一元线性回归案例
最新计量经济学案例分析一元回归模型实例分析
案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。
求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。
一元线性回归模型案例分析
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
8.2.1一元线性回归模型
确定儿子身高Y 吗?
e 不能,因为随机误差 不可事先设定.
四、模型理解
• 当父亲身高为 xi ,对应的儿子身高 yi 不是唯一
确定的,而是有很多可能的取值,记作
yi bxi a e
它们的均值为:
E( yi ) E(bxi a e) bE(xi ) E(a) E(e) bxi a 0 bxi a.
(2)销售量与广告费用之间的关系能否用一元线性回归模
型 Y bx a e,
来刻画?
E(e) 0, D(e) 2.
(3)请说明模型中 bx a与e分别表示什么?本题中 e 的具
体含义是什么?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 174 170 173 169 182 172 180 172 168 166 182 173 164 180 176 176 170 170 185 176 178 174 170 168 178 172 165 182
儿子身高 父亲身高
176 176 170 170 185 176 178 174 170 168 178 172 165 182
问题1 由这组样本数据能否推断儿子的身高
与父亲的身高有关系?关系的相关程度如 何?是函数关系还是线性相关关系?为什 么?
(1)散点图
(2)相关系数 r 0.886
选择性必修三8.2.1 ggb文件.ggb (命令行)
问题8 • 一元线性回归模型有何作用?
当父亲身高为 xi 时可以通过
E( yi ) bxi a
了解儿子身高的总体情况,从而预测儿子的 身高.
问题9
• 产生随机误差的原因有哪些? • (1)除父亲身高外其他可能影响儿子身高
案例分析报告(一元线性回归模型)
案例分析报告(2014——2015学年第一学期)课程名称:预测与决策专业班级:电子商务1202 学号: 2204120202 学生:维维2014 年 11月案例分析(一元线性回归模型)我国城镇居民家庭人均消费支出预测一、研究目的与要求居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
从理论角度讲,消费需求的具体容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。
例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的省仅为人均8192.56元,最高的市达人均19397.89元,是的2.37倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我研究的对象是各地区居民消费的差异。
居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。
因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。
excel一元及多元线性回归实例
e x c e l一元及多元线性回归实例LELE was finally revised on the morning of December 16, 2020野外实习资料的数理统计分析•一元线性回归分析一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。
如果两个变量的关系大致是线性的,那就是一元线性回归问题。
对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。
在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。
对于这种线性关系,可以用数学公式表示:Y = a + bX这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X的回归方程。
其中a为常数,b为Y对于X的回归系数。
对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。
计算a与b值的公式为:式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。
n为样本数。
当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。
得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。
通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。
r值的绝对值越大,两个变量之间的相关程度就越高。
