2015年高考第一轮复习数学:6.4 不等式的解法(一)
不等式的解法举例
ax2 bx c 0 的二根为 x1,x2 且 x1 x2
则:①a>0时,其解集为{x︱ x< x1或 x > x2 }
②a<0时,其解集为 {x︱x1 < x < x2 }
(2)若判别式△=0,则有
①a>0时,其解集为{x︱ x≠ - b }
②a<0时,其解集为 φ.
a
(3)若判别式△<0,则有
二、讲授新课 (一)不等式的有关概念 1.同解不等式:两个不等式如果解集相等,那么 这两个不等式就叫做同解不等式。
2.同解变形:一个不等式变形为另一个不等式时, 如果这两个不等式是同解不等式,那么这种变形 就叫做同解变形。已学过的一元一次不等式解法 中的去分母、去括号、移项、合并同类项等都是 同解变形,故最后得到的解就是原不等式的解。
①a>0时,其解集为R; ②a<0时,其解集为φ.
类似地,可以讨论 ax2 bx c 0(a 0)的解集。
; 查重 查重软件 论文查重 免费论文查重 论文免费查重
;
了人世间最可宝贵的真挚的爱情。在爱情与财富的矛盾中他们为了前者牺牲了后者。 也许当时贪婪的资本家会对之嗤之以鼻,也许会冷笑一声:“真是天底下最蠢的两人!”但在那混沌的时代中,欧·亨利是清醒的。在文章的最后,他做出了精辟的论断:“无论在任何地方,他们都是最聪明 的人。”是的,经过时间的考验,人们发现其中闪烁的人性的光辉是永恒的。 巴尔扎克曾经说过:“金钱搅在爱情一块儿, 不是太丑恶了吗?”于是他创作了一部悲剧《欧也尼?葛朗台》。小说中葛朗台这样的人,表面上是金钱的主人,其实是金钱的奴隶.可怜的女儿守着他的巨额财产, 却既无家庭也无幸福,只能成为一帮利欲熏心之徒追捕围猎的对象!这样的结局发人深思,金钱固然给人带来权
高三数学人教版A版数学(理)高考一轮复习试题:6.4基本不等式Word版含答案
1.基本不等式(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题. 2.不等式的综合应用会运用不等式性质解决比较大小、值域、参数范围问题.知识点 基本不等式 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时等号成立.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)易误提醒 (1)求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件.(2)多次使用基本不等式时,易忽视取等号的条件的一致性.必记结论 活用几个重要的不等式: (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). (5)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).[自测练习]1.下列不等式中正确的是( ) A .若a ∈R ,则a 2+9>6a B .若a ,b ∈R ,则a +bab≥2C .若a ,b >0,则2lg a +b2≥lg a +lg bD .若x ∈R ,则x 2+1x 2+1>1解析:∵a >0,b >0,∴a +b2≥ab .∴2lg a +b 2≥2lg ab =lg (ab )=lg a +lgB.答案:C2.已知f (x )=x +1x -2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0,∴x +1x -2=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2(-x )·1(-x )-2=-4,当且仅当-x =-1x,即x =-1时等号成立.答案:C3.下列函数中,最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =x 2+1+2x 2+1解析:∵y =x +4x 中x 可取负值,∴其最小值不可能为4; 由于0<x <π,∴0<sin x ≤1, ∴y =sin x +4sin x>2sin x ·4sin x=4,其最小值大于4;由于e x >0,∴y =e x +4e -x ≥2e x ·4e -x =4,当且仅当e x =2时取等号, ∴其最小值为4;∵x 2+1≥1,∴y =x 2+1+2x 2+1≥22,当且仅当x =±1时取等号,∴其最小值为22,故选C. 答案:C4.已知x >1,则x +4x -1的最小值为________.解析:∵x >1,∴x -1>0,∴x +4x -1=(x -1)+4x -1+1≥4+1=5,当且仅当x -1=4x -1即x =3时等号成立.答案:5考点一 利用基本不等式证明简单不等式|(1)已知a >0,b >0,a +b =1, 求证:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. (2)设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.[证明] (1)法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+b a .同理,1+1b =2+ab.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当b a =a b ,即a =b =12时取“=”. ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9,当且仅当a =b =12时等号成立. 法二:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab =1+a +b ab +1ab =1+2ab ,∵a ,b 为正数,a +b =1, ∴ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时取“=”.于是1ab ≥4,2ab ≥8,当且仅当a =b =12时取“=”.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥1+8=9, 当且仅当a =b =12时等号成立.(2)由于a ,b 均为正实数, 所以1a 2+1b2≥21a 2·1b 2=2ab, 当且仅当1a 2=1b 2,即a =b 时等号成立,又因为2ab+ab ≥22ab·ab =22, 当且仅当2ab =ab 时等号成立,所以1a 2+1b 2+ab ≥2ab+ab ≥22,当且仅当⎩⎨⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.考点二 利用基本不等式求最值|(1)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 3C .2 2D .4(2)(2015·高考重庆卷)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.[解析] (1)由lg 2x +lg 8y =lg 2得,2x ×23y =2x +3y =2,即x +3y =1,1x +13y =⎝⎛⎭⎫1x +13y ×(x +3y )=2+3y x +x3y≥2+23y x ×x3y=4,当且仅当⎩⎪⎨⎪⎧3yx =x3y ,x +3y =1,x >0,y >0,即最小值为4.故选D.(2)(a +1+b +3)2=a +b +4+2a +1·b +3≤9+2·(a +1)2+(b +3)22=9+a +b +4=18,所以a +1+b +3≤32,当且仅当a +1=b +3且a +b =5,即a =72,b =32时等号成立.所以a +1+b +3的最大值为3 2.[答案] (1)D (2)3 2条件最值的求解通常有两种方法一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.1.(2016·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m的取值范围是( )A .(-∞,-2)∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析:x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即4y 2=x 2时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2,故选D.答案:D2.(2016·洛阳统考)若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +12y -1z 的最大值为( )A .2B.32C .1D.12解析:∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞),∴xy z =xy x 2+4y 2-3xy =1x y +4yx -3≤1(当且仅当x =2y 时等号成立),此时1x +12y -1z =1y -12y 2,令1y =t >0,则1x +12y -1z =t -12t 2≤12(当且仅当t =1时等号成立).故选D.答案:D考点三 基本不等式的实际应用|某化工企业2015年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解] (1)由题意得,y =100+0.5x +(2+4+6+…+2x )x ,即y =x +100x +1.5(x ∈N *).(2)由基本不等式得: y =x +100x+1.5≥2x ·100x+1.5=21.5, 当且仅当x =100x,即x =10时取等号.故该企业10年后需要重新更换新的污水处理设备.利用基本不等式求解实际应用题的方法(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.3.某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4,沿AC 将△ABC 翻折,使点B 落到点B ′的位置,AB ′交DC 于点P .研究发现当△ADP 的面积最大时最节能,则最节能时△ADP 的面积为( )A .22-2B .3-2 2C .2- 2D .2解析:设AB =x ,DP =y ,则BC =2-x ,PC =x -y .因为x >2-x ,故1<x <2.因为△ADP ≌△CB ′P ,故P A =PC =x -y .由P A 2=AD 2+DP 2,得(x -y )2=(2-x )2+y 2,即y =2⎝⎛⎭⎫1-1x ,1<x <2.记△ADP 的面积为S ,则S =⎝⎛⎭⎫1-1x (2-x )=3-⎝⎛⎭⎫x +2x ≤3-22,当且仅当x =2x ,即x =2时,S 取得最大值3-2 2.答案:B11.忽视等号成立条件致误【典例】 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x (x <0)的最小值为________.[解析] (1)∵x >0,y >0,∴x +y =(x +y )⎝⎛⎭⎫1x +2y =3+y x +2xy ≥3+22(当且仅当y =2x 时取等号) ∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+⎝⎛⎭⎫-3x ≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6.[答案] (1)3+22 (2)1+2 6[易误点评] (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy, ∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2. (2)没有注意到x <0这个条件误用基本不等式得2x +3x≥2 6.