复变函数积分ppt课件
合集下载
《复变函数与积分变换》PPT课件

浙江大学
复数的乘幂
n个相同复数z的乘积成为z的n次幂
z
n
z n = zzLz = r n (cos nθ + i sin nθ)
复数的方根
设
iθ
z = re
为已知复数,n为正整数,则称满足方程
w =z
n
的所有w值为z的n次方根,并且记为
w= n z
浙江大学
设
w= ρeiϕ ,
则
ρ neinϕ = reiθ
w0 = r (cos + i sin ) n n 1 θ + 2π θ + 2π n w1 = r (cos ) + i sin n n 1 θ + 4π θ + 4π n w2 = r (cos + i sin ) n n
1 n
1 n
θ
θ
wn−1 = r (cos
θ + 2(n −1)π
n
+ i sin
Re z 2 = x2 − y2 ≤ 1
Im z 2 ≤ 1
浙江大学
例: 指出不等式 0 < arg 解:
z −i π < 中点z的轨迹所在范围。 z +i 4
z −i x2 + y2 −1 − 2x = 2 +i 2 2 z + i x + ( y +1) x + ( y +1)2
z −i π 因为 0 < arg < , 所以 z +i 4 +i x2 + y2 −1 − 2x > 2 >0 2 2 2 x + ( y +1) x + ( y +1)
复数的乘幂
n个相同复数z的乘积成为z的n次幂
z
n
z n = zzLz = r n (cos nθ + i sin nθ)
复数的方根
设
iθ
z = re
为已知复数,n为正整数,则称满足方程
w =z
n
的所有w值为z的n次方根,并且记为
w= n z
浙江大学
设
w= ρeiϕ ,
则
ρ neinϕ = reiθ
w0 = r (cos + i sin ) n n 1 θ + 2π θ + 2π n w1 = r (cos ) + i sin n n 1 θ + 4π θ + 4π n w2 = r (cos + i sin ) n n
1 n
1 n
θ
θ
wn−1 = r (cos
θ + 2(n −1)π
n
+ i sin
Re z 2 = x2 − y2 ≤ 1
Im z 2 ≤ 1
浙江大学
例: 指出不等式 0 < arg 解:
z −i π < 中点z的轨迹所在范围。 z +i 4
z −i x2 + y2 −1 − 2x = 2 +i 2 2 z + i x + ( y +1) x + ( y +1)2
z −i π 因为 0 < arg < , 所以 z +i 4 +i x2 + y2 −1 − 2x > 2 >0 2 2 2 x + ( y +1) x + ( y +1)
复变函数课件3-1复变函数积分的概念

单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
留数法适用于具有无穷远点性质的复变函数,如幂函 数、对数函数等。
THANKS FOR WATCHING
感谢您的观看
可加性
如果两个积分路径不相交 ,则两个积分之和等于它 们各自独立积分的和,即 ∫f(z)dz=∫f(z)dz+∫f(z)dz 。
可积性
对于可积的复变函数f(z) ,其积分值存在且有限。
积分计算方法
参数方程法
通过参数方程将复数z表示 为实数t的函数,然后利用 实数域中的定积分进行计 算。
直角坐标法
将复数z表示为直角坐标系 中的x和y,然后利用二重 积分进行计算。
复变函数课件3-1复变 函数积分的概念
目录
• 引言 • 复变函数积分的基本概念 • 复变函数积分的几何意义 • 复变函数积分的物理意义 • 复变函数积分的性质和定理 • 复变函数积分的计算方法
CHAPTER 01
引言
课程背景
复变函数是数学的一个重要分 支,它研究复数域上的函数的 性质和变化规律。
数。
积分路径
在复数平面上,积分路径通常是一 条封闭曲线,可以是实线、虚线或 曲线。
积分值
复变函数积分的值是一个复数,其 实部和虚部分别对应于该函数在积 分路径上的定积分和二重积分。
积分性质
01
02
03
线性性质
复变函数积分具有线性性 质,即 ∫(af(z)+bg(z))dz=a∫f(z) dz+b∫g(z)dz。
数轴上的积分。
参数方程法的关键在于找到合适的参数 方程,以便简化积分计算。在选择参数 方程时,我们需要考虑函数的性质和积
复变函数与积分变换PPT_图文_图文

x y=-3
§1.4 复数域的几何模型---复球面
N
0
对复平面内任一 点z, 用直线将z 与N相连, 与球面 相交于P点, 则球 面上除N点外的 所有点和复平面 上的所有点有一 一对应的关系, 而N点本身可代 表无穷远点, 记 作.