当r为正值时,叫做正相关,r为负值时叫做负相关。
r 的计算公式如下:式中各符号的意义同上。
在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。
一元线性回归模型案例
⼀元线性回归模型案例第⼆章⼀元线性回归模型案例⼀、中国居民⼈均消费模型从总体上考察中国居民收⼊与消费⽀出的关系。
表2.1给出了1990年不变价格测算的中国⼈均国内⽣产总值(GDPP)与以居民消费价格指数(1990年为100)所见的⼈均居民消费⽀出(CONSP)两组数据。
1) 建⽴模型,并分析结果。
输出结果为:对应的模型表达式为:201.1070.3862CONSP GDPP =+(13.51) (53.47) 20.9927,2859.23,0.55R F DW ===从回归估计的结果可以看出,拟合度较好,截距项和斜率项系数均通过了t 检验。
中国⼈均消费增加10000元,GDP 增加3862元。
⼆、线性回归模型估计表2.2给出⿊龙江省伊春林区1999年16个林业局的年⽊材采伐量和相应伐⽊剩余物数据。
利⽤该数据(1)画散点图;(2)进⾏OLS 回归;(3)预测。
表2.2 年剩余物y 和年⽊材采伐量x 数据(1)画散点图先输⼊横轴变量名,再输⼊纵轴变量名得散点图(2)OLS估计弹出⽅程设定对话框得到输出结果如图:由输出结果可以看出,对应的回归表达式为:0.76290.4043t t yx =-+ (-0.625) (12.11)20.9129,146.7166, 1.48R F DW === (3)x=20条件下模型的样本外预测⽅法⾸先修改⼯作⽂件范围将⼯作⽂件范围从1—16改为1—17确定后将⼯作⽂件的范围改为包括17个观测值,然后修改样本范围将样本范围从1—16改为1—17打开x的数据⽂件,利⽤Edit+/-给x的第17个观测值赋值为20将Forecast sample选择区把预测范围从1—17改为17—17,即只预测x=20时的y的值。
由上图可以知道,当x=20时,y的预测值是7.32,yf的分布标准差是2.145。
三、表2.3列出了中国1978—2000年的参政收⼊Y和国内⽣产总值GDP的统计资料。
一元线性回归模型案例分析
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
一元线性回归案例
S= β1+β2 R+u
例9. CEO薪水与股本回报率
1990年以209位CEO为样本,数据来源为《商 业周刊》(Business Week,5/6/91).样本中 CEO平均年薪1281.12千美元,最低223千 美元,最高14822千美元. 1988-1990年平 均股本回报率17.18%,最低和最高分别为
出勤率无关,但这几乎不可能.
例5. 学校的数学成绩与学校午餐项目
以math10表示高中十年级学生在一次标准化 数学考试中通过的百分比.lnchprg表示有资 格接受午餐计划的学生的百分比.
若其他条件不变,若学生太贫穷不能保证正常 饮食,可以有资格接受学校午餐项目的资助, 他的成绩应有所提高.
例5. 学校的数学成绩与学校午餐项目
例2. 一个简单的工资方程
美国研究者以1976年的526名美国工人为样 本,OLS回归方程为:
W=-0.90 +0.54 E 这里W单位为美元/小时,E单位为年. E平均工资计算为5.90美元/小时. 根据消费者价格指数,这一数值相当于2003
年的19.06美元.
例2. 一个简单的工资方程
对同样的数据,但是把log(w)作为因变量, 得到的回归方程为:
Log(invpc)=-0.550+1.24log(price) (0.043) (0.382)
N=42 R^2=0.208 显著性检验不明显,事实上这一关系也是错误的,未
来我们将加上时间序列分析中特有的趋势分析说 名这个问题.
8.5一元线性回归分析案例ppt课件
7. 了解相关指数 R2 和模型拟
合的效果之间的关系
8. 了解残差图的作用
9. 利用线性回归模型解决一类 非线性回归问题
10. 正确理解分析方法与结果
21
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
1、线性回归模型:
y=bx+a+e,
y=bx+a+e,E(e3)=0,2D. (e)=
其中a和b为模型的未知参数,e称(为4) 随机误差。
2是、随数机据误点差和的它效在应回,e归称i =直y线i 上y相i 应位为置残的差差(y。异i yi )
3、对每名女大学生计算这个差异,然后分别将所得
的值平方后加起来,用数学符号表示n 为( y:i yi )2 i 1
称为残差平方和,它代表了随机误差的效应。 22
20 25 45
3
30 35 40
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
施化肥量x 15
20 25 45
30 35 40
水y稻产量y 330 345 365
50 水稻产量 455
0
· ··
45
·
0 ·· ·
40
405 445 450 施化肥量
0 10 20 30 40 5x0
-x)2
=
i=1
xi
yi
-n
xy
i=n1xi2-nx 2
,
aˆ=y-bˆ x.
