第三章热力学一般关系
第3章 热力学第一定律讲解
A
B
解
mA
PAVA RTA
686 2.5 0.287 353
16.91kg
mB
PBVB RTB
980 1 0.287 303
11.26kg
m mA mB 28.17kg
V VA VB 3.5m3
W 0
Q U mcvT2 (mAcvTA mBcvTB )
c12
gz1)
Ws
m2
(h2
1 2
c22
gz2
)
dE CV
整理得
Q
m2 (h2
1 2
c22
gz2 ) m1(h1
1 2
c12
gz1
)
dE CV
Ws
使用范围:
开口系统与闭口系统 稳定与非稳定流动 可逆与不可逆过程
二、应用
无限大的容器(或管网)给有限大的容器充气问题
①分子动能:平动动能、转动动能、振动 动能,由系统的温度决定。
②分子位能:分子间的作用力,由气体 的比容决定。 对于理想气体,分子间无作用力,故u=f(T)。
2、外储存能 ①系统的宏观动能
E 1 mc2 k2
②系统的重力位能(相对系统外某一坐标系而言)
E mgz p
对于理想气体而言,系统的储存能为:
了储存能之外,还得到了流动功。同样,流出控制体时,除
输出了储存能之外,还输出了流动功。因此,质量为m1的工 质工质流入控制体传递给系统的能量为:
U1
1 2
m1c12
化工热力学 第三章
S P V T T V
S V p T P T
H V V T P T T P
H ig V
U P T P V T T V
建立了S = S(T,P )或S = S(T,V )
2、其它有用的关系式: 将dH =TdS+VdP 在恒T下两端同时除以d P
H V S p T P V V T T T T P
借助EOS可计算 等温过程的△H
H V P S A P V T G V P T
重要!
F 分别对 M X Y
F M Y X Y X Y X
S ig R V T V S ig R p P
T
S ig f (T )
H ig P
V RT 0 P T
P 0 V T T
H ig T P
M
T2,P2,M2 真实气体
M1
理想气体 T1,P0,M1ig
M 2
M ig
T2,P0,M2ig 理想气体
ig
M M 2 M1 M
两个偏离函数之差
理想性质的变化
热力学第一、第二定律
V f (T , P ) S f (T , P )
4个热力学基本关系式
H , U , A, G f (T , P ) 或 f (T ,V )
M R M ig (T , p) M (T , p)
化工热力学第三章
M(T, p) Mig (T, p0 )
参考态(T,p0的理想气体)
研究态(T,p)
理想气体 V ig RT p
中间态(T,p→0)
实际系统 V V (T , p)
化工热力学 第三章 均相封闭系统 热力学原理及其应用
❖ 1 偏离吉氏函数
❖ 已知dG=-SdT+Vdp,等温时,[dG=Vdp]T ❖ 采用如图所示的变化途径,从参考态→中
V)为独立变量来推算其它从属变量最有实 际价值。
化工热力学
第三章 均相封闭系统 热力学原理及其应用
❖ 2)借助Maxwell关系式
❖ 从属变量与独立变量之间的热力学关
系是推算的基础,但要欲导出U,H,S,
A和G等函数与p-V-T的关系,需要借助 一定的数学方法—Maxwell关系式
化工热力学
第三章 均相封闭系统 热力学原理及其应用
❖ 本章的主要内容有:
❖ 1. 从均相封闭系统的热力学基本关系出
发,获得热力学函数(如U、S、H、A、 G、Cp、Cv等)与p、V、T之间的普遍化
依赖关系
❖ 2. 定义有用的新热力学函数—逸度和逸 度系数,并解决其计算问题。
化工热力学
第三章 均相封闭系统 热力学原理及其应用
❖ 3. 由p-V-T关系推算其它热力学性质。 将普遍化热力学关系式与具体的状态
❖ 3)由于化学反应引起组成变化和相变化引 起的质量传递的场合不能直接使用。
化工热力学
第三章 均相封闭系统 热力学原理及其应用
❖ 5 如何确定热力学性质的关系式
❖ 1)确定独立变量
❖ 以容易测定的性质作为独立变量
❖ p、V、T数据的测定较其它热力学性质的
测定容易,且有大量数据积累,其状态方程
化工热力学-第三章
若选用T 若选用T,p作为变量,则有H=f(T,p),对此式求微分: 作为变量,则有H=f(T,p),对此式求微分: H=f(T 对此式求微分
dH H H = dT + p T P
H = T p
dp T
∵
C
p
(Cp的定义) Cp的定义) 的定义 (3-2)
H p S = T +V P T T
(1)基本关系式 (1)基本关系式 Z=f(x,y) ① ②
Z Z dZ = dx + y dy x y x
令 z = M
x y
z =N y x
dz=Mdx+Ndy
(3-23) 23)
M y z = x y x y x
在特定条件下,可以将此式简化: 在特定条件下,可以将此式简化: T=const P=const 理想气体
V dH = V T dp T p
dH=CpdT V R = T p p R V V T =V T = 0 p T p