这样的球面称作 x1
复球面.
x
x1
x3
除了复数的平
面表示方法外,
加减法与平行四边形 法则的几何意义:
乘、除法的几何意义
:
,
,
,
定理1 两个复数乘积的模等于它们的模的乘积, 两个复 数乘积的幅角等于它们幅角的和.
几何上 z1z2 相 当于将 z2 的 模扩大 |z1| 倍 并旋转一个角
度Arg z1 .
0
1
等式 Arg(z1z2)=Arg z1+Arg z2, 的意思是等式的两 边都是无限集合, 两边的集合相等, 即每给定等式左边 的一个数, 就有等式右边的一个数与之对应, 反之亦然 .
复变函数与积分变换PPT_图文_图文.ppt
引言
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次
方程
时引进了复数。他发现这个方程没有根,并
把这个方程的两个根形式地表为
。在当时,
包括他自己在内,谁也弄不清这样表示有什麽好处。事实上,
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并 被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,
解:
设 z = x + i y , 方程变为
y
O
x
-i
几何上, 该方程表示到点2i和-2的距离相等的点的轨 迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直
复变函数与积分变换-李红-华中科技大学-医学演示课件-精选.ppt

n
Ci
或 f (z)dz
f (z)dz.
C
i1 Ci
..,
例题1
求
1 C z2 dz ,
C 如图所示:
i
解:存在 f (z)的解析单连通域D包含曲
i
线 C ,故积分与路径无关,仅与起点
和终点有关。
3i
从而
C
1 z2 dz
0,i
d
0, 3i
f
z0
1
2 i
C
f z
dz z z0
C1
f z
z z0
dz
z0 D.
CD C1 z0
..,
例题1
计算积分
ez
dz
C z(z 1)( z 2)
C : z r (r 1,2)
ez
解:0 r 1,
(z 1)( z 2) dz 2 i
C3
C2 C1 C3
1 0
2
..,
ez
i 2 i z(z 1) dz i 2 i 2 i ez
3e C3 z 2
3e
z(z 1)
z2
i 2 i e2 i
3e 3
§ 3.4 解析函数的高阶导数
一个解析函数不仅有一阶导数, 而且有各高阶导数, 它 的值也可用函数在边界上的值通过积分来表示. 这一 点和实变函数完全不同. 一个实变函数在某一区间上 可导, 它的导数在这区间上是否连续也不一定,更不要 说它有高阶导数存在了.
f (z)
1 在区域D za
0
za
Ci
或 f (z)dz
f (z)dz.
C
i1 Ci
..,
例题1
求
1 C z2 dz ,
C 如图所示:
i
解:存在 f (z)的解析单连通域D包含曲
i
线 C ,故积分与路径无关,仅与起点
和终点有关。
3i
从而
C
1 z2 dz
0,i
d
0, 3i
f
z0
1
2 i
C
f z
dz z z0
C1
f z
z z0
dz
z0 D.
CD C1 z0
..,
例题1
计算积分
ez
dz
C z(z 1)( z 2)
C : z r (r 1,2)
ez
解:0 r 1,
(z 1)( z 2) dz 2 i
C3
C2 C1 C3
1 0
2
..,
ez
i 2 i z(z 1) dz i 2 i 2 i ez
3e C3 z 2
3e
z(z 1)
z2
i 2 i e2 i
3e 3
§ 3.4 解析函数的高阶导数
一个解析函数不仅有一阶导数, 而且有各高阶导数, 它 的值也可用函数在边界上的值通过积分来表示. 这一 点和实变函数完全不同. 一个实变函数在某一区间上 可导, 它的导数在这区间上是否连续也不一定,更不要 说它有高阶导数存在了.
f (z)
1 在区域D za
0
za
复变函数与积分变换全套精品课件

复变函数与积分变换
全套课件
§1.1 复 数
1. 复数的概念
形如 z a ib 或 z a bi 的数称为复数。 i称为虚单位,即满足 i2 1 a和b为实数,分别称为复数z的实部和虚部,记作 a Re z, b Im z. •当且仅当虚部b=0时,z=a是实数; •当且仅当a=b=0时,z就是实数0; •当虚部b≠0时,z叫做虚数; •当实部a=0且虚部b≠0时,z=ib称为纯虚数. 全体复数的集合称为复数集,用C表示. 实数集R是复数集C的真子集.
