七年级数学下册 6.2 立方根教案 (新版)新人教版(4)
最新人教版七年级数学下册6.2立方根(教案)
-在实际应用中,如计算一个立方体木块的体积,已知边长为2米,通过立方根计算得出体积为8立方米。
2.教学难点
-立方根的求法:对于一些复杂的数,学生可能难以直接得出其立方根。
-立方根的近似计算:在解决实际问题时,需要估算立方根的值,学生可能对近似计算方法掌握不足。
三、教学难点与重点
1.教学重点
-立方根的定义:理解立方根的概念,明确正数、负数和零的立方根的求法。
-立方根的计算方法:掌握计算立方根的基本方法,如分解因数法、近似计算法等。
-立方根的应用:学会将立方根应用于解决实际问题,如体积、密度等计算。
举例解释:
-通过立方根的定义,让学生明白一个数的立方根是什么,例如:2的立方根是8,-2的立方根是-8,0的立方根是0。
然而,我也注意到,在小组讨论过程中,部分学生过于依赖同学,缺乏独立思考。为了培养学生的独立思考能力,我打算在接下来的教学中,增加一些个人任务,让学生在学习过程中学会独立分析问题和解决问题。
同时,我也在思考如何更好地关注到每一个学生的学习情况。在今天的课堂上,我尽量让每个学生都有发言的机会,但仍然担心有些学生可能没有完全掌握知识点。我计划在课后对这部分学生进行个别辅导,以确保他们能够跟上教学进度。
最后,我认为在今后的教学中,要更加注重培养学生的逻辑推理能力和数学建模能力。这两项能力对于学生理解立方根以及解决相关问题具有重要意义。我会通过设计更多有针对性的问题和案例,引导学生运用所学知识进行推理和建模。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版数学七年级下册6.2《立方根》教学设计
人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
初级中学七年级数学下册6.2立方根教案(新版)新人教版
立方根【教学目标】知识与技能:了解立方根的概念和表示方法,并会求一个数的立方根;会用计算器求一个数的立方根。
过程与方法:从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征,最后介绍实用计算器求立方根的方法。
情感态度与价值观:通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点:立方根的概念和求法教学难点:立方根的求法。
教学过程:一、情景引入:要制作一种容积为的正方体形状的包装箱,这种包装箱的边长应该是多少?二、探索归纳:1.探索:设这种包装箱的边长为,则,这就是要求一个数,使它的立方等于27.因为,所以,即这种包装箱的边长应为。
2.归纳:立方根的概念:一般地,如果一个数的立方等于,那么这个数叫做的立方根或三次方根。
立方根的表示方法:如果,那么叫做的立方根。
记作,读作三次根号。
其中是被开方数,3是根指数,中的根指数3不能省略。
开立方的概念:求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。
3、探索立方根的特点:根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?(1)因为,所以8的立方根是();(2)因为,所以的立方根是();(3)因为,所以0的立方根是();(4)因为,所以的立方根是();(5)因为,所以的立方根是()。
学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。
归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.4.探究互为相反数的两个数的立方根的关系:填空:因为___,___,所以___;因为___,___,所以___由上面两个例子可归纳出:一般地,。
注:这个关系对于正数、负数、零都成立。
七年级数学下册 6.2 立方根教案2 (新版)新人教版
第六章 实数 6.2立方根(2) 【教学目标】 知识与技能1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、会用计算器求立方根,一些大数立方根的规律。
过程与方法通过用计算器求立方根,得出一些大数立方根的规律,体验数学之美。
情感、态度与价值观 培养学生树立严谨的数学学习态度,科学的数学学习方法。
【教学重难点】重点:立方根的概念和求法,计算器求立方根。
难点:一些大数立方根的规律【导学过程】【情景导入】1. 平方根与立方根有什么不同?被开方数平方根 立方根 正数负数零2.(1) 64的平方根是________立方根是________.(2)的立方根是________. (3) -37是_______的立方根. (4) 若 ,则 x=_______, 若 , 则 x=________.(5) 若 , 则x 的取值范围是__________。
【新知探究】探究一、1、阅读课本P50-51页,总结规律:求负数的立方根,可以先求出这个负数的 的立方根,再取其 ,即 一般地, 。
思考:立方根是它本身的数是 ,平方根是它本身的数是2、一些计算机设有 键,用它可以求出一个立方根(或其近似值)。
有些计算器需要用第二功能键求一个数的立方根。
(介绍用计算器求立方根的方法,详见课本P51页第一自然段)探究二、例题【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1、求负数的立方根,可以先求出这个负数的 的立方根,再取其 ,即 327()92=-x ()93=-x x x -=22、一些计算机设有 键,用它可以求出一个立方根(或其近似值)。
有些计算器需要第二功能键求一个数的立方根。
【随堂练习】1.完成51页练习2.3.42、计算: 327102--- 3、计算:()()()2323331244272⎛⎫---- ⎪⎝⎭.。
(新人教版)数学七年级下册:6.2《立方根》教案(3份)
《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
部编版2020七年级数学下册 6.2 立方根教案 (新版)新人教版
培养学生的估算意识,发展估算能力.
