第8节 电场、磁场在实际中的应用
电流的磁场
* 速度选择器:
qE qv B0
v E B0
* 质谱分析仪:R m
R m v mE qB qBB0
速度选 择器
q,
离子源
mv
照相 底片
A
+
vA B
Bo
E
质谱——粒子射到底片上形成的线状条纹
根据条纹的位置 测量出圆周半径R 计算同位素的质量。
70
72 73 74
76
锗的质谱
真空磁导率
0 dB
4 107
的方向:I
H/rm dl
rr
r dB
0 4
I
d
r l
r r0
r2
——毕奥-萨伐尔定律
2. 一段载流导线产生的磁场
步骤: (1)把长度为L的载流导线分成许多个电流元
I d l →dB
r
r
(2) B dB,进行矢量积分。 L
3. 几条(或几段)载流导线产生的磁场
磁场的叠加原理:
第八章 电流的磁场
§8.1 磁场、 磁感应强度
§8.2 电流的磁场 §8.3 磁场对运动
电荷的作用 §8.4 磁场对电流的
作用、磁矩
第一节 磁场、磁感应强度
一、磁场
二、磁感应强度 三、磁感应线 四、磁通量
一、磁场
1. 磁现象及其规律
(1)自然界磁现象 ☆ 磁性:具有能吸引铁磁物质(Fe、Co、
Ni)的一种特性. ☆ 磁体:具有磁性的物体.
1.均匀磁场
均匀磁场 B 与 平面S正交:
Φ BS
• 均匀磁场 B 与平面S法线 n 的夹角为 :
BS
BS cos
=
r B
nrS
13.1磁场磁感线教案物理人教版(2019)必修第三册
在作业评价方面,我发现及时反馈和鼓励对学生非常重要。通过认真批改学生的作业,我能够及时发现他们的不足之处,并提供具体的指导和反馈。同时,我鼓励学生积极提问和参与讨论,以提高他们的学习动力和自信心。这些方法对提高学生的学习效果非常有帮助。
教学方法/手段/资源:
-自主学习法:引导学生自主完成作业和拓展学习。
-反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
-作用与目的:巩固学生在课堂上学到的磁场和磁感线知识点和技能。通过拓展学习,拓宽学生的知识视野和思维方式。通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
3.学生可能遇到的困难和挑战:在学习磁场和磁感线时,学生可能会遇到一些困难和挑战。首先,磁场是一个抽象的概念,学生可能难以直观地理解和想象磁场的存在和性质。其次,磁感线的绘制和理解可能对学生来说较为复杂,需要较强的空间想象力和逻辑思维能力。此外,学生可能对磁场的应用和实际意义不够了解,需要通过实例和实际应用来加深理解。因此,在教学过程中,教师需要关注学生的困难,并采取适当的教学策略来帮助他们克服这些挑战。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
-信息技术手段ቤተ መጻሕፍቲ ባይዱ利用在线平台、微信群等,实现预习资源的共享和监控。
-作用与目的:帮助学生提前了解“磁场和磁感线”课题,为课堂学习做好准备。培养学生的自主学习能力和独立思考能力。
(完整)粤教版高中物理教材目录(详细版)
必修一*第一章运动的描述第一节认识运动参考系质点第二节时间位移时间与时刻路程与位移第三节记录物体的运动信息打点计时器数字计时器第四节物体运动的速度平均速度瞬时速度第五节速度变化的快慢加速度第六节用图象描述直线运动匀速直线运动的位移图像匀速直线运动的速度图像匀变速直线运动的速度图像本章复习与测试*第二章探究匀变速直线运动规律第一节探究自由落体运动落体运动的思考记录自由落体运动轨迹第二节自由落体运动规律猜想与验证自由落体运动规律第三节从自由落体到匀变速直线运匀变速直线运动规律两个有用的推论第四节匀变速直线运动与汽车行驶本章复习与测试*第三章研究物体间的相互作用第一节探究形变与弹力的关系认识形变弹性与弹性限度探究弹力力的图示第二节研究摩擦力滑动摩擦力研究静摩擦力第三节力的等效和替代共点力力的等效力的替代寻找等效力第四节力的合成与分解力的平行四边形定则合力的计算分力的计算第五节共点力的平衡条件第六节作用力与反作用力探究作用力与反作用力的关系牛顿第三定律本章复习与测试*第四章力与运动第一节伽利略的理想实验与牛顿第一定律伽利略的理想实验牛顿第一定律第二节影响加速度的因素加速度与物体所受合力的关系加速度与物体质量的关系第三节探究物体运动与受力的关系加速度与力的定量关系加速度与质量的定量关系实验数据的图像表示第四节牛顿第二定律数字化实验的过程及结果分析牛顿第二定律及其数学表示第五节牛顿第二定律的应用第六节超重和失重超重和失重超重和失重的解释完全失重现象第七节力学单位单位制的意义国际单位制中的力学单位本章复习与测试必修二*第一章抛体运动第一节什么是抛体运动抛体运动的速度方向抛体做直线或曲线运动的条件第二节运动的合成与分解分运动与合运动运动的独立性运动的合成与分解第三节竖直方向的抛体运动竖直下抛运动竖直上抛运动第四节平抛物体的运动平抛运动的分解平抛运动的规律第五节斜抛物体的运动斜抛运动的分解斜抛运动的规律射程与射高弹道曲线本章复习与检测*第二章圆周运动第一节匀速圆周运动认识圆周运动如何描述匀速圆周运动的快慢第二节向心力感受向心力向心加速度生活中的向心力第三节离心现象及其应用离心现象离心现象的运用本章复习与检测*第三章万有引力定律及其应用第一节万有引力定律天体究竟做怎样的运动苹果落地的思考:万有引力定律的发现第二节万有引力定律的应用计算天体的质量理论的威力:预测未知天体理想与现实:人造卫星和宇宙速度第三节飞向太空飞向太空的桥梁——火箭梦想成真——遨游太空探索宇宙奥秘的先锋——空间探测器本章复习与检测*第四章机械能和能源第一节功怎样才算做了功如何计算功功有正、负之分吗?第二节动能势能动能重力势能弹性势能第三节探究外力做功与物体动能变第四节机械能守恒定律动能与势能之间的相互转化机械能守恒定律的理论推导第五节验证机械能守恒定律第六节能量能量转化与守恒定律各种各样的能量能量之间的转化能量守恒定律能量转化和转移的方向性第七节功率如何描述物体做工的快慢怎么计算功率功率与能量第八节能源的开发与利用能源及其分类能源危机与环境污染未来的能源本章复习与检测*第五章经典力学与物理学的革命第一节经典力学的成就与局限性经典力学的发展历程经典力学的伟大成就经典力学的极限性和适用范围第二节经典时空观与相对论时空观经典时空观相对论时空观第三节量子化现象黑体辐射:能量子假说的提出光子说:对光电效应的解释光的波粒二象性:光的本性揭示原子光谱:原子能量的不连续第四节物理学——人类文明进步的阶物理学与自然科学——人类文明进步的基石物理学与现代技术——人类文明进步的推动力本章复习与检测选修3-1*第一章电场第一节认识电场起点方式的实验探究电荷守恒定律第二节探究静电力点电荷库仑定律第三节电场强度电场电场的描述怎样“看见”电场第四节电势和电势差电势差电势等势面第五节电场强度与电势差的关系探究场强与电势差的关系电场线与等势面的关系第六节示波器的奥秘带电离子的加速带电离子的偏转示波器探秘第七节了解电容器识别电容器电容器的充放电电容器的电容决定电容的因素第八节静电与新技术锁住黑烟防止静电危害本章复习与测试*第二章电路第一节探究决定导线电阻的因素电阻定律的实验探究电阻率第二节对电阻的进一步研究导体