[防范措施] (1)利用基本不等式求最值,一定要注意应用条件.(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[跟踪练习] 已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________. 解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3. 答案:3A 组 考点能力演练1.(2016·汉中一模)“a ≥0,b ≥0”是“a +b 2≥ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由a ≥0,b ≥0可得a +b 2≥ab ,当且仅当a =b 时取等号.反之,若a +b2≥ab ,则ab ≥0,可得a ≥0,b ≥0,故选C.答案:C2.(2016·杭州一模)设a >0,b >0.若a +b =1,则1a +1b 的最小值是( )A .2 B.14 C .4D .8解析:由题意1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ×a b =4.当且仅当b a =a b ,即a =b =12时取等号,所以最小值为4.答案:C3.若a >0,b >0且a +b =7,则4a +1b +2的最小值为( )A.89 B .1 C.98D.10277解析:本题考查利用基本不等式求最值.因为b =7-a ,所以4a +1b +2=4a +19-a =19(a +9-a )·⎝ ⎛⎭⎪⎫4a +19-a =19⎣⎢⎡⎦⎥⎤4+1+4(9-a )a +a 9-a ≥19(4+1+4)=1,当且仅当4(9-a )a =a9-a 时取得等号,故选B.答案:B4.设x ,y ∈R ,a >1,b >1.若a x =b y =2,a 2+b =4,则2x +1y 的最大值为( )A .1B .2C .3D .4解析:由a x =b y =2得x =log a 2=1log 2 a ,y =log b 2=1log 2 b ,2x +1y=2log 2 a +log 2 b =log 2 (a 2·b )≤log 2⎝ ⎛⎭⎪⎫a 2+b 22=2(当且仅当a 2=b =2时取等号).答案:B5.若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b 的最小值为( )A.2+1 B .4 2 C .3+2 2D .6解析:本题考查三角函数的性质与基本不等式.注意到曲线y =1+sin πx (0<x <2)的对称中心是点(1,1),于是有a +b =1,1a +2b =⎝⎛⎭⎫1a +2b ·(a +b )=3+b a +2a b ≥3+22,当且仅当b a =2ab ,即b =2a=2(2-1)时取等号,因此1a +2b的最小值是3+22,故选C.答案:C6.(2016·济南一模)若实数x ,y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值范围是________.解析:设a =2x ,b =2y ,则a >0,b >0,由条件得a 2+b 2=2(a +b ),∵(a +b )2=a 2+b 2+2ab ≤2(a 2+b 2),当且仅当a =b 时取等号,∴(a +b )2≤4(a +b ),∴a +b ≤4,又(a +b )2-2(a +b )=2ab >0.∴a +b >2,∴2<a +b ≤4,即2<t ≤4.答案:(2,4]7.(2015·郑州二模)已知a ,b 均为正数,且2是2a ,b 的等差中项,则1ab的最小值为________.解析:由于2是2a ,b 的等差中项,故2a +b =4,又a ,b 均为正数,故2ab ≤⎝ ⎛⎭⎪⎫2a +b 22=4,当且仅当2a =b =2,即a =1,b =2时取等号,所以1ab 的最小值为12. 答案:128.已知函数y =log a x +1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线x m +yn -4=0(m >0,n >0)上,则m +n 的最小值为________.解析:由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∴1m +1n =4,∵m >0,n >0,∴m +n =14(m +n )⎝⎛⎭⎫1m +1n =14⎝⎛⎭⎫2+n m +m n ≥14⎝⎛⎭⎫2+2n m ·m n =1,当且仅当m =n =12时等号成立,∴m +n 的最小值为1. 答案:19.已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8. 证明:因为x ,y ,z 是互不相等的正数,且x +y +z =1,所以1x -1=1-x x =y +z x >2yz x ,①1y -1=1-y y =x +z y >2xz y ,② 1z -1=1-z z =x +y z >2xy z,③ 又x ,y ,z 为正数,由①×②×③,得⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8.10.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x >1),求公园ABCD 所占面积S 关于x 的函数S (x )的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解:(1)设休闲区的宽为a 米,则长为ax 米,由a 2x =4 000,得a =2010x .则S (x )=(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝⎛⎭⎫2x +5x +4 160(x >1). (2)8010⎝⎛⎭⎫2x +5x +4 160≥8010×22x ×5x +4 160=1 600+4 160=5 760,当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100. 所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100米,宽40米.B 组 高考题型专练1.(2015·高考湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B .2C .2 2D .4解析:由已知得1a +2b =b +2a ab=ab ,且a >0,b >0, ∴ab ab =b +2a ≥22ab ,∴ab ≥2 2.答案:C2.(2014·高考重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析:由log 4(3a +4b )=log 2ab ,得12log 2(3a +4b )=12log 2(ab ),所以3a +4b =ab ,即3b +4a=1. 所以a +b =(a +b )⎝⎛⎭⎫3b +4a =3a b +4b a +7≥43+7,当且仅当3a b =4b a,即a =23+4,b =3+23时取等号,故选D.答案:D3.(2015·高考陕西卷)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >p 解析:∵0<a <b ,∴a +b 2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f (ab )=p ,∴p =r <q .故选B. 答案:B4.(2015·高考山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x >0,y >0,所以x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy =12⎝⎛⎭⎫x y +2y x ≥2,当且仅当x y =2y x,即x =2y 时取等号.故x ⊗y +(2y )⊗x 的最小值为 2. 答案: 2。
高考第一轮复习数学:6.5 不等式的解法(二)
1.2 不等式的解法(二)●知识梳理1.|x |>a ⇔x >a 或x <-a (a >0);|x |<a ⇔-a <x <a (a >0).2.形如|x -a |+|x -b |≥c 的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质:||a |-|b ||≤|a ±b |≤|a |+|b |.思考讨论1.在|x |>a ⇔x >a 或x <-a (a >0)、|x |<a ⇔-a <x <a (a >0)中的a >0改为a ∈R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么? ●点击双基1.设a 、b 是满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b ||D.|a -b |<|a |+|b | 解析:用赋值法.令a =1,b =-1,代入检验. 答案:B 2.不等式|2x 2-1|≤1的解集为( )A.{x |-1≤x ≤1}B.{x |-2≤x ≤2}C.{x |0≤x ≤2}D.{x |-2≤x ≤0} 解析:由|2x 2-1|≤1得-1≤2x 2-1≤1.∴0≤x 2≤1,即-1≤x ≤1. 答案:A 3.不等式|x +log 3x |<|x |+|log 3x |的解集为( )A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞) 解析:∵x >0,x 与log 3x 异号,∴log 3x <0.∴0<x <1. 答案:A 4.已知不等式a ≤||22x x +对x 取一切负数恒成立,则a 的取值范围是____________.解析:要使a ≤||22x x +对x 取一切负数恒成立,令t =|x |>0,则a ≤t t 22+.而t t 22+≥tt22=22,∴a ≤22.答案:a ≤225.已知不等式|2x -t |+t -1<0的解集为(-21,21),则t =____________.解析:|2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -21<x <21. ∴t =0. 答案:0●典例剖析【例1】 解不等式|2x +1|+|x -2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x +1=0,x -2=0,得两个零点x 1=-21,x 2=2. 解:当x ≤-21时,原不等式可化为-2x -1+2-x >4,∴x <-1.当-21<x ≤2时,原不等式可化为2x +1+2-x >4,∴x >1.又-21<x ≤2,∴1<x ≤2. 当x >2时,原不等式可化为2x +1+x -2>4,∴x >35. 又x >2,∴x >2. 综上,得原不等式的解集为{x |x <-1或1<x }. 深化拓展若此题再多一个含绝对值式子.如:|2x +1|+|x -2|+|x -1|>4,你又如何去解? 分析:令2x +1=0,x -2=0,x -1=0,得x 1=-21,x 2=1,x 3=2. 解:当x ≤-21时,原不等式化为-2x -1+2-x +1-x >4,∴x <-21. 当-21<x ≤1时,原不等式可化为2x +1+2-x +1-x >4,4>4(矛盾). 当1<x ≤2时,原不等式可化为2x +1+2-x +x -1>4,∴x >1.又1<x ≤2,∴1<x ≤2. 当x >2时,原不等式可化为2x +1+x -2+x -1>4,∴x >23.又x >2,∴x >2. 综上所述,原不等式的解集为{x |x <-21或x >1}. 