指数与对数运算专项练习题打印(基础运算)

合集下载

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练题1.用根式的形式表示下列各式(a>0):1) a^(1/2)2) a^(1/3)3) a^(1/4)4) a^22.用分数指数幂的形式表示下列各式:1) x^(y/3)2) (1/5)^(-3/4)3) (3ab^2)^24) 3a^45) a^33.求下列各式的值:1) 8^(1/3) = 22) 100^(1/2) = 103) (8/14)^(-3/4) = 98/274) (27/64)^(1/3) = 3/45) [(-2)^2] = 46) [(1-3/2)^2] = 1/47) 64^(1/2) = 8选择题:1.以下四式中正确的是(B)log2^1=12.下列各式值为的是(D)-53.log2^1/5^11/24的值是(A)-114.若m=lg5-lg2,则10m的值是(A)55.设N=11+log2^1/5^3,则(A)N=26.在b=loga-2(5-a)中,实数a的范围是(C)2<a<3或3<a<57.若log4[log3(log2x)]=1/2,则x^(1/2)等于(B)1/2填空题:10.用对数形式表示下列各式中的x:10x=25:x=log10(25)/log10(10)=2/1=22x=12:x=log2(12)/log2(2)=4/1=44x=16:x=log4(16)/log4(4)=2/1=211.lg1++=lg(1+1)=lg212.Log15(5)=1/m。

则log15(3)=log3(15)/log3(5)=1/(m*log3(5))13.lg2^2-lg4+1+|lg5-1|=2-2+1+|1-1|=114.(1) log3(2)=log6(3)/log6(2)2) (log6(3))^2+1-a=log6(12/a)log12(3)=log6(3)/log6(12)=log6(3)/[log6(2)+log6(6)]=log3(2 )/(1+1/2)=2log3(2)/3=2log12(3)/(log12(2)+log12(6))6、计算题1.2lg6-2lg5+lg2=lg(6^2/5)+lg2=lg(72/5)2.2lg5+lg2·lg50=2lg5+lg(2·5^2)=2lg5+lg50=lg(5^2·50)=lg12 503.2log3(2)-log3(32)+log3(8)-3log5(5)=2log3(2)-(log3(2^5)-log3(2^2))+log3(2^3)-(log5(5^3))=2log3(2)-log3(2^3)+log3(2^3)-3=2log3(2)-34.lg5·lg20-lg2·lg50-lg25=lg(5·20/2)-XXX(50)-XXX(25)=lg(50/2)-XXX(50)-XXX(25)=lg(1/2)-2lg(5)=log2-2log515.根据换底公式,log5(12)=log2(12)/log2(5)=log2(2^2·3)/log2(5)=2log2(2/5)+log2(3/5)19.根据3a=2,可得a=log2(8/9),代入log3(8)-2log3(6)中,得log3(8)-2log3(6)=log3(2^3)-2log3(2^2·3)=3log3(2)-2log3(2)-2log3(3)=log3(2)-2log3(3)16.根据对数的定义,可得a^m=2,a^n=3,代入a^(2m+n)中,得a^(2m+n)=a^(2loga(2)+loga(3))=a^loga(2^2·3)=621.lg25+lg2lg50+(lg2)^2=2+2lg5+4=6+2lg517.⑴2log2(8)=log2(8^2)=log2(64)=6⑵3log3(9)=log3(9^3)=log3(729)=6⑶2^18=18.⑴lg10-5=1-5=-4⑵⑶log2(8)=3提升题4.化简1)a·a·a/3= a^3/32)a·a/a= a3)3a·(-a)/9= -a^2/34) ba·a^2/a^21= b/a^195)log1(81)/log1(8/27)= log8/27(81)= log3(3^4)= 4log3(3)= 45.计算⑴ 325-125/45= 200/45= 40/9⑵ 23·31.5·612= 23·63·12=⑶ (-1)-4·(-2)^-3+(-9)·2-2·2^-2= -1-1/8-18+1/2= -1453/8⑷ 7/10+0.1-2+π= 37/10+π-1.9⑸ 41/24-32/27= 41/24-32/27·8/8= (41·27-32·24)/648= 5/726.解方程1)x-1/2=1/3,x=5/62)2x^4-1=15,2x^4=16,x^4=8,x=23) (0.5)1-3x=4,(0.5)^1=0.5,0.5·2^-6x=4,2^-7x=8,-7x=log2(8)=-3,x=3/77.解题1)a+a^-1=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=72)a+a^2=3,已知a+a^-1=3,两边平方得a^2+a^-2+2=9,所以a^2+a^-2=7,两边加1得a^2+a^-2+1=8,即(a+a^-1)^2=8,所以a+a^-1=±2√2,因为a+a^-1=3,所以a+a^-1=2√23)1-2x>0,所以x<1/24)33a-2b=3^3a^3·2^-2b=27/48.lg25+lg2·lg25+lg22=2+2lg5+1=3+2lg51.化简计算:log2 111 ·log3 ·log5 2589 - 3/42.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)3.若XXX(x-y)+XXX(x+2y)=lg2+lgx+lgy,求的值.4.已知log2 3 =a,log3 7 =b,用a,b表示log42 56.5.计算,(1)51-log0.2 3xy;(2)log4 3·log9 2-log1 432;(3)(log2 5+log4 125)2·log3 21.化简计算:log2 111 ·log3 ·log5 2589 - 3/4.将log2 111分解为log2 3和log3 37的和,将log5 2589分解为log5 3和log5 863的和,然后应用对数乘法和对数减法规则,得出结果为log2 3+log3 37+log3-log5-log5 3-log5 863-3/4.2.化简:(log2 5+log4 0.2)(log5 2+log25 0.5)。