Hale Waihona Puke 1 1 1) Re z ( z z ), Im z ( z z ). 2 2i z z 2)( z w) z w, zw z w, ( ) ( w 0). w w 3) zw z w . z 4) z . w w 5) z z .
复数的模和共轭复数的性质
乘法
z1 z2 ac ibc iad i 2bd (ac bd ) i(bc ad )
z zz
2
除法
z1 a ib (a ib)(c id ) ac bd bc ad 2 i 2 , z2 0 2 2 z2 c id (c id )(c id ) c d c d
4. 复数的三角表示和复数的方根
复平面C的不为零的点 z x iy 极坐标 (r, ) : x r cos , y r sin
r z,
是正实轴与从原点O到z的射线的 夹角,称为复数z的幅角,记为 Argz
满足条件 π π 的幅角称为Argz的主值,记为 =argz,于是有=Argz=argz+2k, k=0,±1,±2,…. 复数的三角表示 z=r(cos+isin)
全套课件
§1.1 复 数
1. 复数的概念
形如 z a ib 或 z a bi 的数称为复数。 i称为虚单位,即满足 i2 1 a和b为实数,分别称为复数z的实部和虚部,记作 a Re z, b Im z. •当且仅当虚部b=0时,z=a是实数; •当且仅当a=b=0时,z就是实数0; •当虚部b≠0时,z叫做虚数; •当实部a=0且虚部b≠0时,z=ib称为纯虚数. 全体复数的集合称为复数集,用C表示. 实数集R是复数集C的真子集.
Hale Waihona Puke 1 1 1) Re z ( z z ), Im z ( z z ). 2 2i z z 2)( z w) z w, zw z w, ( ) ( w 0). w w 3) zw z w . z 4) z . w w 5) z z .
复数的模和共轭复数的性质
乘法
z1 z2 ac ibc iad i 2bd (ac bd ) i(bc ad )
z zz
2
除法
z1 a ib (a ib)(c id ) ac bd bc ad 2 i 2 , z2 0 2 2 z2 c id (c id )(c id ) c d c d
4. 复数的三角表示和复数的方根
复平面C的不为零的点 z x iy 极坐标 (r, ) : x r cos , y r sin
r z,
是正实轴与从原点O到z的射线的 夹角,称为复数z的幅角,记为 Argz
满足条件 π π 的幅角称为Argz的主值,记为 =argz,于是有=Argz=argz+2k, k=0,±1,±2,…. 复数的三角表示 z=r(cos+isin)
复变函数与积分变换PPT课件

11 2i (2 i )( 5i) 11 2i 5 10i 25 5i (5i) 25 25
16 8 i 25 25
所以
16 8 Re z , Im z 25 25
16 8 16 8 64 zz ( i)( i) 25 25 25 25 125
1. 复数的乘幂 设 n 为正整数, n 个非零相同复数 z 的乘 z 的 n 次幂,记为 z n ,即 积,称为
z n z z z
n个
若 z r(cos i sin ) ,则有
z n r n (cos n i sin n )
当 r 1 时,得到著名的棣莫弗公式 (cos i sin ) n cos n i sin n
所以 r z ( 1) 2 ( 3) 2 2 设 arg z, 则
3 tan t 3 1
又因为 z 1 i 3 位于第II象限 2 所以 arg z 3 于是
2 2 z 1 i 3 2(cos i sin ) 3 3
y arctan x , z在第一、四象限 y y arg z arctan , z在第二象限 其中 arctan 2 x 2 x y arctan x , z在第三象限
说明:当 z 在第二象限时, arg z 0 2 2 y y arctan tan( ) tan( ) tan
z0
25
开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称D 为闭集. 连通集 设是 D 开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集.
16 8 i 25 25
所以
16 8 Re z , Im z 25 25
16 8 16 8 64 zz ( i)( i) 25 25 25 25 125
1. 复数的乘幂 设 n 为正整数, n 个非零相同复数 z 的乘 z 的 n 次幂,记为 z n ,即 积,称为
z n z z z
n个
若 z r(cos i sin ) ,则有
z n r n (cos n i sin n )
当 r 1 时,得到著名的棣莫弗公式 (cos i sin ) n cos n i sin n
所以 r z ( 1) 2 ( 3) 2 2 设 arg z, 则
3 tan t 3 1
又因为 z 1 i 3 位于第II象限 2 所以 arg z 3 于是
2 2 z 1 i 3 2(cos i sin ) 3 3
y arctan x , z在第一、四象限 y y arg z arctan , z在第二象限 其中 arctan 2 x 2 x y arctan x , z在第三象限
说明:当 z 在第二象限时, arg z 0 2 2 y y arctan tan( ) tan( ) tan
z0
25
开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称D 为闭集. 连通集 设是 D 开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集.