【例2】 解不等式|x 2-9|≤x +3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x |≤a ⇔-a ≤x ≤a 去绝对值.解法一:原不等式⇔(1)⎪⎩⎪⎨⎧+≤-≥-390922x x x ,或(2)⎪⎩⎪⎨⎧+≤-<-.390922x x x ,不等式(1)⇔⎩⎨⎧≤≤-≥≤4333x x x 或⇔x =-3或3≤x ≤4;不等式(2)⇔⎩⎨⎧≥-≤<<-2333x x x 或⇔2≤x <3.∴原不等式的解集是{x |2≤x ≤4或x =-3}.解法二:原不等式等价于⎩⎨⎧+≤-≤+-≥+393032x x x x )(⇔⎪⎩⎪⎨⎧≤≤--≤-≥4333x x x ,或x ≥2 ⇔x=-3或2≤x ≤4. ∴原不等式的解集是{x |2≤x ≤4或x =-3}. 【例3】 (理)已知函数f (x )=x |x -a |(a ∈R ).(1)判断f (x )的奇偶性;(2)解关于x 的不等式:f (x )≥2a 2. 解:(1)当a =0时,f (-x )=-x |-x |=-x |x |=-f (x ),∴f (x )是奇函数. 当a ≠0时,f (a )=0且f (-a )=-2a |a |.故f (-a )≠f (a )且f (-a )≠-f (a ). ∴f (x )是非奇非偶函数. (2)由题设知x |x -a |≥2a 2,∴原不等式等价于⎩⎨⎧≥+-<222a ax x a x ,① 或⎩⎨⎧≥-≥.222a ax x a x ,②由①得⎩⎨⎧≤+-<.0222a ax x a x ,x ∈∅. 由②得⎩⎨⎧≥+-≥.02))((,a x a x a x 当a =0时,x ≥0. 当a >0时,⎩⎨⎧-≥≤≥,或,a x a x a x 2∴x ≥2a .当a <0时,⎩⎨⎧-≤≥≥,或,a x a x a x 2 即x ≥-a .综上:a ≥0时,f (x )≥2a 2的解集为{x |x ≥2a };a <0时,f (x )≥2a 2的解集为{x |x ≥-a }.(文)设函数f (x )=ax +2,不等式| f (x )|<6的解集为(-1,2),试求不等式)(x f x≤1的解集.解:|ax +2|<6,∴(ax +2)2<36,即a 2x 2+4ax -32<0.由题设可得⎪⎪⎩⎪⎪⎨⎧-=-=-.2321422aa a , 解得a =-4. ∴f (x )=-4x +2.由)(x f x ≤1,即24+-x x ≤1可得2425--x x ≥0.解得x >21或x ≤52. ∴原不等式的解集为{x |x >21或x ≤52}. ●闯关训练夯实基础1.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是A.{a |3<a ≤4}B.{a |3≤a ≤4}C.{a |3<a <4}D.∅解析:由题意知⎩⎨⎧≥+≤-,,5231a a 得3≤a ≤4. 答案:B2.不等式|x 2+2x |<3的解集为____________.解析:-3<x 2+2x <3,即⎪⎩⎪⎨⎧>++<-+.03203222x x x x ,∴-3<x <1. 答案:-3<x <13.不等式|x +2|≥|x |的解集是____________.解法一:|x +2|≥|x |⇔(x +2)2≥x 2⇔4x +4≥0⇔x ≥-1.解法二: 在同一直角坐标系下作出f (x )=|x +2|与g (x )=|x |的图象,根据图象可得x ≥-1.|解法三:根据绝对值的几何意义,不等式|x +2|≥|x |表示数轴上x 到-2的距离不小于到0的距离,∴x ≥-1.答案:{x |x ≥-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握. 4.当0<a <1时,解关于x 的不等式a12-x <a x -2.解:由0<a <1,原不等式可化为12-x >x -2.这个不等式的解集是下面不等式组①及②的解集的并集.⎩⎨⎧<-≥-02012x x ,①或⎪⎩⎪⎨⎧->-≥-≥-.212020122)(,,x x x x ②解不等式组①得解集为{x |21≤x <2},解不等式组②得解集为{x |2≤x <5}, 所以原不等式的解集为{x |21≤x <5}. 5.关于x 的方程3x 2-6(m -1)x +m 2+1=0的两实根为x 1、x 2,若|x 1|+|x 2|=2,求m 的值.解:x 1、x 2为方程两实根,∴Δ=36(m -1)2-12(m 2+1)≥0.∴m ≥253+或m ≤253-. 又∵x 1·x 2=212+m >0,∴x 1、x 2同号. ∴|x 1|+|x 2|=|x 1+x 2|=2|m -1|.于是有2|m -1|=2,∴m =0或2. ∴m =0.培养能力6.解不等式212-x ≤||1x .解:(1)当x 2-2<0且x ≠0,即当-2<x <2且x ≠0时,原不等式显然成立.(2)当x 2-2>0时,原不等式与不等式组⎪⎩⎪⎨⎧≥->||22||2x x x ,等价.x 2-2≥|x |,即|x |2-|x |-2≥0.∴|x |≥2.∴不等式组的解为|x |≥2,即x ≤-2或x ≥2.∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞). 7.已知函数f (x )=x x ax 122-+的定义域恰为不等式log 2(x +3)+log 21x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+log 21x ≤3得⎪⎩⎪⎨⎧>≤+033log 2x xx ⇔⎪⎩⎪⎨⎧>≤+⇔083x x x x ≥73,即f (x )的定义域为[73,+∞). ∵f (x )在定义域[73,+∞)内单调递减, ∴当x 2>x 1≥73时,f (x 1)-f (x 2)>0恒成立, 即有(ax 1-11x +2)-(ax 2-21x +2)>0⇔a (x 1-x 2)-(11x -21x )>0⇔(x 1-x 2)(a +211x x )>0恒成立. ∵x 1<x 2,∴(x 1-x 2)(a +211x x )>0⇔a +211x x <0. ∵x 1x 2>499⇒-211x x >-949,要使a <-211x x 恒成立,则a 的取值范围是a ≤-949. 8.已知f (x )=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证:(1)f (0)=f (1); (2)| f (x 2)-f (x 1)|<|x 1-x 2|;(3)| f (x 1)-f (x 2)|<21; (4)| f (x 1)-f (x 2)|≤41. 证明:(1)f (0)=c ,f (1)=c ,∴f (0)=f (1). (2)| f (x 2)-f (x 1)|=|x 2-x 1||x 2+x 1-1|.∵0≤x 1≤1,∴0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2). ∴-1<x 1+x 2-1<1. ∴| f (x 2)-f (x 1)|<|x 2-x 1|.(3)不妨设x 2>x 1,由(2)知| f (x 2)-f (x 1)|<x 2-x 1. ① 而由f (0)=f (1),从而| f (x 2)-f (x 1)|=| f (x 2)-f (1)+f (0)-f (x 1)|≤| f (x 2)-f (1)|+| f (0)-f (x 1)|<|1-x 2|+|x 1|<1-x 2+x 1. ②①+②得2| f (x 2)-f (x 1)|<1,即| f (x 2)-f (x 1)|<21. (4)|f (x 2)-f (x 1)|≤f max -f min =f (0)-f (21)=41. 探究创新9.(1)已知|a |<1,|b |<1,求证:|ba ab--1|>1; (2)求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足|a |<1,|b |<1的一切实数a 、b 恒成立;(3)已知|a |<1,若|abba ++1|<1,求b 的取值范围. (1)证明:|1-ab |2-|a -b |2=1+a 2b 2-a 2-b 2=(a 2-1)(b 2-1). ∵|a |<1,|b |<1,∴a 2-1<0,b 2-1<0. ∴|1-ab |2-|a -b |2>0.∴|1-ab |>|a -b |, |||1|b a ab --=|||1|b a b a -⋅->1.(2)解:∵|ba ab --λλ1|>1⇔|1-ab λ|2-|a λ-b |2=(a 2λ2-1)(b 2-1)>0.∵b 2<1,∴a 2λ2-1<0对于任意满足|a |<1的a 恒成立.当a =0时,a 2λ2-1<0成立;当a ≠0时,要使λ2<21a 对于任意满足|a |<1的a 恒成立,而21a>1,∴|λ|≤1.故-1≤λ≤1.(3)|ab b a ++1|<1⇔(abb a ++1)2<1⇔(a +b )2<(1+ab )2⇔a 2+b 2-1-a 2b 2<0⇔(a 2-1)(b 2-1)<0. ∵|a |<1,∴a 2<1.∴1-b 2>0,即-1<b <1.●思悟小结1.解含有绝对值的不等式的指导思想是去掉绝对值.常用的方法是:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方.2.解含参数的不等式,如果转化不等式的形式或求不等式的解集时与参数的取值范围有关,就必须分类讨论.注意:(1)要考虑参数的总取值范围.(2)用同一标准对参数进行划分,做到不重不漏.●教师下载中心 教学点睛1.绝对值是历年高考的重点,而绝对值不等式更是常考常新.在教学中要从绝对值的定义和几何意义来分析,绝对值的特点是带有绝对值符号,如何去掉绝对值符号,一定要教给学生方法,切不可以题论题.2.无理不等式在新课程书本并未出现,但可以利用不等式的性质把其等价转化为代数不等式.3.指数、对数不等式能利用单调性求解. 拓展题例【例1】 设x 1、x 2、y 1、y 2是实数,且满足x 12+x 22≤1,证明不等式(x 1y 1+x 2y 2-1)2≥(x 12+x 22-1)(y 12+y 22-1).分析:要证原不等式成立,也就是证(x 1y 1+x 2y 2-1)2-(x 12+x 22-1)(y 12+y 22-1)≥0. 证明:(1)当x 12+x 22=1时,原不等式成立. (2)当x 12+x 22<1时,联想根的判别式,可构造函数f (x )=(x 12+x 22-1)x -2(x 1y 1+x 2y 2-1)x +(y 12+y 22-1),其根的判别式Δ=4(x 1y 1+x 2y 2-1)2-4(x 12+x 22-1)(y 12+y 22-1).由题意x 12+x 22<1,函数f (x )的图象开口向下.又∵f (1)=x 12+x 22-2x 1y 1-2x 2y 2+y 12+y 22=(x 1-y 1)2+(x 2-y 2)2≥0, 因此抛物线与x 轴必有公共点.∴Δ≥0. ∴4(x 1y 1+x 2y 2-1)2-4(x 12+x 22-1)(y 12+y 22-1)≥0, 即(x 1y 1+x 2y 2-1)2≥(x 12+x 22-1)(y 12+y 22-1).。
2015高考数学(理)一轮复习考点突破课件:6.4基本不等式
(2)由 x2-3xy+4y2-z=0, 得 z=x2-3xy+4y2, xy xy 1 ∴ = 2 = . z x -3xy+4y2 x 4y + -3 y x x 4y 又 x、y、z 为正实数,∴y+ x ≥4, 当且仅当 x=2y 时取等号,此时 z=2y2.
1 1 2 1 2 2 1 2 2 1 2 2 ∴ + - = + - 2=- y + =- y-1 +1,当 =1,即 y x y z 2y y 2y y y
≥3+2+2+2=9, 1 当且仅当 a=b=c=3时,取等号.