指数与对数运算单元测试题(经典全面,一套涵盖)

指数与对数运算单元测试题(经典全面,一套涵盖)

指数与对数运算单元测试题(经典全面,一
套涵盖)
本文档为指数与对数运算的单元测试题,旨在全面覆盖该主题的经典问题。

下面是一套经过精心设计的测试题,希望对您的研究和理解有所帮助。

第一部分:指数运算
1. 计算 $2^4$ 的值。

2. 将 $8^{\frac{1}{3}}$ 表达为根式。

3. 解方程 $5^x = 125$,并给出结果。

第二部分:对数运算
4. 计算 $\log_{10} 100$ 的值。

5. 将 $\log_2 16$ 表达为指数形式。

6. 解方程 $\log_3 x = 2$,并给出结果。

第三部分:指数与对数运算的性质
7. 对于任意正数 a 和 b,证明 $\log_a b = \frac{\log_c a}{\log_c b}$。

8. 证明 $a^{\log_a b} = b$。

9. 对于任意正数 a、b 和 c,证明 $a^{\log_b c} = c^{\log_b a}$。

第四部分:指数和对数问题的应用
10. 某种细菌每20分钟翻倍,开始时有100个细菌。

经过多少
分钟后,细菌数量将达到1000个?
11. 若投资本金元,年利率为5%,按复利计算,多少年后本金
将增长到元?
12. 若某物品每年贬值20%,初始价值为元,多少年后其价值
将降至5000元以下?
以上是本套指数与对数运算单元测试题的全部内容。

