析】(1)根据椭圆的定义求出长半轴长,根据的关系求解. ,,a b c (2)把设出的两个点代入椭圆方程,化简整理成斜率的形式即可求解. 【详解】(1)因为, 1226PF PF a +==所以,3a =所以,,2224c a b =-=2c =故,的坐标分别为,.1F 2F ()2,0-()2,0(2)设A ,B 两点的坐标分别为,,()11,x y ()22,x y 则, 22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得.()()()()12121212590x x x x y y y y -++-+=因为弦AB 的中点在椭圆内,所以,()2,1P -121242x x y y +=-⎧⎨+=⎩所以直线l 的斜率. 1212109AB y y k x x -==-19.一机械制造加工厂的某条生产线在设备正常运行的情况下,生产的零件尺寸z (单位:)mm 服从正态分布,且.()2240,N σ()2480.95P z ≤=(1)求或的概率;232z <248z >(2)若从该条生产线上随机选取3个零件,设X 表示零件尺寸小于232加或大于248的零件个mm mm 数,求的概率. 2X =【答案】(1) 0.1(2) 0.027【分析】(1)由正态分布的对称性求解; (2)利用X 服从二项分布求解.()3,0.1X B :【详解】(1)因为零件尺寸z 服从正态分布,()2240,N σ所以,()()24812480.05P z P z >=-≤=因为,所以. 2322482402+=()()2322480.05P z P z <=>=故或的概率为. 232z >248z >0.050.050.1+=(2)依题意可得,()3,0.1X B :所以.()()2232C 0.110.10.027P X ==⨯⨯-=20.如图,三棱柱的底面ABC 是正三角形,侧面是菱形,平面平面111ABC A B C -11ACC A 11ACC A ⊥ABC ,E ,F 分别是棱,的中点.11A C BC(1)证明:平面.EF ∥11ABB A (2)若,,,求平面ABC 与平面EFG 所成角的余弦值. 2AC =160ACC ∠=︒12C G GC =【答案】(1)证明见解析【分析】(1)利用线面平行的判定定理证明;(2)取AC 的中点O ,连接OB ,,证明OB ,OC ,两两垂直,以O 为原点,OB ,OC ,1OC 1OC 1OC 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,再利用向量法求解. 【详解】(1)取的中点,连接,.11A B M ME MB 因为E ,F 分别是棱,BC 的中点,所以,, 11A C 11ME B C BF ∥∥111122ME B C BC BF ===所以四边形MEFB 为平行四边形,.EF MB ∥因为平面,平面,所以平面. EF ⊄11ABB A MB ⊂11ABB A //EF 11ABB A (2)取AC 的中点O ,连接OB ,. 1OC 因为四边形是菱形,所以.11ACC A 1CA CC =因为,所以为等边三角形. 160ACC ∠=︒1ACC △因为O 为AC 的中点,所以.1C O AC ⊥因为平面平面ABC ,平面平面,平面,所以平11ACC A ⊥11ACC A ABC AC =1C O ⊂11ACC A 1C O ⊥面ABC .因为底面ABC 是正三角形,所以.OB AC ⊥以O 为原点,OB ,OC ,所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系. 1OC 因为,所以,则,,,,所2AC=1C O BO =)B(0,E-1,02F ⎫⎪⎪⎭20,3G ⎛ ⎝以,. 3,2EF =50,,3EG ⎛= ⎝设平面EFG 的法向量为,则 (),,n x y z =3.025.03n EF y n EG y ⎧=+=⎪⎪⎨⎪==⎪⎩令,则.5z=()4,n =因为是平面ABC 的一个法向量,(10,OC =且111cos ,OC n OC n OC n⋅===令平面ABC 与平面EFG 所成角为,由图可知为锐角, θθ所以. cos θ=21.某甜品屋店庆当天为酬谢顾客,当天顾客每消费满一百元获得一次抽奖机会,奖品分别为价值5元,10元,15元的甜品一份,每次抽奖,抽到价值为5元,10元,15元的甜品的概率分别为12,,,且每次抽奖的结果相互独立. 1316(1)若某人当天共获得两次抽奖机会,设这两次抽奖所获甜品价值之和为元,求的分布列与期X X 望.(2)某大学“爱牙协会”为了解“爱吃甜食”与青少年“蛀牙”情况之间的关系,随机对200名青少年展开了调查,得知这200个人中共有120个人“有蛀牙”,其中“不爱吃甜食”但“有蛀牙”的有35人,“不爱吃甜食”且”无蛀牙”的也有35人. 有蛀牙 无蛀牙 爱吃甜食 不爱吃甜食完成上面的列联表,试根据小概率值的独立性检验,分析“爱吃甜食”是否更容易导致青少0.05α=年“蛀牙”. 附:,.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++ ()20P k αχ=≥0.05 0.01 0.005k 3.8416.6357.879【答案】(1)分布列答案见解析,数学期望:503(2)列联表答案见解析,在犯错误的概率不超过5%的前提下,可以认为“爱吃甜食”与青少年“蛀牙”有关【分析】(1)由题意可得的所有可能取值为,分别求出对应的概率,即可的的X 10,15,20,25,30X 分布列,从而求得数学期望;(2)由已知填充列联表,根据公式计算出,比较临界值即可. 2χ【详解】(1)由题意可得的所有可能取值为,X 10,15,20,25,30,()2111024P X ⎛⎫=== ⎪⎝⎭,()111152233P X ==⨯⨯=,()2111520226318P X ⎛⎫==⨯⨯+= ⎪⎝⎭,()111252369P X ==⨯⨯=,()21130636P X ⎛⎫=== ⎪⎝⎭则X 的分布列为 X 10 15 2025 30P 14 13 51819136故. ()1151150101520253043189363E X =⨯+⨯+⨯+⨯+⨯=(2)由题意可得列联表如下: 有蛀牙 无蛀牙 爱吃甜食 85 45 不爱吃甜食 3535所有,()2220045358535 4.4871208070130χ⨯-⨯=≈⨯⨯⨯查表可得,()23.8415%P χ≥=因为,2 3.841χ>所以在犯错误的概率不超过5%的前提下,可以认为“爱吃甜食”与青少年“蛀牙”有关.22.在①C 的渐近线方程为 ②C 这两个条件中任选一个,填在题中的横线y x =±上,并解答.已知双曲线C 的对称中心在坐标原点,对称轴为坐标轴,点在C 上,且______. (2,P (1)求C 的标准方程;(2)已知C 的右焦点为F ,直线PF 与C 交于另一点Q ,不与直线PF 重合且过F 的动直线l 与C 交于M ,N 两点,直线PM 和QN 交于点A ,证明:A 在定直线上. 注:如果选择两个条件分别解答,则按第一个解答计分.【答案】(1)22122x y -=(2)证明见解析【分析】(1)根据①②提供的渐近线方程和离心率得出之间的关系,再利用在双曲,,a bc (2,P 线上即可求得C 的标准方程;(2)根据坐标位置可利用对称性求得Q 点坐标,分别别写出直线PM 和QN 的直线方程,求得交点A 的坐标表示,利用韦达定理即可证明. 【详解】(1)选①因为C 的渐近线方程为,所以, y x =±1ba=故可设C 的方程为,22x y λ-=代入点P 的坐标得,可得,222(λ-=2λ=故C 的标准方程为.22122x y -=选②.因为C,=a b =故可设C 的方程为,22x y λ-=代入点P 的坐标得,可得,222(λ-=2λ=故C 的标准方程为.22122x y -=(2)由(1)可知F 的坐标为,由双曲线的对称性,可知点Q 的坐标为. ()2,0(设点M ,N 的坐标分别为,直线l 的方程为,1122(,),(,)M x y N x y ()2y k x =-联立直线和双曲线方程得,()222214420k x k x k --++=所以,,212241k x x k +=-2122421kx x k +=-直线PM :,2)y x=-2y k x k ⎛=-⎝直线QN :2)y x -2y k x k ⎛=- ⎝消去y ,得, 12121111212222x x x x x ⎛⎫⎛⎫+=++ ⎪ ⎪----⎝⎭⎝⎭整理得, ()()12121242x x x x x x x +-=--则.()12121224x x x x x x x --=+-因为,所以A 的横坐标为1. 2222121221224242111444241k k x x x x k k k x x k +-----===+---故A 在定直线上.1x =。