• 【归纳提升】 利用基本不等式证明不等式是综合法证明不等式的 一种情况,证明思路是从已证不等式和问题的已知条件出发,借助 不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问 题.
针对训练 2.(1)若 a,b∈R,且 ab>0,则下列不等式中,恒成立的是 ( A.a2+b2>2ab 1 1 2 C.a+b> ab B.a+b≥2 ab b a D.a+b≥2 )
1 y = 时取等号, 2 3 2 ∴x 1+y 的最大值为 . 4
2
(3)因为 2x>0,2y>0,所以 1=2x+2y≥2 2x· 2y =2 2 即2
x+y
,故 2
x+y
1 ≤2,
x +y
1 -2 ≤4=2 ,
所以 x+y≤-2,故选 D. 3 2 答案:(1)2 (2) (3)D 4
题型二 利用基本不等式判定或证明不等式 已知 a>0,b>0,c>0,且 a+b+c=1. 1 1 1 求证: + + ≥9. a b c
题型三
基本不等式的实际应用 (2012· 江苏)如图,建立平面直角
坐标系 xOy,x 轴在地平面上,y 轴垂 直于地平面,单位长度为 1 千米,某 1 炮位于坐标原点. 已知炮弹发射后的轨迹在方程 y=kx-20×(1 +k2)x2(k>0)表示的曲线上,其中 k 与发射方向有关.炮的射程 是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请 说明理由.
高考理科数学第一轮复习第六章不等式 不等式 (4)不等式的解法(一)
不等式的解法一、内容归纳:1、知识精讲:①一元一次不等式(略)②一元二次不等式,与二次函数、二次不等式结合。
③高次不等式的解法:a )降次化作不等式组求解;f (x )·g (x )>0 ⇔ f(x) >0 或 f(x)<0g(x) >0 g(x)<0f(x) >0 f(x)<0f (x )·g (x )<0⇔ g(x)<0 或 g(x) >0b)数轴标根法求解.:④分式不等式的解法:记f(x),g(x)为x 的整式函数,分式不等式0)()(>x g x f 与f(x)·g(x)>0同解;0)()(<x g x f 与f(x)·g(x)<0同解.一般形式的分式不等式可先化为上述形式.2、重点、难点:一元一次不等式(组)、一元二次不等式、简单的高次不等式、分式不等式的解法。
3、思维方法:归类、转化。
数形结合。
4、特别提示:解分式不等式时,注意先移项,使右边为0。
二、题型剖析[一元一次不等式]【例1】 已知关于x 的不等式(a+b )x+(2a-3b )<0解为(-∞,-1/3),求关于x 的不等式(a-3b )x+(b-2a )>0的解集。
〖解〗由(a+b )x <(2a-3b )解集为(-∞,-1/3),所以有a+b >0,且3123=+-b a a b 从而a=2b ,又a+b=3b >0,∴b >0,将a=2b 代入(a-3b )x+(b-2a )>0得-bx-3b >0,x <-3,所求解集为(-∞,-3)。
思维点拨:挖掘隐含条件a+b>0很重要。
[可转化为一元二次不等式]:例3P92若不等式2)1(122≤->-m x m x 对满足的所有m 都成立。
求m 的取值范围。
〖解〗原不等式化为(x 2-1)m-(2x-1)<0记f (m )=(x 2-1)m-(2x-1)(-2≤m ≤2),根据题意有 f (-2)=-2(x 2-1)-(2X-1)<0f (2)=2(x 2-1)-(2X-1)<0即 2x 2+2x-3>02x 2-2x-1<0 解之,x 的取值范围为231271+<<+-x [思维点拨]从表面上看,这是一个关于x 的一元二次不等式,实际上是一个关于m 的一元一次不等式,并且已知它的解集为[-2,2],求参数x 的取值范围。
2015高考数学(理)一轮复习考点突破课件:6.1不等关系与不等式
• • •
其中正确的是________(请把正确命题的序号都填上). 解析:①若c=0则命题不成立.②正确.③中由2c>0知成立. 答案:②③
1 1 1 1 1.倒数性质:①a>b,ab>0⇒ < ;②a>0>b⇒ > . a b a b b b+m b b-m 2.若 a>b>0,m>0,则:①真分数的性质:a< ;> a+m a a-m (b-m>0); a a+m a a-m ②假分数的性质:b> ;b< (b-m>0). b+m b-m
)
0.
2.比较两个实数的大小 两个实数的大小是用实数的运算性质来定义的,(1)作差法:a -b>0⇔ a>b ;a-b=0⇔ a=b ;a-b<0⇔ a<b .(2)作 a a a 商法:若 b>0,则有 >1⇔a>b; =1⇔a=b; <1⇔a<b. b b b
对点演练 1 ________ 3+1(填“>”或“<”). 2-1 1 解析: = 2+1< 3+1. 2-1 答案:<
(1)若 c>0,则①不成立;
由 ac2>bc2 知 c2≠0,则 a>b,②成立; 由 a<b<0 知 a2>ab>b2,③成立; 1 1 a b 由 c>a>b>0, 得 0<c-a<c-b, 则 > , 则 > , c-a c-b c-a c-b ④成立; 1 1 b-a 若 a>b,a-b= ab >0,则 a>0,b<0,⑤成立. (2)取 a=-2,b=-1,逐个检验选项可知,仅 C 选项成立. 【答案】 (1)②③④⑤ (2)C
答案:(1)D (2)(3,8)
1 1 , 8 3来自题型三 利用不等式的性质证明简单的不等式 (1)已知 a>b>0,且 c>d>0,证明: 1 1 1 (2)设 a>b>c,求证: + + >0. a-b b-c c-a a d> b c;
高三数学一轮复习 第六章 第四节 不等式的解法 理(全国版)
【解析】 (1)由例 1 可知 Δ=-8<0, 故二次函数图象开口向上且与 x 轴无交点, 故不等式解集为 R. (2)由例 1(2)可知不等式等价于(x+2)(3x- 4)<0,
∴不等式解集为x|-2<x<43或-2,43.
(3)不等式可化为(4x-1)2>0, ∴只需 4x-1≠0 即 x≠41. ∴ 不 等 式 解 集 为 -∞,41 ∪ 41,+∞ 或 x|x∈R且x≠41.
若 f(a)
>a,则实数 a 的取值范围是________.
【解析】 ①a≥0 时,12a-1>a,解得 a∈ ∅. ②a<0 时,a1>a,解得 a<-1.故 a<-1.
【答案】 (-∞,-1)
5.若函数 f(x)= kx2-6kx+(k+8)的定义 域为 R,则 k 的取值范围为________. 【解析】 此函数的定义域为 R 等价于函数 y =kx2-6kx+(k+8)≥0 对一切 x∈R 都成立. 当 k=0 时,y=8≥0 恒成立; 当 k≠0 时,Δk>=03,6k2-4k(k+8)≤0, 解得 0<k≤1,∴0≤k≤1.
1.(2007 年全国卷Ⅱ)不等式xx2--14>0 的解集是
() A.(-2,1) B.(2,+∞) C.(-2,1)∪(2,+∞) D.(-∞,-2)∪(1,+∞)
【解析】
x-1 x2-4
>0⇔
(x
-
1)(x2
-
4)>0
⇔
(x
-
1)(x-2)·(x+2)>0,用数轴标根法知选 C.
【答案】 C
2.一元二次不等式的解法 设 a>0,x1,x2 是方程 ax2+bx+c=0 的两 实根,且 x1<x2,一元二次不等式的解集如 下表所示:
不等式的解法高中数学公式(一)
不等式的解法高中数学公式(一)不等式的解法公式一次不等式的解法•公式1:加减法原则当不等式的两边加减同一个数时,不等号的方向不变。
–例子:将不等式3x−4<5x+2中的x求解出来。
解答:根据加减法原则,将同项进行归并,得到−6<2x,再把式子中的系数2移到右边,得到2x>−6。
最后,将不等号的方向翻转,得到解为x>−3。
•公式2:乘除法原则当不等式的两边乘除同一个正数时,不等号的方向不变;当乘除同一个负数时,不等号的方向翻转。
–例子:将不等式13x+2≥25x−1中的x求解出来。
解答:根据乘除法原则,将不等式中所有项的系数化为整数,得到5x+30≥6x−15。
继续归并同项,得到45≥x。
由于不等式中系数为正,所以不等号的方向不变,解为x≤45。
二次不等式的解法•公式1:移项与配方将二次不等式化为0的形式,通过因式分解或配方法,找到不等式的根,从而得到不等式的解。
–例子:将二次不等式x2−4x−5≥0求解出来。
解答:对二次不等式进行因式分解,得到(x−5)(x+1)≥0。
然后,利用零点的性质,绘制出区间图,并确定不等式的解为x≤−1或x≥5。
•公式2:求导法当二次不等式的导函数性质已知时,可以通过求导函数的零点和判断函数的增减性来求解不等式。
–例子:将二次不等式x2−6x+5<0求解出来。
解答:首先,求导函数f′(x)=2x−6的零点,得到x=3。
然后,通过判断导函数的增减性,得知当x<3时,导函数小于0,所以f(x)是减函数;当x>3时,导函数大于0,所以f(x)是增函数。
综上所述,不等式x2−6x+5<0的解为3−∞<x<3。
第12课时§6.4不等式的解法举例(1)
例3.解不等式:①0<x- <1② <0
例4.解不等式: ≤
随堂训练:
1.不等式 的解集是[ ]
A.{x|x>-3}B.{x| }C.{x|x>1}D.{x|x> 或- <x<1}
2.不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的范围是[ ]
A.(-∞, 2)B.(-∞, -2)C.(-2, 2)D.(-2, 2)
3.设x∈R,则不等式|x|<1是x2<1成立的[ ]
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.不等式 的解集是,|x+2|<1的解集是.