pdT, =f(T)其他理想 ∴ dH*=C*pdT,说明 H*=f(T)其他理想 气体的热力学性质见P41 P41。 气体的热力学性质见P41。 对液体 H =V T V β = 1 V 膨 胀 p T p V T p 系数 T ∴
求偏微分: 在x不变时,M对y求偏微分: 不变时, 对 求偏微分 求偏微分: 在y不变时,N对x求偏微分: 不变时, 对 求偏微分 对于连续函数: 对于连续函数:
2z 2z = xy yx
z N = x y x y x y
M y
N = x y x
注意以下几点
四大微分方程的应用: 四大微分方程的应用: 恒组分,恒质量体系——封闭体系 恒组分,恒质量体系 封闭体系 均相体系(单相) 均相体系(单相) 平衡态间的变化 常用于1mol性质 常用于 性质
热力学-实际气体的性质及热力学一般关系
(
s v
)(v
T u
)(v
u s
)
v
1
(
s T
)v
(
u T
)
v
(
u s
)
v
cv T
得到: ds
cv T
dT
( p T
)v dv(第一ds方程)
6.6 热力学能、焓和熵的一般关系式
同样:
得到 :
ds
cp T
dT
( v T
)p
dp(第二ds方程)
和:
dsLeabharlann cv(T T p)v
dp
c p( T T v
)
pVm3 (bp RT )Vm2 aVm ab 0
可得出三个不等的实根、三个 相等的实根或一个实根两个虚根。
6.2 范德瓦尔方程和R-K方程
由临界状态:
( p ) 0 Vm
(
2 p Vm2
)
0
得:Pcr=a/27b2 Tcr=8a/27Rb 或 a =27(R Tcr)2/64 Pcr
RT
a
p
Vm
b
T
V 0.5 m
(Vm
b)
6.3 对应态原理与通用压缩因子图
一、对应态原理
对多种气体的实验数据分析显示,接近各
自的临界点时所有流体都显示出相似的性质, 这说明各种气体在对应状态下有相同的对比性 质。
f(pr ,Tr ,vr)=0
其中pr
p pcr
,Tr
T Tcr
, vr
v vcr
如范德瓦尔方程可改写为:
p
dv(第三ds方程)
6.6 热力学能、焓和熵的一般关系式
第三章 纯流体的热力学性质
3.2 热力学性质的计算
⒉ H * 、S *的计算式
H*,S *— 所求状态(T,p)的H和S,理想气体; H0*,S0*— 任意选择的基准态(T0,P0)所对应H和S
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 由 MR=M-M* HR=H−H* S R = S −S *
3.1 热力学性质间的关系
二、 热力学性质的基本关系式 注意: 四大微分方程的应用: 恒组成,恒质量体系——封闭体系 均相体系(单相) 平衡态间的变化 只有体积功
3.1 热力学性质间的关系
三. Maxwell关系式 (一)点函数间的数学关系 点函数 点函数就是函数能够通过自变量在图上用点 表示出来的函数. 点函数的数学关系式
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 当 P 0 → 0 时, 真气行为 → 理气行为. H0 R = 0
3.2 热力学性质的计算
⒊ HR 和 SR的计算式 由前知
∴ 同理
3.2 热力学性质的计算
⒋ H,S的计算式
3.2 热力学性质的计算
⒋ H,S的计算式 由上述式子知,要计算一定状态(T,P)下, 真实气体的H,S值,需要有: ①基准态的H0∗、 S0∗值 ②理想气体 Cp = f ( T ) (查手册或文献) ③真实气体PVT关系: PVT实测数据 真实气体EOS 普遍化压缩因子Z
3.2 热力学性质的计算
1. H的基本关系式 对于单相,定组成体系,据相律 F=N-π+2 知,自由度 F = 1-1+2 = 2; 对于热力学函数可以用任意两个其他的热力学 函数来表示,一般选择容易测量的函数作为变 量,如: H= f(T,p) H= f(T,V) H= f(p,V)
化工热力学讲义-3-第三章-纯流体的热力学性质
第三章 纯流体的热力学性质3.1热力学性质间的关系3.1.1单相流体系统基本方程 根据热力学第一、二定律,对单位质量定组成均匀流体体系,在非流动条件下,其热力学性质之间存在如下关系: pdV TdS dU -=;Vdp TdS dH +=pdV SdT dA --=;Vdp SdT dG +-=上述方程组是最基本的关系式,所有其他的函数关系式均由此导出。
上述基本方程给我们的启示是:p-V-T 关系数据可以通过实验测定,关键是要知道S 的变化规律,若知道S 的变化规律,则U 、H 、A 、G 也就全部知道了。
下面所讲主要是针对S 的计算。
3.1.2点函数间的数学关系式对于函数:()y x f z ,=,微分得:dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=如果x 、y 、z 都是点函数,且z 是自变量x 、y 的连续函数,Ndy Mdx +是z (x ,y )的全微分,则M 、N 之间有:该式有两种意义:①在进行热力学研究时,如遇到(1)式,则可以根据(2)式来判断dz 是否全微分,进而可判定z 是否为系统的状态函数;②如已知z 是状态函数,则可根据(2)式求得x 与y 之间的数学关系。
