凯勒特燃烧技术与设备(上海)有限公司_中标190925

凯勒特燃烧技术与设备(上海)有限公司_中标190925
凯勒特燃烧技术与设备(上海)有限公司_中标190925

招标投标企业报告

凯勒特燃烧技术与设备(上海)有限公司

本报告于 2019年9月25日 生成

您所看到的报告内容为截至该时间点该公司的数据快照

目录

1. 基本信息:工商信息

2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标

的甲方排名、合作甲方排名

3. 股东及出资信息

4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚

5. 企业信息:工程人员、企业资质

* 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息

1. 工商信息

企业名称:凯勒特燃烧技术与设备(上海)有限公司统一社会信用代码:91310115785156485T 工商注册号:310000400455163组织机构代码:785156485

法定代表人:刘茂树成立日期:2006-01-26

企业类型:有限责任公司(外国法人独资)经营状态:存续

注册资本:335万美元

注册地址:上海市浦东新区航头镇沪南公路4880弄89号

营业期限:2006-01-26 至 2036-01-25

营业范围:生产、加工环保和燃烧设备及其相关的零部件,销售公司自产产品,提供产品售后服务、技术服务和配套安装服务;上述同类产品的批发、进出口、佣金代理(拍卖除外),并提供相关配套服务(不涉及国营贸易管理商品,涉及配额、许可证管理商品的,按国家有关规定办理申请)。【依法须经批准的项目,经相关部门批准后方可开展经营活动】

联系电话:***********

二、招投标分析

2.1 中标/投标数量

企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间)

2

2.2 中标/投标情况(近一年)

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

2.3 中标/投标行业分布(近一年)

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

2.4 参与投标的甲方前五名(近一年)

神华宁煤集团物资公司 ()

1

序号地区日期标题中标情况1玉溪2017-07-14神华宁煤煤制油公用工程火炬头采购项目中标陕西延长石油延安能源化工有限责任公司招标代理公司 ()

1

序号地区日期标题中标情况

1延安2016-09-26陕西延长石油延安能源化工有限责任公司延安煤油气资源综合利

用项目-40万吨/年轻油加工利用装置24台裂解炉燃烧器采购项目

中标

2.5 合作甲方前五名(近一年)

神华宁煤集团物资公司 ()

1

序号地区日期标题中标情况1玉溪2017-07-14神华宁煤煤制油公用工程火炬头采购项目中标陕西延长石油延安能源化工有限责任公司招标代理公司 ()

1

序号地区日期标题中标情况

1延安2016-09-26陕西延长石油延安能源化工有限责任公司延安煤油气资源综合利

用项目-40万吨/年轻油加工利用装置24台裂解炉燃烧器采购项目

中标

三、股东及出资信息

序号股东持股比例认缴出资额1美国CALLIDUS TECHNOLOGIES,L.L.C100.00%335万美元

四、风险信息

4.1 经营异常()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

4.2 股权出资()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

4.3 动产抵押()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

4.4 税务信息()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

4.5 行政处罚()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

五、企业信息

5.1 工程人员()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

5.2 企业资质()

截止2019年9月25日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

催化燃烧废气处理设备介绍

广州和风环境技术有限公司 https://www.360docs.net/doc/0417407391.html,/ 催化燃烧废气处理设备介绍 催化燃烧处理广泛用于石油、化工、橡胶、涂装、印刷等行业车间里挥发出的有害有机废气净化处理中,苯类,醇类,醚类等有机废气均能净化。该装置系统设计完整,附属设备配套齐全,净化效率高,自动化程度高。它能有效地净化车间环境、消除污染、改善劳动操作条件,确保工人身体健康,并能解决二次污染。最适用于低浓度(50~1000ppm)且回收经济价值不大,不宜采用吸附回收处理的有机废气,尤其对大风量的处理场合。处理大风量低浓度废气等特点,浓度稍高时,还可进行二次余热回收,大大降低生产运营成本。 催化燃烧废气处理设备技术原理 本净化装置是根据吸附(效率高)和催化燃烧(节能)两个基本原理设计的,即吸附浓缩—催化燃烧法。该设备采用双气路连续工作,设两个或多个吸附床可交替使用。一个催化燃烧室,先将有机废气用活性炭吸附,当快达到饱和时停止吸附操作,然后用热气流将有机物从活性炭上脱附下来使活性炭再生;脱附下来的有机物已被浓缩(浓度较原来提高几十倍)并送入催化燃烧室催化转化成CO2和H2O排出。 催化燃烧床 材质:Q235*3mm 保温层:陶瓷纤维-200mm 设备规格:1.8m×1.4m×2.6m 功率:160kw