的伏安特性电阻的串联电阻的并联第三节研究闭合电路电动势闭合电路的欧姆定律路端电压跟负载的关系测量电源的电动势和内阻第四节认识多用电表多用电表的原理学会使用多用电表第五节电功率电功和电功率焦耳定律和热功率闭合电路中的功率第六节走进门电路与门电路或门电路非门电路门电路的实验探究第七节了解集成电路集成电路概述集成电路的分类集成电路的前景本章复习与测试*第三章磁场第一节我们周围的磁象无处不在的磁场地磁场磁性材料第二节认识磁场磁场初探磁场有方向吗图示磁场安培分子电流假说第三节探究安培力安培力的方向安培力的大小磁通量第四节安培力的应用直流电动机磁电式电表第五节研究洛伦兹力洛伦兹力的方向洛伦兹力的大小第六节洛伦兹力与现代技术带电粒子在磁场中的运动质谱仪回旋加速器本章复习与测试本册复习与测试,选修3-2*第一章电磁感应第一节电磁感应现象第二节研究产生感应电流的条件第三节探究感应电流的方向感应电流的方向楞次定律右手定则第四节法拉弟电磁感应定律影响感应电动势大小的因素法拉第电磁感应定律感应电动势的另一种表述第五节法拉弟电磁感应定律的应用(一)法拉第电机电磁感应中的电路第六节法拉弟电磁感应定律的应用(二)电磁流量计电磁感应中的能量第七节自感现象及其应用自感现象自感系数日光灯第八节涡流现象及其应用涡流现象电磁灶与涡流加热涡流制动与涡流探测本章复习与检测*第二章交变电流第一节认识变交电流观察交变电流的图象交变电流的产生第二节交变电流的描述用函数表达式描述交变电流用图象描述交变电流第三节表征交变电流的物理量交变电流的周期和频率交变电流的峰值和有效值第四节电感器对交变电流的作用认识电感器电感器对交变电流的阻碍作用低频扼流圈和高频扼流圈第五节电容器对交变电流的作用电容器仅让交变电流通过电容器对交变电流的阻碍作用隔直电容器和高频旁路电容器第六节变压器认识变压器探究变压器的电压与匝数的关系理想变压器原副线圈中的电流第七节远距离输电从发电站到用户的输电线路为什么要用高压输电直流输电本章复习与检测*第三章传感器第一节认识传感器什么是传感器传感器的分类第二节探究传感器的原理温度传感器的原理光电传感器原理第三节传感器的应用生活中的传感器农业生产中的传感器工业生场中的传感器飞向太空的传感器第四节用传感器制作自控装置第五节用传感器测磁感应强度本章复习与检测选修3-3*第一章分子动理论第一节物体是由大量分子组成的分子的大小阿伏伽德罗常数第二节测量分子的大小实验原理实验器材实验与收集数据分析与论证第三节分子的热运动扩散现象布朗运动第四节分子间的相互作用力第五节物体的内能分子的动能温度分子势能物体的内能第六节气体分子运动的统计规律分子沿各个方向运动的机会相等分子速率按一定的规律分布本章复习与检测*第二章固体、液体和气体第一节晶体的宏观特征单晶体多晶体非晶体第二节晶体的微观结构第三节固体新材料新材料的基本特征新材料的未来第四节液体的性质液晶液体分子的排列液体分子的热运动液晶长丝状液晶螺旋状液晶第五节液体的表面张力液体的表面现象液体的表面张力及其微观解释第六节气体状态量体积温度压强第七节气体实验定律(Ⅰ)玻意耳定律第八节气体实验定律(Ⅱ)查理定律盖.吕萨克定律对气体实验定律的微观解释第九节饱和蒸汽空气的湿度饱和蒸汽饱和气压空气的湿度本章复习与检测*第三章热力学基础第一节内能功热量改变物体内能的两种方式第二节热力学第一定律热力学第一定律热力学第一定律运用举例第三节能量守恒定律能量守恒定律第一类永动机是不可能造成的第四节热力学第二定律热传导的方向性机械能和内能转化过程的方向性热力学第二定律热力学第二定律的微观实质熵第五节能源与可持续发展能源与环境温室效应酸雨能量降退与节约能源第六节研究性学习能源的开发利用与环境保护本章复习与测试选修3-4*第一章机械振动第一节初识简谐运动弹簧振子描述简谐运动的物理量第二节简谐运动的力和能量特征简谐运动的力的特征简谐运动的能量的特征第三节简谐运动的公式描述第四节探究单摆的振动周期单摆振动周期的实验探究第五节用单摆测定重力加速度第六节受迫振动共振受迫振动共振共振的利用和防止本章复习与检测*第二章机械波第一节机械波的产生和传播认识机械波机械波的产生机械波的传播纵波与横波第二节机械波的图象描述波的图象描述波的特征的物理量第三节惠更斯原理及其应用惠更斯原理波的反射波的折射第四节波的干涉与衍射波的干涉波的衍射第五节多普勒效应认识多普勒效应多普勒效应的成因多普勒效应的运用本章复习与检测*第三章电磁振荡与电磁波第一节电磁振荡电磁振荡电路的演变与构成电磁振荡过程中电场能和磁场能的转化电磁振荡的周期和频率第二节电磁场与电磁波麦克斯韦电磁场理论的基础思想电磁波的产生及其特点电磁场的物质性麦克斯韦电磁场理论的意义第三节电磁波的发射、传播和接收模仿赫兹实验电磁波的发射电磁波的传播无线电波的接收第四节电磁波谱光是电磁波电磁波谱第五节电磁波的应用无线电广播与电视移动通信电磁波与科技、经济、社会发展的关系本章复习与检测*第四章光第一节光的折射定律光的折射规律的实验探究折射角与光速的关系折射率第二节测定介质的折射率测量折射率第三节认识光的全反射现象光的全反射光导纤维的结构与应用第四节光的干涉双缝干涉现象光产生干涉的条件第五节用双缝干涉实验测定光的波长第六节光的衍射和偏振光的衍射光的偏振第七节激光激光激光的特性激光的应用全息照相用激光观察全息照片本章复习与检测*第五章相对论第一节狭义相对论的基本原理狭义相对论的诞生狭义相对论的基本原理“同时”的相对性第二节时空相对性时间间隔的相对性空间距离的相对性相对论的时空观第三节质能方程与相对论速度合成相对论质量质能方程相对论的速度合成定理第四节广义相对论广义相对论基本原理广义相对论的主要结论第五节宇宙学简介人类对宇宙演化的认识宇宙学的新进展本章复习与检测选修3-5*第一章碰撞与动量守恒第一节物体的碰撞历史上对碰撞问题的研究生活中的各种碰撞现象弹性碰撞和非弹性碰撞第二节动量动量守恒定律动量及其改变一维碰撞中的动量守恒定律第三节动量守恒定律在碰撞中的应. 第四节反冲运动第五节自然界中的守恒定律守恒与不变守恒与对称本章复习与检测*第二章波粒二象性第一节光电效应光电效应与光电流光电流的变化极限频率遏止电压电磁理论解释的困难第二节光子能量量子假说光子假说光电效应方程对光电效应的解释第三节康普顿效应及其解释第四节光的波粒二象性光的波粒二象性的本质概率波第五节德布罗意波德布罗意波假说电子衍射电子云不确定关系本章复习与检测*第三章原子结构之谜第一节敲开原子的大门探索阴极射线电子的发现第二节原子的结构α粒子散射实验原子的核式结构的提出第三节氢原子光谱巴耳末系氢原子光谱的其他线系原子光谱第四节原子的能级结构能及结构猜想氢原子的能级本章复习与检测*第四章原子核第一节走进原子核放射性的发现原子核的组成第二节核衰变与核反应方程原子核的衰变核反应方程半衰期第三节放射性同位素同位素放射性同位素的应用放射性的危害及防护第四节核力与结合能核力及其性质重核与轻核结合能第五节裂变和聚变核裂变链式反应受控热核反应第六节核能利用反应堆核电站核能利用第七节小粒子与大宇宙从小粒子到大宇宙——空间跨度从粒子寿命到宇宙年龄——时间跨度本章复习与检测。
大学物理第8章
每个点电荷所受的总静电力,等于其他点电荷单独存在时 作用在该点电荷上的静电力的矢量和.数学表达式为
在国际单位制中,电量的单位为库仑(C),简称库.