其中x=
1 n
n xi i=1
,y=
1 n
n yi. i=1
(x , y ) 称为样本点的中心。
一元线性回归分析案例
统计检验通过后,最后是利用回归模型,根据自变量去估计、 预测因变量。
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
案例1:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
x(0.01%) 104 180 190 177 147 134 150 191 204 121
y(min)
100 200 210 185 155 135 170 205 235 125
(1)y与x是否具有线性相关关系;
(2)如果具有线性相关关系,求回归直线方程;
(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟
1、回归直线方程
1、所求直线方程叫做回归直线方程;
相应的直线叫做回归直线。
2、对两个变量进行的线性分析叫做线性回归分析。
n
n
y bˆ
(xi
i1 n
x)(yi y) (xi x)2
xi
nx y
i
i1
n
xi2
n
2
x
,
i1
i1
aˆ y bˆx
课题:选修2-3 8.5 回归分析案例
再冷的石头,坐上三年也会暖 !
2、由散点图知道身高和体重有比较 好的线性相关关系,因此可以用线性 回归方程刻画它们之间的关系。
课题:选修2-3 8.5 回归分析案例
分析:由于问题中 要求根据身高预报 体重,因此选取身 高为自变量,体重 为因变量.
1. 散点图;
再冷的石头,坐上三年也会暖 !
2.回归方程: yˆ 0.849x 85.172 身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
一元线性回归案例
8.5一元线性回归案例一、教学内容与教学对象分析学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
二、学习目标1、知识与技能通过本节的学习,了解回归分析的基本思想,会对两个变量进行回归分析,明确建立回归模型的基本步骤,并对具体问题进行回归分析,解决实际应用问题。
2、过程与方法 本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R 的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤。
3、情感、态度与价值观 通过本节课的学习,首先让显示了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心。
加强与现实生活的联系,以科学的态度评价两个变量的相关系。
教学中适当地增加学生合作与交流的机会,多从实际生活中找出例子,使学生在学习的同时。
体会与他人合作的重要性,理解处理问题的方法与结论的联系,形成实事求是的严谨的治学态度和锲而不舍的求学精神。
培养学生运用所学知识,解决实际问题的能力。
三、教学重点、难点教学重点:熟练掌握回归分析的步骤;各相关指数、建立回归模型的步骤;通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法。
教学难点:求回归系数 a , b ;相关指数的计算、残差分析;了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较。
四、教学策略: 教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结。
9.7一元线性回归分析实例应用
ˆ1
n
n
n
n X iYi X i Yi
i 1
i1 i1
n
n
n
X
2 i
(
Xi )2
i 1
i 1
301632.78 193.60 251.48 301258.85 (193.60)2
1.043
ˆ0 Y ˆ1X 8.38 1.043 6.45 1.649
销售量/百万支
7.38 8.51 9.52 7.50 9.33
… 9.21 8.27 7.67 7.93 9.26
X
广告费用/百万元
5.50 6.75 7.25 5.50 7.00
… 6.80 6.50 5.75 5.80 6.80
一元线性回归分析应用
解
X 表示广告费用,Y 表示牙膏销售量。利用观察数据计算得到:
一元线性回归分析应用
解
广告费用对牙膏销售量的样本回归方程为:
Yˆi 1.649 1.043Xi
回归系数 ˆ1 1.043 表示广告费用每增加1百万元,牙膏销售量 平均增加1.043百万支;广告费用每减少1百万元,牙膏销售量平均减少 1.043百万支。
一元线性回归分析应用
解
判定系数
n
R2
解
牙膏销售量的点预测为 1.649 1.0436.75 8.69 (百万支)
当广告费用投入为6.75百万元时,根据建立的一元线性归回方程 预测该公司牙膏的销售量为8.69百万支。
一元线性回归分析应用
图 “回归”工具输出结果
小结
1. 一元线性回归分析实例 2. 一元线性回归分析应用