辽宁省高二上学期期末数学试卷(理科)

辽宁省高二上学期期末数学试卷(理科)

辽宁省高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)抛物线的焦点为F,倾斜角为的直线l过点F且与抛物线的一个交点为A,,则抛物线的方程为()A .B .C . 或D . 或2. (2分) (2019高一下·丽水月考) 过点(1,0)且与直线x-2y=0垂直的直线方程是()A . x-2y-1=0B . x-2y+1=0C . 2x+y-2=0D . x+2y-1=03. (2分)考察下列命题:①命题“若lgx=0则x=1”的否命题为“若则;”②若“”为假命题,则p,q均为假命题;③命题,使得sinx>1;则,均有;④“使f(x)=(m-1)xm2-4m+3是幂函数,且在上递减”则真命题的个数为()A . 1B . 2C . 3D . 44. (2分)设,则是的A . 充分但不必要条件B . 必要但不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)如图,在正方体ABCD﹣A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若=,=,=,则=()A . (+-)B . (+-)C . (-)D . (-)6. (2分) (2015高二上·邯郸期末) 经过点(3,﹣)的双曲线﹣ =1,其一条渐近线方程为y= x,该双曲线的焦距为()A .B . 2C . 2D . 47. (2分) (2019高一上·集宁月考) 如图是一个几何体的三视图,则该几何体的体积为()A .B . +12C . +10D . 24π8. (2分) (2019高一下·涟水月考) 圆在点处的切线方程为()A .B .C .D .9. (2分)已知分别是椭圆的左右焦点,过垂直与x轴的直线交椭圆于A,B 两点,若是锐角三角形,则椭圆离心率的范围是()A .B .C .D .10. (2分)已知单位向量满足,其中k>0,记函数f()=,,当f()取得最小值时,与向量垂直的向量可以是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2017高二上·南通期中) 命题p“∀x∈R,sinx≤1”的否定是________.12. (1分) (2019高二上·荆州期中) 已知空间向量,,,若共面,则实数 ________.13. (2分) (2015高三上·潍坊期末) 已知直线l1:y=ax+2a与直线l2:ay=(2a﹣1)x﹣a,若l1∥l2 ,则a=________;若l1⊥l2则a=________.14. (1分) (2019高三上·郑州期中) 已知向量与向量的夹角为120°,若向量且,则的值为________.15. (1分) (2016高二上·泰州期中) 抛物线x2=4y的焦点坐标为________.16. (1分) (2020高二下·上海期末) 在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论:①曲线W关于原点对称;②曲线W关于直线y=x对称;③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于;④曲线W上的点到原点距离的最小值为其中,所有正确结论的序号是________.三、解答题 (共5题;共45分)17. (10分)(2017·湖北模拟) 以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为(,).(1)求点C的直角坐标;(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.18. (10分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2 .(1)求证:CD⊥平面PAC;(2)如果N是棱AB上一点,且三棱锥N﹣BMC的体积为,求的值.19. (5分)(2017·淮北模拟) 已知椭圆C1: =1(a>b>0)的离心率e= ,且过点,直线l1:y=kx+m(m>0)与圆C2:(x﹣1)2+y2=1相切且与椭圆C1交于A,B两点.(Ⅰ)求椭圆C1的方程;(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.20. (10分) (2018高二下·辽宁期中) 四棱锥,底面为平行四边形,侧面底面 .已知,,,为线段的中点.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.21. (10分)(2018·益阳模拟) 已知抛物线的方程为,过点(为常数)作抛物线的两条切线,切点分别为, .(1)过焦点且在轴上截距为的直线与抛物线交于,两点,,两点在轴上的射影分别为,,且,求抛物线的方程;(2)设直线,的斜率分别为, .求证:为定值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共45分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、。

2022年辽宁省阜新市新民镇中学高二数学理上学期期末试题含解析

2022年辽宁省阜新市新民镇中学高二数学理上学期期末试题含解析

2022年辽宁省阜新市新民镇中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若等于()A.2 B.-2 C.D.参考答案:D略2. 若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°参考答案:A【考点】直线的倾斜角.【专题】直线与圆.【分析】利用两点的坐标,求出直线的斜率,从而求出该直线的倾斜角.【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.【点评】本题考查了利用两点的坐标求直线的斜率与倾斜角的应用问题,是基础题目.3. 双曲线的焦点到渐近线的距离为()A.2 B.2 C. D.1 参考答案:A4. 一组数据如茎叶图所示,则这组数据的中位数和平均数分别是()A.11.5和12 B.11.5和11.5 C.11和11.5 D.12和12参考答案:A【考点】茎叶图.【分析】先从茎叶图中读取数据,然后将这组数据从小到大排序,个数是偶数个取最中间两个数取平均数即为中位数,最后利用平均数公式可求出所求.【解答】解:根据茎叶图可知这组数据为9,7,17,11,16,14,10,12,将这组数据从小到大排序得7,9,10,11,12,14,16,17,∴这组数据的中位数为=11.5,平均数为(7+9+10+11+12+14+16+17)=12.故选:A.5. 若圆与圆的公共弦长为,则的值为()A. B. C. D.无解参考答案:A略6. 已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.,则B.,则C.,则D.,则参考答案:B略7. 下列函数中,既是奇函数又是增函数的为()A. B. C. D.参考答案:D8. 给出命题:“若,则”,在它的逆命题、否命题、逆否命题中,真命题的个数是A.0个B.1个C.2个D.3个参考答案:D略9. 在直角坐标系内,已知是以点为圆心的圆上的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使得,其中点,则的最大值为()A.7 B.6 C.5 D.4参考答案:B10. 用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°参考答案:B【考点】R9:反证法与放缩法.【分析】找到“三角形的内角中至少有一个不小于60°”的对立事件,由此能求出结果.【解答】解:∵“三角形的内角中至少有一个不小于60°”的对立事件是:“三角形中每一个内角都小于60°”,∴反证法证明三角形中至少有一个内角不小于60°,应假设三角形中每一个内角都小于60°.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为.参考答案:【考点】异面直线及其所成的角.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求出此角即可得到所求.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,根据余弦定理可知∠A1BC1的余弦值为,故答案为:.【点评】本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于中档题.12. 命题“,如果,则”的逆命题是_______ __________.参考答案:,如果,则略13. =参考答案:略14. 定义域为R 的可导函数f (x )的导函数f'(x ),且满足f (x )>f'(x ),f (0)=1,则不等式的解集为 .参考答案:(0,+∞)【考点】63:导数的运算.【分析】根据条件构造函数F (x )=,求函数的导数,利用函数的单调性即可得到结论.【解答】解:设F (x )=,则F′(x )=,∵f(x )>f′(x ),∴F′(x )<0,即函数F (x )在定义域上单调递减. ∵f(0)=1,∴不等式<1等价为F (x )<F (0),解得x >0,故不等式的解集为(0,+∞), 故答案为:(0,+∞).15. 设向量,,且,则的值为 .参考答案:168 ∵,∴设,又∵,,,即, 解得, ∴.故.16. 抛物线y=4x 2的准线方程为 .参考答案:考点:抛物线的简单性质. 专题:计算题.分析:先把抛物线方程整理成标准方程,进而求得p ,再根据抛物线性质得出准线方程.解答:解:整理抛物线方程得x 2=y ,∴p= ∵抛物线方程开口向上, ∴准线方程是y=﹣故答案为:.点评:本题主要考查抛物线的标准方程和简单性质.属基础题.17. 已知函数,若,则a =________.参考答案:-2三、 解答题:本大题共5小题,共72分。