第一节 电荷 库仑定律
2. 电荷的量子化
实验证明,自然界中带电体所带的电量总是一个基本单 元的整数倍.物体所带的电荷不是以连续的方式出现,而是以 一个个不连续的量值出现的,电荷的这种特性称为电荷的量 子化.电荷的基本单元就是一个电子所带电量的绝对值,即 e=1.602×10-19C
1785年,法国物理学家库仑通过扭秤实验,首先对两个静止点 电荷之间的相互作用做了定量研究,作用力的大小与这两个点电荷的 电量之积成正比,与两个点电荷之间距离的平方成反比,作用力的方 向沿着两点电荷的连线,同号电荷互相排斥,异号电荷互相吸引.
第一节 电荷 库仑定律
其数学表达式为
k由实验测定. f表示q1对q2的作 用力,r为q1、q2之间的距离,r为由q1指向q2的单位向 量,图8-1 两静止点电荷的相互作用力如图8- 1所示. 当q1、q2为同号时,f的方向与er的方向一致;当q1、 q2为异号时,f的方向与er的方向相反.
见摸得着,但是依然对外有物质性表现.静电场的物质性表现有两
个方面,即
第二节 电场 电场强度
(1)在静电场中的任何带电体都会受到电场的作用力. (2)当带电体在静电场中运动时,电场力会对它做功. 以上两种物质性表现是研究静电场的基础,根据静电场 的第一种表现,从力的观点出发引入电场强度;根据静电场 的第二种表现,从功和能的角度引入电势.
电场与磁场的相互作用
电场与磁场的相互作用电场和磁场是物理学中最基本的两种力场形式,它们在自然界中起着重要的作用。
当它们相互作用时,将会产生一系列有趣而复杂的现象。
本文将探讨电场和磁场之间的相互作用,以及在不同情况下的表现和应用。
一、电场与磁场的基本概念电场指的是周围存在电荷时所形成的力场。
电荷之间的相互作用通过电场来传递。
磁场则是由电流产生的力场,由磁荷(即磁单极子)所携带。
电场的单位为牛顿/库仑(N/C),磁场的单位为特斯拉(T)。
二、电场和磁场的相互作用电场和磁场在相互作用时,会产生一系列的力和现象。
首先,当电荷在磁场中运动时,将会受到洛伦兹力的作用。
洛伦兹力的方向与电荷的运动方向、磁场的方向都有关系。
洛伦兹力的大小与电荷的电量、速度以及磁场的强度有关。
此外,当电流通过一个导线时,将会在周围产生磁场。
这个磁场的大小与电流的强度成正比,方向由右手定则确定。
如果存在另一个导线,则两个导线之间将会产生相互作用的力,称为安培力。
三、电场和磁场的应用由于电场和磁场能够相互作用,因此它们在许多应用中起着重要的作用。
以下是几个常见的应用:1. 电动机:电动机是利用电场和磁场之间的相互作用来实现能量转换的装置。
当电流通过电动机中的线圈时,产生的磁场与固定磁场相互作用,从而产生力矩使电动机运转。
2. 发电机:发电机的工作原理正好与电动机相反。
通过机械转动产生的磁场与线圈中的电流相互作用,从而将机械能转化为电能。
3. 电磁感应:根据法拉第电磁感应定律,当磁场的强度或方向变化时,会在导线中产生感应电动势。
该原理广泛应用于变压器、发电机和感应炉等设备中。
4. 磁共振成像:磁共振成像(MRI)利用磁场和电场的相互作用原理,通过对人体组织内核自旋的磁共振现象进行检测,得到人体内部结构的影像。
总结:电场和磁场是物理学中两种常见的力场形式,它们在相互作用时引发了许多有趣的现象和应用。
本文介绍了电场和磁场的基本概念,以及它们相互作用时产生的力和现象,并且列举了几个常见的应用领域。
高中物理所有教材
高中物理所有教材篇一:人教版高中物理教材的目录必修一物理学与人类文明第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 匀变速直线运动的速度与位移的关系5 自由落体运动6 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿运动定律解决问题(一)7 用牛顿运动定律解决问题(二)学生实验课题研究课外读物必修2第五章曲线运动1.曲线运动2.平抛运动3.实验:研究平抛运动4.圆周运动5.向心加速度6.向心力7.生活中的圆周运动第六章万有引力与航天1.行星的运动2.太阳与行星间的引力3.万有引力定律4.万有引力理论的成就5.宇宙航行6.经典力学的局限性第七章机械能守恒定律1.追寻守恒量——能量2.功3.功率4.重力势能5.探究弹性势能的表达式6.实验:探究功与速度变化的关系7.动能和动能定理8.机械能守恒定律9.实验:验证机械能守恒定律10.能量守恒定律与能源课题研究课外读物高中物理新课标教材·选修1-1第一章电场电流一、电荷库仑定律二、电场三、生活中的静电现象四、电容器五、电流和电源六、电流和热效应第二章磁场一、指南针与远洋航海二、电流的磁场三、磁场对通电导线的作用四、磁场对运动电荷的作用五、磁性材料第三章电磁感应一、电磁感应现象二、法拉第电磁感应定律三、交变电流四、变压器五、高压输电六、自感现象涡流七、课题研究:电在我家中第四章电磁波及其应用一、电磁波的发现二、电磁波谱三、电磁波的发射和接收四、信息化社会五、课题研究:社会生活中的电磁波附录课外读物推荐高中物理新课标教材·选修1-2致同学们第一章分子动理论内能一、分子及其热运动二、物体的内能三、固体和液体四、气体第二章能量的守恒与耗散一、能量守恒定律二、热力学第一定律三、热机的工作原理四、热力学第二定律五、有序、无序和熵六、课题研究:家庭中的热机第三章核能一、放射性的发现二、原子与原子核的结构三、放射性衰变四、裂变和聚变五、核能的利用第四章能源的开发与利用一、热机的发展与应用二、电力和电信的发展与应用三、新能源的开发四、能源与可持续发展五、课题研究:太阳能综合利用的研究高中物理新课标教材·选修2-1第一章电场直流电路第1节电场第2节电源第3节多用电表第4节闭合电路的欧姆定律第5节电容器第2章磁场第1节磁场磁性材料第2节安培力与磁电式仪表第3节洛伦兹力和显像管第1节电磁感应现象第2节感应电动势第3节电磁感应现象在技术中的应用第4章交变电流电机第1节交变电流的产生和描述第2节变压器第3节三相交变电流第5章电磁波通信技术第1节电磁场电磁波第2节无线电波的发射、接收和传播第3节电视移动电话第4节电磁波谱第6章集成电路传感器第1节晶体管第2节集成电路第3节电子计算机第4节传感器课题研究课外读物及网站推荐高中物理新课标教材·选修2-2第1章物体的平衡第1节共点力平衡条件的应用第2节平动和转动第3节力矩和力偶第4节力矩的平衡条件第5节刚体平衡的条件第6节物体平衡的稳定性第2章材料与结构第1节物体的形变第2节弹性形变与范性形变第3节常见承重结构第3章机械与传动装置第1节常见的传动装置第2节能自锁的传动装置第3节液压传动第4节常用机构第5节机械第4章热机第1节热机原理热机效率第2节活塞式内燃机第3节蒸汽轮机燃气轮机第4节喷气发动机第1节制冷机的原理第2节电冰箱第3节空调器课题研究高中物理新课标教材·选修2-3第一章光的折射第1节光的折射折射率第2节全反射光导纤维第3节棱镜和透镜第4节透镜成像规律第5节透镜成像公式第2章常用光学仪器第1节眼睛第2节显微镜和望远镜第3节照相机第3章光的干涉、衍射和偏振第1节机械波的衍射和干涉第2节光的干涉第3节光的衍射第4节光的偏振第4章光源与激光第1节光源第2节常用照明光源第3节激光第4节激光的应用第5章放射性与原子核第1节天然放射现象原子结构第2节原子核衰变第3节放射性同位素的应用第4节射线的探测和防护第6章核能与反应堆技术第1节核反应和核能第2节核裂变和裂变反应堆第3节核聚变和受控热核反应课题研究高中物理新课标教材·选修3-1第一章静电场1 电荷及其守恒定律2 库仑定律3 电场强度篇二:高中物理教材目录表---人教版(全)人教版新课标高中物理教材目录表(全)高中物理新课标教材·必修1第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 自由落体运动5 