广州和风环境技术有限公司 https://www.360docs.net/doc/0417407391.html,/ 加热温度:360 度 催化剂 主要成分:铂金、钯金等贵金属 形状:方形蜂窝体 尺寸:A 型为150*150*150mm,B 型 为150*150*100mm 孔型:方形 孔密度:200 孔/in2 载体比表面:≥120m2/g 催化燃烧RCO废气处理设备适用范围 石化厂、化工厂、制药厂、卷烟厂、香精厂、使用有机废气种类:烷烃、烯烃、醇类、酮类、醚类、酯类、芳烃、苯类等碳氢化合物有机废气工业废气的净化处理。 催化燃烧RCO废气处理设备的优点 几乎可以处理所有含有机化合物的废气;可以处理风量大、浓度低的有机废气;处理有机废气流量的弹性很大(名义流量20%~120%);可以适应有机废气中VOC的组成和浓度的变化、波动;对废气中夹带少量灰尘、固体颗粒不敏感。1、采用吸附浓缩+催化燃烧组合工艺。整个系统实现了净化、脱附过程封闭循环,与回收类有机废气净化装置相比,无须配备压缩空气等附加能源,运行过程不产生二次污染,设备投资及运行费用低。 2、该设备设计原理先进、用材独特、性能稳定、操作简便、安全可靠、节能省力,无二次污染。 3、设备占地面积小。 4、催化燃烧室采用陶瓷蜂窝体的贵金属催化剂,阻力小,活性高。当有机蒸汽浓度达到2000PPm以上时,可维持自燃。 5、耗电量小。由于床层阻力小,用低压风机就可以。有机物催化燃烧前,需启动电加热,当有机物在催化床开始催化燃烧时,其燃烧热足以维持其反应所需的温度,此时电加热自行停止,起动电加热时间大约1小时左右。 6、吸附有机物废气的活性炭床,可用催化燃烧后的废气进行脱附再生,脱附后的气体再送催化燃烧室进行净化,不需外加能量,运转费用低,节能效果显著。 7、采用微机集中控制系统,设备运行、操作过程实现全自动化,运行过程安全、稳定、可靠。

燃气燃烧设备

燃气燃烧设备 (浅谈燃气热水器的认识及对安全认识感想) 科目:燃气燃烧设备 姓名:冯松松学号:2013 2321 073 系别:能源工程系专业:城市热能应用技术

浅谈燃气热水器的认识对安全认识感想一.燃气热水器概述 1.热水器分为燃气热水器.电热水器.太阳能热水器三大类。目前在城市内燃气热水器占较大份额 2.燃气热水器定义: 燃气热水器又称燃气热水炉,它是指以燃气作为燃料,通过燃烧加热方式将热量传递到流经热交换器的冷水中以达到制备热水的目的的一种燃气用具。燃气热水器由于其热效率高、加热速度快、温度调节稳定、可连续使用的优点。目前市场上主要卖的是强制排烟热水器。 3.工作原理:燃气热水器的基本工作原理是冷水进入热水器,流经水气联动阀体在流动水的一定压力差值作用下,推动水气联动阀门,并同时推动直流电源微动开关将电源接通并启动脉冲点火器,与此同时打开燃气输气电磁阀门,通过脉冲点火器继续自动再次点火,直到点火成功进入正常工作状态为止。通常一台合格的燃气热水器,指各项性能指标符合GB6932-2001《家用燃气快速热水器》国家标准要求的燃气热水器,从点火状态到进入正常工作状态的整个过程是全自动控制,无需人为调整或附加设置,只要打开冷水开关或接通冷水水源,通过水量调节装置和气量调节装置调节得到合适的水量与水

温。 4. 燃气热水器的发展: 燃气热水器的发展经历了直排、烟道、强排、鼓风、平衡等阶段。根据国家规定,现阶段,国内只能生产和销售强排以上机型。二.行业概述与市场分析 1.自1979年诞生第一台燃气热水器,我国热水器行业已走过了三十年的发展历程。前期,燃气热水器独霸市场十几年,直到90年代中后期,电热水器才开始在市场走俏,并逐渐超过燃气热水器,占据市场主导地位。而燃气热水器并未坐以待毙,自1999年开始调整产业结构,强制性淘汰直排式产品,使安全问题基本得到解决。2008年又进一步提升能效标准,淘汰热效率在84%以下的产品,提升行业的技术门槛,规范现有市场。经历了这一次次的洗礼后,在国家政策引导和厂商共同努力下,2009年燃气热水器市场强力反弹。 2.强排式产品已占据燃气热水器市场87.8%的零售额份额,成为市场绝对主流。在政府的节能政策支持下,高效燃气热水器必然会得到发展,成为21世纪的主导产品之一。 3.国家通过政策引导行业结构升级:相继出台强制淘汰直排式产品、提升能效等级标准等强制升级产业结构的政策,即使是针对开拓农村市场的“热水器下乡”产品招标,也要求参与竞标的燃气热水器产品一律为强排式,且热能效率在2级以上,使得燃气热水器行业升级的压力加剧。