教学重点难点
教学
重点
引导学生类比平方根学习立方根的概念和求法.
教学
难点
理解平方根的意义.
教学媒体选择分析表
知识点
学习目标
媒体类型
教学作用
使用
方式
所得结论
占用时间
媒体来源
引入
知识目标
图片
B
B
拓展知识
2分钟
自制
讲解
过程与方法
图片
G
F
建立表象
5分钟
下载
观看
即若 那么x叫做a的立方根.
(引导学生类比平方根的概念,尝试说出立方根的概念。教师点评并补充。)
活动2:
根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?
(学生口答,观察填空 结果,尝试说出立方根的特征,教师点评,并板书。)
归纳:立方根的特征
正数的立方根是正数;
负数的立方根是负数;
6.2立方根
课题
6.2立方根
授课类型
新授
课标依据
(1)了解立方根的概念,会用根号表示数的立方根。
(2)了解乘方与开方互为逆运算,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求立方根。
教学目标
知识与
技能
(1)了解立 方根的概念.
(2)会求一些数的立方根.
过程与
方法
类比平方根研究立方根,分析它们之间的联系与区别,在复习巩固平方根概念和求法的同时,学习立方根的概念和求法.
六、作业
必做:P51—52页:第1、3、5题
选做:1. 52页:10题
2.《学案 》P50.12题。
人教版数学七年级下册6.2《立方根》教案
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版数学七年级下册6.2《立方根》教学设计4
人教版数学七年级下册6.2《立方根》教学设计4一. 教材分析人教版数学七年级下册6.2《立方根》是学生在学习了有理数的乘方、实数等知识的基础上,进一步探究立方根的概念及运算法则。
本节课的内容主要包括立方根的定义、求一个数的立方根的方法、立方根的性质和运算法则。
教材通过丰富的例题和练习题,帮助学生掌握立方根的知识,并能运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方知识,对实数的概念有了一定的了解。
但是,对于立方根的概念和运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要关注学生的认知基础,通过引导和启发,让学生逐步理解和掌握立方根的知识。
三. 教学目标1.理解立方根的概念,掌握求一个数的立方根的方法。
2.掌握立方根的性质和运算法则。
3.能够运用立方根的知识解决实际问题。
四. 教学重难点1.立方根的概念和求法。
2.立方根的性质和运算法则。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、积极思考,通过师生互动、生生互动,使学生在实践中掌握立方根的知识。
六. 教学准备1.PPT课件2.教学视频或图片素材七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:一个正方体的体积是27立方米,求这个正方体的棱长。
让学生思考如何解决这个问题,从而引出立方根的概念。
2.呈现(10分钟)讲解立方根的定义,并通过PPT展示立方根的图形形象。
让学生理解立方根的概念,并掌握求一个数的立方根的方法。
3.操练(10分钟)让学生独立完成教材中的例题和练习题,巩固对立方根的理解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一组练习题,让学生进一步巩固立方根的知识。
教师及时反馈,纠正学生的错误。
5.拓展(10分钟)讲解立方根的性质和运算法则,让学生掌握立方根的运算规律。
6.小结(5分钟)对本节课的内容进行总结,让学生回顾和巩固所学知识。
7.家庭作业(5分钟)布置一道有关立方根的实际问题,让学生课后思考和解答。
2023立方根人教版数学七年级下册教案
2023立方根人教版数学七年级下册教案《6.2立方根》教学设计【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.【情感态度】发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.一、情境导入,初步认识问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x3=a,则x为a的立方根,记为 .根据上述定义,请学生口述下列问题的结果,并推广到一般规律.《立方根》课后练习一、认认真真选(每小题4分,共40分)1.下列说法不正确的是( )A.-1的立方根是-1B.-1的平方是1C.-1的平方根是-1D.1的平方根是±1立方根同步练习要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1 下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是024.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍立方根人教版数学七年级下册教案。