请按照题
目要求逐个回答,并给出详细解答和计算过程。

祝您顺利完成测试!。

指数对数计算题50道

指数对数计算题50道

指数对数计算题50道指数和对数是数学中重要的概念和运算符号,它们在各个领域都有着广泛的应用。

下面列举了50道与指数和对数计算有关的题目,并提供相应的参考内容。

1. 计算2^3的值。

参考答案:2^3 = 8。

2. 计算10^(-2)的值。

参考答案:10^(-2) = 1/10^2 = 1/100 = 0.01。

3. 计算2^(1/2)的值。

参考答案:2^(1/2) = √2 ≈ 1.414。

4. 计算log(100)的值。

参考答案:log(100) = 2,因为10^2 = 100。

5. 计算log(1/1000)的值。

参考答案:log(1/1000) = log(10^(-3)) = -3,因为10^(-3) =1/1000。

6. 计算log2(8)的值。

参考答案:log2(8) = 3,因为2^3 = 8。

7. 计算log4(16)的值。

参考答案:log4(16) = 2,因为4^2 = 16。

8. 计算ln(e)的值。

参考答案:ln(e) = 1,因为e^1 = e。

9. 计算ln(1)的值。

参考答案:ln(1) = 0,因为e^0 = 1。

10. 计算log5(25)的值。

参考答案:log5(25) = 2,因为5^2 = 25。

11. 计算log(x^2)的值,其中x = 10。

参考答案:log((10^2)) = log(100) = 2。

12. 计算log(2x)的值,其中x = 5。

参考答案:log(2(5)) = log(10) = 1。

13. 计算log3(9) + log3(27)的值。

参考答案:log3(9) + log3(27) = 2 + 3 = 5,因为3^2 = 9,3^3 = 27。

14. 计算log2(4) * log2(16)的值。

参考答案:log2(4) * log2(16) = 2 * 4 = 8,因为2^2 = 4,2^4 = 16。

15. 计算10^(log10(100))的值。

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题1. 求解指数方程:(2^x) * 4^(2x - 3) = 64解法:首先,我们可以将4^(2x - 3)转化为2^(4x - 6),进一步得到:(2^x) * (2^(4x - 6)) = 64根据指数运算的法则,两个相同底数的指数相乘,底数不变,指数相加。

得到:2^(x + 4x - 6) = 64合并同类项,得到:2^(5x - 6) = 64由于64可以表示为2的幂,即64 = 2^6,所以我们可以将方程转化为:2^(5x - 6) = 2^6根据指数函数的性质,底数相同的指数相等,指数也相等。

因此,我们得到:5x - 6 = 6解上述方程,可以得到:5x = 12x = 2.4所以,方程的解为x = 2.4。

2. 求解指数方程:3^(x - 1) - 9^(x - 2) = 0解法:首先,我们可以将9^(x - 2)转化为(3^2)^(x - 2),进一步得到:3^(x - 1) - (3^2)^(x - 2) = 0根据指数运算的法则,幂运算的指数可以相乘,得到:3^(x - 1) - 3^(2x - 4) = 0合并同类项,得到:3^(2x - 4) - 3^(x - 1) = 0根据指数函数的性质,底数相同的指数相等,指数也相等。

因此,我们得到:2x - 4 = x - 1解上述方程,可以得到:x = 3所以,方程的解为x = 3。

3. 计算log2(8) * log8(128)的值。

解法:我们知道,loga(b)表示以a为底,b的对数。

根据换底公式,我们可以将log8(128)转化为以2为底的对数。

log8(128) = log2(128) / log2(8)由于2的幂次可以表示为8的幂次,即2^7 = 8,所以我们有:log2(8) = 7将上述结果代入原式,可以得到:log2(8) * log8(128) = 7 * (log2(128) / log2(8))根据对数运算的法则,log2(128)可以表示为以2为底,128的对数。

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

指数函数与对数函数专项练习(含答案)

指数函数与对数函数专项练习(含答案)

指数函数与对数函数专项练习1 设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是[ ] (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a2 函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是[ ]3.设525bm ==,且112a b +=,则m =[ ](A (B )10 (C )20 (D )100 4.设a=3log 2,b=In2,c=125-,则[ ]A. a<b<cB. b<c<aC. c<a<b D . c<b<a 5 .已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是[ ] (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 6.函数()()2log 31x f x =+的值域为[ ]A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8. 函数y=log2x 的图象大致是[ ]PS(A) (B) (C) (D)8.设554a log 4b log c log ===25,(3),,则[ ] (A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 9.已知函数 1()log (1),f x x =+若()1,f α= α=[ ](A)0(B)1(C)2(D)310.函数y =的值域是[ ](A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4) 11.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>12.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<13.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<14.已知01a <<,log log a a x =,1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>15.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a16.已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<18. 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.19.已知m x f x +-=132)(是奇函数,求常数m 的值;20.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.指数函数与对数函数专项练习参考答案1)A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。