5.不等式|x2-3x|>4的解集是,不等式 的解集是.
第12课时§6.4不等式的解法举例(1)
学习目标:①掌握绝对值不等式、分式不等式的基本解法;
②理解解不等式就是利用不等式性质将其变形为等价(解集相等)的一次、二次不等式(组)的化归方法.
重点难点:不等式的等价变形是重点;解不等式中交集并集的处理是难点.
知识要点:①不等式|x|>a的解集为;
不等式|x|<a的解集为;
6.不等式 的解集是{x|x<1或x>2},那么a的值为.
7.解下列不等式①||x|-7|>3②||x|-7|<3
8.解不等式:①|x2-48|≥16②x2-5|x|+6<0
9.解不等式:
②解绝对值不等式的关键是把绝对值不等式等价变形为不含“绝对值”的不等式;
③解分式不等式的关键是把等价变形为整式不等式。
④绝对值不等式:|f(x)|>g(x) f(x)>g(x)或f(x)<-g(x).
2015届高考数学(人教,理科)大一轮复习配套讲义:第六章 不等式、推理与证明及不等式选讲
第六章不等式、推理与证明及不等式选讲(选修4-5)第一节不等关系与不等式1.实数大小顺序与运算性质之间的关系a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质1.在应用传递性时,注意等号是否传递下去,如a≤b,b<c⇒a<c.2.在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a>b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).[试一试]1.(2013·北京高考)设a,b,c∈R,且a>b,则()A .ac >bc B.1a <1b C .a 2>b 2D. a 3>b 3解析:选D 由性质知选D. 2.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b ;(2)a <0<b ⇒1a <1b ;(3)a >b >0,0<c <d ⇒a c >bd ;(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.不等式的分数性质 (1)真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); (2)假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). [练一练]若0<a <b ,c >0,则b +c a +c 与a +cb +c 的大小关系为________.答案:b +c a +c >a +c b +c的大小1.已知a 121212,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N .2.若实数a ≠1,比较a +2与31-a 的大小.解:a +2-31-a =-a 2-a -11-a =a 2+a +1a -1∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a .[类题通法]比较大小的常用方法(1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.不等式的性质[典例] >b 且c >d ”的A .充分不必要条件 B .既不充分也不必要条件 C .充分必要条件D .必要不充分条件(2)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[解析] (1)由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件,选D.(2)法一:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 法二:取特殊值. [答案] (1)D (2)C [类题通法]判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等. [针对训练](2014·北京东城区综合练习)若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又2a >2b ,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b ,选C. 不等式性质的应用[典例] ,2≤f (1)≤4.求 [解] f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].又∵1<f (-1)≤2,2≤f (1)<4, ∴5<3f (-1)+f (1)<10, 故5<f (-2)<10.故f (-2)的取值范围为(5,10). [类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[针对训练]若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法一元二次不等式与相应的二次函数及一元二次方程的关系1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax 2+bx +c >0(a >0)的解集为R 还是∅. [试一试]1.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C T = {x |-4≤x ≤1},根据补集定义, ∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.2.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .14D .-14解析:选D 由题意知-12、13是ax 2+bx +2=0的两根.则a =-12,b =-2.a +b =-14.故选D.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)1.由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.2.分类讨论思想解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.[练一练]若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立. ②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0. 得0<m <1, 由①②知0≤m <1. 答案:[0,1)一元二次不等式的解法[典例] (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [解] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a 或x >-a ;a >0时,解集为{}x |x >5a 或x <-a . [类题通法]1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图像,写出不等式的解集.2.解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.[针对训练] 解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(x ∈R )确定参数的范围1.(2013·重庆高考)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:根据题意可得(8sin α)2-4×8cos 2α≤0,即2sin 2α-cos 2α≤0,2sin 2α-(1-2sin 2 α)≤0,即-12≤sin α≤12.因为0≤α≤π,故α∈06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦, 答案:06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦,角度二 形如f (x )≥0(x ∈[a ,b ])确定参数范围2.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求a 的取值范围. 解:函数f (x )=x 2+(a -4)x +4-2a 的对称轴为x =-a -42=4-a2.①当4-a2<-1,即a >6时,f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0, 解得a <3,故有a ∈∅;②当-1≤4-a2≤1,即2≤a ≤6时,只要f ⎝⎛⎭⎫4-a 2=⎝⎛⎭⎫4-a 22+(a -4)×4-a 2+4-2a >0,即a 2<0,故有a ∈∅;③当4-a 2>1,即a <2时,只要f (1)=1+(a -4)+4-2a >0, 即a <1,故有a <1.综上可知,当a <1时,对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零. 角度三 形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求x 的取值范围. 解:由f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4, 令g (a )=(x -2)a +x 2-4x +4.由题意知在[-1,1]上,g (a )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x <1或x >3时,对任意的a ∈[-1,1],函数f (x )的值恒大于零. [类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.一元二次不等式的应用[典例] 件,年销量是a 件.现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k .该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式;(2)设k =2a ,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?[解] (1)设该商品价格下降后为x 元/件, 则由题意可知年销量增加到⎝⎛⎭⎫k x -4+a 件,故经销商的年收益y =⎝⎛⎭⎫kx -4+a (x -3),5.5≤x ≤7.5.(2)当k =2a 时,依题意有⎝⎛⎭⎫2ax -4+a (x -3)≥(8-3)a ×(1+20%),化简得x 2-11x +30x -4≥0,解得x ≥6或4<x ≤5.又5.5≤x ≤7.5,故6≤x ≤7.5,即当实际价格最低定为6元/件时,仍然可以保证经销商2014年的收益比2013年至少增长20%.[类题通法]构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解.[针对训练]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解:(1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.第三节绝对值不等式(选修4-5)1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法有以下几种: ①利用绝对值不等式的几何意义求解的思想; ②利用“零点分段法”求解;③通过构造函数,利用函数的图象求解.1.对于绝对值三角不等式,易忽视等号成立的条件.对|a +b |≥|a |-|b |,当且仅当a >-b >0时,等号成立,对|a |-|b |≤|a -b |≤|a |+|b |,如果a <-b <0当且仅当|a |≥|b |且ab ≥0时左边等号成立,当且仅当ab ≤0时右边等号成立.2.形如|x -a |+|x -b |≥c (c >0)的不等式解法在讨论时应注意分类讨论点处的处理及c 的符号判断,若c <0则不等式解集为R.[试一试]1.(2013·广东高考)不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)解析:选D 由|x 2-2|<2得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2. 2.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 原不等式等价于|x -2|>|x -1|, 则(x -2)2>(x -1)2,解得x <32.含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[练一练]1.已知不等式|2x -t |+t -1<0的解集为(-12,12),则t =( )A .-1B .0C .1D .2解析:选B |2x -t |<1-t ,t -1<2x -t <1-t , 2t -1<2x <1,t -12<x <12,∴t =0.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:利用绝对值不等式的性质求解. ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]绝对值不等式的解法1.在实数范围内,不等式|x -12|+|x +12|≤3的解集为____________.解析:法一:分类讨论去绝对值号解不等式.当x >12时,原不等式转化为2x ≤3⇒x ≤32;当-12≤x ≤12时,原不等式转化为1≤3,恒成立;当x <-12时,原不等式转化为-2x ≤3⇒x ≥-32.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:利用几何意义求解.不等式⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫-32≤x ≤32 2.(2013·西安质检)若关于x 的不等式|x -a |<1的解集为(1,3),则实数a 的值为________. 解析:原不等式可化为a -1<x <a +1,又知其解集为(1,3),所以通过对比可得a =2. 答案:23.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________.解析:法一:令y 1=|x -3|-|x -4| =⎩⎪⎨⎪⎧1, x >4,2x -7, 3≤x ≤4,-1,x <3.y 2=a . 如图要使|x -3|-|x -4|<a 的解集不是空集,则a 的取集范围是a >-1.法二:注意到||x -3|-|x -4||≤|(x -3)-(x -4)|=1,-1≤|x -3|-|x -4|≤1.若不等式|x -3|-|x -4|<a 的解集是空集,则有|x -3|-|x -4|≥a 对任意的x ∈R 都成立,即有(|x -3|-|x -4|)min ≥a ,a ≤-1.因此,由不等式|x -3|-|x -4|<a 的解集不是空集可得,实数a 的取值范围是a >-1.答案:(-1,+∞) [类题通法]利用零点分类讨论法解绝对值不等式时,注意分类讨论时要不重不漏.