人教版数学七年级下册教学设计6.2《 立方根》
人教版数学七年级下册教学设计6.2《立方根》一. 教材分析《立方根》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了整数乘法、平方根的基础上进行的。
通过学习立方根,让学生体会数学与现实生活的联系,培养学生的空间想象力,提高学生的数学素养。
本节课的内容包括:立方根的定义、求一个数的立方根、立方根的性质及应用等。
二. 学情分析学生在学习本节课之前,已经掌握了平方根的知识,对乘法运算也有一定的了解。
但立方根的概念和求法对学生来说是一个新的知识点,需要通过实例和练习来理解和掌握。
同时,学生对于空间几何图形中的立方体可能还不够熟悉,需要通过观察和操作来提高空间想象力。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求一个数的立方根的方法,了解立方根的性质及应用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力,提高学生的数学素养。
3.情感态度价值观:培养学生对数学的兴趣,体会数学与现实生活的联系,培养学生的团队协作精神。
四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。
2.难点:立方根的性质及应用。
五. 教学方法1.情境教学法:通过实物和几何图形,引导学生观察和操作,激发学生的学习兴趣。
2.启发式教学法:通过提问和讨论,引导学生思考和探索,培养学生的空间想象力。
3.合作学习法:分组讨论和交流,培养学生团队协作精神,提高学生的沟通能力。
六. 教学准备1.教具准备:立方体模型、多媒体课件。
2.学具准备:练习本、笔。
七. 教学过程1.导入(5分钟)通过展示一个立方体模型,引导学生观察和思考,提问:“谁能说出立方体的特点?”、“立方体的体积怎么计算?”等问题,激发学生的学习兴趣,引出立方根的概念。
2.呈现(10分钟)讲解立方根的定义,用多媒体展示立方根的图形,让学生直观地理解立方根的概念。
同时,通过例题讲解求一个数的立方根的方法,让学生学会如何求一个数的立方根。
(新人教版)数学七年级下册:6.2《立方根》教案
《立方根》教案课程目标一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教材解读由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现.学情分析在学习完平方根运算后继而学习立方根运算,通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.教学过程一、创设情境,导入新课问题1.问题2.两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方形,经过测算,其体积都是125cm3.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,我们就来学习开方中的另一种运算:开立方运算.二、师生互动,课堂探究(一)导入知识,解释疑难对于问题1我们如果设棱长为x米,则不难得出x3=0.125,也就是要求一个数,使它的立方为0.125,我们知道0.53=0.125,所以正方体木块的棱长为0.5米;由此我们给出立方根的概念:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root).即如果x3=a,则x叫做a的立方根,记为,读作三次根号a.注意:表示一个数的立方根时不需要正负号;符号中的指数3不能省略.在学习平方根的运算时,首先是找出一些数的平方,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______;(−2)3=______;0.53=_____;(−0.5)3=______;()3=_____;−()3=_____;03=______.(1)经计算发现正数,0,负数的立方根与平方根有何不同之处?23=8;(−2)3=−8;0.53=0.125;(−0.5)3=−0.125;()3=;−()3=−;03=0.我们发现,求立方运算时,当底数互为相反数时,其立方也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,−8的立方根为−2,记为=2,=−20.125的立方根为0.5,−0.125的立方根为−0.5,记为=0.5,=−0.5的立方根为,−的立方根为−,记为=,=−0的立方根为0,记为=0上述过程都是求一个数的立方根的运算,我们把求一个数的立方根的运算,叫做开立方(extr a ction of cube root),开立方与立方运算互为逆运算.前面问题2中正方体的边长为=5,而球的体积为r3=125时,r≈3.1.归纳:正数的立方根为正数,负数的立方根为负数,0的立方根是0,可记为=a(a 为任意数),或者若a3=M,则有=a,其中M为被开方数,3为根指数,且根指数3不能省略,只有当根指数为2时,才能省略不写.并且有规律:=−(二)例题求解例1:求下列各式的值:①;②;③;④()3解:①=−=−2;②==0.4;③=−=−;④()3=a.