辽宁省阜新市数学高二上学期理数期末考试试卷

辽宁省阜新市数学高二上学期理数期末考试试卷

辽宁省阜新市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一下·丰台期末) 二次函数y=ax2+bx+c(x∈R)的部分对应值如表:x﹣3﹣2﹣101234y﹣6046640﹣6则一元二次不等式ax2+bx+c>0的解集是()A . {x|x<﹣2,或x>3}B . {x|x≤﹣2,或x≥3}C . {x|﹣2<x<3}D . {x|﹣2≤x≤3}2. (2分) (2017高二下·盘山开学考) “a=1”是“复数a2﹣1+(a+1)i(a∈R,i为虚数单位)是纯虚数”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分) (2018高二上·六安月考) 在△ABC中,三个内角A,B,C所对的边分别是a,b,c,若内角ABC依次成等差数列,且不等式的解集为{x|a<x<c},则△ABC的面积为()A .B .C .D .4. (2分)已知数列满足则的前10项和等于()A .B .C .D .5. (2分)若直线y=kx+2与双曲线的右支交于不同的两点,那么k的取值范围是()A .B .C .D .6. (2分) (2018高二上·张家口月考) 抛物线的焦点坐标为()A .B .C .D .7. (2分)若变量满足约束条件,则的最小值为()A . -7D . 28. (2分) (2016高一上·松原期中) 下列四个命题:(1)函数f(x)在[0,+∞)上是增函数,在(﹣∞,0)上也是增函数,所以f(x)在R上是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,且a>0;(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)函数y=lg10x和函数y=elnx表示相同函数.其中正确命题的个数是()A . 3B . 2C . 1D . 09. (2分)设函数f(x)=(x-a)(x-b)(x-c),(a,b,c是互不相等的常数),则等于()A . 0B . 1C . 3D . a+b+c10. (2分)下列说法正确的是()A .B .C .D .11. (2分)一物体的运动方程为s=3+t2 ,则在时间段[2,2.1]内相应的平均速度为().A . 4.11D . 4.112. (2分) (2018高三上·西安模拟) 已知函数,若恰有两个不同的零点,则的取值范围为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2018·杭州模拟) 设内切圆与外接圆的半径分别为与 .且则 =________;当时,的面积等于________.14. (1分) (2017高一上·上海期中) 已知x∈R,命题“若2<x<5,则x2﹣7x+10<0”的否命题是________.15. (1分) (2018高三上·镇海期中) 中国古代数学著作《九章算术》中有一个这样的问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱,3月入25贯,全年(按12个月计)共入510贯“,则该人每月比前一月多入________贯,第12月营收贯数为________.16. (1分) (2016高二上·六合期中) 在平面直角坐标系xOy中,已知椭圆C: + =1(a>b>0)与不过坐标原点O的直线l:y=kx+m相交与A、B两点,线段AB的中点为M,若AB、OM的斜率之积为﹣,则椭圆C的离心率为________.三、解答题 (共6题;共55分)17. (10分) (2016高二上·嘉兴期中) 设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|.(1)若f(0)≥1,求a的取值范围;(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.18. (10分)已知等差数列{an}满足:a5=5,a2+a6=8.(1)求{an}的通项公式;(2)若bn=求数列{bn}的前n项和Sn .19. (10分) (2016高三上·临沂期中) 如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.(1)求道路BE的长度;(2)求道路AB,AE长度之和的最大值.20. (5分) (2017高二下·芮城期末) 设有两个命题,:关于的不等式(,且)的解集是;:函数的定义域为 .如果为真命题,为假命题,求实数的取值范围.21. (10分)(2016·大连模拟) 椭圆C1: +y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.22. (10分)(2017·滨州模拟) 已知函数f(x)=(x2﹣a)e1﹣x , g(x)=f(x)+ae1﹣x﹣a(x﹣1).(2)当a=1时,求g(x)在(,2)上的最大值;(3)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λg′(x1),求实数λ的值(g′(x)为g(x)的导函数)参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、17-3、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、。

辽宁省阜新市高二上学期期末数学试卷(理科)

辽宁省阜新市高二上学期期末数学试卷(理科)

辽宁省阜新市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020高二上·淮阴期末) 椭圆的右焦点为,其右准线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是()A .B .C .D .2. (2分) (2016高三上·承德期中) 如图,阴影部分的面积是()A . 2B . ﹣2C .D .3. (2分)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A . -B .C .D . -4. (2分)(2017高一上·河北月考) 已知函数,若关于的方程有个不同根,则实数的取值范围是()A .B .C .D .5. (2分) (2018高二下·哈尔滨月考) 设F1 , F2为椭圆的两个焦点,以F2为圆心作圆,已知圆F2经过椭圆的中心,且与椭圆相交于点M ,若直线MF1恰与圆F2相切,则该椭圆的离心率为()A .B .C .D .6. (2分)(2020·随县模拟) 已知,,,其中是自然对数的底数,则,,的大小关系是()A .B .C .D .7. (2分)已知函数f(x)在[0,+∞)上递增,=0,已知g(x)=﹣f(|x|),满足的x的取值范围是()A . (0,+∞)B .C .D .8. (2分) (2015高二下·定兴期中) 定积分 dx的值为()A . 2﹣eB . ﹣eC . eD . 2+e9. (2分)已知正实数a,b满足不等式ab+1<a+b,则函数f(x)=loga(x+b)的图象可能为()A .B .C .D .10. (2分)若函数在其定义域的一个子区间上不是单调函数,则的取值范围是()A .B .C .D .11. (2分)对大于或等于2的正整数的幂运算有如下分解方式:①22=1+3,32=1+3+5,42=1+3+5+7,......②23=3+5,33=7+9+11,43=13+15+17+19,......根据上述分解规律,若m2=1+3+5+...+11,P3的分解中最小的正整数是21,则m+p=()A . 10B . 11C . 12D . 1312. (2分)用数学归纳法证明:1+x+x2+x3+…+xn+2= (x≠1,n∈N+)成立时,验证n=1的过程中左边的式子是()A . 1B . 1+xC . 1+x+x2D . 1+x+x2+x3二、填空题 (共4题;共4分)13. (1分) (2018高二下·佛山期中) 过椭圆()的左焦点作x 轴的垂线交椭圆于P,为右焦点,若 ,则椭圆的离心率为________14. (1分)若函数f(x) 的导函数 f'(x)=x2-4x+3 ,则 f(x+1) 的单调递减区间是________.15. (1分)(2018·唐山模拟) 曲线与直线所围成的封闭图形的面积为________16. (1分) (2016高二下·连云港期中) 观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;可以推测,m﹣n+p=________.三、解答题 (共6题;共45分)17. (5分) (2016高一上·天河期末) 已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.18. (10分) (2018高二上·鼓楼期中) 设f(x)=(1﹣m)lnx+ +nx(m,n是常数).(1)若m=0,且f(x)在(1,2)上单调递减,求n的取值范围;(2)若m>0,且n=﹣1,求f(x)的单调区间.19. (10分) (2016高二下·晋中期中) 已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x= 时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.20. (5分)(2019高二上·余姚期中) 如图,四棱锥中, ,,,△ 是等边三角形,分别为的中点.(Ⅰ)求证:平面;(Ⅱ)若二面角的大小为,求直线与平面所成角的正切值.21. (10分) (2016高一上·舟山期末) 如图,在矩形ABCD中,AB=2BC,点M在边DC上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得四棱锥D′﹣ABCM.(1)求证:AM⊥D′F;(2)若∠D′EF= ,直线D'F与平面ABCM所成角的大小为,求直线AD′与平面ABCM所成角的正弦值.22. (5分) (2017高三上·桓台期末) 已知等比数列{an}的公比为q(q≠1),等差数列{bn}的公差也为q,且a1+2a2=3a3 .(Ι)求q的值;(II)若数列{bn}的首项为2,其前n项和为Tn ,当n≥2时,试比较bn与Tn的大小.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、。