指数、对数、幂基础练习(含答案)

指数、对数、幂基础练习(含答案)

分数指数幂1、用根式的形式表示下列各式)0(>a (1)51a=(2)32a-=2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值(1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x指数函数1、下列函数是指数函数的是 ( 填序号) (1)xy 4= (2)4x y = (3)xy )4(-= (4)24x y =。

2、函数)1,0(12≠>=-a a ay x 的图象必过定点 。

3、若指数函数xa y )12(+=在R 上是增函数,求实数a 的取值范围 。

4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是 ( )A 、5131)21()21(>B 、2.01.022>C 、2.01.022-->D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1 (2)0.323-⎛⎫⎪⎝⎭0.2423-⎛⎫⎪⎝⎭(3) 2.52.3- 0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。

函数xx f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。

8、求满足下列条件的实数x 的范围:(1)82>x (2)2.05<x 9、已知下列不等式,试比较n m ,的大小:(1)n m 22< (2)n m 2.02.0< (3))10(<<<a a an m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。

数学竞赛指数与对数的综合算式练习题

数学竞赛指数与对数的综合算式练习题

数学竞赛指数与对数的综合算式练习题在数学竞赛中,指数和对数是常见的数学概念和运算方法。

本文将通过综合算式练习题的形式,帮助读者加深对数学竞赛中指数和对数的理解和应用。

1. 练习题一:指数的运算计算以下表达式的结果:a) $2^3 \times 2^5$b) $4^2 \div 4^3$c) $(3^4)^2$解答:a) $2^3 \times 2^5 = 2^{3+5} = 2^8$b) $4^2 \div 4^3 = 4^{2-3} = 4^{-1}$c) $(3^4)^2 = 3^{4 \times 2} = 3^8$2. 练习题二:对数的性质根据对数的性质,计算以下表达式的结果:a) $\log_{2} 8$b) $\log_{3} 1$c) $\log_{5} 125$解答:a) $\log_{2} 8 = 3$,因为$2^3 = 8$b) $\log_{3} 1 = 0$,因为$3^0 = 1$c) $\log_{5} 125 = 3$,因为$5^3 = 125$3. 练习题三:指数和对数的综合运算根据指数和对数的运算规则,计算以下表达式的结果:a) $2^{\log_{2} 5}$b) $\log_{4} (2^4)$c) $\log_{3} (3^{2x})$解答:a) $2^{\log_{2} 5} = 5$,因为$\log_{2} 5$表示以2为底,结果为5的对数,2的指数为5,因此结果为5。

b) $\log_{4} (2^4) = 4\log_{4} 2$,因为$4^{\log_{4} 2}$表示以4为底,结果为2的对数,4的指数为2,因此结果为2。

c) $\log_{3} (3^{2x}) = 2x$,因为$\log_{3} (3^{2x})$表示以3为底,结果为$3^{2x}$的对数,3的指数为$2x$,因此结果为$2x$。

4. 练习题四:指数与对数的实际应用某城市人口增长率每年为3%,现有人口为100万人。

数学指数函数与对数运算测试卷(纯手打)

数学指数函数与对数运算测试卷(纯手打)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C、 D 、122、设全集为R ,且{0}A x =,22{|1010}x x B x -==,则()R A B =ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1(2y =的增区间是( )A 、1[1,]2-B 、(,1]-∞-C 、[2,)+∞D 、1[,2]26、已知lg 2,lg3a b ==,则lg12lg15等于( ) A 、21a b a b +++ B 、21a b a b +++ C 、21a b a b +-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( )A 、1B 、4C 、1或4D 、4或—1 8、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( ) A 、a>b>c B 、c>b>a C 、a>c>b D 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞) 11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( ) A.A B B.A B C.A=B D.A∩B=∅二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x--4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3 三、解答题(7⨯10‘)1、计算(1)122(11)]-+; (2)4912log 3log 2log ⋅-。