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿定律解决问题(一)7 用牛顿定律解决问题(二)高中物理新课标教材·必修2第五章机械能及其守恒定律1 追寻守恒量2 功3 功率4 重力势能5 探究弹性势能的表达式6 探究功与物体速度变化的关系7 动能和动能定理8 机械能守恒定律9 实验:验证机械能守恒定律10 能量守恒定律与能源第六章曲线运动1 曲线运动2 运动的合成与分解3 探究平抛运动的规律4 抛体运动的规律5 圆周运动6 向心加速度7 向心力8 生活中的圆周运动第七章万有引力与航天1 行星的运动2 太阳与行星间的引力3 万有引力定律4 万有引力理论的成就5 宇宙航行6 经典力学的局限性高中物理新课标教材·选修1-1第一章电流1、电荷库仑定律2、电场3、生活中的静电现象4、电流和电源5、电流的热效应第二章磁场1、指南针与远洋航海2、电流的磁场3、磁场对通电导线的作用4、磁声对运动电荷的作用5、磁性材料第三章电磁感应1、电磁感应现象2、法拉第电磁感应定律3、交变电流4、变压器5、高压输电6、自感现象涡流7、课题研究:电在我家中第四章电磁波及其应用1、电磁波的发现2、电磁光谱3、电磁波的发射和接收4、信息化社会5、课题研究:社会生活中的电磁波高中物理新课标教材·选修1-2第一章分子动理论内能1、分子及其热运动2、物体的内能3、固体和液体4、气体第二章能量的守恒与耗散1、能量守恒定律2、热力学第一定律3、热机的工作原理4、热力学第二定律5、有序、无序和熵6、课题研究:家庭中的热机第三章核能1、放射性的发现2、原子核的结构3、放射性的衰变4、裂变和聚变5、核能的利用第四章能源的开发与利用1、热机的发展和应用2、电力和电信的发展与应用3、新能源的开发4、能源与可持续发展5、课题研究:太阳能综合利用的研究高中物理新课标教材·选修2-1第一章电场直流电路1、电场2、电源3、多用电表4、闭合电路的欧姆定律5、电容器第二章磁场1、磁场磁性材料2、安培力与磁电式仪表3、洛伦兹力和显像管第三章电磁感应1、电磁感应现象2、感应电动势3、电磁感应现象在技术中的应用第四章交变电流电机1、交变电流的产生和描述2、变压器3、三相交变电流第五章电磁波通信技术1、电磁场电磁波2、无线电波的发射、接收和传播3、电视移动电话4、电磁波谱第六章集成电路传感器1、晶体管2、集成电路3、电子计算机4、传感器第一章物体的平衡1、共点力平衡条件的应用2、平动和传动3、力矩和力偶4、力矩的平衡条件5、刚体平衡的条件6、物体平衡的稳定性第二章材料与结构1、物体的形变2、弹性形变与范性形变3、常见承重结构第三章机械与传动装置1、常见的传动装置2、能自锁的传动装置3、液压传动4、常用机构5、机械第四章热机1、热机原理热机效率2、活塞式内燃机3、蒸汽轮机燃气轮机4、喷气发动机第五章制冷机1、制冷机的原理2、电冰箱3、空调器第一章光的折射1、光的折射折射率高中物理新课标教材·选修2-2 高中物理新课标教材·选修2-32、全反射光导纤维3、棱镜和透镜4、透镜成像规律5、透镜成像公式第二章常用光学仪器1、眼睛2、显微镜和望远镜3、照相机第三章光的干涉、衍射和偏振1、机械波的稍微和干涉2、光的干涉3、光的衍射4、光的偏振第四章光源与激光1、光源2、常用照明光源3、激光4、激光的应用第五章放射性与原子核1、天然放射现象原子结构2、原子核衰变3、放射性同位素的应用4、射线的探测和防护第六章核能与反应堆技术1、核反应和核能2、核列变和裂变反应堆3、核聚变和受控热核反应第一章静电场1 电荷及其守恒定律2 库仑定律3 电场强度4 电势能和电势5 电势差6 电势差与电场强度的关系7 电容器与电容8 带电粒子在电场中的运动第二章恒定电流1 导体中的电场和电流2 电动势3 欧姆定律4 串联电路和并联电路5 焦耳定律高中物理新课标教材·选修3-1篇三:高中物理新教材目录人教版高中物理新课标教科书目录(全套)必修1(一年级上学期)走进物理课堂之前物理学与人类文明第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 自由落体运动自由落体运动规律5 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律探究法求合力1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律探究作用力与反作用力6 用牛顿定律解决问题(一)7 用牛顿定律解决问题(二)必修2(一年级下学期)第六章曲线运动1 曲线运动2 运动的合成与分解4 抛体运动的规律3 实验:研究平抛运动5 圆周运动6 向心加速度7 向心力8 生活中的圆周运动第七章万有引力与航天1 行星的运动2 太阳与行星间的引力3 万有引力定律4 万有引力理论的成就5 宇宙航行6 经典力学的局限性第五章机械能及其守恒定律1 追寻守恒量2 功3 功率4 重力势能5 探究弹性势能的表达式6 实验:探究功与速度变化的关系7 动能和动能定理8 机械能守恒定律9 实验:验证机械能守恒定律10 能量守恒定律与能源选修3-1 (二年级上学期)第一章静电场1 电荷及其守恒定律实验:静电感应2 库仑定律演示:探究影响电荷间相互作用力的因素3 电场强度演示:模拟电场线4 电势能和电势5 电势差6 电势差与电场强度的关系7、静电现象的应用8 电容器与电容演示:研究静电平衡时导体内部的电荷演示:静电屏蔽演示:影响平等板电容器的因素 9 带电粒子在电场中的运动第二章恒定电流1 电源和电流2 电动势3 欧姆定律实验:测绘小灯泡的伏安特性曲线4 串联电路和并联电路5 焦耳定律6 电阻定律实验:探究导体电阻与其影响的定量关系实验:探究导体电阻与材料的关系7 闭合电路欧姆定律8 多用电表演示:实验:多用电表的使用:测电压、电流、阴值、二极管焉反电阻 9 实验:测定电池的电动势和内阻10 简单的逻辑电路第三章磁场1 磁现象和磁场2 磁感应强度3 几种常见的磁场4 磁场对通电导线的作用力5 磁场对运动电荷的作用力6 带电粒子在匀强磁场中的运动演示:安培力选修3-2 (二年级上学期)第四章电磁感应1 划时代的发现2 探究电磁感应的产生条件4 楞次定律3 法拉第电磁感应定律5 感生电动势和动生电动势6 互感和自感7 涡流、电流阻尼和电磁驱动第五章交变电流1 交变电流2 描述交变电流的物理量3 电感和电容对交变电流的影响4 变压器5 电能的输送第六章传感器1 传感器及其工作原理2 传感器的应用(一)3 传感器的应用(二)4 传感器的应用实例附一些元器件的原理和使用要点选修3-3第七章分子动理论1 物体是由大量分子组成的2 分子的热运动3 分子间的作用力4 温度和温标5 内能第八章气体。
磁场对电流的作用教案
磁场对电流的作用教案磁场对电流的作用教案1(一)教学目的1.知道磁场对通电导体有作用力。
2.知道通电导体在磁场中受力的方向与电流方向和磁感线方向有关,改变电流方向或改变磁感线方向,导体的受力方向随着改变。
3.知道通电线圈在磁场中转动的道理。
4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。
5.培养学生观察能力和推理、归纳、概括物理知识的能力。
(二)教具小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架(吊铝箔筒用),如课本图12-10的挂图,线圈(参见图12-2),抄有题目的小黑板一块(也可用投影片代替)。
(三)教学过程1.引入新课本章主要研究电能;第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送。
电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器--电动机。
出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。