辽宁省阜新市数学高二上学期理数期末考试试卷

辽宁省阜新市数学高二上学期理数期末考试试卷

辽宁省阜新市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产品数量之比为2;4:3:5,现用分层抽样的方法抽取一个容量为n的样本,样本中产品丁有100件,则此样本容量n等于()A . 220B . 240C . 260D . 2802. (2分)下列各数中最小的一个是()A . 111111(2)B . 210(6)C . 1000(4)D . 101(8)3. (2分)如图,斜线段AB与平面所成的角为60, B为斜足,平面上的动点P满足PAB=30,则点P的轨迹是()A . 直线B . 抛物线C . 椭圆D . 双曲线的一支4. (2分)设E,F是正方体AC1的棱AB和D1C1的中点,在正方体的12条面对角线中,与截面A1ECF成60°角的对角线的数目是()A . 0B . 2C . 4D . 65. (2分)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A .B .C .D .6. (2分)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A .B .C .D .7. (2分) (2017高一上·陵川期末) 甲、乙两人的各科成绩如茎叶图所示,则下列说法正确的是()A . 甲的中位数是89,乙的中位数是98B . 甲的各科成绩比乙各科成绩稳定C . 甲的众数是89,乙的众数是98D . 甲、乙二人的各科成绩的平均分不相同8. (2分)(2016·深圳模拟) 在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A . 1B . 2C . lg2D . 109. (2分)(2017·福建模拟) 设函数f(x)= 在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是()A .B . 1﹣C .D .10. (2分) (2015高二下·遵义期中) 当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A . [﹣5,﹣3]B . [﹣6,﹣ ]C . [﹣6,﹣2]D . [﹣4,﹣3]11. (2分) (2019高二上·阜阳月考) 点、为椭圆长轴的端点,、为椭圆短轴的端点,动点满足,若面积的最大值为8,面积的最小值为1,则椭圆的离心率为()A .B .C .D .12. (2分) (2019高二上·长沙期中) 已知椭圆以及椭圆内一点,则以为中点的弦所在直线斜率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高二上·泰州月考) 双曲线的渐近线方程为________.14. (1分) (2015高二上·金台期末) 已知,则在上的投影是________.15. (1分) (2018高二下·河南期中) 已知,是双曲线的两个焦点,为双曲线上一点,且,若的面积为,则 ________.16. (1分)已知>0,在函数y=2sin x与y=2cos x的图像的交点中,距离最短的两个交点的距离为2,则 =________ 、三、解答题 (共6题;共60分)17. (10分) (2017高一下·南通期中) 已知数列{an}的前n项和为Sn ,且a1+a5=17.(1)若{an}还同时满足:①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2,试求数列{an}的通项公式.(2)若{an}为等差数列,且S8=56.①求该等差数列的公差d;②设数列{bn}满足bn=3n•an,则当n为何值时,bn最大?请说明理由.18. (15分) (2016高一下·郑州期末) 某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.19. (10分)设A,B,C为△ABC的三个内角,向量 =(sinB+sinC,0), =(0,sinA),且| |2﹣| |2=sinBsinC.(1)求角A的大小;(2)求sinB+sinC的取值范围.20. (10分)(2018·栖霞模拟) 如图,已知三棱柱的所有棱长均为,平面平面,,为的中点.(1)证明:;(2)若是棱的中点,求二面角的余弦值.21. (5分)(2018·攀枝花模拟) 如下图,四梭锥中,⊥底面, ,为线段上一点, ,为的中点.(I)证明:平面;(Ⅱ)求直线与平面所成角的正弦值.22. (10分) (2017高二上·长沙月考) 在极坐标系中,已知圆的圆心,半径 . (1)求圆的极坐标方程;(2)若,直线的参数方程为为参数),直线交圆于两点,求弦长的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、。

辽宁省阜新市高二上学期期末数学试卷(理科)

辽宁省阜新市高二上学期期末数学试卷(理科)

辽宁省阜新市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一下·双流期中) 在数列{an}中,,则a5=()A . 2B . 3C . ﹣1D .2. (2分) (2017高二下·汪清期末) 如果随机变量ξ~B(n , p),且E(ξ)=7,D(ξ)=6,则p等于()A .B .C .D .3. (2分)(2017·上饶模拟) 设函数f(x)=(x﹣2)n ,其中,则f(x)的展开式中含x6的项的系数为()A . ﹣112B . ﹣56C . 112D . 564. (2分) (2019高一上·绍兴期末) 如图,有一块半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是的直径,上底CD的端点在圆周上,为研究这个梯形周长的变化情况,有以下两种方案:方案一:设腰长,周长为;方案二:设,周长为,当x,在定义域内增大时A . 先增大后减小,先减小后增大B . 先增大后减小,先增大后减小C . 先减小后增大,先增大后减小D . 先减小后增大,先减小后增大5. (2分)给出下列实际问题:①一种药物对某种病的治愈率;②两种药物冶疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中,用独立性检验可以解决的问题有()A . ①②③B . ②④⑤C . ②③④⑤D . ①②③④⑤6. (2分)设x,y满足则z=x+y()A . 有最小值2,最大值3B . 有最小值2,无最大值C . 有最大值3,无最小值D . 既无最小值,也无最大值7. (2分) (2017高二下·中山月考) 若,且,则等于()A .B .C .D .8. (2分) (2016高二上·晋江期中) 在等比数列{an}中,已知a1= ,a5=9,则a3=()A . 1B . 3C . ±1D . ±39. (2分) (2018高二下·中山月考) 5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有()种A . 72B . 63C . 54D . 4810. (2分)设两个向量和其中为实数.若则的取值范围是()A .B .C .D .11. (2分)已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是()A . (﹣∞,﹣1]B . (﹣∞,0)∪(1,+∞)C . [3,+∞)D . (﹣∞,﹣1]∪[3,+∞)12. (2分)已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是()A . (﹣∞,3]B . (﹣∞,5]C . [3,+∞)D . [5,+∞)二、填空题 (共4题;共4分)13. (1分) (2017高二下·运城期末) 一盒中有12个质地均匀的乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________(用数字作答)14. (1分) (2018高三上·双鸭山月考) 已知数列中,,且数列为等差数列,则 ________.15. (1分)(2018·南宁模拟) 已知函数若,则实数的取值范围为________.16. (1分) (2016高二上·郑州开学考) 某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________.三、解答题 (共6题;共65分)17. (10分) (2016高一下·黄石期中) 等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 .(1)求数列{an}的通项公式;(2)设bn=|10+2log3an|,求数列{bn}的前n项和Sn.18. (10分)在三角形ABC中,∠A,∠B,∠C的对边分别为且(1)求∠A;(2)若,求的取值范围.19. (5分) (2016高一下·双流期中) 如图,某观测站在港口A的南偏西40°方向的C处,测得一船在距观测站31海里的B处,正沿着从港口出发的一条南偏东20°的航线上向港口A开去,当船走了20海里到达D处,此时观测站又测得CD等于21海里,问此时船离港口A处还有多远?20. (15分) (2016高三上·黑龙江期中) 甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.(1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?21. (15分) (2017高三上·东莞期末) 某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).分数[50,85][85,110][110,150]可能被录取院校层次专科本科重本(1)求n和频率分布直方图中的x,y的值;(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.22. (10分) (2018高二上·舒兰月考) 数列中,在直线.(1)求数列{an}的通项公式;(2)令,数列的前n项和为.(ⅰ)求;(ⅱ)是否存在整数λ ,使得不等式(-1)nλ<(n∈N )恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、第11 页共11 页。