低热值燃气燃烧技术的应用与分析

低热值燃气燃烧技术的应用与分析 摘要:本文主要针对低热值燃气燃烧技术的应用与分析展开了探讨,详细阐述 了低热值燃气的燃烧特性,并对低热值燃气的稳燃技术和低热值燃气的低氮燃烧 技术作了系统的分析,以期能为有关方面的需要提供参考借鉴。 关键词:低热值燃气;燃烧技术;应用 所谓的低热值燃气,是指煤或焦炭等固体燃料气化所得热值较低的气体燃料。在当前节能降耗的大社会背景下,低热值燃气的应用将会具有着极佳的经济效益 和社会意义,因此,我们需要对低热值燃气的燃烧技术进行有效的分析,从而为 推广其的应用带来极大的帮助。 1 低热值燃气燃烧特性 低热值气体燃料并没有明确的概念,通常根据气体燃料自身发热量可将气体 燃料分为高热值燃料(Q>15.07MJ/m3)、中热值燃料(6.28MJ/m3<Q< 15.07MJ/m3)及低热值燃料(Q<6.28MJ/m3),工业中常见的低热值气体燃料 主要有化工过程低热值尾气、高炉煤气、石油化工行业冶炼尾气、煤矿低浓度瓦 斯气等。其中,高炉煤气、煤层气等热值介于3.0~6.28MJ/m3的低热值燃料的研究应用已逐步展开,但在工业生产中还存在一些工业废气,含有少量的可燃成分,热值非常低,甚至远低于3.0MJ/m3,这种超低热值燃气种类很多,比如某些煤层气、生物质气化气、垃圾掩埋坑气、炭黑尾气、一些工艺废气等。超低热值燃气 比低热值燃气点火、稳燃更困难,能量密度低,长距离输送不经济,在当地没有 合适的热用户时只能直接放散,既浪费能源又污染环境。 低热值燃气燃烧特性主要包括以下几个方面: (1)燃气中可燃成分少,热值低,着火温度高,火焰传播速度慢,难以点火及稳定燃烧; (2)燃气压力低且波动范围大,压力过低、速度过慢时容易回火; (3)低热值燃气多为化工生产线的尾气,需对多条生产线进行汇总综合利用,燃气的流量变化大; (4)化工工艺过程的操作对尾气的成分及热值影响较大,尾气的燃烧工艺如配风系数需及时匹配调整,否则容易熄火。 2 低热值燃气的稳燃技术 根据燃烧理论,为保证低热值燃气的稳定燃烧,主要的稳燃措施包括优化着 火条件、提高火焰温度以及优化燃烧场分布等。 (1)优化着火条件 低热值气体燃料的着火极限高,着火比较困难,燃烧温度也较低。为此,需 要提高燃气热值,降低燃料着火下限。如掺烧高热值燃料,提高混合燃气的热值,降低着火温度;燃料和空气预热提高初始温度。 (2)提高火焰温度 燃烧温度的提髙可强化炉内辐射换热并改善炉内的燃烧状况。而实际火焰温 度与装置类型、燃烧效率、燃料种类、空气/燃气预热温度等有关。如:强化燃料和空气的混合,降低不完全燃烧损失;合理设计炉膛结构,进行绝热燃烧,减少 系统散热量;降低空气过剩系数或采用纯氧/富氧燃烧。 (3)优化燃烧场分布 燃烧场的分布包括燃气、空间以及烟气在燃烧空间的分布,燃烧场特别是温 度场的优化分布来源于高温烟气对新鲜燃气、空气的加热,进而促进空气与烟气

RCO催化燃烧设备说明书简介

RCO催化燃烧设备净化原理 在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过旋转阀将进口气体和出口气体分开。气体先通过陶瓷材料填充层(底层)预热后发生热量的储备和热交换,其温度几乎达到催化层(中层)进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(上层,可采用电加热方式或气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入其它的陶瓷填充层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。 RCO催化燃烧设备主要由阻火器,热交换器,催化反应床,风机这几个主要部件组成。与直接燃烧相比,催化燃烧温度较低,燃烧比较好。催化燃烧用的是表面具有贵金属和金属氧化物的催化剂,将有机污染物的废气在催化剂铂、钯的作用下,可以在较低的温度下将废气中的有机污染物氧化成二氧化碳和水。催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。 RCO催化燃烧设备产品性能特点: 1.操作方便,设备工作时,实现自动控制,可靠。 2.设备启动,仅需15~30分钟升温至起燃温度,耗能仅为风机功率,浓度较低时自动补偿。 3.采用当今先进的贵金属钯、铂浸渍的蜂窝状陶瓷载体催化剂,比表面积大,阻力小,净化率高。 4.余热可返回烘道,降低原烘道中消耗功率;也可作其它方面的热源。 5.使用寿命长,催化剂一般两年换,并且载体可循环使用。 6.不产生氮氧化物(NOX)等二次污染物; 7.可靠性高、净化效率高达99%以上; 8.热量回收率,热回收效率≥95%。 RCO催化燃烧设备能对苯、醇、酮、酯、汽油类等有机溶剂的废气进行吸附净化,适用于低浓度大风量或高浓度间歇排放废气的作业环境,它能有效地净化环境、消除污染、改善工作环境,确保工人身体健康,治理达标排放。因此,化工、轻工、涂装、电子、机电、印刷、家电、制鞋、电池(电瓶)、塑料、薄膜、橡胶、涂料、制药、家具、船舶、汽车、石油等行业产生的有害有机废气的净化及臭味的消除均可选用。 RCO催化燃烧设备使用旋转阀替代了传统设备中众多的阀门以及复杂的液压设备。有机物去除率可以达到98%以上,热回收率达到95-97%。 RCO催化燃烧设备选型及注意事项 (1)废气成分中,不能含有下列物质:有高粘性的油脂类。如磷、铋、砷、锑、汞、铅、锡;高浓度的粉尘。 (2)设备选0型时,注明废气的成份、浓度及出口温度。 (3)设备安装场所无腐蚀性气体,并有良好的防雨措施。 (4)设备所需电源为:三相交流380V,频率50Hz。 (5)注明是否有特殊要求

燃气燃烧器安全技术规定

1、《燃气燃烧器安全技术规定》(征求意见稿) Safety Technical Regulation for Gas Burner 中华人民共和国国家质量监督检验检疫总局颁布 2006年月日 目录 第一章总则 (1) 第二章结构与设计要求 (1) 第三章安全与控制装置要求 (3) 第四章安装与系统要求 (5) 第五章使用与维护要求 (6) 第六章技术资料与铭牌要求 (8) 第七章附则 (9) 燃气燃烧器安全技术规定(征求意见稿) 第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称'规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。 关联法规: 第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。 第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89《电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求 第五条设计 (一)燃气燃烧器一般由以下主要部分组成:燃气喷嘴、燃气阀系、风机、燃气流量调节阀、空气调节装置、点火装置、燃气压力检测开关、空气压力检测开关及火焰监测装置等。(二)燃烧器的设计应该能保证燃烧器达到规定的输出功率及性能要求。燃烧器的结构应该保证不会发生不稳定、变形或开裂等危及安全的问题。 (三)燃烧器各部件结构和尺寸的设计不仅必须保证燃烧器可靠经济运行,还要保证操作人员的安全。 (四)燃烧器上应当有火焰观测孔,为防止火焰喷出或烟气外漏,观测孔配件应当具有足够强度并且被有效密封。