例2:求下列各数的立方根.①−27;②;③−0.216;④−5.解:①∵(−3)3=−27,∴=−3;②∵()3=,=;③∵(−0.6)3=−0.216,=−=−0.6;④对−5这个数,作如下尝试:13=1,23=8,1.53=3.375,1.73=4.193.发现4.193最接近5,故不能口算出其值,得借助计算器求值,且通过计算器检验知是一个无限不循环小数,用计算器计算知=−≈−1.71是一个近似数.(三)探究活动①若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512……当棱长为2n时,其体积为多少?②某正方体的体积为1时,其棱长为1;体积为2时,棱长为;体积为3时,棱长为……;若体积扩大到原来的n倍,则棱长扩大多少倍?解:①正方体棱长为1,则体积为1,棱长为2,体积为8,比较两者棱长扩大了2倍,体积扩大了8倍,棱长又扩大了1倍,其体积相应增大7倍,为原来的8倍,故当棱长为2n时,体积为8n3.②当体积扩大到原来的n倍时,棱长扩大到原来的倍.(四)归纳总结,知识回顾这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.用计算器求任意数的立方根时,只能先求出该数的绝对值的立方根,再根据任意数的正负性决定其值,注意区分平方根与立方根.。
七年级数学下册第六章实数6.2立方根教案新版新人教版
(3)平方和开平方运算有何关系?
(4)算术平方根和平方根有何区别和联系?
教师适时指导
根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?
因为23=8,所以8的立方根是();
因(0.4)3=0.64,所以0.064的立方根是();
因为03=0,所以0的立方根是();
6.2 立方根
课 题
课
时
教
学
目
标
知识与技能:
了解立方根的概念和表示方法,并会求一个数的立方根;
过程与方法:
从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征。
情感态度与价值观:
通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点
立方根的概念和求法
教学难点
立方根的求法。
教学方法
探究、观察、类比
教学手段
多媒体课件
课型
新授
教学环节
教学内容
教师活动
学生活动
创设问题情境
复习引入、类
比学习
初步探究
巩固新知
练习巩固
类比化归
深入探究性质
强化巩固
深入探究
课堂小结
布置作业
问题:要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?
例1(2)____________________________.
(3)_____________________________.
七年级数学下册 第六章 实数 6.2 立方根学案 (新版)新人教版
6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、温故知新、引入新课分别求出下列各数的平方根:16,-16,0平方根是如何定义的 ? 平方根有哪些性质?二、自主探究1、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是2、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是3、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.4、开立方求一个数的的运算叫做开立方,与开立方互为逆运算(小组合作学习)5、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是 .(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?被开方数平方根立方根正数负数零(5)被开方数扩大(缩小)1000倍时,它的立方根会有什么变化?三、学以致用2、求下列各式的值:3、跳一跳已知半径为r 的球,其体积的计算公式为.如果甲、乙两球体积的比为1 :8,则甲、乙两球的半径比为 .四、总结反思这节课我的最大收获是:我不能解决的问题是:【学习评价】答案:自评师评rV334π=一二略三、1、x x x x √2、4 -5 -3/43、1:2。
七年级数学下册 6.2 立方根教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案
总结:正数的立方是;负数的立方是;0的立方是
【新知预习】1、立方根的定义:
。ห้องสมุดไป่ตู้作:。
2、求下列各数的立方根
(1)64 (2) (3)9 (4) (5)
三、质疑探究
1、下列各数有立方根吗?如果有,请写出来;如果没有,请说明理由
,0.001,9,-3,-64, ,0
总结:任何数都有立方根,一个数的立方根不改变它的 。
即:正数的立方根是,负数的立方根是,0的立方根是。
2、求下列各式的值
, , ,
3、求下列各式的值
(1) (2) (3)
四、精讲点拨
讨论:1.