8.5一元线性回归案例
------------必修三内容回顾------------
1、变量之间的两种关系---函数关系和相关关系
如:正方形的面积y与正方形的边长x之间的
函数关系是 y = x2
确定性关系
如:某水田水稻产量y与施肥量x之间没有一个 确定性的关系
在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得到如下 所示的一组数据:
3
3
于是,线性回归方程为 y=57.557-1.648x
2)由回归方程知,当某天的气温是-3℃ 时,卖出的热茶杯数为 57.557-1.648×(-3)≈63(杯)
------------线性回归模型------------
案例:女大学生的身高与体重
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则 选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。
(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残 差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或 模型是否合适等。
相关系数
( yi y)2
i 1
小结
用身高预报体重时,需要注意下列问题: ——这些问题也使用于其他问题。 1、回归方程只适用于我们所研究的样本的总体; 2、我们所建立的回归方程一般都有时间性; 3、样本采集的范围会影响回归方程的适用范围; 4、不能期望回归方程得到的预报值就是预报变量的精确值。
事实上,它是预报变量的可能取值的平均值。
3、身高 y 的观测误差。
以上三项误差越小,说明我们的回归模型的拟 合效果越好。
高一数学一元线性回归案例试题
高一数学一元线性回归案例试题1. (2014•重庆一模)某小卖部销售一品牌饮料的零售价x (元/瓶)与销量y (瓶)的关系统计如下:已知x ,y 的关系符合线性回归方程,其中,.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( ) A.20 B.22 C.24 D.26 【答案】D【解析】利用平均数公式计算平均数,,利用b=﹣20求出a ,即可得到回归直线方程,把x=4.2代入回归方程求出y 值. 解:===3.5;==40,∴a=40﹣(﹣20)×3.5=110,∴回归直线方程为:=b +a=﹣20+110, 当=4.2时,=﹣20×4.2+110=26, 故选:D .点评:本题考查回归方程的求法,考查学生的计算能力,运算要细心.2. (2014•新余二模)已知某产品连续4个月的广告费用x i (i=1,2,3,4)千元与销售额y i (i=1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息: ①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系; ③回归直线方程=bx+a 中的b=0.8(用最小二乘法求得); 那么,当广告费用为6千元时,可预测销售额约为( ) A .3.5万元 B .4.7万元 C .4.9万元D .6.5万元【答案】B【解析】求出数据的中心点的坐标,代入回归直线方程求得系数a ,根据广告费用为6千元,求得预报变量y 的值. 解:∵=,=, ∴数据的中心为(,), 则=0.8×+a ,∴a=﹣,当广告费用为6千元时,可预测销售额y=0.8×6﹣0.1=4.7(万元). 故选:B .点评:本题考查了线性回归分析思想,考查了学生的数据处理能力,在回归分析中数据的中心在回归直线上.3. (2014•辽宁模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x (cm )160165170175180)A.70.09kg B.70.12kg C.70.55kg D.71.05kg【答案】B【解析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报身高为172cm的高三男生的体重解:由表中数据可得==170,==69∵(,)一定在回归直线方程=0.56x+上故69=0.56×170+解得=﹣26.2故=0.56x﹣26.2当x=172时,=0.56×172﹣26.2="70.12"故选B.点评:本题主要考查线性回归方程的求解与运用,解题的关键是线性回归方程经过样本点的中心同时注意理解线性回归方程中相关系数的意义.4.(2014•郑州模拟)某车间加工零件的数量x与加工时间y的统计数据如表:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()A.84分钟B.94分钟C.102分钟D.112分钟【答案】C【解析】根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a的值,写出线性回归方程.