天然气燃烧特性

天然气燃烧特性 天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的城市必选燃气气源。 城市燃气应按燃气类别及其燃烧特性指数(华白数W 和燃烧势CP )分类,并应控制其波动范围。 华白数W 按式(1)计算: d Q W g = (1) 式中:W —华白数,MJ/m 3(kcal/m 3);Q g —燃气高热值,MJ/m 3/(kcal/m 3);d —燃气相对密度(空气相对密度为1)。 燃烧势CP 按式2计算: ()d CH CO H C H K CP n m 423.06.00.1+++?= (2) 220054.01O K ?+= (3) 式中:CP ——燃烧势; H 2——燃气中氢含量,%(体积); C m H n ——燃气中除甲烷以外的碳氢化合物含量,%(体积); CO ——燃气中一氧化碳含量,%(体积); CH 4——燃气中甲烷含量,%(体积); d ——燃气相对密度(空气相对密度为1); K ——燃气中氧含量修正系数; O 2——燃气中氧含量,%(体积)。 城市燃气的分类应符合表的规定。 城市燃气的分类(干,0℃,101.3kPa )表

燃气热值的单位定义及换算 燃气热值的单位有两个单位系列: 一是“焦耳”系列:J(焦耳)/ Nm3、KJ(千焦)/Nm3、MJ(兆焦)/Nm3; 换算关系是:1MJ(兆焦)=1000KJ(千焦)、1KJ(千焦)=1000J(焦耳); 二是“卡”系列:cal(卡)/ Nm3、Kcal(千卡)/Nm3;换算关系是:1Kcal (千卡)=1000cal(卡); 两个单位系列的换算关系是:1cal(卡)=4.1868 J(焦耳);1KJ(千焦)=238.85 cal(卡);1MJ(兆焦)=238.85 Kcal(千卡)。 纯天然气的组分 纯天然气的组分是CH4:98%;C2H6:0.3%;C3H8:0.3%;CmHn: 0.4%;N2:1%。

燃气燃烧器安全技术规定

燃气燃烧器安全技术规定第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称' 规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。

关联法规: 第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。

第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89 电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求 第五条设计 (一)燃气燃烧器一般由以下主要部分组成:燃气喷嘴、燃气阀系、风机、燃气流量调节阀、空气调节装置、点火装置、燃气压力检测开关、空气压力检测开关及火焰监测装置等。 (二)燃烧器的设计应该能保证燃烧器达到规定的输出功率及性能要求。燃烧器的结构应该保证不会发生不稳定、变形或开裂等危及安全的问题。

(三)燃烧器各部件结构和尺寸的设计不仅必须保证燃烧器可靠经济运行,还要保证操作人员的安全。 (四)燃烧器上应当有火焰观测孔,为防止火焰喷出或烟气外漏,观测孔配件应当具有足够强度并且被有效密封。 (五)对于燃烧器的运动部件(皮带传动、风机)必须设计防护装置。 (六)为防止异物吸入,影响设备正常安全运行,燃烧器风机入口应该装有金属防护网罩。 (七)设计额定输出功率大于等于350kW的燃烧器,需配置燃气流量调节装置,使其输出功率在规定的范围内可调。连续调节燃烧器的燃气流量调节装置应该有清晰的指示。 (八)燃烧器应该设置空气流量调节装置。设置调节挡板的,空气挡板的位置应该有清晰的指示。 (九)对多级调节或连续调节的燃烧器,空气和燃气调节装置应该通过

燃气燃烧与应用-知识点

第一章燃气的燃烧计算 燃烧:气体燃料中的可燃成分(H2、 C m H n、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、具备反应时间 热值:1Nm3燃气完全燃烧所放出的热量称为该燃气的热值,单位是kJ/Nm3。对于液化石油气也可用kJ/kg。 高热值是指1m3燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 低热值是指1m3燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为16000—17000KJ/m3 天然气的低热值是36000—46000 KJ/m3 液化石油气的低热值是88000—120000KJ/m3 按1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为3800—4060KCal/m3 天然气的低热值是8600—11000KCal/m3 液化石油气的低热值是21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算: 理论空气需要量 每立方米(或公斤)燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为m3/m3或m3/kg。它是燃气 完全燃烧所需的最小空气量。 过剩空气系数:实际供给的空气量v与理论空气需要量 v0之比称为过剩空气系数。 α值的确定 α值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。 工业设备α——1.05-1.20 民用燃具α——1.30-1.80 α值对热效率的影响 α过大,炉膛温度降低,排烟热损失增加, 热效率降低; α过小,燃料的化学热不能够充分发挥, 热效率降低。 应该保证完全燃烧的条件下α接近于1. 烟气量含有1m3干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定 计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。 在检测燃气燃烧设备的烟气中的有害物质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为1的有害物含量。 根据烟气中O2含量计算过剩空气系数 O2′---烟气样中的氧的容积成分 (2)根据烟气中CO2含量计算过剩空气系数 2 ' 2 m CO a CO = CO2m——当=1时,干燃烧产物中CO2含量,%; CO2′——实际干燃烧产物中CO2含量,%。 1.4个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧, 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量(燃气和空气的热焓);其二是燃气的化 学热量(热值)。如果燃烧过程在绝热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即t a=t g=o,并假设a=1.则所得的烟气 温度称为燃烧热量温度。 理论燃烧温度:将由CO2HO2在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度t th 实际燃烧温度: 2.影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l的增 大而增大. 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。 3.烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从0℃加热到t℃所需的热量,单位为千焦每标 准立方米。 空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从0℃加热到t(℃)所需的热量,单位为千焦 每标准立方米。 第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。 在工业与民用燃烧器设计时如何使用高低热值进行计 算 在燃烧器设计与燃烧设备运行管理中如何选择过剩空 气系数 运行中烟气中CO含量和过剩空气系数对设计与运行管 理的指导作用 燃烧温度的影响因素及其提高措施。 第二章燃气燃烧反应动力学 ' 2 20.9 20.9 a O = -