指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.对图象的影响在第一象限内,从顺时针方向看图象,逐渐在第四象限内,从顺时针方向看图象,逐渐指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b ba >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

指数与对数运算练习题

指数与对数运算练习题

指数与对数运算练习题指数与对数运算练习题在数学中,指数和对数是两个重要的概念。

它们在科学、工程、经济学等领域中都有广泛的应用。

掌握指数和对数的运算规则对于解决各种问题至关重要。

在本文中,我们将通过一些练习题来巩固对指数和对数的理解和运用。

1. 指数运算练习题(1) 计算2的4次方。

解答:2的4次方等于2 × 2 × 2 × 2 = 16。

(2) 计算5的3次方。

解答:5的3次方等于5 × 5 × 5 = 125。

(3) 计算10的0次方。

解答:任何数的0次方都等于1,所以10的0次方等于1。

(4) 计算3的负2次方。

解答:3的负2次方等于1 / (3 × 3) = 1 / 9。

(5) 计算(-2)的3次方。

解答:(-2)的3次方等于(-2) × (-2) × (-2) = -8。

2. 对数运算练习题(1) 计算log2(8)。

解答:log2(8)表示以2为底,8的对数。

由于2的多少次方等于8,所以log2(8) = 3。

(2) 计算log10(100)。

解答:log10(100)表示以10为底,100的对数。

由于10的2次方等于100,所以log10(100) = 2。

(3) 计算log5(1)。

解答:log5(1)表示以5为底,1的对数。

由于任何数的0次方等于1,所以log5(1) = 0。

(4) 计算ln(e)。

解答:ln(e)表示以自然对数为底,e的对数。

由于e的1次方等于e,所以ln(e) = 1。

(5) 计算log3(27)。

解答:log3(27)表示以3为底,27的对数。

由于3的3次方等于27,所以log3(27) = 3。

3. 指数与对数运算综合练习题(1) 计算2的log2(8)次方。

解答:log2(8) = 3,所以2的log2(8)次方等于2的3次方,即8。

(2) 计算log2(2的5次方)。

解答:2的5次方等于32,所以log2(2的5次方) = log2(32)。

(完整word版)指数与对数运算专项练习题打印(基础运算)

(完整word版)指数与对数运算专项练习题打印(基础运算)

指数运算与对数运算练习题基础题 1、用根式的形式表示下列各式)0(>a(1)51a = (2)34a = (3)35a -= (4)32a-=知识总结:2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm(3= (4= ; (5)a a a = ;知识总结:3、求下列各式的值(1)238= ;(2)12100-= ; (3)31()4-= ;(4)3416()81-=(5)122[(]-= (6)(1221⎡⎤⎢⎥⎣⎦= (7)=3264知识总结:一、选择题1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 221=41 2、下列各式值为0的是( )A 、10 B 、log 33 C 、(2-3)° D 、log 2∣-1∣ 3、251log 2的值是( ) A 、-5 B 、5 C 、51 D 、-514、若m =lg5-lg2,则10m的值是( ) A 、25B 、3C 、10D 、1 5、设N =3log 12+3log 15,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( )A 、 a >5或a <2B 、 25<<aC 、 23<<a 或35<<aD 、 34<<a7、 若log [log (log )]4320x =,则x -12等于( )A 、142B 、 122 C 、 8 D 、 48、334log的值是( ) A 、 16 B 、 2 C 、 3 D 、 49、 nn ++1log(n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2学习心得:公式及知识总结:二、填空题10、用对数形式表示下列各式中的x 。