绝对值不等式的证明[典例] ,不等式f (x )<4M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. [解] (1)f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2,∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0,∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.又|x +1|+|x -1|≥|(x +1)-(x -1)|=2,∴a ≤2. 故a 的取值范围为(2,+∞). [类题通法]证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明; (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明; (3)转化为函数问题,数形结合进行证明. [针对训练](2014·乌鲁木齐高三诊断性测验)设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,∴要使f (x )=a 2+2a 2+1成立,需且只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12∪⎣⎡⎭⎫52,+∞.绝对值不等式的综合应用[|2x +a |,g (x )=(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.[解] (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x<2}.(2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43. [类题通法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.[针对训练](2013·辽宁模拟)已知f (x )=|x +a |+|x -2|. (1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a 的取值范围. 解:(1)构造函数g (x )=|x -1|+|x -2|-5, 则g (x )=⎩⎪⎨⎪⎧-2x -2(x ≤1),-4(1<x <2),2x -8(x ≥2).令g (x )>0,则x <-1或x >4,∴原不等式的解集为(-∞,-1)∪(4,+∞). (2)∵f (x )+a =|x +a |+|x -2|+a ≥|a +2|+a , 又关于x 的不等式f (x )+a <2 014的解集是非空集合,∴|a +2|+a <2 014,解得a <1 006.第四节二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域2.1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.[试一试]1.(2013·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( ) A .-7 B .-6 C .-5D .-3解析:选B 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值.由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6,故选B. 2.如图所示的平面区域(阴影部分)满足不等式________.答案:x +y -1>01.确定二元一次不等式表示平面区域的方法二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.[练一练](2013·陕西高考)若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.解析:由题意知y =⎩⎪⎨⎪⎧x -1(x ≥1),1-x (x <1),作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A (-1,2)时,2x -y 取最小值-4.答案:-41.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.∴S △ABC =12×83×1=43.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.3.如图阴影部分表示的区域可用二元一次不等式组表示为________.解析:两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 答案:⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0[类题通法]二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.求目标函数的最值线性规则问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题角度有:(1)求线性目标函数的最值; (2)求非线性目标的最值; (3)求线性规划中的参数. 角度一 求线性目标函数的最值1.(1)(2013·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53D.52(2)如果函数x 、y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .1C .-2D .-3解析:(1)选C 不等式组表示的平面区域为图中阴影部分.平行移动y =-12x +12z ,可知该直线经过y =2x 与x +y =1的交点A ⎝⎛⎭⎫13,23时,z 有最大值为13+43=53.(2)选B 如图作出可行域,当z 经过直线y +1=0与x +y +1=0的交点(0,-1)时,z max=1.角度二 求非线性目标的最值2.(1)(2013·山东高考)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13. (2)(2014·长春调研)若实数x ,y 满足⎩⎪⎨⎪⎧12≤x ≤1,y ≥-x +1,y ≤x +1,则y +1x的取值范围是________.解析:由题可知y +1x =y -(-1)x -0,即为求不等式所表示的平面区域内的点与(0,-1)的连线斜率k 的取值范围,由图可知k ∈[1,5].答案:[1,5]角度三 求线性规划中的参数3.(1)(2013·浙江高考)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.解析:画出可行域,根据线性规划知识,目标函数取最大值12时,最优解一定为(4,4),这时12=4k +4,k =2.答案:2(2)(2014·江西七校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +2y -8≤0,x ≤3.若点⎝⎛⎭⎫3,52是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.解析:记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.答案:⎝⎛⎭⎫-∞,-12 [类题通法]1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.线性规划的实际应用[典例] (2013·两种型号的客车安排名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元[解析] 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).[答案] C [类题通法]求解线性规划应用题的注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式. [针对训练]某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元解析:选C 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.第五节基本不等式与柯西不等式(选修4-5)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)4.平均值不等式(1)定理:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.我们称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式.(2)一般形式的算术—几何平均值不等式:如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.5.柯西不等式(1)柯西不等式的代数形式:设a 1,a 2,b 1,b 2均为实数,则(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(当且仅当a 1b 2=a 2b 1时,等号成立).(2)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.(4)柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性. 3.使用柯西不等式或平均值不等式时易忽视等号成立的条件. [试一试]1.“a >0且b >0”是“a +b2≥ab ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13B.12C.34D.23解析:选B 由0<x <1,故3-3x >0,则x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.3.已知x 2+y 2=10,则3x +4y 的最大值为( ) A .510 B .410 C .310D .210解析:选A ∵(32+42)(x 2+y 2)≥(3x +4y )2, 当且仅当3y =4x 时等号成立, ∴25×10≥(3x +4y )2, ∴(3x +4y )max =510.1.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).2.巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.[练一练] 若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5利用基本不等式求最值[典例] (1)(2013·四川高考)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.[解析] f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =ax,即a =4x 2时取等号,则由题意知a =4×32=36.[答案] 36(2)(2014·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范围是________.[解析] x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即x =2y =4时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2.[答案] (-4,2)(3)(2013·山东高考改编)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则zxy 的最小值为________.[解析] z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x-3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y =4时“=”成立.[答案] 1解:由(3)知当zxy取最小值时x =2y .∴z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. [类题通法]两个正数的和与积的转化基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.[针对训练](1)当x >0时,则f (x )=2xx 2+1的最大值为________. (2)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10基本不等式的实际应用[典例] 经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大? [解] (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元), ∴2013年的利润y =1.5x ×8+16xx -8-16x -m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2013年的促销费用投入3万元时,厂家的利润最大为21万元. [类题通法]利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.[针对训练](2013·湖南省五市十校联合检测)某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.。
6.4 不等式的解法
3 3 x1 = 1 − , x2 = 1 + , 3 3 所以原不等式的解集是 {x | 1 − 3 < x < 1 + 3 }. 3 3
(2)方法一 原不等式即为16 16x (2)方法一 ∵原不等式即为16x2-8x+1≥0, 其相应方程为16x 其相应方程为16x2-8x+1=0, 16 Δ=(Δ=(-8)2-4×16=0,
解 (1) 原 不 等 式 等 价 于 (x + 4)(x + 5)2(x - 2)3>0 ⇔ x+5≠0 x≠-5 + ≠ ≠ ⇔ , 其解集如下图 (x+4)(x-2)>0 x<-4,或x>2 - + - , 的阴影部分: 的阴影部分:
∴原不等式的解集为 {x|x<-5,或-5<x<-4,或 x>2}. xx , x , .
f (x)g(x) ≥ 0 f(x) ⇔ , ③g(x)≥0⇔ g(x) ≠ 0 f (x)g(x) ≤ 0 f(x) . ④ ≤0⇔ g(x) ≠ 0 ⇔
g(x)
5.绝对值不等式的解法 .
)>g (1)|f(x)|>|g(x)|⇔ f2(x)>g2(x) ; ⇔ )>g )<- (2)|f(x)|>g(x)⇔ f(x)>g(x),或f(x)<-g(x) ; ⇔ )<f )<g (3)|f(x)|<g(x)⇔ -g(x)<f(x)<g(x) ; ⇔
6.4
要点梳理
不等式的解法 自主学习
基础知识
1.一元一次不等式的解法 .
一元一次不等式 ax>b(a≠0)的解集为: 的解集为: ≠ 的解集为 (1)当 a>0 当 (2)当 a<0 当
高考第一轮复习数学:64不等式的解法(一)-教案(含习题及答案).