燃气燃烧与应用题库

2012最新试题 1、燃烧热量温度:在热平衡方程是中,令ta=tg=0,且ɑ=1,则在绝热条件下烟 气所能达到的温度,成为燃烧热量温度。 2、低热值:1Nm3燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气认为蒸汽状态时所放出的热量称为该燃气的低热值。 3、熄火距离:在电极间距从大往小减小过程中,当该间距小到无论多大的火花放电能量都不能使可燃混合物点燃时,这时的间距就叫熄火距离。 4、射程:在射流轴线上定出一点,使该点的轴速度在x方向的分速度vx为射流出口速度v2的5%,该点至喷嘴出口平面的相对垂直距离x1/d,定义为射程。 5、火焰传播浓度极限:火焰传播浓度上、下限范围,称“火焰传播极限”,又称着火爆炸极限。 6、大气式燃烧燃气在从管口喷出之前,首先混合一部分燃烧用氧化剂(即0<α’<1),燃烧所需的剩余氧气依靠扩散作用从周围大气获得,这种燃烧方式称为“部分预混式燃烧”。 7、脱火:当燃烧强度不断加大,气流速度v↑,使得v=S的点更加靠近管口,点火环变窄,最后使之消失,火焰脱离燃烧器出口,在一定距离以外燃烧,若气流速度再增大,火焰被吹熄,称为脱火 8、燃气互换性:设某一燃具以a燃气为基准进行设计和调整,由于某种原因要以s燃气置换a燃气,如果燃烧器此时不加任何调整而能保证燃具正常工作,则表示s燃气可以置换a燃气,或称s燃气对a燃气而言具有“互换性” 燃烧:气体燃料中的可燃成分在一定条件下与氧发生激烈的氧化作用,并产生大量的和光的物理化学反应过程称为燃烧 热量计温度:如果燃烧过程在绝热环境下进行,由燃气、空气带入的物理热量和燃气的化学热量全部用于加热烟气本身,则烟气所能达到的温度称为** 理论燃烧温度:如果热平衡方程式中将由于化学不完全燃烧而损失的热量考虑在内,则所求得的烟气温度称为** 支链反应,直链反应:如果每一链环中有两个或者多个活化中心可以引出新链环的反应,这种称为支链反应,如果每一链环只产生一个新的活化中心,那么这种链反应称为** 着火:由稳定的氧化反应转变为不稳定的氧化反应而引起燃烧的一瞬间称为着火支链着火:在一定条件下,由于活化中心浓度迅速增加而引起反应加速从而使反应由稳定的氧化反应转变为不稳定氧化反应的过程,称为** 热力着火:由于系统中热量的积聚,使温度急剧上升而引起的,称为** 点火:当一微小热源放入可燃混合物时,则贴近热源周围的一层混合物被迅速加热,并开始燃烧产生火焰,然后向其他部分传播,使可燃混合物逐步着火,这种现象称为** 最小点火能:要形成初始火焰中心,放电能量必须具有一最小极值,即** 熄火距离:当点燃可燃混合物所需的能量与电极间距d小到无论多大的火花能量都不能使可燃混合物点燃时,d就是** 流体动力参数 绝对穿透深度相对穿透深度射程法向火焰传播速度小尺度紊流 火焰大尺度紊流火焰