2020-2021学年辽宁省阜新市第二十三高级中学高二数学理期末试题含解析

2020-2021学年辽宁省阜新市第二十三高级中学高二数学理期末试题含解析

2020-2021学年辽宁省阜新市第二十三高级中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,a=2,b=,A=,则B=( )A. B. C. D.参考答案:B2. 若a<b<0,则下列不等式不能成立的是()(A)>(B)2a>2b(C)|a|>|b| (D)()a>()b参考答案:B3. 命题“?x>0,lnx≤x﹣1”的否定是()A.?x0>0,lnx0≤x0﹣1 B.?x0>0,lnx0>x0﹣1C.?x0<0,lnx0<x0﹣1 D.?x0>0,lnx0≥x0﹣1参考答案:B【考点】2J:命题的否定.【分析】直接利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x>0,lnx≤x﹣1”的否定是?x0>0,lnx0>x0﹣1,故选:B.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.4. 下列函数中,最小值为4的是A.B.C.D.参考答案:C5. 在△ABC中,角A,B,C的对边分别为a,b,c,若,则()(A)(B)(C)3 (D)参考答案:C6. 抛物线的焦点恰好与椭圆的一个焦点重合,则()参考答案:C略7. 正四面体ABCD中各棱长为2,E为AC的中点,则BE与CD所成角的余弦值为()A.B.C.D.参考答案:A【考点】异面直线及其所成的角.【分析】根据E为AC的中点,取AD的中点F,可得CD∥EF,则BE与CD所成角为∠BEF.正四面体ABCD中各棱长为2,可得BF,BE,EF的长度,利用余弦定理求解即可.【解答】解:由题意,E为AC的中点,取AD的中点F,可得CD∥EF,则BE与CD所成角即可转化为∠BEF.∵ABCD是正四面体,各棱长为2.∴ABC是等边三角形,E是中点,BE⊥AC,同理:BF⊥AD,∴BF=BE=.∵CD∥EF,∴EF=1.那么cos∠BEF=.即BE与CD所成角的余弦值为.故选A.【点评】本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.8. 程序框图如图所示,则该程序框图运行后输出的S是( )A. B.-3 C.2 D.参考答案:A9.参考答案:B略10. 如图,椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为( )A.8 B.2 C. 4 D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 等比数列{a n}中,已知对任意自然数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于参考答案:12. 用反证法证明“三角形中至少一个角不大于600”应假设的内容是:.参考答案:三角形的三个内角都大于600略13. 已知为正实数,且,则的最大值是__________.参考答案:14. 某地教育部门为了解学生在数学答卷中的有关信息,从上次考试的10 000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图4).则这10 000人中数学成绩在[140,150]段的约是______人.参考答案:80015. 长方体中,,,,则与所成角的余弦值为▲.参考答案:略16. 命题p:x2+2x-3>0,命题q:,若q且p为真,则x的取值范围是_____参考答案:(-∞,-3)∪(1,2]∪[3,+∞)17. 设全集U=R,集合,,则_.参考答案:【分析】利用已知求得:,即可求得:,再利用并集运算得解.【详解】由可得:或所以所以所以故填:【点睛】本题主要考查了补集、并集的运算,考查计算能力,属于基础题。

2021年辽宁省阜新市阜蒙县第一高级中学高二数学理上学期期末试卷含解析

2021年辽宁省阜新市阜蒙县第一高级中学高二数学理上学期期末试卷含解析

2021年辽宁省阜新市阜蒙县第一高级中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)的底面积为Q,侧面积为S,则它的体积为()参考答案:D略2. 设,,在中,正数的个数是()A. 25B. 50C. 75D. 100参考答案:D试题分析:∵∴全是正数.考点:三角函数的周期.3. 如图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B.84,1.6 C.85,1.6 D.85,4参考答案:C【考点】茎叶图;极差、方差与标准差.【专题】压轴题;图表型.【分析】根据所给的茎叶图,看出七个数据,根据分数处理方法,去掉一个最高分93和一个最低分79后,把剩下的五个数字求出平均数和方差.【解答】解:由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的平均数为;方差为.故选C.【点评】茎叶图、平均数和方差属于统计部分的基础知识,也是高考的新增内容,考生应引起足够的重视,确保稳拿这部分的分数.4. 双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.参考答案:A【考点】双曲线的简单性质.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.5. 从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个红球D.至少有一个黑球与都是红球参考答案:C【考点】互斥事件与对立事件.【分析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可【解答】解:对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A不正确对于B:事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,∴B不正确对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴C正确对于D:事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴D不正确故选C6. 直三棱柱A1B1C1﹣ABC,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是()A.B.C.D.参考答案:B【考点】异面直线及其所成的角.【分析】以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出BD1与AF1所成角的余弦值.【解答】解:∵直三棱柱A1B1C1﹣ABC,∠BCA=90°,∴以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,∵点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,∴设BC=CA=CC1=2,则B(0,20),D1(1,1,2),A(2,0,0),F1(1,0,2),=(1,﹣1,2),=(﹣1,0,2),设BD1与AF1所成角为θ,则cosθ===.∴BD1与AF1所成角的余弦值为.故选:B.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7. 若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1} B.{x|﹣2<x<1} C.{x|﹣2<x<2} D.{x|0<x<1}参考答案:D8.参考答案:C9. 下列说法正确的是 ( ). A . “”是“”的充分不必要条件B .“”是“”的必要不充分条件. C .命题“使得”的否定是:“均有”.D .命题“若,则”的逆否命题为真命题.参考答案:D 略10. 设,且,则( )A. 0B. 100C. -100D.10200参考答案:B 略二、 填空题:本大题共7小题,每小题4分,共28分11. 现安排甲、乙、丙、丁、戊5名同学参加志愿者活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