提问:电动机是根据什么原理工作的呢?讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现--电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。
根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。
下面我们通过实验来研究这个推断。
2.进行新课(1)通电导体在磁场里受到力的作用板书课题:〈第四节磁场对电流的作用〉介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中(参见课本中的图12-9)。
用铝箔筒作通电导体是因为铝箔筒轻,受力后容易运动,以便我们观察。
演示实验1:用一节干电池给铝箔筒通电(瞬时短路),让学生观察铝箔筒的运动情况,并回答小黑板上的.题1:给静止在磁场中的铝箔筒通电时,铝箔筒会xxx,这说明xxx。
关于电和磁知识点总结(合集13篇)
关于电和磁知识点总结第1篇一、电流的磁效应。
1、奥斯特实验证实电流周围存在磁场。
2、通电螺线管的磁场(1)通电螺线管周围存在磁场,其磁感线与条形磁铁的磁感线形状相似。
(2)磁场方向与螺线管中的电流方向及导线的绕线方向有关。
磁极方向和电流的关系可用右手安培定则判定:用右手握住螺线管,让四指指向螺线管中电流方向,则拇指所指的那端就是螺线管的北极。
3、电生磁的应用——电磁铁(1)电磁铁:带有铁芯的螺线管,在有电流通过时有磁性,没有电流的时候就失去磁性。
特点:磁性有无由通断电来控制,磁性强弱由电流大小和线圈匝数来控制。
(2)电磁继电器:电磁继电器是由电磁铁控制的自动开关,是利用低电压、弱电流电路的通断,来间接控制高电压、强电流通断的装置,可以进行远距离操作和自动控制。
工作原理:通过通断电流控制电磁铁磁性有无来工作。
二、电动机1、能量转化:电能转化为机械能2、工作原理:利用通电导体在磁场中受力运动3、换向器的作用:使电流始终从一个方向进入线圈4、电动机转动方向的改变方法(1)将外部电源的正负极对调;(2)将磁极(N、S)对调关于电和磁知识点总结第2篇1.磁场(1)概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。
(2)基本性质:磁场对放入磁场中的磁体产生磁力的作用。
(3)磁场的方向:规定——在磁场中的任意一点,小磁针静止时,N即所指的方向就是那点的磁场方向。
注意——在磁场中的任意一个位置的磁场方向只有一个。
2.磁感线(1)概念:为了形象地描述磁场,在物理学中,用一些有方向的曲线把磁场的分布情况描述下来,这些曲线就是磁感线。
(2)方向:为了让磁感线能反映磁场的方向,我们把磁感线上都标有方向,并且磁感线的方向就是磁场方向。
(3)特点:①磁体外部的磁感线从N极出发回到S极。
(北出南入)②磁感线是有方向的,磁感线上任何一点的切线方向与该点的磁场方向一致。
③磁感线的分布疏密可以反映磁场磁性的强弱,越密越强,反之越弱。
电场和电势能的电场感应和电磁波衍射作用
电场和电势能的电场感应和电磁波衍射作用电场和电势能是电学中重要的概念,与电场感应和电磁波衍射作用密切相关。
本文将从电场感应和电磁波衍射两个方面进行探讨。
一、电场感应电场感应是指当电场变化时,在电场中产生感应电动势和感应电流的现象。
电场感应的现象可以通过法拉第电磁感应定律来解释,该定律描述了磁场变化引起的感应电动势。
当一个导体处于变化的磁场中时,磁通量的改变会在导体中产生感应电动势,根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
根据这一定律可以推导出电磁感应中的电磁力学现象,如发电机的工作原理。
在电场感应中,磁场的引入是关键。
通过改变磁场的强度、方向和区域,可以实现对电场的控制。
例如,磁场感应可以应用于磁共振成像中,利用磁场的变化产生感应电动势,并通过检测感应电动势来获取图像信息。
二、电磁波衍射电磁波衍射是指电磁波传播时遇到障碍物或孔径时发生的偏折现象。
电磁波的传播可以通过赫兹的实验证实,他使用了一个发射器产生电磁波,并通过一个导电屏蔽和一个检测器来观察电磁波的传播。
当电磁波传播到一定距离时,遇到障碍物或孔径时,会发生衍射现象。
衍射是由于波的传播过程中遇到障碍物或孔径时,波的干涉和折射引起的。
根据波的干涉原理,可以推导出电磁波衍射的公式和规律。
电磁波衍射是一种典型的波动现象,它在物理学、光学和通信等领域有着广泛的应用。
例如,光学的衍射现象被广泛应用于相机镜头、望远镜和显微镜等光学设备中,以实现光学成像和物体观测。
总结:电场感应和电磁波衍射是电学中重要的概念和现象。
电场感应是指在电场变化时,在导体中产生感应电动势和感应电流的现象。
电磁波衍射是指电磁波传播时遇到障碍物或孔径时发生的偏折现象。
电场感应和电磁波衍射都是波动现象,它们在电学和光学等领域有着广泛的应用。
理解和熟悉这两个概念对于深入了解电学原理和波动理论具有重要意义。
通过深入研究电场感应和电磁波衍射,可以进一步发展和应用电学和光学技术。
《第一章 2 磁场对运动电荷的作用力》教学设计教学反思
《磁场对运动电荷的作用力》教学设计方案(第一课时)一、教学目标1. 理解磁场的观点,以及磁场对运动电荷的作用力。
2. 掌握洛伦兹力的基本性质和规律,能够运用其解决实际问题。
3. 了解洛伦兹力在科技和生活中的实际应用。
二、教学重难点1. 教学重点:理解磁场的观点,掌握洛伦兹力的基本性质和规律。
2. 教学难点:运用洛伦兹力解决实际问题,以及理解磁场对运动电荷的作用机理。
三、教学准备1. 准备教学用具:黑板、白板、投影仪、示波器、磁铁等。
2. 准备实验器械:电流表、电压表、磁铁、导体棒等。
3. 准备教学视频:展示磁场对运动电荷的作用过程。
4. 设计问题清单,供教室讨论和思考。
四、教学过程:1. 引入课题教师起首向学生介绍磁场的观点,以及磁场对运动电荷的作用力。
接着,向学生展示一些磁场对运动电荷的影响实例,例如通电导线的运动方向、磁铁对小铁球的作用等。
让学生感受到磁场的重要性,并激发他们的学习兴趣。
2. 讲解基础知识在介绍了磁场的观点和作用力后,教师需要进一步讲解磁场的方向、强度和磁感应强度等基础知识。
同时,教师需要诠释磁场对不同形状的电荷的作用力的不同,例如点电荷和长棒电荷等。
3. 实验演示为了让学生更好地理解磁场对运动电荷的作用力,教师可以进行一些实验演示。
例如,应用电流计和磁铁进行实验,观察运动电荷在磁场中的偏转情况。
同时,教师也可以引导学生进行自主实验,让他们亲手操作并观察实验结果。
4. 探究讨论在实验演示结束后,教师可以组织学生进行探究讨论。
学生可以提出自己的疑问和思考,并与其他同砚分享自己的看法和结论。
教师可以在讨论中给予学生指导,帮助他们解决疑惑并激发他们的思考。
5. 教室总结最后,教师需要对本节课进行总结,强调本节课的重点和难点,并对学生的学习效果进行评判。
教师还可以鼓励学生总结自己在本节课中学到了什么,并让他们谈谈自己的感受和收获。
6. 课后作业在课后,教师可以为学生安置一些与本节课内容相关的作业,例如思考题、探究题等。
教科版普通高中《物理》必修3教材分析与教学思考
三、必修3各章教材分析与教学思考
第2节 库仑定律
库仑定律是电磁学第一个定量的定律,意义重大。 本节从引入点电荷模型开始,通过定性的实验得出两个带电小球 的相互作用力与它们的距离及电荷量有关。再讲述库仑扭秤及库仑定 律的内容。再回到点电荷模型上。
三、必修3各章教材分析与教学思考
三、必修3各章教材分析与教学思考
第8节 电容器 电容
教学思考: 图中电压表支路应该安一个开关,最好使用内阻高的数字电压表 。采用两个相同的电容器并联,电荷量平分的办法。
三、必修3各章教材分析与教学思考
第4、5节 电场力的功 电势能 电势 电势差