低氮燃气燃烧技术及燃烧器设计进展

低氮燃气燃烧技术及燃烧器设计进展 摘要:在高温燃烧过程中,氮氧化物的排放污染一直是业界关注的焦点。这部 分气体不仅稳定性较差,而且大多能够在湿热环境中转变为NO与NO?,从而给 人们的生命财产带来威胁。随着技术的成熟,低氮燃烧技术开始以其环保效益高、清洁无污染受到了一致好评。在本文中,笔者分析了高温燃烧中氮氧化物的生成 原理以及影响因素,并在此基础上探讨了如何控制氮氧化物的排放,以供参考。 关键词:低氮燃烧;燃烧器设计;技术进展 引言 近些年我国的化工行业得到了长足的发展,高温燃烧在各生产领域均有着突 出的贡献。尤其是天然气等能源的普及推广,虽然很大程度上改善以往的三废排 放问题,但氮污染的问题仍未有效缓解。究其原因,主要是以往的燃烧技术存在 一刀切的问题,没有针对不同介质来调整燃烧方案。由此可见,在低氮燃烧技术 中分层燃烧的个性化方案是重要突破口,同时兼顾燃尽的火焰长度,才能真正实 现减小高温燃烧的氮污染。 一、氮氧化物的控制原理 (一)气体燃料的特点 气体的高温燃烧基本不会发生相态变化,因此其主要包括混合、升温以及燃 烧3个阶段。从燃烧温度来看,气体燃烧的过程温度普遍较高。业界常见的氢气 与液化气燃烧的问题均不低于2000℃,而目前对环境最友好的天然气在燃烧的过 程中温度也高达1700℃。除此之外,气体燃烧的反映速率也较其他模式快,往往 就存在回火的现象。一旦气体的排放速度小于反应速率,那么火焰就会影响到火 孔内的环境,严重的可能会造成气源爆炸。 (二)氮氧化物的影响因素 关于气体燃烧的氮氧化物研究已有十数年的努力,根据学术成果表明氮氧化 物可按照生产方式的不同归类为热力型、快速型两个大类。其中热力型所产生的 氮氧化物含量更多,但快速型氮氧化物的生产也不容忽视。而在以往的燃烧器设 计中,技术人员往往顾此失彼导致技术应用达不到预期的效果。热力型顾名思义 就是在火焰区域生产的氮氧化物,因此很容易受到温度的影响。从业界实践的经 验来看,当火焰温度超过1800℃时氮氧化物的生成量会出现井喷式的增长。可见,在气体燃烧中氮氧化物的排放量并非是单调递增的趋势,而会受到燃烧工况的左右。而快速型是指在部分预混情况下所表现出较快的反应速率,抑或是在扩散燃 烧中与侧面空气燃烧所生产。在这种燃烧条件下,空气与燃气的比例对氮氧化物 的生成量有着显著的影响,因此也将是燃烧器设计的关注要点。 二、燃烧器对氮氧化物的影响 (一)预热温度 考虑到工业生产的实际需求,燃烧器的设计必须提高燃烧反应的速率。因此 大部分产品在运行前都需要对空气预热,从而给升温着火做好准备工作。但是这 种设计方案使问题进一步升高,从而导致氮氧化物的生成量直线上升。不仅如此,传统燃烧器扩散现象严重,使得空气剩余系数超出额定值。在这种反应条件下, 会令大量的热能被浪费,经济性能差强人意。因此,要想在满足使用需求的前提 下改善氮氧化物排放,就应该积极应用完全预混技术。预先将空气与燃料按照合 理的比例混合,其燃烧过程更加充分产生的化合物相对也会较少。而且热力型与 快速型氮氧化物的排放均与温度呈正相关的趋势,降低预热问题也是设计中需要

利雅路燃气燃烧器说明书

燃气燃烧器

目录 1..燃烧器描述------------------------------------------------------1 1.1燃烧机附件--------------------------------------------------1 1. 2 燃烧机随机附件 2..技术资料---------------------------------------------------------2 2.1技术资料-----------------------------------------------------2 2外观尺寸-----------------------------------------------------2 2.3燃烧范围-----------------------------------------------------3 3..安装--------------------------------------------------------------4 -----4 4 5 5 4..7 7 4.------8 5.. -----7 5.------8 5.-------8 9 -----9 9 9 9 6.9 7故------10

燃烧器描述(图1) 燃烧器符合IP40,90/396/EEC; PIN 0085BN0609电保护等级 ◆CE标志指90/396/EEC;PIN燃气使用标准 ◆符合标准:EMC89/336/EEC,73/23/EEC,98/37/EEC,92/42/EEC. ◆阀门组符合EN676. 1 –带绝热石棉垫的法兰 2 –燃烧头 3 –燃烧程控器 4 –带锁定灯的覆归按钮 5 –风门调节控制器 6 –燃烧头设定螺丝 7 –空气压力开关8 –燃烧室压力测点(连接瓦斯电磁阀) 9 –控制燃烧器双段/比例输出的4孔插座10 –7孔插座(燃烧机供给) 11–电磁阀组的6孔插座12 –压力测点(连接瓦斯电磁阀)

催化燃烧设备使用说明书

催化燃烧设备 使 用 说 明 书 泊头市金珠环保设备有限公司2020年10月11日

主要是利用焚烧炉在催化剂的作用下将有机废气进行燃烧或氧化转化为水和CO2,适用于漆包线、机械、电机、化工、仪表、汽车、发动机、塑料、电器等行业的有机废气净化。 催化燃烧由于起燃温度低,是一种较为理想的通过催化反应(无明火)处理有机污染物的方法,具有适用范围广、结构简单、净化效率高、节能、无二次污染等优点,已在国内外广泛应用。我公司研发的催化燃烧净化装置具有操作简单、自动化程序高、能有效的处理各种有机废气污染物,处理浓度<=10g/m3,深受广大客户的欢迎。催化燃烧处理技术结构及原理:催化燃烧净化装置主要由阻火器、热交换器、催化反应床、风机这几个主要部件组成,与直接燃烧相比,催化燃烧温度较低,燃烧比较完全。催化燃烧所用的催化剂为具有大比表面的贵金属和金属氧化物。催化燃烧法是将有机污染物的废气、在催化剂铂、钯等催化剂的作用下,可以在较低温度下将废气中的有机污染物氧化成二氧化碳和水。 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,从