指数对数运算练习题

指数对数运算练习题

指数对数运算练习题在数学中,指数和对数是重要的概念和运算。

指数运算是指数之间的基数乘积和幂的运算,而对数运算则是指数和底数之间的关系。

掌握指数和对数的运算规则和方法,对于解决各种数学问题和应用具有重要意义。

本文将为你提供一系列指数对数运算的练习题,帮助你加深对于这些概念和运算的理解和掌握。

一、指数运算题1. 计算:(2^3)^4。

2. 求解:10^x = 1000。

3. 计算:3^4 × 3^5。

4. 求解:(5^2)^3 = 5^n。

5. 计算:2^8 ÷ 2^5。

二、对数运算题1. 求解:log2(8) = x。

2. 计算:log3(81) + log3(3)。

3. 求解:log4(x) = 0.5。

4. 计算:log5(125) - log5(5)。

5. 求解:log10(y) = 2。

三、指数与对数运算综合题1. 计算:3^(log3(16))。

2. 求解:log2(2^(x-1)) = 3。

3. 计算:(4^3)^(log4(4))。

4. 求解:log5(125) = 3^x。

5. 计算:10^(log10(1000))。

以上是一些指数和对数运算的练习题,希望通过练习能够提高你对于这些运算的熟练程度。

指数运算题中,题目一中的(2^3)^4,可以使用指数的乘法法则,即a^m^n = a^(m×n),得到2^(3×4)=2^12的结果。

题目三中的3^4 × 3^5,可以使用指数的加法法则,即a^m × a^n =a^(m+n),得到3^4 × 3^5 = 3^(4+5)的结果。

对数运算题中,题目一中的log2(8),可以理解为2的几次幂等于8,即2^x = 8,解得x=3,所以log2(8) = 3。

题目二中的log3(81) + log3(3),可以利用对数的乘法法则,即loga(m) + loga(n) = loga(m×n),得到log3(81) + log3(3) = log3(81×3)的结果。

指数与对数的计算与应用练习题

指数与对数的计算与应用练习题

指数与对数的计算与应用练习题1. 计算以下指数与对数的值:(1)计算2的3次方。

(2)计算4的平方根。

(3)计算log<sub>2</sub>8。

(4)计算ln(e)。

(5)计算log<sub>5</sub>125。

2. 解以下指数与对数的方程:(1)解2<sup>x</sup> = 16。

(2)解log<sub>3</sub>(x+1) = 2。

(3)解10<sup>x-1</sup> = 1000。

3. 计算以下指数与对数的运算:(1)计算3<sup>2</sup> × 3<sup>4</sup>。

(2)计算7<sup>5</sup> ÷ 7<sup>2</sup>。

(3)计算log<sub>2</sub>64 + log<sub>2</sub>8。

4. 使用指数与对数解决实际问题:(1)某城市的人口每年以3%的速度递增,现有人口100万,求10年后的人口是多少?(2)一家公司的年度利润以每年10%的速度递增,今年的利润为100万,求该公司在5年后的年度利润是多少?(3)某种细菌的数量每小时以2倍的速度递增,开始时有1000个细菌,求经过5小时后细菌的数量是多少?5. 解决指数方程与对数方程:(1)解2<sup>x</sup> = 64。