复变函数与积分变换经典PPT—复变函数.ppt

解
由上例可知
(z
1 a)n1
dz
2i, 0,
n0 n 0,
此处不妨设 a z0,
则有
1
1
1,
2 i (z z0 )n dz 0,
n1 n 1.
四、小结与思考
本课所讲述的复合闭路定理与闭路变形原
理是复积分中的重要定理, 掌握并能灵活应用它 是本章的难点.
1
2
3
CF
A
A
F
B4
D1 E C1 B
D
E
问题的提出 C
C1
复合闭路定理D
C2 C3
典型例题
小结与思考
一、.
z 2 z 1
因为 z 2 是包含 z 1 在内的闭曲线,
根据本章第一节例4可知,
1 dz 2i.
z 2 z 1 由此希望将基本定理推广到多连域中.
y C1
解 C1 和 C2 围成一个圆环域, 函数 ez 在此圆环域和其边界
z
C2 o1
2x
上处处解析, 圆环域的边界构成一条复合闭路,
根据闭路复合定理, ez dz 0. z
例3 求
(z
1 a)n1
dz
,
为含
a
的任一简单闭
路,n 为整数.
解 因为a 在曲线内部,
a
1
BB
BB
即 f (z)dz f (z)dz 0,
C
C1
或 f (z)dz f (z)dz.
C
C1
CF
A A F B
D1 E C1 B
复变函数与积分变换-李红-华中科技大学-医学演示课件-精选.ppt

c udx vdy ic vdx udy
f xt, y t zt dt
..,
复积分存在的一个充分条件:
设函数f (z) u(x, y) iv(x, y)在逐段光滑
的曲线上 C连续,则c f z dz 必存在.
f (z)连续 u(x, y),v(x, y)连续
f (z)
1 在区域D za
0
za
内解析,
1 dz 2 i 0
za 1 z a
这里D为复连通域.., 。
可将柯西积分定理推广到多连通域的情况
定理2 假设C及C1为任意两条简单闭曲线, C1在C内部,设
C
C
..,
3 C f z dz C1 f z dz C2 f z dz , C C1 C2
4 C f (z)dz C f (z) dz C f (z) ds ML
(若f (z)在C上有界:f (z) M,L为C的长度.)
例题1 计算 z dz. (1)C : i i的直线段; C
I
2 irei d
0 (rei )n
1 r n1
2 0
iein1 d
..,
0,
2
n i,
1, n
1
.
例如
dz 2 i,
z 1 z
例题3
证明 C
z 1 dz 8 ,
z 1
C : z 1 2.
证明: C
z z
1 dz 1
dr dxi dyj
z x iy , dz dx idy
c F dr c Mdx Ndy
f xt, y t zt dt
..,
复积分存在的一个充分条件:
设函数f (z) u(x, y) iv(x, y)在逐段光滑
的曲线上 C连续,则c f z dz 必存在.
f (z)连续 u(x, y),v(x, y)连续
f (z)
1 在区域D za
0
za
内解析,
1 dz 2 i 0
za 1 z a
这里D为复连通域.., 。
可将柯西积分定理推广到多连通域的情况
定理2 假设C及C1为任意两条简单闭曲线, C1在C内部,设
C
C
..,
3 C f z dz C1 f z dz C2 f z dz , C C1 C2
4 C f (z)dz C f (z) dz C f (z) ds ML
(若f (z)在C上有界:f (z) M,L为C的长度.)
例题1 计算 z dz. (1)C : i i的直线段; C
I
2 irei d
0 (rei )n
1 r n1
2 0
iein1 d
..,
0,
2
n i,
1, n
1
.
例如
dz 2 i,
z 1 z
例题3
证明 C
z 1 dz 8 ,
z 1
C : z 1 2.
证明: C
z z
1 dz 1
dr dxi dyj
z x iy , dz dx idy
c F dr c Mdx Ndy
复变函数的积分Cauchy积分定理PPT课件

L
L v(x, y)dx u(x, y)dy {v[x(t), y(t)]x(t) v[x(t), y(t)]y(t)}dt
故
L f (z)dz {u[x(t), y(t)] iv[x(t), y(t)][x(t) iy(t)]}dt
f [z(t)]z(t)dt
计算积分
zdz,(1)L
L
C1, (2)L
C2
C3.