2020年辽宁省阜新市第二十六高级中学高二数学理期末试题含解析

2020年辽宁省阜新市第二十六高级中学高二数学理期末试题含解析

2020年辽宁省阜新市第二十六高级中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知命题p:对任意的x∈R,有lnx>1,则?p是()A.存在x0∈R,有lnx0<1 B.对任意的x∈R,有lnx<1C.存在x0∈R,有lnx0≤1D.对任意的x∈R,有lnx≤1参考答案:C【考点】命题的否定.【分析】根据题意分析可得,这是一个全称命题,其否定为特称命题,分析选项可得答案.【解答】解:根据题意,命题p:对任意的x∈R,有lnx>1,这是全称命题,其否定为特称命题,即存在x0∈R,有lnx0≤1,故选C.2. 如图,在三棱柱中,底面为正三角形,侧棱垂直底面,,.若,分别是棱,上的点,且,,则异面直线与所成角的余弦值为()A.B.C.D.参考答案:D3. 已知,点为斜边的中点,,,,则等于()A. B. C. D.参考答案:D4. 设动直线与函数的图象分别交于点,则的最小值为()A. B. C. D.参考答案:A5. 命题“∈R,-x+1≥0”的否定是()A.∈R,lnx+x+1<0 B.∈R,-x+1<0C.∈R,-x+1>0 D.∈R,-x+1≥0参考答案:B略6. 椭圆的左、右焦点分别为F1、F2,弦AB过F1,若ABF2的内切圆的周长为2π,A、B两点的坐标分别为,,则()A. B. C. D.参考答案:A【分析】设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.可得==?|F1F2|,即可得出.【详解】由椭圆=1,可得a=5,b=4,c==3.如图所示,设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.则==?|F1F2|,∴4a=|y2﹣y1|×2c,∴|y2﹣y1|==.故选:C.【点睛】本题考查了椭圆的标准方程定义及其性质、三角形内切圆的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.7. 若函数的图像的顶点在第四象限,则函数的大致图像是参考答案: A 略8. 某校共有学生2000名,各年级男、女生人数如右表. 已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为:A .24B .18C .16D .12参考答案: C9. 下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .平行四边形的对边相等C .对角线相等的四边形是矩形D .矩形的对角线相等参考答案:C【考点】2K :命题的真假判断与应用.【分析】A ,根据平行四边形的判定,两组对边分别相等的四边形是平行四边形; B ,根据平行四边形的性质判断; C ,比如等腰梯形的对角线相等; D ,根据矩形的性质判断;【解答】解:对于A ,根据平行四边形的判定,可判断两组对边分别相等的四边形是平行四边形,故正确B ,根据平行四边形的性质,可得平行四边形的对边相等可,故正确C ,比如等腰梯形的对角线相等,可判断C 错D ,根据矩形的性质,可得矩形的对角线相等,可判断D 正确;二年级 三年级 370故选:C10. 计算等于( )A. B. C. D. 参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 空间不共线的四点,可能确定___________个平面.参考答案:或空间四点中,任意三点都不共线时,可确定个平面,当四点共面时,可确定个平面,故空间不共线四点,可确定个或个平面.12. 已知S n是数列{a n}的前n项和,且有S n=n2+1,则数列{a n}的通项a n= .参考答案:【考点】数列递推式;数列的求和.【专题】计算题.【分析】利用公式可求出数列{a n}的通项a n.【解答】解:a1=S1=1+1=2,a n=S n﹣S n﹣1=(n2+1)﹣=2n﹣1,当n=1时,2n﹣1=1≠a1,∴.答案:.【点评】本题考查数列的性质和应用,解题时要注意公式的灵活运用.13. 已知直线l1:3x﹣y+2=0,l2:x+my﹣3=0,若l1⊥l2,则m的值等于.参考答案:3【考点】直线的一般式方程与直线的垂直关系.【分析】利用直线相互垂直的充要条件即可得出.【解答】解:∵l1⊥l2,∴3×=﹣1,解得m=3.故答案为:3.【点评】本题考查了直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.14. 某同学为研究函数的性质,构造了如图所示的两个边长为的正方形和,点是边上的一个动点,设,则. 请你参考这些信息,推知函数的零点的个数是▲.参考答案:215. 椭圆的半焦距是_____参考答案:316. 以原点为定点,坐标轴为对称轴,且过点(2,-4)的抛物线方程是______参考答案:=8或=-17. 在各项都是正数的等比数列{a n}中,若a2a8+2a5a3+a2a4=16,则a3+ a5=_______;参考答案:4略三、解答题:本大题共5小题,共72分。

辽宁省阜新市数学高二(宏志班)上学期理数期末考试试卷

辽宁省阜新市数学高二(宏志班)上学期理数期末考试试卷

辽宁省阜新市数学高二(宏志班)上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共25分)1. (2分)若函数的图象向左平移个单位后得到的图象对应的函数是奇函数,则直线ax-by+x=0的斜率为()A .B .C . 一D . 一2. (2分) (2018高二下·陆川月考) 命题“ ,”的否定是()A . 不存在,B . ,C . ,D . ,3. (2分) (2018高二上·黑龙江期中) 圆锥的轴截面是边长为4的正三角形,则该圆锥的表面积为A .B .C .D .4. (2分) (2016高二上·枣阳开学考) 下列命题中,错误的是()A . 一条直线与两个平行平面中的一个相交,则必与另一个平面相交B . 平行于同一平面的两个不同平面平行C . 如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面βD . 若直线l不平行平面α,则在平面α内不存在与l平行的直线5. (2分)已知命题:抛物线的准线方程为;命题:平面内两条直线的斜率相等是两条直线平行的充分不必要条件;则下列命题是真命题的是()A .B .C .D .6. (2分) (2016高二上·黄陵期中) 平面α∥平面β的一个充分条件是()A . 存在一条直线a,a∥α,a∥βB . 存在一条直线a,a⊂α,a∥βC . 存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD . 存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α7. (2分) (2015高二上·昌平期末) 如图,在正方体ABCD﹣A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若 = , = , = ,则 =()A . ( + ﹣)B . ( + ﹣)C . (﹣)D . (﹣)8. (2分) (2016高二上·郴州期中) 已知变量x,y满足约束条件,则的取值范围是()A .B .C . (﹣∞,3]∪[6,+∞)D . [3,6]9. (2分)过椭圆()的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若,则椭圆的离心率为()A .B .C .D .10. (2分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A . 8B . 12C .D .11. (2分) (2018高二下·陆川月考) 已知椭圆的左右焦点分别是,焦距为,若直线与椭圆交于点,且满足,则椭圆的离心率是()A .B .C .D .12. (2分)已知定点A(2014,2),F是抛物线y2=2x的焦点,点P是抛物线上的动点,当|PA|+|PF|最小时,点P的坐标为()A . (0,0)B . (1,)C . (2,2)D . (, 1)13. (1分) (2017高二上·佳木斯月考) 已知双曲线的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为________.二、填空题 (共3题;共4分)14. (2分) (2016高二上·湖州期中) 已知向量 =(2,4,x), =(2,y,2),若| |=6,则x=________;若∥ ,则x+y=________.15. (1分) (2015高三下·武邑期中) 在已知空间四边形ABCD中,E、F分别是棱AB、CD的中点,若2EF=BC,且异面直线EF与BC所成的角为60°,则AD与BC所成的角是________16. (1分)给出下列四个命题:①函数y=为奇函数;②y=的值域是(1,+∞)③函数y=在定义域内是减函数;④若函数f(2x)的定义域为[1,2],则函数y=f()定义域为[4,8]其中正确命题的序号是________ .(填上所有正确命题的序号)三、解答题 (共6题;共60分)17. (10分) (2017高二上·宜昌期末) 已知命题p:关于x的不等式x2+(a﹣1)x+1≤0的解集为∅;命题q:方程表示焦点在y轴上的椭圆;若命题¬q为真命题,p∨q为真命题.(1)求实数a的取值范围;(2)判断方程(a+1)x2+(1﹣a)y2=(a+1)(1﹣a)所表示的曲线的形状.18. (10分) (2017高一下·牡丹江期末) 在平面直角坐标系中,点 ,圆的半径为2,圆心在直线上(1)若圆心也在圆上,过点作圆的切线,求切线的方程。

2021-2022学年辽宁省阜新市第二高级中学高二上学期期末考试数学试题(Word版)

2021-2022学年辽宁省阜新市第二高级中学高二上学期期末考试数学试题(Word版)