将x=100代入回归直线方程,得y,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数.解:由表中数据得:=20,=30,又值为0.9,故a=30﹣0.9×20=12,∴y=0.9x+12.将x=100代入回归直线方程,得y=0.9×100+12=102(分钟).∴预测加工100个零件需要102分钟.故选C.点评:本题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a的值,是一个中档题目.5.(2012•吉安县模拟)已知x,y的取值如表:x1234从散点图分析,y与x线性相关,且回归方程为,则a=()A.﹣0.15B.﹣0.26C.﹣0.35D.﹣0.61【答案】A【解析】首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出a的值,解:∵,∴这组数据的样本中心点是(2.5,4.5),∵y与x线性相关,且,,∴4.5=1.86×2.5+a,,∴a=﹣0.15,故选A.点评:本题考查线性回归方程的求解和应用,是一个基础题6.(2012•湘潭模拟)一位母亲记录了儿子3~7岁时的身高,并根据记录数据求得身高(单位:cm)与年龄的回归模型为.若用这个模型预测这个孩子10岁时的身高,则下列叙述正确的是()A.身高一定是145cm B.身高在145cm以上C.身高在145cm左右D.身高在145cm以下【答案】C【解析】根据回归模型为,将x=10代入即可得到预测值.解:根据回归模型为,可得x=10时,=145cm故可预测10岁时的身高在145cm左右故选C.点评:本题考查回归模型的运用,解题的关键是理解回归模型的含义,从而合理预测.7.(2011•丰台区二模)已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为,则a=()【答案】B【解析】本题考查的知识点是线性回归直线的性质,由线性回归直线方程中系数的求法,我们可知在回归直线上,满足回归直线的方程,我们根据已知表中数据计算出,再将点的坐标代入回归直线方程,即可求出对应的a值.解:∵点在回归直线上,计算得,∴回归方程过点(2,4.5)代入得4.5=0.95×2+a∴a=2.6;故选B.点评:本题就是考查回归方程过定点,考查线性回归方程,考查待定系数法求字母系数,是一个基础题8.(2010•沈阳三模)已知两个统计案例如下:①为了探究患慢性支气管炎与吸烟关系,调查了339名50岁以上的人,调查结果如表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析②取平均值B.①独立性检验②回归分析C.①回归分析②独立性检验D.①独立性检验②取平均值【答案】B【解析】本题考查的知识点是回归分析和独立性检验的概念及用法,回归分析主要判断两个定量变量之间的相关关系,而独立性检验主要用来分析两个定性变量(或称分类变量)的关系,由题目可知①中两个变量是定性变量(或称分类变量),②中两个变量是两个定量变量,分析即可得到答案.解:∵①中两个变量是定性变量(或称分类变量),②中两个变量是两个定量变量,∴对这些数据的处理所应用的统计方法是:①独立性检验②回归分析故选B点评:要判断处理数据时应采用的统计方法,关键是要分析数据中两个变量是定性变量还是定量变量,回归分析主要判断两个定量变量之间的相关关系,而独立性检验主要用来分析两个定性变量(或称分类变量)的关系.9.(2005•上海模拟)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:A.计算机,营销,物流B.机械,计算机,化工C.营销,贸易,建筑D.机械,营销,建筑,化工【答案】B【解析】由于用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,根据表格的数据可以分别求出所有行业的应聘人数与招聘人数比值,然后根据这些比值即可求解.解:依题意得化工行业的应聘人数小于招聘人数,物流的应聘人数小于招聘人数,且比值化工行业大于物流机械的应聘人数大于招聘人数,故选B.点评:本题的考点是回归分析,主要考查了统计表的识别能力,解题的关键是会根据表格找出以后条件解决问题.10.实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,4),则y与x间的线性回归方程是()A.y=﹣1+x B.y=1+x C.y=1.5+0.7x D.y=1+2x【答案】C【解析】根据所给的四对数据,算出y与x的平均数,把所求的平均数代入求b的公式,算出b 的值,再把它代入求a的式子,求出a的值,写出线性回归方程即可.解:根据题意得:==2.5,==3.25,b==0.7,a=﹣b=3.25﹣0.7×2.5=1.5,∴y与x间的线性回归方程是y=1.5+0.7x.故选:C.点评:本题考查线性回归方程的求法,在一组具有相关关系的变量的数据间,利用最小二乘法做出线性回归方程的系数,再代入样本中心点求出a的值,本题是一个基础题.。
(整理)excel一元及多元线性回归实例.