6.4 不等式的解法(一)●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为{x|x >a b };当a <0时,解集为{x|x <ab}.2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx+c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”. 思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x|x <-2或0<x <3}B.{x|-2<x <0或x >3}C.{x|x <-2或x >0}D.{x|x <0或x >3}解析:在数轴上标出各根.-23答案:A2.(2003年北京)若不等式|ax+2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax+2|<6得-6<ax+2<6,即-8<ax <4.∵不等式|ax+2|<6的解集为(-1,2),易检验a=-4. 答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x+1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1. 又| f (x+1)|<1⇔-1<f (x+1)<1, 即f (0)<f (x+1)<f (3). 又f (x )为R 上的增函数, ∴0<x+1<3.∴-1<x <2. 答案:B4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1. ∴x=1;当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,x ≥-2.答案:{x|-2≤x ≤1}(文)不等式ax 2+(ab+1)x+b >0的解集为{x|1<x <2},则a+b=_______.解析:∵ax 2+(ab+1)x+b >0的解集为{x|1<x <2}, ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310a ba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a , ∴a+b=-23或-3.答案:-23或-35.不等式ax 2+bx+c >0的解集为{x|2<x <3},则不等式ax 2-bx+c >0的解集为_______.解析:令f (x )=ax 2+bx+c ,其图象如下图所示,xyy y O= = f x ( )fx ()-3 -2 23-再画出f (-x )的图象即可.答案:{x|-3<x <-2} ●典例剖析【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x x x+1<0,即322322--+-x x x x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y=lg [mx 2+2(m+1)x+9m+4]对任意x ∈R 恒有意义.剖析:mx 2+2(m+1)x+9m+4>0恒成立的含义是该不等式的解集为R.故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m+1)x+9m+4>0的解集为R ,则 ⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41.评述:二次不等式ax 2+bx+c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a=0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m=0适合.当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m|≤2的所有m 都成立,求x 的取值范围.剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0.令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2). 则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f解得271+-<x <231+. 深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围. 2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x+12+x >2的解集是A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x+12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x+1)>0⇔-1<x <0或x >1.解法二:验证,x=-2、21不满足不等式,排除B 、C 、D.答案:A2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n,则不等式f (x )·g (x )>0的解集是A.(m ,2n )B.(m ,2n )∪(-2n,-m )C.(2m ,2n )∪(-n ,-m )D.(2m ,2n )∪(-2n ,-2m )解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n).∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n ,-2m),即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m).由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n<x <-m. 答案:B3.若关于x 的不等式-21x 2+2x >mx 的解集为{x|0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x=0的两个根, ∴-212--m=0+2.∴m=1. 答案:14.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x+(x+2)·f (x+2)≤5的解集是____________.解析:当x+2≥0,即x ≥-2时. x+(x+2)f (x+2)≤5⇔2x+2≤5⇔x ≤23.∴-2≤x ≤23.当x+2<0即x <-2时,x+(x+2)f (x+2)≤5⇔x+(x+2)·(-1)≤5⇔-2≤5, ∴x <-2.综上x ≤23.答案:(-∞,23]5.(2004年宣武二模题)定义符号函数sgnx=⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x+2)>(2x -1)sgnx.解:当x >0时,原不等式为x+2>2x -1. ∴0<x <3.当x=0时,成立.当x <0时,x+2>121-x .x -121-x +2>0.1224122--+--x x x x >0.123322--+x x x >0.∴-4333+<x <0.综上,原不等式的解集为{x|-4333+<x <3}. 6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:原不等式变形为ax 2+(a -2)x -2≥0. ①a=0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x+1)≥0,当a >0时,x ≥a2或x ≤-1;由于a 2-(-1)=aa 2+,于是当-2<a <0时,a2≤x ≤-1; 当a=-2时,x=-1;当a <-2时,-1≤x ≤a 2.综上,当a=0时,x ≤-1;当a >0时,x ≥a 2或x ≤-1;当-2<a <0时,a 2≤x ≤-1;当a=-2时,x=-1;当a <-2时,-1≤x ≤a2. 培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1).解:令y=log a x ,则原不等式化为y 3-3y <0, 解得y <-3或0<y <3, 即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x|x >a 3-}∪{x|a3<x <1};当a >1时,不等式的解集为{x|0<x <a 3-}∪{x|1<x <a 3}. 8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x+a|+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x.若x 2-4x+a <0,则原不等式化为x 2-3x+a+2≥0.此不等式的解集不可能是集合{x|x ≤3}的子集,∴x 2-4x+a <0不成立.于是,x 2-4x+a ≥0,则原不等式化为x 2-5x+a -2≤0.∵x ≤3,令x 2-5x+a -2=(x -3)(x -m )=x 2-(m+3)x+3m ,比较系数,得m=2,∴a=8. 此时,原不等式的解集为{x|2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x=-2,又∵方程2x 2+(2k+5)x+5k=0的两根为-k 和-25.①若-k <-25,则不等式组的整数解集合就不可能为{-2};②若-25<-k ,则应有-2<-k ≤3.∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2. ●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax >x (a ∈R ).解法一:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0;若a=0,则x <0;若a >0,则x <0或x >a1.综上,a <0时,原不等式的解集是(a1,0);a=0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).解法二:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解. 显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾,∴此时不等式无解;若a=0,则-1>0,此时不等式无解;若a >0,则x >a1.(2)当x <0时,得ax -1<0.若a <0,则x >a 1,得a1<x <0;若a=0,则-1<0,得x <0;若a >0,则x <a1,得x <0.综上,a <0时,原不等式的解集是(a1,0);a=0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sinx )≤f (a+1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得 ⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,,即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立. 故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.。
高考文科数学第一轮考点总复习课件 6.4 不等式的解法
▪
3. 设a>0,且为常数,若不等(a式1)x2 2x - 6x
的解集为(2,+∞),求a的值.
ax 1
▪ ▪
解 即:不等式所化以为(a(x1)a+xx23)1(2xx --62-)x(a0,x+1)>0.
▪ ▪
因 因x2a为为x xa不1->6等00,,式所的以解(集x+为3)((2x,-2+)(∞x1a+), )>0.
▪ (ax+2即)2<a23x62,+--434aa2a2x-31-22<, 0.
▪
由题设可 a得2
解得a=-4.
▪ 所以f(x)=-4x+2.
14
▪ 由f (xx) 1, -4x得x 2 1,
5x 4x
-
22即
0.
1
2
▪ 解得x2> 或5x≤ . 1
2
▪ 所以原不等式的解集为2{x|x>5
或x≤ }.
( ,0);
5
题型5 指数、对数不等式的解法
▪
2. 解下列不等式:
▪
(1)36x+2>2x+8·27x;
▪
(2)lg(10x+5)-1<lg(x2+2x-1)-lg(x-2).
▪
解:(1)原不等式化为(2×3)2x+4>
2x+8·33x,
▪
即2x-4·34-x>1,2即( )x-4>1.
▪
所以x-4<0,即x<3 4,所以不等式的解集
2)10( x 2
2x
-1),
x2
3x52x0, 即
▪ 所以原不等式的解集为(2,+∞).
8
高考文科数学第一轮考点总复习课件 6.4 不等式的解法
g(x) 0
9
c
10
11
▪
不等式ax2+bx+c>0的解集为
{x|2<x<3},则不等式ax2-bx+c>0的
解集为( )
▪
A. {x|x<-2}
B. {x|x>
3}
▪
C. {x|x<-2或x>3} D. {x|-3
<x<-2}
▪
解:令f(x)=ax2+bx+c,其图象如
下图所示,
12
▪
3.已f (x知) x+(x+2)·
2
▪
把方程x(2x+5)(x-3)=0
▪ 的三个根x1=0,x2=- , 21
▪
然后从右上方开始画曲线顺次
经过三个根,其解集如图的阴影部分.
▪
所以原不等式的解集52 为{x|- <x
<0或x>3}.
▪(
x
4)(
x
(52)2)(原x - 2不)0等式(xx等54价)(0x于- 2)0
x -5 x-4或x
第六章
不等式
1
6.4 不等式的解法
●一元一次不等式的解法
●一元二次不等式的解法
考
点 ●简单的一元高次不等式
的解法
搜
索 ●分式不等式的解法
2
整式、分式不等式的解法
是高考考查运算能力的重要途 高 径,它们有时单独、直接地出 考 现在选择、填空题中,难度中、
猜 低档;有时与函数、三角函数、 想 解析几何等知识综合,以解题
1(x 0) -1(x 0),
则不等式
▪ f(x+2)≤5的解集是________.
▪
解:当 x+2≥0,即x≥-322时,
高三数学一轮复习 6.4 不等式的解法课件 理 大纲版人教版
由此得2x=1 y >0,∴-1<y<1.
1 y
故反函数f-1(x)的定义域为(-1,1).
( 10 分 ) 已 知 函 数 f(x) 是 定 义 在 [ -1,1 ] 上 的 奇 函 数 , 且
f(1)=1,若x,y∈[-1,1],x+y≠0,
>0.
(1)证明:f(x)在[-1,1]上是增函数;
{x|x>2或x<1+1 }.
1 a
10.(8分)设a∈R,f(x)为奇函数,且f(2x)=
(1)求f(x)的反函数f-1(x)及其定义域;
(2)设g(x)=
,若x∈[1 2, ],f-1(x)≤g(x)恒成立,
23
求实数k的取值范围.
【解析】(1)
∵f(x)是R上的奇函数,∴f(0)= 2a= 20,得a=1.
2
二、填空题(每小题3分,共9分)
6.(2010·上海模拟)不等式0< 1 <2的解集是_____.
x
【解析】不等式等价于 1>0 x>0
x
<2,即 1 <0, 1 2x
x
x
即 x>0
x> 1或x<0,
2
∴x> 1 .
2
答案:{x|x> 1 }
2
7.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等
[(1-a)n-a]lga<0对任意正整数n恒成立.
只要(1-a)n-a>0,即a<(1-a)n恒成立,
又1-a>0,∴(1-a)n在[1,+∞)上为增函数. ∴[(1-a)n]min=1-a,∴a<1-a,得:0<a<1 .
2015届高三数学第一轮复习课件:6.2简单不等式的解法
A.A B C.A=B
D.A∩B=∅
B.B A
由题意得,A=x|x2-x-2<0=x|-1<x<2,则 B
是 A 的真子集,故选 B.
B
2.分式不等式的解法
(2013 年江西卷)下列选项中,使不等式 x<1x<x2 成立 的 x 的取值范围是( ).
A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)
1.不等式 a2-2a-3<0 的解集是( ).
A.(-1,3)
B.(-∞,-1)∪(3,
+∞)
C.(-3,1) D.(-∞,-3)∪(1,+∞)
由 a2-2a-3<0 解得-1<a<3,选 A.
A
第四页,编辑于星期五:八点 五十一分。
2.若函数 f(x)的定义域为{x|x>21},则函数 f(1x)的定
义域为( ).
A.{x|x>12} B.{x|x<12且 x≠0} C.{x|x>2 或 x<0} D.{x|0<x<2}
x1>21⇔2x(x-2)<0⇔0<x<2.
D
3.已知函数 f(x)=-x2-1,1,x≥x<00,,则满足不等式 f(3- x2)<f(2x)的 x 的取值范围为( ).