⑤第一节课的例题不涉及电势。 ⑥讲解电势的方法步骤与讲解电场强度基本一致。 ⑦电势与电势差的关系,本来不应该是难点,但一些拗口的题目 常造成学生困难。 ⑧等势面。注意等势面是“面”,但我们画在纸上的是等势线。 要让学生记住几种典型静电场的电场线和等势面图的形状。知道 二者关系。 ⑨描绘平面上的等势线,新课标已不要求,放在发展空间里,供 老师们自己选择。
三、必修3各章教材分析与教学思考
第6节 电势差与电场强度的关系
这节很重要,只是由于数学知识的限制,给出的是匀强电场中二
者的关系,要让学生知道,二者都是描述电场性质的物理量,有密切
的联系,对非匀强电场,定性的关系应该清楚。
注意:如果把静电场与重力场进行类比,重力场场强和重力势分
别是
E重力 =
mgh mg
三、必修3各章教材分析与教学思考
第3节 电场 电场强度
③电场强度的引入 电场的存在可以通过它与其他物质的作用来检验,但力的大小与 放入电场中的电荷有关,需要引入一个与外界无关而能描述电场本身 性质的物理量—— F 与 q 的比值。 ④电场强度本身——定义,公式,单位,方向 ⑤例题示范:通过一个例题,说明了求电场强度的方法,并强调 其矢量性。(拓展是有用的) ⑥电场线。
教科版九年级物理上册第八章第二节《磁场对电流的作用》教学设计
1.通过实验探究,观察磁场对电流的作用,培养学生的实验操作能力和观察能力。
2.运用问题驱动的教学方法,引导学生主动思考,培养解决问题的能力和创新意识。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
4.结合生活实例,引导学生运用所学知识解释现象,提高学生的知识运用能力。
(三)情感态度与价值观
b.撰写实验报告,记录实验过程中观察到的现象,分析实验结果,探讨磁场对电流作用的原因。
2.实践作业:
a.结合生活实例,让学生观察身边的电磁设备,如电动机、发电机等,并分析其工作原理。
b.学生自制简易电动机,通过动手实践,体验磁场对电流的作用,培养创新意识和动手能力。
3.研究性学习作业:
a.分组进行课题研究,选择一个感兴趣的电磁设备,了解其发展历程、工作原理和应用领域。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握磁场对电流的作用原理,尤其是安培力定律的应用。
2.学会使用右手螺旋法则判断磁场方向与电流方向的关系。
3.能够运用所学知识分析电磁设备的工作原理。
(二)教学难点
1.安培力定律的计算与应用,尤其是对抽象概念的理解。
2.电磁感应现象的理解,以及法拉第电磁感应定律的应用。
在本节课中,学生可能会在以下几个方面遇到困难:一是理解磁场对电流作用的原理,特别是安培力定律的计算;二是掌握右手螺旋法则,判断磁场与电流方向的关系;三是将所学知识应用于实际问题,如分析电磁设备的工作原理。
针对这些情况,教师应注重激发学生的学习兴趣,采用生动的教学手段,如实验演示、案例分析等,降低学生的认知难度。同时,关注学生个体差异,通过小组合作、分层教学等方式,使学生在互动交流中提高解决问题的能力,增强团队合作精神。通过本节课的学习,帮助学生构建完整的电磁学知识体系,为后续学习打下坚实基础。
电磁学1库仑定律和电场强度
真空中的 介电常数
4o o 编8 辑.8 ppt 1 5 1 0C 22/N2m
注:
F
q1q2
4or 2
er
1°遵从牛顿第三定律 F 12F 21
2°库仑定律只适用两个静止点电荷 q1、q2 同号, 排斥力 q1、q2 异号, 吸引力
F12
r
F21
q1
F21
r
q2
F12
q2
q1
3°若q1、q2在介质中,介电常数 = ro;
2
R 6
Q
30R2
例6. 半径为 R 的均匀带电圆盘,面电荷密度为 ,
求:圆盘轴线上任一点 P 的场强。
解:圆盘可视为许多小圆环组成
取半径为 r 宽为dr 的圆环
d q 2πrdr
R or
dr
P Ex
以dq 代替右式中的q 得:
x dE
dE24πxo(r22πxrd2r)32
E4πo(rx2qx2)32
带电圆环在轴线上的电场强度:
dE4πo(ss2dqr2)32
x R时,s x R c o s,r R s in
xRcos2R 2sind
E040(x2R 22R xcos)32
Q
4 0
0
x
2
,
编辑ppt
, xR xR
作业 6-T1、T2、T3、T4
编辑ppt
空气中 : o
4°基本实验规律
在宏观,微观领域编辑都ppt 适用!
2. 电力叠加原理
实验证明:
多个点电荷存在时,任意一个点电荷受的
静电力等于其它各个点电荷单独存在时对它
的作用力的矢量和。
q2 q1
教科版八年级物理下册知识点
教科版八年级物理下册知识点教科版八年级物理下册知识点第一章:力与运动1、力的定义和性质:力是物体对物体的作用,力的作用是相互的。
力可以改变物体的形状和运动状态。
2、力的单位是牛顿(N),一个普通的成年人的体重约等于质量是700N。
重力是地球对物体施加的力,方向总是竖直向下。
3、二力平衡:物体在受到两个大小相等、方向相反、作用在同一直线上的两个力作用时,将保持静止或匀速直线运动状态。
4、摩擦力:摩擦力是两个表面接触的物体,当它们发生相对运动时,在接触面上产生的阻碍相对运动的力。
第二章:压强与浮力1、压力:垂直作用在物体表面上的力,方向总是垂直于物体的表面。
压力的作用效果与压力的大小和受力面积的大小有关。
2、压强:压强是表示压力作用效果的物理量,其定义为单位面积上受到的压力。
3、浮力:浮力是物体受到液体或气体对其向上托的力。
浮力的方向总是竖直向上的。
4、浮沉条件:物体的浮沉条件取决于浮力和重力的大小关系。
当浮力大于重力时,物体会上浮;当浮力等于重力时,物体会悬浮;当浮力小于重力时,物体会下沉。
第三章:光学与声学1、光的传播:光可以在真空中传播,也可以在透明介质中传播。
光沿直线传播,当光线通过介质时,会发生折射、反射和衍射等现象。
2、光的反射:当光线遇到介质分界面时,会有一部分光线改变传播方向,返回原介质中,这就是光的反射。
3、光的折射:当光线从一种介质进入另一种介质时,传播方向会发生改变,这就是光的折射。
4、声音的产生与传播:声音是由物体的振动产生的,可以通过气体、液体和固体等介质传播。
声音的传播速度与介质的温度和密度有关。
5、音调、响度和音色:音调是声音的高低,响度是声音的强弱,音色是声音的品质。
第四章:热学与电磁学1、温度与热传递:温度是表示物体冷热程度的物理量,热传递是物体之间热量的转移。
热传递的方式有传导、对流和辐射。
2、物体的内能:物体内所有分子动能和分子势能的总和称为物体的内能。
改变物体内能的方式有做功和热传递。
《磁场》教案【优秀8篇】
《磁场》教案【优秀8篇】《磁场》教案篇一一、__思想“场”是物理学中一个重要概念,“磁场”看不见,摸不到,十分抽象,难于理解。
初中学生又是首次接触“场”这个概念,学习的难度较大。
本节课的__宗旨是要充分运用学生在生活中积累的实践经验,采用“类比”的方法,促使学生把生活实际中认识“风”的方法、手段“迁移”到物理课堂上,使学生认识磁场的存在,找到形成磁场概念的途径,最大限度地参与到教学活动过程中来,得到科学思维方法的启迪。
二、教学目标的确立1.知识与技能(1)知道磁体周围存在磁场;(2)知道磁感线可以用来形象地描述磁场,知道磁感线的方向是怎样规定的;(3)知道地球周围有磁场以及地磁场的南北极。
2.过程与方法(1)观察磁体之间的相互作用,感知磁场的存在;(2)通过亲历“磁场”概念的建立过程,进一步明确“类比法”、“转换法”、“理想模型法”等科学思维方法。
3.情感、态度与价值观通过了解我国古代对磁的研究方面取得的成就,进一步提高学习物理的兴趣。
三、重点难点的确立重点:磁场的概念。
难点:磁场和磁感线。
四、实验器材及教学媒体的选择与使用风力演示仪(自制)、条形磁体、磁针、铁屑、实物投影仪等。