2.
你能用符号总结一下刚才的结论吗?
五、当堂检测
A、1.立方根等于本身的数是 ( )
A.±1 B.1,0C.±1,0 D.以上都不对
2.若一个数的算术平方根等于这个数的立方根,则这个数是( )
A.±1 B.±1,0C.0 D.0,1
3.下列说法正确的是( )
A.1的立方根与平方根都是1 B.
C. 的平方根是 D.
B、4.求下列各式的值
(1) (2) (3) (4) (5)
5.若 ,若
6.8的立方根与25的平方根之差是
C、1、若
2.已知 ,求
六、作业布置
板
书
设
计
教学反思
自主探究 合作交流 适时引导 集体反馈
教具
课堂设计
一、目标展示
1.了解立方根的概念,会用根号表示一个数的立方根;
2.会求一个数的立方根;
3. 培养学生数学学习兴趣
二、预习检测
【旧知回顾】1.7的平方根是,5的算术平方根是, 的平方根是
最新人教版七年级数学下册《6.2 立方根》精品教案
6.2 立方根【教学目标】1、 使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;2、 能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;3、经历运用计算器探求数学规律的过程,发展合情推理能力。
【学难点与重点】用有理数估计一个无理的大致范围。
【教学过程】一、 复习引新1. 判断题:4的平方根是2( )1的立方根是1( )-0.125的立方根是-0.5( )278-的立方根是32±( ) -6是216的立方根( )2.求下列各式的值 327102-;()331.0--;()25-问题:350有多大呢?(这里可以让学生回忆前面学习过程中讨论2有多大时的方法)。
学生小组讨论,并交流学方法。
因为2733=,6443=所以45033<<因为656.466.33=,653.507.33=所以7.3506.33<<因为836032.4968.33=,24349.5069.33=所以69.35068.33<<……如此循环下去,可以得到更精确的350的近似值,它是一个无限不循环小数,350=一3.684 031 49……事实上,很多有理数的立方根都是无限不循环小数.我们用有理数近似地表示它们.二、 自主学习1、利用计算器来求一个数的立方根,并完成课本上的练习。
(学生利用计算器的说明书独立学习.对于一些暂时还没有学会的学生,可以采用同学之间互帮互学的方式解决.)2、学生解决上节课未解决的一个问题,简单回忆:如果要生产这种容积为50L的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?(结果保留两个有效数字)三、应用新知 (3000216).03216.03216….0,31.0,3100000的近2、用计算器计算3100(结果个有效数字)。
并利用你发现的规律说出30001似值。
四、课堂小结五、布置作业学习小提示:同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
教学设计4:6.2 立方根
学
目
标
知识技能
①了解立方根和开立方的概念;
②掌握立方根的性质;
③会用根号表示一个数的立方根;
④会求一个数的立方根。
过程与方法
通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。
通过学习立方根,培养学生理解概念并用定义解题的能力。
情感态度、价值观
①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。
6.2 立方根
题目
6.2立方根
总课时
学校
教 者
年级
学科
数学
设计来源
教学时间
教
材
分
析
“立方根”是人教版教科书七年级第6章第2节。它是在学习了“平方根的概念和性质”后,运用立方根的概念和性质解决实际问题,通过小组合作讨论、教师辅导的方式来突破重点,为后继研究实数打下良好的铺垫。同时,可以培养学生的观察、分析、归纳能力,探究精神和创新意识等方面有重要的作用。
通过学生自己动手计算,让学生感受任何一个数都有立方根,以及一个数的立方根的惟一性。
巩固新知
新知拓展
课堂小结
布置作业
例1求下列各数的立方根。
,1,0,-1,-343,-0.729
例2.求下列各式的值
(1) ;(2) ;
(3) (4) ;
(5) ;(6)
(7)
例3判断题:(1)64的立方根是 = ()
(2) 是- 的立方根()
即如果 ,那么 叫做 的立方根。
学生充分讨论
学生联系开平方的概念,给出开立方的概念
学生独立探究,再小组合作交流,给出立方根的性质
从学生生活实际中常常见到的热水器引入课题,让学生从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根
【教学目标】
知识与技能:
了解立方根的概念和表示方法,并会求一个数的立方根;
会用计算器求一个数的立方根。
过程与方法: 从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征,最后介绍实用计算器求立方根的方法。
情感态度与价值观:
通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点:立方根的概念和求法
教学难点:立方根的求法。
教学过程:
一、情景引入:
要制作一种容积为3
27m 的正方体形状的包装箱,这种包装箱的边长应该是多少?