辽宁省阜新市第二高级中学2021-2022学年高二上学期期末考试数学试卷1.考试采用书面答卷闭卷方式,考试时间90分钟,满分100分;2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:(本大题共12小题,每小题3分,共36分.)1.若集合}31|{≤≤-=x x A ,}2|{>=x x B ,则=B A ( )A. }21|{≤≤-x xB. }21|{<≤-x xC. }32|{≤<x xD. }32|{≤≤x x2.命题“2,1x R x ∀∈≠-”的否定是( )A.2,1x R x ∀∉=-B.2,1x R x ∀∈=-C.2,1x R x ∃∉=-D. 2,1x R x ∃=-∈3.复平面内,复数34i z =-+对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.不等式(3)(5)0x x -+<的解集是( )A .{|53}x x -<<B .{|5x x <-或3}x >C .{|35}x x -<<D .{|3x x <-或5x >}5.函数14y x =-的定义域是( )A.(3,4)B.[3,4)C.[)(44)3,,⋃+∞D.(4,)+∞6.在某体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值是( )A.90B.93C.92D.917..已知向量(),3a k =,向量()1,4b =,若a b ⊥,则实数k =( )A .12B .12-C .34D .34- 8.ABC △的内角AB C ,,的对边分别为a b c ,,,若1=a , 45=∠B ,2=∆ABC S 则b 等于( ) A.5 B.25 C.41 D.529.正数b a ,满足1=ab ,则b a 2+的最小值为( )A.2B.22C.23 D.3 10.设)(x f 是定义域为R 的奇函数,且当0>x 时,x x x f -=2)(,则=-)2(f ( )A. 2B.2-C.6D.6-11.下列结论中正确的是( )A.若a b >,则ac bc >B.若a b >,则11a b< C.若22ac bc >,则 a b > D.若a b >,则22ac bc >12.若奇函数()f x 在()0,+∞上为增函数,且()30f =,则不等式0()x f x <的解集为( ) A.()()-3,03+∞, B.()()-3,003, C.()()--33∞+∞,, D.()()--303∞,,Ⅱ卷二、填空题:本大题共4小题,每小题3分,共12分.13.14.某地方的交通状况绘制了交通指数的频率分布直方图(如图),若样本容量为500个,则交通排指数在[5,7)之间的个数是______.15. 函数()2f x sin x =的最小正周期为________.16.已知函数⎩⎨⎧>-≤=)1(,)1(,3)(x x x x f x ,若2)(=x f ,则X=三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知向量,a b 的夹角为120,且2,3a b ==.求:(1). a b ⋅ (2). 2a b +18.(本小题满分10分)某地区有有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

辽宁省阜新市二中2024届数学高二上期末质量跟踪监视试题含解析

辽宁省阜新市二中2024届数学高二上期末质量跟踪监视试题含解析
性质和前 n 项和等知识点,属于简单题.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13、4
【解题分析】将代数式变形为 (1 1)(1 x)5 (1 x)5 1 (1 x)5 ,写出展开式的通项,
x
x
令 x 的指数为 4 ,求得参数的值,代入通项即可求解.
【题目详解】由 (1 x)5 展开式的通项为 Tr1 C5r 15r xr 1r C5r xr ,
6.若平面
的一个法向量为 n
1, 2, 2 ,点
A3,0,2 ,
B 5,1, 3