而达到去除废气中的有害物的方法。在将废气进行催化燃烧的过程中,废气经管道由风机送入热交换器,将废气加热到催化燃烧所需要的起燃温度,再通过催化剂床层使之燃烧,由于催化剂的存在,催化燃烧的起燃温度约为250-300℃,大大低于直接燃烧法的燃烧温度650-800℃,因此能耗远比直接燃烧法为低。 催化燃烧法,简称RCO,是在催化剂的作用下,将VOCs在200~400℃的低温条件下分解为CO2和H2O,是净化碳氢化合物等有机废气、消除恶臭的有效手段之一。在有机废气特别是回收价值不大的有机废气净化方面,比如化工、喷漆、绝缘材料、漆包线、涂料生产等行业应用较广。 催化燃烧性能特点 1、用金属铂、钯镀在蜂窝陶瓷载体上作为催化剂、净化效率高达97-99%,设备寿命长、且可再生、气体流畅阻力小; 2、设施完备:阻火除尘器、泄压孔、超温报警等保护设施全; 3、预热15-30分钟全功率加热。工作时只消耗见机功率即可,当废气浓度较低时,自动间歇补偿加热; 4、余热可以返回烘道用来烘干工作,降低原烘道中消耗功率;也可供工厂其它方面热能回用 催化燃烧处理注意事项 1、废气成分中,不能含有下列物质;有高粘性的油脂类。如磷、铋、砷、锑、汞、铅、锡;高浓度的粉尘;

燃气燃烧与设备设计

目录 1设计原始资料 (1) 1.1气源 (1) 1.2设计热负荷 (1) 2燃气燃烧计算 (1) 2.1燃气的热值 (1) 2.2华白数 (2) 2.3理论空气量 (4) 2.4过剩空气系数 (4) 2.5实际空气量 (5) 2.6烟气量 (5) 3大气式燃烧器 (7) 3.1大气式燃烧器的工作原理 (7) 3.2设计计算 (7) 3.3火焰高度 (12) 总结 (14) 参考资料 (14)

1设计原始资料 1.1气源 天然气3T0成分见表1-1 表1-1 燃气成分 类别体积分数 (%) 相对密 度 热值 /(3 m MJ) 华白数 /(3 m MJ) 燃烧势 p c 理论干烟 气中 2 CO 体积分数 (%) 1 H h H 1 W h W 3T0 CH4=32.5 空气=67.5 0.88511.0612.2811.9513.2822.011.74 1.2设计热负荷 本设计热负荷为:4.2kW燃气压力:2000Pa 2燃气燃烧计算 2.1燃气的热值 气体中的可燃成分在一定条件下与氧气发生氧化作用,并产生大量的热和光的物理化学反应过程成为燃烧。 3T0燃气完全燃烧所放出的热量称为该燃气的热值,单位为千焦每标准立方米。 热值可以分为高热值和低热值。高热值是指3T0燃气完全燃烧后其烟气被冷至原始温度,而其中的水蒸气以凝结水状态排出时所放出的热量;低热值是指3T0燃气完全燃烧后其烟气被冷至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量。

实际使用的燃气是含有多种组分的混合气体,混合气体的热值可以直接用热量计测定,也可以有各单一气体的热值根据混合法则按下时进行计算: n n 2211r ......r r H H H H +++= (2-1) 式中:H —燃气(混合气体)的高热值或低热值(() 3m N kJ ?); n H —燃气中各燃组分的高热值或低热值(() 3m N kJ ?) ,由《燃气燃烧与应用》附录2查得; r n —燃气中各可燃组分的容积成分。 查附录得该燃气组分热值见表2-1: 表2-1 各个组分的热值 燃气组分 甲烷 空气 高热值(()3m N kJ ?) 95998 126915 低热值(( ) 3m N kJ ?) 88390 117212 则该设计的热值分别为: 高热值为:h H =0.325×95998+0.675×126915= 116866.975() 3m N kJ ? 低热值为:1H =0.325×88390+0.675×117212=107844.85() 3m N kJ ? 2.2华白数 当以一种燃气置换另一种燃气时,首先应保证燃具热负荷(kW )在互换前后不发生大的改变。以民用燃具为例,如果热负荷减少太多,就达不到烧煮食物的工艺要求,烧煮时间也要加长;如果热负荷增加太多,就会使燃烧工况恶化。 当燃烧器喷嘴前压力不变时,燃具热负荷Q 与燃气热值H 成正比,与燃气相对密度的平方根成反比,而称为华白数: S H W = (2-2) 式中:W —华白数,或称热负荷指数; H —燃气热值;

燃烧器说明书

(感谢您选择本公司的产品,使用前请仔细阅读本说明书)回转窑多通道煤气两用燃烧器 说 明 书 郑州恒华建材机械配件有限责任公司

目录 一、概述....................................................... 二型、系列煤煤气两用燃烧器的结构和工作原理-------------------- 三、现场安装要求 ---------------------------------------------------------- 四、点火及火焰的调整 ---------------------------------------------------- 五、维护和检俢 ------------------------------------------------------------ 六、常见故障及排除 ------------------------------------------------------ 七、对操作人员的要求 --------------------------------------------------- 八、对煤粉系统的要求 -------------------------------------------------- 九、特殊说明 --------------------------------------------------------------- 概述

水泥工业是耗能大户,其能耗主要包括:一是热耗约占80%,二是电耗约占20%,当前绝大部分的回转窑都是烧煤,目前我国许多水泥厂的煤耗占水泥成本的30%以上,因此成为当今水泥行业十分关注的,也是最重要的技术经济指标。而节煤的根本途径就是采用先进的工艺技术装备。在二十世纪七十年代以前,回转窑普遍使用单风道煤粉燃烧器,它的结构简单,但能耗高、环境污染大。随着世界能源的日益紧张,国外一些水泥行业发达国家的著名公司在新型干法窑上率先使用双风道和三风道煤粉燃烧器。我国起步较晚,于九十年代相继有几家设计院和公司推出三风道和四风道煤粉燃烧器,在推广于新型干法窑的同时,也广泛推广于湿法窑,取得了较为满意的效果。 我公司在吸收消化国外著名公司先进技术的同时,扬长补短,吸取众家之长,克服局部不足,研究和设计制造出HH 系列多风道燃烧器。为了进一步完善HH 系列多通道煤气两用燃烧器,HH 系列多通道煤气两用燃烧器是国内唯一通过鉴定的最新一代高效节能燃烧器,结构属国内首创,主要技术经济指标处于国内领先水平,可替代同类进口产品,产品已在全国十多个省、区的预热器窑、预分解窑和湿法窑上,利用工业废气作为燃料煅烧物料,达到节能减排废物利用的目的。 二OO 一年,我公司又开发出适应性更强的五-六风道