野外实习资料的数理统计分析一元线性回归分析一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。
如果两个变量的关系大致是线性的,那就是一元线性回归问题。
对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。
在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。
对于这种线性关系,可以用数学公式表示:Y = a + bX这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。
其中a为常数,b为Y对于X的回归系数。
对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。
计算a与b值的公式为:式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。
n为样本数。
当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。
得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。
通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。
r值的绝对值越大,两个变量之间的相关程度就越高。
当r为正值时,叫做正相关,r为负值时叫做负相关。
r 的计算公式如下:式中各符号的意义同上。
在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。
具体的检验方法在后面介绍。
2.多元线性回归分析一元回归研究的是一个自变量和一个因变量的各种关系。
但是客观事物的变化往往受到多种因素的影响,即使其中有一个因素起着主导作用,但其它因素的作用也是不可忽视的。
一元线性回归模型案例分析
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S=963.191+18.501R
例9. CEO薪水与股本回报率
OLS回归线为 S=963.191+18.501R N=209, R^2=0.0132
企业股本回报率只能解释薪水变异中的 1.3%.
例2. 一个简单的工资方程
美国研究者以1976年的526名美国工人为样 本,OLS回归方程为:
W=-0.90 +0.54 E 这里W单位为美元/小时,E单位为年. E平均工资计算为5.90美元/小时. 根据消费者价格指数,这一数值相当于2003
年的19.06美元.
例2. 一个简单的工资方程
对同样的数据,但是把log(w)作为因变量, 得到的回归方程为:
Log(invpc)=-0.550+1.24log(price) (0.043) (0.382)
N=42 R^2=0.208 显著性检验不明显,事实上这一关系也是错误的,未
来我们将加上时间序列分析中特有的趋势分析说 名这个问题.
例8. 集装箱吞吐量与外贸额
2001-2006年中国集装箱吞吐量增长与外贸 额增长的弹性分析.以Y表示集装箱吞吐量( 百万标准箱),X表示外贸额(百亿美元).
出勤率无关,但这几乎不可能.
例5. 学校的数学成绩与学校午餐项目
以math10表示高中十年级学生在一次标准化 数学考试中通过的百分比.lnchprg表示有资 格接受午餐计划的学生的百分比.
若其他条件不变,若学生太贫穷不能保证正常 饮食,可以有资格接受学校午餐项目的资助, 他的成绩应有所提高.
例5. 学校的数学成绩与学校午餐项目
1992-1993学年美国密歇根州408所高中的 数据的OLS回归方程:
math10= β1+β2 lnchprg+u Math10=32.14-0.319 lnchprg N=408 R^2=0.171 误差项u包含既影响学生成绩又与午餐项目
资格高度相关的因素,比如在校学生的贫穷 率.学校质量和资源等变量也被包含在u内.
例6. 投票结果与竞选支出
❖ 所得回归方程为: V=26.81+0.464S
❖ 即A的支出在总会费中增加1%,A即可多得 0.464%的总票数.
❖ 本方程中 R^2=0.856
例7. 住房投资与价格
美国1947-1988年住房投资和住房价格指数的年度 观测.以invpc表示真实人均住房投资(单位千美元 ).price表示住房价格指数(将1982年取为1).一个 常弹性系数的简单回归方程,可以看作是一个住 房存量的供给方程.
(1.72) (0.289) n=49 R^2=0.053
时间序列数据是按照时间先后顺序排列, 横 截面数据是无序的.
时间序列数据和横截面数据都是随机变量,但 它们随机性表现是不同的.横截面数据表现 在样本抽取的随机,时间序列数据表现在事 件发生的不确定性.