A
, B , A 到平面 的距离为()
A.1
B.2
C.3
D.4
7.已知 O 为原点,点 A2, 2 ,以 OA 为直径的圆的方程为()
A. x 12 y 12 2
B. x 12 y 12 8
C. x 12 y 12 2
首项为 3,前三项的和为 21, 3 3q 3q2 21,解之得 q 2 或 3 ,
在等比数列 an 中,各项都为正数,
公比 q 为正数, q 2(3 舍去),
a3 a4 a5 q2 a1 a2 a3 4 21 84,故选 A.
点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的
AB n
n
1 2 21 21 6 2
12 22 22
3
故选:B.
7、A 【解题分析】求圆的圆心和半径,根据圆的标准方程即可求解﹒
【题目详解】由题知圆心为 1,1 ,半径 r=1 OA = 2 ,
2
∴圆 方程为 (x 1)2+( y+1)2=2 ﹒
故选:A﹒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年辽宁省阜新高二(上)期末检测数学试卷一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y23.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥04.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、145.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.76.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于()A.B.C.D.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为()....A. B. C. D.8.已知直线a ,b ,平面α,β,且a ⊥α,b ⊂β,则“a ⊥b ”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.某四棱锥的三视图如图所示(单位:cm ),则该四棱锥的体积是()A .27cm 3B .9cm 3C.cm 3 D .3cm 310.实数x ,y满足,则z=y ﹣x 的最大值是( )A .1B .2C .3D .411.函数,给出下列结论正确的是( )A .f (x)的最小正周期为B .f (x)的一条对称轴为C .f (x)的一个对称中心为D.是奇函数12.设f (x )是定义在R 上的周期为3的函数,当x ∈[﹣2,1)时,f (x )=,则f()=( ) A .0 B .1 C. D .﹣1 二、填空13.若角45°的终边上有一点(4,a ),则a 的值是 . 14.不等式x 2﹣3x ﹣18≤0的解集为 .15.若与为非零向量,,则与的夹角为 .16.直线l 过点A (3,2)与圆x 2+y 2﹣4x+3=0相切,则直线l 的方程为 .三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.22.已知函数(x∈R)...(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.2018-2019学年辽宁省阜新高二(上)期末数学试卷参考答案与试题解析一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 【考点】交集及其运算.【专题】集合.【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y2【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】A.x>1⇒<1;B.x<时不成立;C.取x>0,y<0,不成立;D.取x=﹣1,y=﹣2,不成立.【解答】解:对于A.x>1⇒<1,正确;对于B.x<时不成立;对于C.取x>0,y<0,则不成立;对于D.取x=﹣1,y=﹣2,不成立.只有A正确...故选;A.【点评】本题考查了不等式的基本性质,属于基础题.3.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥0【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:特称命题的否定是全称命题,则命题“∃x∈R+,lnx>0”的否定是:∀x∈R+,lnx≤0,故选:B【点评】本题主要考查含有量词的命题的否定,比较基础.4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14【考点】系统抽样方法.【专题】常规题型.【分析】系统抽样,要求编号后,平均分租,每一组只抽一个样本,两个相邻的样本的编号间距相等【解答】解:从20人中用系统抽样抽4个人,须把20人平均分成4组,每一组只抽1人,且所抽取的号码成等差数列只有A选项满足故选A【点评】本题考查系统抽样,要求掌握系统抽样的特点:平均分租,每一组只抽一个样本,号码成等差数列.属简单题5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()....A .4B .5C .6D .7 【考点】程序框图. 【专题】算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2, 第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D .【点评】本题主要考查程序框图的识别和判断,比较基础.6.椭圆+=1(a >b >0)的两个焦点F 1,F 2,点M 在椭圆上,且MF 1⊥F 1F 2,|MF 1|=,|MF 2|=,则离心率e 等于( )A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意,|F 1F 2|==2=2c ,2a=+=6,即可求出椭圆的离心率.【解答】解:由题意,|F 1F 2|==2=2c ,2a=+=6,∴e==.故选:C .【点评】本题考查椭圆的定义,考查椭圆的几何性质,考查学生的计算能力,属于中档题.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为()A.B.C.D.【考点】概率的应用.【专题】计算题.【分析】先求出正方形的面积为22,设阴影部分的面积为x,由概率的几何概型知,由此能求出该阴影部分的面积.【解答】解:设阴影部分的面积为x,则,解得x=.故选B.【点评】本题考查概率的性质和应用,每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.解题时要认真审题,合理地运用几何概型解决实际问题.8.已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.【解答】解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,..∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.【点评】本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是()A.27cm3B.9cm3C.cm3D.3cm3【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是四棱锥,由侧视图知四棱锥的高为1,根据三视图的数据判断底面是边长为1+2=3的正方形,代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是四棱锥,且四棱锥的高为1,底面是边长为1+2=3的正方形,∴几何体的体积V=×32×1=3(cm3).故选:D.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.10.实数x,y满足,则z=y﹣x的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案...【解答】解:由约束条件画出平面区域,如图所示.A(0,1),化目标函数z=y﹣x为y=x+z,由图可知,当直线y=x+z过点A时,目标函数取得最大值.∴z max=1﹣0=1.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.函数,给出下列结论正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数【考点】两角和与差的正弦函数.【专题】转化思想;数形结合法;三角函数的图像与性质.【分析】化简函数f(x),求出f(x)的最小正周期T,判断出A错误;把x=代入2x+中计算,根据正弦函数图象的对称性,判断出B、C错误;化简f(x﹣),得出f(x﹣)是定义域R上的奇函数,判断出D正确.【解答】解:函数=sin(2x+),∴f(x)的最小正周期为T==π,A错误;又当x=时,2x+=≠kπ+,k∈Z,∴x=不是f(x)的对称轴,B错误;同理x=时,2x+=≠kπ,k∈Z,..∴(,0)不是f(x)的对称中心,C错误;又f(x﹣)=sin[2(x﹣)+]=sin2x,∴f(x ﹣)是定义域R上的奇函数,D正确.故选:D.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒等变换问题,是基础题目.12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()A.0 B.1 C.D.﹣1【考点】函数的值.【专题】函数的性质及应用.【分析】既然3是周期,那么﹣3也是周期,所以f()=f(﹣),代入函数解析式即可.【解答】解:∵f(x)是定义在R上的周期为3的函数,∴f()=f(﹣3)=f(﹣)=4(﹣)2﹣2=﹣1故选:D【点评】本题考查函数的周期性以及分段函数的表示,属于基础题.二、填空13.若角45°的终边上有一点(4,a),则a的值是4.【考点】任意角的三角函数的定义.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】直接利用三角函数的定义,即可求出m的值.【解答】解:因为45°角的终边上有一点为(4,a),所以tan45°==1,所以a=4.故答案为:4.【点评】本题考查三角函数的定义,考查计算能力,正确运用利用三角函数是关键.14.不等式x2﹣3x﹣18≤0的解集为[﹣3,6]...【考点】一元二次不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】不等式可化为(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,由此得到不等式的解集.【解答】解:不等式x2﹣3x﹣18≤0,即(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,故不等式解集为[﹣3,6],故答案为:[﹣3,6].【点评】本题主要考查了一元二次不等式的解法,体现了等价转化的数学思想,属于基础题.15.若与为非零向量,,则与的夹角为.【考点】数量积表示两个向量的夹角;向量的模.【专题】平面向量及应用.【分析】利用模的计算公式和数量积即可得出.【解答】解:∵,∴,∴=,∴.∵与为非零向量,∴.∴与的夹角为.故答案为.【点评】熟练掌握模的计算公式和数量积是解题的关键.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为x=3或3x﹣4y﹣1=0.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】根据直线和圆相切的条件进行求解即可.【解答】解:圆的标准方程为(x﹣2)2+y2=1,则圆心坐标为(2,0),半径R=1若直线斜率k不存在,则直线方程为x=3,圆心到直线的距离d=3﹣2=1,满足条件.若直线斜率k存在,则直线方程为y﹣2=k(x﹣3),即kx﹣y+2﹣3k=0,圆心到直线的距离d==1,平方得k=,此时切线方程为3x﹣4y﹣1=0,综上切线方程为x=3或3x﹣4y﹣1=0,故答案为:x=3或3x﹣4y﹣1=0.【点评】本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用椭圆性质求解.【解答】解:椭圆+=1中,∵a=4,b=2,c==2,∴椭圆+=1的长轴2a=8,短轴2b=4,顶点(﹣4,0),(4,0),(0,﹣2),(0,2),焦点(﹣2,0),(2,0).【点评】本题考查椭圆的长轴和短轴的长、顶点和焦点的坐标的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.【考点】双曲线的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由题意可知,双曲线为实轴在x轴上的双曲线,并求得c与a的值,代入隐含条件求得b,则双曲线标准方程、渐近线方程及离心率可求.【解答】解:∵双曲线焦点坐标(﹣5,0),∴双曲线为实轴在x轴上的双曲线,且c=5,又实轴长为6,即2a=6,得a=3,∴b2=c2﹣a2=25﹣9=16,则b=4,∴双曲线标准方程为,渐近线方程为y=±,即4x±3y=0,双曲线的离心率为e=.【点评】本题考查双曲线方程的求法,考查了双曲线的简单性质,是基础题.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题.【分析】(1)设AC∩BD=O,连接EO,证明PD∥EO,利用直线与平面平行的判定定理证明PD∥面AEC.(2)连接PO,证明AC⊥PO,AC⊥BD,通过PO∩BD=O,证明AC⊥面PBD,然后证明面AEC⊥面PBD【解答】解:(1)证明:设AC∩BD=O,连接EO,因为O,E分别是BD,PB的中点,所以PD∥EO…(4分)而PD⊄面AEC,EO⊂面AEC,所以PD∥面AEC…(7分)(2)连接PO,因为PA=PC,所以AC⊥PO,又四边形ABCD是菱形,所以AC⊥BD…(10分)而PO⊂面PBD,BD⊂面PBD,PO∩BD=O,所以AC⊥面PBD…(13分)又AC⊂面AEC,所以面AEC⊥面PBD…(14分)【点评】本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.【考点】频率分布直方图.【专题】计算题;图表型.【分析】(1)根据各个小矩形的面积之比,做出第二组的频率,再根据所给的频数,做出样本容量.(2)从频率分步直方图中看出次数子啊110以上的频数,用频数除以样本容量得到达标率,进而估计高一全体学生的达标率.(3)这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,得到中位数落在第四小组.【解答】解:(1)∵各小长方形面积之比为2:4:17:15:9:3∴第二小组的频率是=0.08∵第二小组频数为12,∴样本容量是=150(2)∵次数在110以上(含110次)为达标,∴高一学生的达标率是=88%即高一有88%的学生达标.(3)∵这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,∵测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,∴中位数落在第四小组,即跳绳次数的中位数落在第四小组中.【点评】本题考查频率分步直方图,考查用样本的频率分布估计总体的频率分布,本题解题的关键是读懂直方图,本题是一个基础题.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(1)根据题意和等差数列的前n项和公式、通项公式,求出公差和首项,再求出数列{a n}的通项公式;(2)由(1)求出b n,由分组求和法和等差、等比数列的前n项和公式求出T n.【解答】解:(1)由S7=56得=56,则7a4=56,解得a4=8,因为a5=10,所以公差d=a5﹣a4=10﹣8=2,则a4=a1+3d,解得a1=8﹣6=2,所以a n=2+2(n﹣1)=2n;(2)由(1)得,b n=a n+()=2n+3n,所以T n=(2+3)+(4+32)+(6+33)+…+(2n+3n)=(2+4+6+…+2n)+(3+32+33+…+3n)=+=,所以T n=.【点评】本题考查等差数列的通项公式,等差、等比数列的前n项和公式,及数列的求和方法:分组求和法,属于中档题.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.【考点】三角函数中的恒等变换应用;正弦定理.【专题】计算题;三角函数的图像与性质;解三角形.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=.由,可得单调递增区间.(2)由得.又,则可求得,由AB=AD可求得:AD+DC=BD+DC=BC,又由正弦定理可得BC=8sin∠BAC.由,可得.故可得周长最大值.【解答】解:(1)===.由,得(k∈Z).∴单调递增区间为,k∈Z(2)由得.又,则,从而,∴.由AB=AD知△ABD是正三角形,AB=AD=BD,∴AD+DC=BD+DC=BC,在△ABC中,由正弦定理,得,即BC=8sin∠BAC.∵D是BC边上一点,∴,∴,知.当时,AD+CD取得最大值8,周长最大值为.【点评】本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,综合性较强,属于中档题.。

相关文档
最新文档