(2)解log<sub>10</sub>(x+2) = 4。

(3)解3<sup>2x+1</sup> = 27。

6. 应用指数与对数求解复利问题:(1)本金为10000元,年利率为5%,复利计算,求5年后的本息和。

指数与对数练习题

指数与对数练习题

指数与对数练习题指数与对数练习题在数学中,指数和对数是两个重要的概念。

它们在各个领域都有广泛的应用,如科学、工程、金融等。

本文将通过一些练习题来帮助读者巩固和加深对指数和对数的理解。

一、指数题1. 计算以下指数表达式的值:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) 10^0 = 1d) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 812. 计算以下指数表达式的值,并将结果写成科学计数法形式:a) 6^5 = 6 × 6 × 6 × 6 × 6 = 7776 = 7.776 × 10^3b) 0.5^4 = 0.5 × 0.5 × 0.5 × 0.5 = 0.0625 = 6.25 × 10^-2c) 2^(-3) = 1/(2^3) = 1/8 = 0.125 = 1.25 × 10^-1二、对数题1. 计算以下对数的值:a) log2(8) = 3,因为2^3 = 8b) log10(100) = 2,因为10^2 = 100c) ln(e) = 1,因为e^1 = e2. 计算以下对数的值,并将结果写成小数形式:a) log3(27) = 3,因为3^3 = 27b) log5(125) = 3,因为5^3 = 125c) log7(49) = 2,因为7^2 = 49三、指数和对数的性质指数和对数有一些重要的性质,下面是其中的一些例子:1. 指数的乘法性质:对于任意的正整数a和b,以及任意实数x,有(a^b)^x =a^(b×x)。

这意味着指数的幂可以进行合并。

2. 对数的乘法性质:对于任意的正整数a和b,以及任意实数x,有log_a(b×x) = log_a(b) + log_a(x)。

指数与对数练习题

指数与对数练习题

指数与对数练习题当我们学习数学的指数与对数时,一定要通过练习题来巩固自己所学的知识。

下面是一些指数与对数的练习题,希望能够帮助大家加深对这个概念的理解。

题一:计算下面各题中的数值。

1. $2^3 \times 2^4 =$2. $5^3 \div 5^2 =$3. $(3^2)^3 =$4. $4^0 =$5. $\log_2 16 =$6. $\log_{10} 1000 =$题二:求下面各题中的未知数。

1. 满足 $2^x = 8$ 的数是多少?2. 满足 $5^y = 125$ 的数是多少?3. 满足 $3^x = 27$ 的数是多少?4. 满足 $4^x = 16$ 的数是多少?5. 满足 $\log_2 x = 3$ 的数是多少?6. 满足 $\log_{10} x = 2$ 的数是多少?题三:计算下面各题中的表达式。

1. $2^5 \times 2^6 \div 2^3 =$2. $(4^2)^3 \times 4^4 =$3. $(7^3)^2 \div 7^5 =$4. $\log_3 81 + \log_3 27 =$5. $2 \log_5 25 - \log_5 5 =$6. $\log_2 8 + \log_2 4 - \log_2 2 =$题四:解下面各题中的方程。

1. 解 $2^x = 16$ 的方程。

2. 解 $3^x = 81$ 的方程。

3. 解 $4^x = 256$ 的方程。

4. 解 $\log_2 x = 5$ 的方程。

5. 解 $\log_{10} x = 3$ 的方程。

题五:应用指数与对数求解下面的实际问题。

1. 某城市的人口数量从2000年开始以每年5%的速率递增,问到2020年时该城市的人口数量是多少?2. 某种细菌的数量每小时以指数形式递增,初始数量为100个,每小时递增50%,问经过4小时后该种细菌的数量是多少个?3. 一个投资项目,初始投资额为1000元,以每年10%的利率获得回报,问经过5年后该项目的总回报是多少元?指数与对数是数学中比较重要的概念,掌握好它们的运算规则和应用方法对于解决实际问题非常有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数运算与对数运算练习题
基础题 1、用根式的形式表示下列各式)0(>a
(1)5
1a = (2)34
a = (3)35
a -= (4)32
a -
=
知识总结:
2、用分数指数幂的形式表示下列各式: (1)34
y x = (2))0(2>=m m
m
(3= (4= ; (5)a a a = ;
知识总结:
3、求下列各式的值
(1)2
38= ;(2)12
100-
= ; (3)3
1()4
-= ;(4)3
416()81-=
(5)12
2
[(]
-
= (6)(1
2
2
1⎡⎤⎢⎥⎣⎦
= (7)=3
264
知识总结:
一、选择题
1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 2
21=4
1 2、下列各式值为0的是( )A 、10
B 、log 33
C 、(2-3)°
D 、log 2∣-1∣
3、2
5
1
log 2
的值是( ) A 、-5 B 、5 C 、
51 D 、-5
1 4、若m =lg5-lg2,则10m 的值是( ) A 、2
5
B 、3
C 、10
D 、1 5、设N =
3log 12+3
log 1
5,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
7、 若log [log (log )]4320x =,则x -12
等于( )A 、
142B 、 12
2 C 、 8 D 、 4 8、3
3
4
log
的值是( ) A 、 16 B 、 2 C 、 3 D 、 4
9、 n
n ++1log
(n n -+1)等于( ) A 、1 B 、-1
C 、2
D 、-2
学习心得:
公式及知识总结:
二、填空题10、用对数形式表示下列各式中的x 。