分析:
y z0 1 i
(1)C1的方程为z=(1 i)x,x:0 1
1
zdz [(1 i)x (1 i)]dx 1
C1
0
C1
C3
(2)C2的方程为z=x,x:0 1,C3的方程为o z=1+iyC,2y:0z1 1 x
r n1 0
0
当n 1时, dz 0
C (z z0 )n
当n 1时,
C
dz (z z0 )n
2 i
曲线积分与曲面积分
5
结论 :
dz 2 i n 1
C (z z0 )n
0
n 1
曲线积分与曲面积分
6
例2:设C1是从原点到z0 =1+i的直线段,C2是从原 点到z1=1直线段,C3是从z1=1到z0 =1+i的直线段,
1 z
z
曲线积分与曲面积分
26
定义2
若在区域D中(z)=f(z),则称(z)是f(z)在单连通 域D中的一个原函数。
曲线积分与曲面积分
27
定义2
若在区域D中(z)=f(z),则称(z)是f(z)在单连通 域D中的一个原函数。
第3章复变函数的积分.ppt

2
x 2
2
y 2
0
那么称(x, y) 为区域D内的调和函数.
定理 任何在区域D内解析的函数,它的实 部和虚部都是D内的调和函数.
共轭调和函数 设 u(x, y)为区域D内给定的调和函数,我们把
使 u iv 在D内构成解析函数的调和函数
分记作 f (z)dz.
C
3.1.2 积分存在的条件及其计算方法
1) 当 f (z)是连续函数且 C 是光滑(或按段 光滑)曲线时,积分是一定存在的。
2) C f (z)dz可以通过两个二元实变函数的
积分来计算。
设 C 由参数方程 z(t) x(t) iy(t), t 给出,
3.2 柯西—古萨(Cauchy—Goursat)基本 定理
如果函数 f (z) 在单连通域 B 内处处解析, 那末函数 f (z) 沿 B 内的任何一条封闭曲线
C 的积分值为零。即
c f zdz 0
3.3 基本定理的推广-复合闭路定理 闭路变形原理
在区域内的一个解析函数沿闭曲线的积分 不因闭曲线在区域内作连续变形而改变它 的值. 复合闭路定理
1 [( 2!
cos z
z
)''
]z
2
8i
3)f
(z)
在
C3 内有两个奇点
z1
0,z2
2
,故
I
cos z C1 (z 2)3
dz z
cos z dz C2 z (z 2)3
(8
16
2
)i
3.7 解析函数与调和函数的关系 调和函数
如果二元实变函数(x, y) 在区域D内具有二 阶连续偏导数并且满足拉普拉斯方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1
n
[u(k,k)xkv(k,k)yk]
k1
n
i [v(k,k)xku(k,k)yk]
k1
由于u,v都是连续,函 根据数 线积分的存在定理,
.
当 n 无限增大而弧段长度的最大值趋于零时,
不论 C的 对分法 ,点 (任 k,k)的 何取法 , 如
下式两端 , 极限存在
n
n
f(k)zk [u(k,k)xkv(k,k)yk]
如果A到B作为曲线C的正向, y
Bபைடு நூலகம்
那么B到A就是曲线C的负向,
记为 C.
A
o
x
.
关于曲线方向的说明:
在今后的讨论中,常把两个端点中的一个作 为起点, 另一个作为终点, 除特殊声明外, 正方 向总是指从起点到终点的方向.
简单闭曲线正向的定义:
简单闭曲线C(周线)的正向 y
是指当曲线上的点P顺此方
P
向前进时, 邻近P点的曲线
的积分,并记号Cf(z)dz表示:
J C f (z)dz.
y
b
C
C称 为 积 分 路 径 .
zn1
Cf(z)d z表 示 沿 C 正 方 向 积 分 , 1 a
2
z1
z2
k zk z k 1
C f(z)d z表 示 沿 C 负 方 向 积 分 .o
x
.
关于定义的说明:
(1)如 果 J存 在 ,一 般 不 能 把 J写 成 bf(z)dz,因 为 a
C f(z ) d z C u d x v d y iC v d x u d y
证明 设光滑曲 C由线参数方程给出
zz(t)x(t)i y(t), t
正方向为参数增加的方向,
参数 及 对应A 于 及起 终 B , 点 点
.