燃气燃烧技术与设备_Chap6

第六章扩散式燃烧器 第一节燃烧器的分类与技术要求 一、燃烧器的分类 (一) 按一次空气系数分类 α=。 1. 扩散式燃烧器燃气和空气不预混,一次空气系数'0 α=。 2. 大气式燃烧器燃气和一部分空气预先混合,'0.2~0.8 α≥。 3. 完全预混式燃烧器燃气和空气完全预混,'1 (二) 按空气的供给方法分类 1.引射式燃烧器空气被燃气射流吸入或者燃气被空气射流吸入。 2.鼓风式燃烧器用鼓风设备将空气送入燃烧系统。 3.自然引风式燃烧器靠炉膛中的负压将空气吸入燃烧系统。 (三) 按燃气压力分类 1.低压燃烧器燃气压力在5000Pa以下。 2.高(中)压燃烧器燃气压力在5000Pa至3?105Pa之间。 更高压力的燃烧器目前尚未使用。 第二节自然引风式扩散燃烧器 按照扩散式燃烧方法设计的燃烧器称为扩散式燃烧器。扩散式燃烧器的一次空气系数α=,燃烧所需要的空气在燃烧过程中供给。 '0 一、自然引风式扩散燃烧器的构造及工作原理Array (三) 冲焰式扩散燃烧器

(四) 炉床式扩散燃烧器

二、自然引风式扩散燃烧器的火孔热强度 (一) 炼焦煤气 四、自然引风式扩散燃烧器的计算 (一)管式扩散燃烧器的计算 p 6 p 10l q v H (6-1) 式中 p v ——火孔出口速度(Nm/s); p q ——火孔热强度(kW/mm 2); l H ——燃气低热值(kJ/Nm 3)

p p Q F q = (6-2) 式中 p F ——火孔总面积(mm 2); Q ——燃烧器热负荷(kW)。 p 2 p 4 F n d π = (6-3) g p 2F F ≥ (6-4) 2 p g g 2p 12288 v T h h ρμ=?+? (6-5) 式中 h ——头部所需压力(Pa); p μ——火孔流量系数,与火孔的结构特性有关。在管子上直接打孔时,p μ=0.65~0.70。 在管子上直接钻直径较小的孔时(p d =1~1.5mm),当 p h d =0.75,p μ=0.77;当 p h d =1.5,p μ=0.85(h —火孔深度)。对于管嘴,当p h d =2~4时,p μ=0.75~0.82,对于直径小、孔深浅的火孔,p μ取较小值; p v ——火孔出口速度(Nm/s); g ρ——燃气密度(kg/Nm 3); g T ——火孔前燃气温度(K); h ?——炉膛压力(Pa),当炉膛为负压时,h ?取负值。

天然气利用技术及其应用

序言 为缓解资源短缺带来的能源供需不平衡,以及近些年来我国环境的持续恶化,急需一种新的、清洁能源来解决这两个严峻的问题,因此天然气应运而生了。天然气具有经济,环保,安全等多种性能,通过多年对天然气应用技术的研究和实践终于使天然气在很多行业得到了理想的推广和利用。文章重点论述了天然气在发电,汽车等各种领域中应用现状及其相关的新技术,希望能使大家了解目前天然气的各种应用技术。 第1章天然气的分类、组成及性质 1.1天然气的分类 按产状分类天然气可分为:游离气、溶解气、吸附气及固体气; 按经济价值分类天然气可分为:常规天然气和非常规天然气; 按来源分类天然气可分为:有机来源和无机来源; 按烃类组成分为:干、湿气(富气、贫气),烃类按组成分类天然气可分为:气、非烃类气; 按酸气含量分为:净气、酸气 我国习惯分法:伴生气、气藏气和凝析气 伴生气:系产自油藏(含油储集层)的气,也称油田气。指在地下储集层中伴随原油共生,或呈溶解气形式溶解在原油中,或呈自由气形式在含油储集层上部游离存在的天然气。伴生气一般多为富气。 气藏气:系产自气藏(含气储集层)的气,也称气田气。指在地下储集层中均一气相存在,采出地面仍为气相的天然气。气藏气多为贫气。 凝析气:系产自具有反凝析特征气藏的气。指在地下储集层中呈均一气相存在,在开采过程中当气体温度、压力降至露点状态以下时会发生反凝析现象而析出凝析油的天然气。 1.2天然气的组成 天然气是由烃类和非烃类组成的复杂混合物。大多数天然气的主要成分是气体烃类,此外还含有少量非烃类气体。天然气中的烃类基本上是烷烃(C10~C60),非烃类气体,一般为少量的N2,O2,H2,CO2,H2O, H2S及惰性气体。 1.3天然气基本物理性质 由于天然气是由互不发生化学反应的多种单一组分气体混合而成,其组分和组成无定值。只能假设成具有平均参数的某一物质,故它的基本物性参数可由单一组分气体的性质按混合法则求得。 天然气的物理性质指其平均分子量、密度、蒸汽压、粘度、粘度、烃露点等等。

相关文档
最新文档