10x =25:__ __; 2x =12:____;4x =
6
1
:____
知识总结:
11、lg1+lg0.1+lg0.01=____ _____ 12、Log 155=m,则log 153=____
12、14lg 2lg 2+-+∣lg5-1∣=____ 14.5log 38log 9
32
log 2log 2533
3-+- =________ 15 3a
=2,则log 38-2log 36=________ 16、 若2log 2,log 3,m n
a a m n a +===_______
三、解答题 17、求下列各式的值 ⑴2log 28 ⑵3log 39 ⑶2
52
log 1 ⑷3
73
log 1 ⑴lg10-
5 ⑵lg0.01 ⑶log 2
81
⑷log 27
181
学习心得:
公式及知识总结: 4. 化简 5. (1)=∙∙12
74
33
1
a
a a (2)=÷∙654323a a a (3)=÷-∙a a a 9)(34
323
(4)322
a
a a ∙= (5)3
163
)278(--b a = (6)()0,053542
15
658≠≠÷⋅⎪⎪⎭


⎛-
-b a b a b a =
5.计算
(1
)1
102
32418(2)2(2)()5427
--+⨯-
学习心得:
公式及知识总结:
提升题
(3)252)008.0()9
49(
)8
27(3
25
.03
2⨯
+--
-
(4) ()
3
263425.00
3
1
323228765.1⎪⎭

⎝⎛--⨯+⨯+⎪⎭⎫ ⎝⎛-⨯-
学习心得:
思路方法总结:
(5)02log 3)8.9(74lg 25lg 27log 7-++++ (6)2lg5++
(7) 2
1lg5(lg8lg1000)(lg lg lg 0.066
++++ (8)7log 23
log lg 25lg 47+++
学习心得:
思路方法总结:一:拆
二:合
6. 解下列方程 (1)13
1
8
x - = (2)151243
=-x (3)1321(0.5)4x x --=
(4)若()()lg lg 2lg 2lg lg x y x y x y -++=++),求x
y
的值.
7. (1).已知112
2
3a a -+=,求下列各式的值(1)1a a -+= ;(2)22
a a -+=
(2).若13a a -+=,求下列各式的值:(1)112
2
a a -
+= ;(2)22
a a -+= ;
(3).使式子3
4
(12)x -
-有意义的x 的取值范围是 (4).若32a =,135b -=,则323a b
-的值= .
学习心得:
思路方法总结:
优化练
8、化简计算:
(1)log 2
251·log 381·log 59
1
(2)()()24525log 5+log 0.2log 2+log 0.5
(3)0.21log 3
5-; (4)4912
log 3log 2log ⋅-
(5)(log 25+log 4125)5
log 2log 33⋅ (61
04
21()0.252+⨯
(7)51lg12.5lg lg 82
-+ (8)31
21
31
25
.01041
027.010])833(81[])87(3[)0081.0(⨯-+⨯⨯------;
(9)
7log 23
log lg 25lg 473+++ (10)025.0421
3463
)2011(82)4916(4)22()32(--⨯-⨯-+⨯-
学习心得:
公式及知识思路总结:。

相关文档
最新文档