五、教学过程设计(一)创设情境引入新课教师手端着磁针,站在远离讲台的位置,磁针指向南北。
【问题导引】:在上一节课里,我们已经知道,磁体具有指南北的性质,现在请你们判断:教室的哪个方向是南?【实验演示】:教师把磁针放在讲台上,磁针立即发生了偏转,不再指南北了,在学生惊诧目光的注视下,教师把讲台上的报纸揭开,发现讲台上有一个大磁铁。
【问题导引】:磁针在刚才的那个空间里能够指南北,到了磁铁周围的空间就不再指南北了,那么磁铁周围的空间与其它空间有什么不同呢?在磁铁周围的空间存在着一种物质,这种物质能够使磁针偏转,这种物质叫做磁场。
今天我们就来研究磁场。
(二)新课教学【问题导引】:请同学们注意观察磁体周围的磁场是什么样子的?结论:磁场是看不见摸不到的,无法直接观察。
大学物理第八章
x
2º 当 x = 0时,圆心处 半圆环圆心处 B =
B=
μ0 I
μ0I
2R
L
R α
4R
弧长L的圆心处
B
=
μ0 I ( L) 2R(2π R)
=
μ0 Iα 4π R
3º
x >>R 时
B
=
μ0 IR 2
2x3
=
μ0 IS 2π x3
即
比较电偶极子延长线上
EBvr ==2πμ2επ0pr0prxxm33
∫ ∫ 解:
Φ=
v B
⋅
v dS
=
d +a Iμ0 bdr
s
d 2πr
= Iμ0b lnr 0.1+0.1
2π
0.1
= Iμ0b ln 2 2π
= 2.77 ×10−7Wb
EF
Ir b
H
d
aG
20
第4节 安l路r 正=定负μ理0规∑定Ii :内线电积B流分沿强等任度于意代穿闭数过合和闭曲的合线曲μL0线的倍
r dB
=
μ0 4π
r Idl
×
err
r2
其中 μ0 = 4π ×10−7 Tm/A
r Idl
α
rr
.P
×
真空中
I
的磁导率
6
dBr =
μ0 4π
Idlr× err r2
毕 — 萨定律
长为L的载流导线, 在P点的总磁感应强度
r Idl
α
rr
.P
×
矢量迭加得
r B
=
∫
μ0 4π
r Idl
大学物理稳恒磁场教案
课时:2课时教学目标:1. 理解稳恒磁场的基本概念,包括磁感应强度、磁场中的高斯定理、毕奥-萨伐尔定律等。
2. 掌握毕奥-萨伐尔定律的应用,能够计算载流导线产生的磁场。
3. 理解安培环路定理,并能够运用其解决实际问题。
4. 了解磁矩、磁力矩、洛伦兹力等概念,并掌握其应用。
教学重点:1. 稳恒磁场的基本概念和公式。
2. 毕奥-萨伐尔定律的应用。
3. 安培环路定理的推导和应用。
教学难点:1. 毕奥-萨伐尔定律公式的推导和应用。
2. 安培环路定理的推导和应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,引出稳恒磁场。
2. 介绍稳恒磁场的基本概念,如磁感应强度、磁场中的高斯定理等。
二、新课讲授1. 磁感应强度:- 定义磁感应强度,讲解其大小和方向。
- 举例说明磁感应强度在生活中的应用。
2. 磁场中的高斯定理:- 介绍高斯定理的概念,讲解其数学表达式。
- 举例说明高斯定理在解决实际问题中的应用。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁感应强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁感应强度。
四、总结1. 回顾本节课所学内容,强调稳恒磁场的基本概念和公式。
2. 布置课后作业,巩固所学知识。
第二课时一、导入1. 回顾上一节课所学内容,引出毕奥-萨伐尔定律。
2. 介绍毕奥-萨伐尔定律的概念,讲解其数学表达式。
二、新课讲授1. 毕奥-萨伐尔定律:- 定义毕奥-萨伐尔定律,讲解其数学表达式。
- 举例说明毕奥-萨伐尔定律在解决实际问题中的应用。
2. 安培环路定理:- 介绍安培环路定理的概念,讲解其数学表达式。
- 推导安培环路定理,讲解其推导过程。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁场强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁场强度。
四、总结1. 回顾本节课所学内容,强调毕奥-萨伐尔定律和安培环路定理的应用。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过理论讲解和实例分析,帮助学生掌握了稳恒磁场的基本概念和公式。
高中物理磁场对通电导线的作用教案
高中物理磁场对通电导线的作用教案一、教学目标1. 让学生了解磁场对通电导线的作用,理解安培力的概念。
2. 能够运用磁场对通电导线的作用原理分析实际问题。
3. 培养学生的实验操作能力和观察能力,提高学生的科学思维能力。
二、教学内容1. 磁场对通电导线的作用原理2. 安培力的概念及计算公式3. 磁场对通电导线作用实验的操作步骤和注意事项4. 实验结果的分析和解释5. 磁场对通电导线作用在实际生活中的应用三、教学重点与难点1. 教学重点:磁场对通电导线的作用原理,安培力的概念及计算公式,磁场对通电导线作用实验的操作步骤和注意事项。
2. 教学难点:安培力的计算公式及其在复杂情况下的应用。
四、教学方法1. 采用讲授法讲解磁场对通电导线的作用原理和安培力的概念。
2. 采用实验法进行磁场对通电导线作用实验,培养学生的观察能力和实验操作能力。
3. 采用案例分析法分析磁场对通电导线作用在实际生活中的应用。
4. 采用讨论法引导学生探讨磁场对通电导线作用的特点和规律。
五、教学过程1. 导入新课:通过展示磁场对通电导线作用的现象,激发学生的兴趣,引出本节课的主题。
2. 讲解磁场对通电导线的作用原理和安培力的概念,让学生理解磁场对通电导线的作用。
3. 演示磁场对通电导线作用实验,指导学生进行实验操作,培养学生的观察能力和实验操作能力。
4. 分析实验结果,解释安培力的计算公式,引导学生掌握磁场对通电导线作用的特点和规律。
5. 举例说明磁场对通电导线作用在实际生活中的应用,让学生了解物理知识的实用价值。
6. 课堂小结,回顾本节课的主要内容和知识点。
7. 布置作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对磁场对通电导线作用原理、安培力概念和计算公式的掌握情况。
2. 实验报告:评估学生在磁场对通电导线作用实验中的操作技能、观察能力和问题分析能力。
3. 课后作业:通过作业批改,了解学生对课堂所学知识的掌握程度。
电场和电势能的电场感应和电磁波折射作用
电场和电势能的电场感应和电磁波折射作用电场感应是指当电场发生改变时,产生感应电流的现象。
电磁波折射是指电磁波从一种介质传播到另一种介质时,由于介质的折射率不同而发生偏折的现象。
本文将分别介绍电场感应和电磁波折射的基本原理和应用。
一、电场感应电场感应是由于电场发生变化而引起感应电流的现象。
根据法拉第电磁感应定律,当电磁感应环路中的磁通量发生改变时,环路中会感应出电流。
而电场和磁场之间有密切的关系,当电场的强度发生变化时,也会产生感应电流。
电场感应的应用非常广泛,例如变压器、感应电动机、电磁铁等。
变压器是利用电场感应的原理,通过交变电压在一组线圈中产生感应电动势,进而产生电流和电压的升降。
感应电动机也是利用电场感应产生的感应电流产生旋转力矩,实现机械能转化为电能。
电磁铁则是利用电场感应产生的感应电流在线圈周围产生磁场,实现吸附物体的功能。
二、电磁波折射电磁波折射是指电磁波从一种介质传播到另一种介质时,由于介质的折射率不同而发生偏折的现象。
根据斯涅尔定律,入射角、折射角和两个介质的折射率之间有一定的关系,即折射定律。
根据折射定律,我们可以计算出电磁波在两种介质中的传播角度。
电磁波折射在光学领域中得到广泛应用。
例如,光纤通信就是利用电磁波在光纤中的折射来实现信息传输。