并 z ( t) 且 0 , t,
如f(果 z) u (x ,y) iv(x ,y)在 D 内处 , 处 那u 么 (x,y)和 v(x,y)在 D内均为连 , 续函
的内部始终位于P点的左方. o
与之相反的方向就是曲线的负方向.
P
P
P
x
.
2. 定义3.1 设有向曲线C
zz(t),(t)
以 a z()为 起 点 ,b z()为 终 点 ,f(z)沿 C 有
定 义 , 顺 着 C 从 a 到 b 的 方 向 取 设 分 点
a z 0 ,z 1 ,L ,z k 1 ,z k ,L ,z n b ,
径的正 ,n为 向整 .圆数 周 y z
解 积分路径的参数方程为
z0 r
z z 0 rie( 0 2 π ),o
x
C
(z
1 z0)n1
dz
2π irie
0 rn1ei(n1)
d
rin
2πeind,
0
.
当 n0时 ,
C
(z1z0)n1dzrin
2πeind,
0
y
z
C
(z1z0)n1dz i
{ u [ x ( t ) y ( t , ) i ] [ x v ( t ) y ( t , )x ] ( t ) } i y ( t { ) d t}
f[z(t)z](t)dt.
注 用公式(3.2)或(3.3)计算复变函数的积分,是从积分
路径的参数方程着手,称为参数方程法.
.
例1 求C(z1 z0)n1dz,C为z0 以 为中 ,r为 心 半
即复函数积分可表为两个实积分.
.
二. 复变函数积分的计算问题
设有向曲线C
z z ( t) x ( t) iy ( t) ,( t)
f(z)沿C连续,则
C f(z)d z f[z(t)]z(t)d t (3 .2 )
或 Cf(z)dzRe{f[z(t)]z(t)}dt
iIm {f[z(t)]z(t)}dt
把曲线C分成若干弧段,
在每个弧段z¼ k1zk 上任意 y
取一点k(k1,2,L,n),
作和式
n
Sn f (k)zk, k1
.
a
1
2
z1
z2
o
b
C zn1
k zk z k 1
x
n
Sn f (k)zk, k1
其中zk zk zk1, 当分点无限增多, 而这些弧段 长度的最大值趋于零时,如果和数Sn的极限存在且等于 J,则称f(z)沿C(从a到b)可积,而称J为f(z)沿C(从a到b)
k1
k1
n
i[v(k,k)xku(k,k)yk]
k1
C f(z)dz CudxvdyiCvdxudy
.
公式 C f(z)dz Cudxvdyi Cvdxudy
在形式上可以看成是 f(z)uiv与 dzdxidy相乘后求 : 积
C f(z)dz C (uiv )d (xid y) C u d x id v x id u y v d y C u d x v d y iC v d x u d y .
(3.3)
复积分的变量代换公式
.
证明
C
f (z)dz
udxvdyi vdxudy
C
C
{ u [x (t),y (t)]x (t) v [x ( t),y ( t)]y ( t)} d t
i{ v [x ( t) ,y ( t) ]x ( t) u [x ( t) ,y ( t) ]y ( t) } d t
第三章 复变函数的积分
Department of Mathematics
.
第一节 复积分的概念及其简单性质 1、复变函数积分的的定义 2、积分的计算问题 3、基本性质
Department of Mathematics
.
一、复变函数积分的定义
1.有向曲线:
设C为平面上给定的一条光滑(或按段光滑) 曲线, 如果选定C的两个可能方向中的一个作 为正方向(或正向), 那么我们就把C理解为带 有方向的曲线, 称为有向曲线.
设 kkik,
因 z k z k z k 1 为 x k i k ( y x k 1 i k 1 ) y ( x k x k 1 ) i ( y k y k 1 ) xki yk,
.
所以
n
Sn
f (k )zk
n k1
[u (k,k) iv (k,k) ]x k ( i y k)
J的 值 不 仅 和 a,b有 关 ,而 且 和 积 分 路 径 C 有 关 .
( 2 ) f ( z ) 沿 C 可 积 的 必 要 条 件 是 ,f ( z ) 沿 C 有 界 .
n
(3) Cf(z)dzlni m k1f(k)zk.
.
3. 定理3.1 若 函 数 f(z) u (x ,y ) iv (x ,y )沿 曲 线 C 连 续 , 则 f(z)沿 C 可 积 ,且