第五页,编辑于星期五:八点 五十一分。
f(x)>14成立的
x
的取值范围
是(-∞,1]∪(3,+∞). (1)D (2)(-∞,1]∪(3,+∞) 题型二 含参数不等式
对于满足 0≤a≤4 的实数 a,使 x2+ax>4x+a -3 恒成立的 x 取值范围是________.
高中总复习第一轮数学 第六章 6.4 不等式的解法(一)
6.4 不等式的解法(一)巩固·夯实基础一、自主梳理1.关于x 的一元一次不等式ax>b 的解集是a>0时,x>a b ;a<0时,x<ab .关于x 的不等式ax>b 的解集是R,则实数a 、b 满足的条件是a=0,b<0.2.一元二次不等式ax 2+bx+c<0(a ≠0)的解集的确定受a 的符号,b 2-4ac 的符号的影响,结合图象,数形结合!3.分式不等式的解法(1)如能判断分母的符号,可直接去分母,转化为整式不等式;(2))()(x g x f ≥0⇒⎩⎨⎧≠≥∙;0)(,0)()(x g x g x f (3)用穿根法.4.简单的高次不等式解法——穿根法.穿根法操作过程(1)把不等式变形为一边是一次因式的积,另一边是0的形式;(2)各因式中x 的系数全部变为1,约去偶次因式;(3)把各个根从小到大依次排好,从右上方向左下方穿根;(4)严格检查因式的根(特别是约去的偶次因式的根)是否在解集内.二、点击双基1.(理)关于x 的不等式ax 2+bx-2>0的解集是(-∞,-21)∪(31,+∞),则ab 等于…( ) A.-24 B.24 C.14 D.-14解析:-21,31是方程ax 2+bx-2=0的两根. 答案:B(文)不等式(x 2-2)log 2x>0的解集是( )A.(0,1)∪(2,+∞)B.(-2,1)∪(2,+∞)C.(2,+∞)D.(-2,2)解析:原不等式等价于⎩⎨⎧>>-0log ,0222x x 或⎩⎨⎧<<-,0log ,0222x x 答案:A2.(经典回放)若不等式|ax+2|<6的解集为(-1,2),则实数a 等于( )A.8B.2C.-4D.-8解析:由|ax+2|<6得-6<ax+2<6,即-8<ax <4.∵不等式|ax+2|<6的解集为(-1,2),易检验a=-4.答案:C3.(经典回放)已知函数f(x)是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么|f(x+1)|<1的解集是( )A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f(0)=-1,f(3)=1.又|f(x+1)|<1⇔-1<f(x+1)<1,即f(0)<f(x+1)<f(3),又f(x)为R 上的增函数,∴0<x+1<3.∴-1<x <2.答案:B4.不等式1)3)(2)(1(+---x x x x ≤0的解集是__________________________________. 解析:穿根法.答案:(-1,1)∪[2,3]5.(2006湖北八校联考) (理)已知x 1·x 2·x 3·…·x 2 006=1,且x 1,x 2,…,x 2 006都是正数,则(1+x 1)(1+x 2)…(1+x 2 006)的最小值是_________________________________.解析:由题意得(1+x 1)(1+x 2)...(1+x 2 006)≥21x .22x .. (22006x)=22 006·200621x x x ⋅⋅⋅=22 006.答案:22 006(文)已知不等式组⎪⎩⎪⎨⎧<+-<+-086,03422x x x x 的解集是不等式2x 2-9x+a<0的解集的子集,则实数a 的取值范围是____________________________________.解析:解不等式组⎪⎩⎪⎨⎧<+-<+-086,03422x x x x 得2<x<3. 令f(x)=2x 2-9x+a,只需满足⎪⎪⎩⎪⎪⎨⎧≤≤<⇒⎪⎪⎩⎪⎪⎨⎧≤+-≤+-<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤>-=∆<<9108810271808188810)3(0)2(0881442a a a a a a f f a a ⇒a ≤9.答案:a ≤9诱思·实例点拨【例1】 如果关于x 的不等式ax 2+bx+c<0的解集是{x|x<m 或x>n}(m<n<0),求关于x 的不等式cx 2+bx+a>0的解集.解:由已知m 、n 是ax 2+bx+c=0的两根,且m<n<0,则cx 2+bx+a=0中易知a<0,c<0,则方程可变为c(x 1)2+b(x1)+a=0,∴cx 2+bx+a=0的两根为m 1、n 1,且m 1>n1. ∴所求解集为{x|n 1<x<m 1}. 链接·拓展在本题的条件下,求不等式ax 2-bx+c<0的解集.解:令f(x)=ax 2+bx+c,则f(-x)=ax 2-bx+c.由已知f(x)的图象为又∵f(-x)与f(x)图象关于y 轴对称,∴f(-x)<0的解集为{x|x<-n 或x>-m}.【例2】 解关于x 的不等式1-x x <1-a. 解:原不等式等价于1)1(---x a ax <0⇔[ax-(a-1)](x-1)<0.(*) (1)当a>0时,(*)等价于(x-1)(x-aa 1-)<0, ∵a a 1-=1-a1<1, ∴不等式的解集是a a 1-<x<1. (2)当a=0时,(*)等价于x-1<0,不等式的解是x<1.(3)当a<0时,(*)等价于(x-1)(x-a a 1-)>0, ∵a a 1-=1-a1>1, ∴不等式的解是x<1或x>aa 1-. 综上知,当a<0时,不等式的解集为(-∞,1)∪(a a 1-,+∞); 当a=0时,不等式的解集为(-∞,1);当a>0时,不等式的解集为(aa 1-,1). 【例3】 若不等式2x-1>m(x 2-1)对满足|m|≤2的所有m 都成立,求x 的取值范围.剖析:对于m ∈[-2,2],不等式2x-1>m(x 2-1)恒成立,把m 视为主元,利用函数的观点来解决. 解:原不等式化为(x 2-1)m-(2x-1)<0.令f(m)=(x 2-1)m-(2x-1)(-2≤m ≤2),则⎪⎩⎪⎨⎧<---=<----=-.0)12()1(2)2(,0)12()1(2)2(22x x f x x f 解得271+-<x<231+. 链接·聚焦1.本题若变式:不等式2x-1>m(x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4 不等式的解法(一)●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为{x |x >a b };当a <0时,解集为{x |x <ab }. 2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”.思考讨论 用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理?●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3}解析:在数轴上标出各根.-23答案:A2.(2003年北京)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于A.8B.2C.-4D.-8解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4.答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1. 又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3). 又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2. 答案:B 4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1. ∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,x ≥-2.答案:{x |-2≤x ≤1}(文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______.解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2},∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310a ba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a , ∴a +b =-23或-3. 答案:-23或-3 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______.解析:令f (x )=ax 2+bx +c ,其图象如下图所示,再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x x x +1<0,即322322--+-x x x x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义.剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R .故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则 ⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m都成立,求x 的取值范围.剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f解得271+-<x <231+. 深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x(x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D. 答案:A2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n),其中0<m <2n,则不等式f (x )·g (x )>0的解集是 A.(m ,2n )B.(m ,2n)∪(-2n,-m ) C.(2m ,2n)∪(-n ,-m ) D.(2m ,2n)∪(-2n ,-2m) 解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n). ∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n ,-2m ), 即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n,-2m ). 由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n<x <-m . 答案:B3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根, ∴-212--m=0+2.∴m =1. 答案:14.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________.解析:当x +2≥0,即x ≥-2时. x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23. ∴-2≤x ≤23. 当x +2<0即x <-2时,x +(x +2)f (x +2)≤5⇔x +(x +2)·(-1)≤5⇔-2≤5, ∴x <-2. 综上x ≤23. 答案:(-∞,23] 5.(2004年宣武二模题)定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1. ∴0<x <3.当x =0时,成立.当x <0时,x +2>121-x . x -121-x +2>0. 1224122--+--x x x x >0.123322--+x x x >0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}.6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0,当a >0时,x ≥a2或x ≤-1; 由于a 2-(-1)=aa 2+,于是 当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1; 当a <-2时,-1≤x ≤a2. 综上,当a =0时,x ≤-1;当a >0时,x ≥a2或x ≤-1;当-2<a <0时,a2≤x ≤-1; 当a =-2时,x =-1;当a <-2时,-1≤x ≤a2. 培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1).解:令y =log a x ,则原不等式化为y 3-3y <0,解得y <-3或0<y <3, 即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a 3}.8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立.于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3, 令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8.此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25. ①若-k <-25,则不等式组的整数解集合就不可能为{-2}; ②若-25<-k ,则应有-2<-k ≤3. ∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2. ●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.拓展题例【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax >x (a ∈R ). 解法一:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0; 若a >0,则x <0或x >a1. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a1,+∞). 解法二:由12-ax ax >x ,得12-ax ax -x >0,即1-ax x>0.此不等式与x (ax -1)>0同解.显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾, ∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1. (2)当x <0时,得ax -1<0. 若a <0,则x >a 1,得a1<x <0; 若a =0,则-1<0,得x <0; 若a >0,则x <a1,得x <0. 综上,a <0时,原不等式的解集是(a1,0); a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a1,+∞). 【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,, 即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立. 故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.。