二、探索归纳:
1.探索:设这种包装箱的边长为xm ,则273=x ,
这就是要求一个数,使它的立方等于27.
因为 2733=,所以 3=x ,即这种包装箱的边长应为m 3。
2.归纳:
立方根的概念:
一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
立方根的表示方法:
如果a x =3,那么x 叫做a 的立方根。
记作3a x =,3a 读作三次根号a 。
其中a 是被开方数,3是根指数,3a 中的根指数3不能省略。
开立方的概念:
求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。
3、探索立方根的特点:
根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?
(1)因为823= ,所以8的立方根是( );
(2)因为( 125.0)3
=,所以125.0的立方根是( ) ;
(3)因为( 0)3=,所以0的立方根是( );
(4)因为( 8)3-=,所以8- 的立方根是( );
(5)因为( 27
8)3-=,所以278-的立方根是( )。
学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。
归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.
4.探究互为相反数的两个数的立方根的关系: 填空:因为=-38___,=-38___,所以38-___38-;
因为=-327___,=-327___,所以327-___327- 由上面两个例子可归纳出:一般地,33a a -=-。
注:这个关系对于正数、负数、零都成立。
求负数的立方根时,可以先求出这个负数的 绝对值的立方根,然后再确它的相反数。
三、应用:
求下列各式的值:
(1)364 (2)3125- (3)3
6427- 分析:根据立方根的意义求解。
解:(1)4643= (2)51253-=- (3)4364273
-=- 求下列各式中x 的值:
(1)008.03=x (2)8
333=-x (3)8)1(3-=-x 分析:此题的本质还是求立方根。
解:(1)∵008.03=x ∴3008.0=x ∴2.0=x
(2)∵8333=-x ∴8273=x ∴2
3=x (3)∵8)1(3-=-x ∴21=-x ∴3=x
例3、用计算器计算3310,3610,3910,3310-,3610-的值,你发现了什么?并总结出来。
利用你前面发现的规律填空:已知62163=,则=3000216.0____,=3216000____。
分析:在用计算器求立方根时按键顺序是:3
、被开立方的数字、=, 这样即可显示出计算结果 解:101033=,2361010=,3391010=,1331010--=,2361010--=
由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。
=3000216.006.0,602160003=。
四、随堂练习: 立方根等于本身的数是___,如果,113a a -=-则=a ___。
2、64-的立方根是____,3)4(-的立方根是____。
3、已知163+x 的立方根是4,求42+x 的算术平方根。
4、已知43=+x ,求33)10(-x 的值。
5、比较大小:(1)32.1__31.2,(2)332-__34
3-,(3)3__37 五、课堂小结
1.立方根和开立方的定义.
2.正数、0、负数的立方根的特征.
3.立方根与平方根的异同.
六、布置作业
课本第172页习题10.2第1、3、5、6题;
教学反思: 我将本节课定位为探究式教学活动,通过对教材进行适当的整合,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学交流、反思等,构建对知识的形成和运用。
突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。
这样的安排符合掌握知识与发展思维、能力相统一的原则、教师的主导作用与学生的主体作用相结合的原则。