❖ 一元线性回归成功的关键因素在于:
E(u|X)=E(u) 这一方程成立时,称u均值独立(men
一元线性回归案例
例2. 一个简单的工资方程
❖ 假设一个人的工资水平与他的可测教育水 平及其他非观测因素的关系: W=β1+β2 E +u
W=工资水平(wage),单位美元/小时 E=受教育年数(educ). β2度量了在其他因素不变的情况下,多接受一
年的教育导致小时工资的变化量. 其他非观 测因素包括劳动经验、天生能力、任现职 时间、工作道德以及其他因素.
❖ 一个很低的R^2值,并不意味着OLS回归 方程没有用.
❖ 所得回归系数很可能是其他条件不变情况 下两者关系的良好估计,回归是否正确并 不直接依赖于R^2的大小.
例6. 投票结果与竞选支出
❖ 美国研究者对1988年美国众议院173次两 党选举和竞选支出做了回归.每次竞选为候 选人A,B. 以V(voteA)作为候选人A所得票 数百分比,S(shareA)为A在总竞选支出中所 占百分比.干扰项u包括候选人的素质,A和B 支出的美元数量等).
S= β1+β2 R+u
例9. CEO薪水与股本回报率
1990年以209位CEO为样本,数据来源为《商 业周刊》(Business Week,5/6/91).样本中 CEO平均年薪1281.12千美元,最低223千 美元,最高14822千美元. 1988-1990年平 均股本回报率17.18%,最低和最高分别为
OLS回归方程为 Y=18.449+0.3155X
(2.3982) (1.078) t0.1(5)=2.015 n=7 R^2=0.1887
例9. CEO薪水与股本回报率
对首席执行官(CEO)构成的总体,令S表示年 薪(salary),单位千美元.以R表示某CEO所 在公司在过去三年中的平均股本回报率 (roe).(股本回报率定义为净收入占普通股 价值的百分比.)
(128.81,139.54) 实际数据 129 2009年 对外贸易总额220.727 Y(2008)=116.14 0.9区间为(111.92,120.36) 实际数据 121
例8. 集装箱吞吐量与外贸额
2001-2007年中国集装箱吞吐量增长与外贸 额增长的弹性分析.以Y表示集装箱吞吐量 增长率(%),X表示外贸额增长率(%).
例3. 静态菲利普斯曲线
时间序列数据 令inf(t)表示年通货膨胀率,unem(t)表示事业率, 下
列菲利普斯曲线假定了一个不变的自然失业率和 固定的通货膨胀率预期. Inf(t)=β1+β2 unem(t)+u 依据1948-1996年美国经济数据, OLS回归方程为 Inf(t)=1.42+0.468 unem(t)
OLS回归方程为 Y=3.7667+0.509X
(2.06) (31.78) t0.1(5)=2.776 n=6 R^2=0.996
例8. 集装箱吞吐量与外贸额
2007年 对外贸易总额217.37 Y(2007)=114.43 实际数据114.74 2008年 对外贸易总额256.16 Y(2008)=134.18 0.9区间为
independent)于X。 u , X 完全独立时,蕴涵均值独立.
例4. 考试分数与出勤率
❖ 假如期末考试的分数(score)取决于出勤率 (attend)和影响考试成绩的其他无法观测因素( 如学生能力等):
score= β1+β2 attend+u 许多不加分析的回归发现:
这一回归中β2 〈0,即分数与出勤率负相关. 这一模型在什么情况下满足均值独立条件? 除非学生学习能力、学习攻击、年龄及其他因素与
logW=0.584+0.083 E N=526 R^2= 0.186 将所得系数乘以100%,即成为百分数概念. 每多受一年教育,工资W将有8.3%的提高. 注:可以思考,这一回归中是不是有“文凭效
应”的干扰?
❖ 一元线性回归中R^2与单位无关.
❖ 在社会科学中,R^2过低是很正常的.研 究对象为横截面数据时更是如此.