光纤中的折射率较高,能够使光信号在光纤中传播时减少能量损耗。
折射现象也应用在透镜的设计中,通过调整透镜的曲率和折射率,可以实现对光线的聚焦和散射。
总结:电场感应和电磁波折射是电场和电磁波的基本现象和应用。
电场感应通过电场的变化引起感应电流的产生,广泛应用在各种电子设备中。
电磁波折射是电磁波在介质中传播时由于折射率的差异而发生偏折,应用于光学通信和光学成像等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8节 电场、磁场在实际中的应用
1、熟练解决带电粒子在匀强磁场中的匀速圆周运动问题;
2、掌握带电粒子在复合场中的运动问题,学会该类问题的一般分析方法。
考点深化合作探究
一、速度选择器
【例1】如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,有些未发生任何偏转。
如果让这些不偏转的离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入另一磁场的离子,可得出结论( )
A .它们的动能一定各不相同
B .它们的电荷量一定各不相同
C .它们的质量一定各不相同
D .它们的电荷量与质量之比一定各不相同
二、质谱仪
【例2】质谱仪是一种测定带电粒子质量和分析同位素的重要仪器,它的构造如图所示.设从离子源S 产生出来的正离子初速度为零,经过加速电场加速后,进入一平行板电容器C 中,电场强度为E 的电场和磁感应强度为B1的磁场相互垂直,具有某一速度的离子将沿图中所示的直线穿过两板间的空间而不发生偏转,再进入磁感应强度为B2的匀强磁场,最后打在记录它的照相底片上的P 点。
若测得P 点到入口处S1的距离为x ,证明离子的
质量为122qB B x m E。
.
【反馈练习1】如图所示是用来测量带电粒子质量的仪器的工作原理示意图,设法使某有机化合物的气态分子导入图示容器A 中,使它受到电子束轰击,失去一个电子变成正一价的离子。
离子从狭缝S 1以很小的速度进入电压为U 的加速电场中(初速度不计),加速后再经过狭缝S 2、S 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。
最后,离子打到感光片上,形成垂直于纸面且平行于狭缝S 3的细线,若测得细线到狭缝S 3的距离为d ,导出离子质量m 的表达式。
三、回旋加速器
【例3】回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属盒,两盒分别和一高频交流电源两极相接,以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速,两盒放在匀强磁场中,磁场方向垂直于盒底面,离子源置于盒的圆心附近。
若离子源射出的离子电荷量为q,质量为m,粒子最大回转半径R m,其运动轨迹如图所示。
求:
⑴两个D形盒内有无电场?
⑵离子在D形盒内做何种运动?
⑶所加交流电频率是多大?
⑷离子离开加速器的速度为多大?最大动能为多少?
【反馈练习2】如图所示,回旋加速器D形盒的半径为R,用来加速质量为m、电荷量为q 的质子,使质子由静止加速到能量为E后,由A孔射出。
求:
⑴加速器中匀强磁场B的方向和大小。
⑵设两D形盒间距为d,其间电压为U,电场视为匀强电场,质子每次经电场加速后能
量增加,加速到上述能量所需回旋周数。
⑶加速到上述能量所需时间。
四、磁流体发电机
【例4】如图所示,厚度为h、宽度为d的导体板放在垂直于它的磁感应强度为B的匀强磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A′ 之间会产生电势差,这种现象称为霍尔效应.实验表明,当磁场不太强时,电势差U、电流I和B的关系为U = kIB/d。
式中的比例系数k称为霍尔系数。
霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场。
横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。
设电流I是由电子的定向流动形成的,电子的平均定向速度为v,电荷量为e,回答下列问题:
⑴达到稳定状态时,导体板上侧面A的电势下侧面A′ 的电势(填“高于”“低于”
或“等于”);
⑵电子所受的洛伦兹力的大小为;
⑶当导体板上下两侧之间的电势差为U时,电子所受静电力的大小为;
⑷由静电力和洛伦兹力平衡的条件,证明霍尔系数为k= 1/ne,其中n代表导体板单位体
积中电子的个数。
【反馈练习3】磁流体发电机可以把气体的内能直接转化为电能,如图所示为它的发电原理图。
将一束等离子体(即高温下电离的气体,含有大量带正电和负电的微粒,从整体上来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块面积为S,相距为d的平行金属板与外电阻R相连构成一电路。
设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流强度I及电流方向为()
A.I =、A→R→B B.I =、B→R→A
C.I =、B→R→A D.I =、A→R→B
五、电磁流量计
【例5】电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a、b、c。
流量计的两端与输送流体的管道相连接(图中虚线),图中流量计的上下两面是金属材料,前后两面是绝缘材料。
现于流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前后两面。
当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测得电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为()
A.B.
C.D.
【反馈练习4】下图是电磁流量计的示意图,在非磁性材料做成的圆管道外加一匀强磁场区域,当管中的导电液体流过此磁场区域时,测出管壁上的ab两点间的电动势ε,就可以知
m/3)。
已知管的直径为D,磁感应道管中液体的流量Q——单位时间内流过液体的体积(s
强度为B,试推出Q与ε的关系表达式。
六、科技物理
【例6】环形对撞机的核心部件是一个高度真空的圆环状的空腔。
若带电粒子初速度可视为零,经电压为U的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B。
带电粒子将被限制在圆环状空腔内运动。
要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是()A.对于给定的加速电压,带电粒子的荷质比q/m越大,磁感应强度B越大
B.对于给定的加速电压,带电粒子的荷质比q/m越大,磁感应强度B越小
C.对于给定的带电粒子和磁感应强度B,加速电压U越大,粒子运动的周期越小D.对于给定的带电粒子和磁感应强度B,不管加速电压U多大,粒子运动的周期都不变【反馈练习5】飞行时间质谱仪可以对气体分子进行分析,如图所示。
在真空状态下,脉冲阀P喷出微量气体,经激光照射产生不同价位的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,到达探测器。
已知元电荷电荷量为e,a、b板间距为d,极板M、N的长度和间距均为L。
不计离子重力及进入a板时的初速度。
⑴当a、b间的电压为U1时,在M、N间加上适当的电压U2,使离子到达探测器。
请导出
离子的全部飞行时间与荷质比k(k = ne/m)的关系式。
⑵去掉偏转电压U2,在M、N间区域加上垂直于纸面的匀强磁场,磁感应强度为B,若进
入a、b间的所有离子质量均为m,要使所有的离子均能通过控制区从右侧飞出,a、b 间的加速电压U1至少为多少?。