以下循环关系式也经常遇到:3.1.3Maxwell 关系式由于U 、H 、A 和G 都是状态函数,将(2)式应用于热力学基本方程,则可获得著名的Maxwell 方程:V S S p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂;p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ T V V S T p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂能量方程的导数式:T S H S U pV =⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;p V A V U T S -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂V p G p H TS =⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂;S T A T G V p -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 在实际工程应用中,Maxwell 方程应用之一是用易于实测的某些数据来代替或计算那些难于实测的物理量。
第3章热力学
第三章热力学思考题3-1令金属棒的一端插人冰水混合的容器中,另一端与沸水接触,待一段时间后棒上各处温度不随时间变化,这时全属棒是否处于平衡态为什么答: 不是平衡态。
因平衡态是,在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
因金属棒是在外界条件影响下达到平衡的,所以不是平衡态。
3-2 在热力学中为什么要引入准静态过程的概念答:在系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫准静态过程。
准静态过程是无限缓慢的过程。
由于pV图上的任何一个点都代表了一个稳定的平衡态,因而pV图上任何一条光滑的曲线都代表了一个准静态过程。
如果假定系统在状态变化过程中所经历的实际过程是准静态过程的话,那么这个过程就可以在pV图上画出来,从而使对状态变化的研究变得简单而直观了。
因此,在热力学中引入准静态过程的方法实际上是一种将过程简化的理想化方法。
3-3 怎样区别内能与热量下面哪种说法是正确的(1) 物体的温度越高,则热量越多;(2) 物体的温度越高,则内能越大。
答:内能与热量是两个不同的概念。
内能是由热力学系统状态所决定的能量.从微观的角度看,内能是系统内粒子动能和势能的总和。
关于内能的概念,应注意以下几点:(a) 内能是态函数,是用宏观状态参量(比如p、T、V)描述的系统状态的单值函数,对于理想气体,系统的内能是温度T的单值函数;(b) 内能的增量只与确定的系统状态变化相关,与状态变化所经历的过程无关;(c) 系统的状态若经历一系列过程又回到原状态,则系统的内能不变; (d) 通过对系统做功或者传热,可以改变系统的内能。
热量是由于系统之间存在温度差而传递的能量。
从微观的角度看,传递热量是通过分子之间的相互作用完成的.对系统传热可改变系统的内能。
关于热量,应注意以下几点:(a) 热量是过程量,与功一样是改变系统内能的一个途径,对某确定的状态,系统有确定的内能,但无热量可言;(b) 系统所获得或释放的热量,不仅与系统的初、末状态有关,也与经历的过程有关,过程不同,系统与外界传递热量的数值也不同;(c) 在改变系统的内能方面,传递热量和做功是等效的,都可作为系统内能变化的量度。
高等工程热力学第三章
第三章 热力学函数与普遍关系式根据:热力学第一、第二定律 连续可微函数的数学性质 推导:各种热力学函数的微分性质 各种热力学函数的微分关系式适用于:状态连续变化的一切系统以及系统的全部状态 热力学普遍关系式作用:推导或者检验,内查或者外推 范围:简单可压缩系统§1 热力学特征函数及其在描述系统热力学性质中的意义一、热力学特征函数的概念由自然的或者适当的独立变量所构成的一些显函数,他们能够全面而确定地描述热力系统的平衡状态。
热力学特征函数:具有明确的物理意义、连续可微如:以S、V 为独立变量描述内能函数U=U(S,V)就是一个特征函数 全微分dU=TdS-pdV TdS 方程dV VU dS S U dU S V )()(∂∂+∂∂= 可知:p VUT S U S V −=∂∂=∂∂)( , )(则:s u h u pv u v v ∂⎛⎞=+=−⎜⎟∂⎝⎠ v u f u Ts u s s ∂⎛⎞=−=−⎜⎟∂⎝⎠ s vu u g h Ts u v s v s ∂∂⎛⎞⎛⎞=−=−−⎜⎟⎜⎟∂∂⎝⎠⎝⎠热力学能函数只有在表示成S 和V 的函数时才是特征函数。
U=U(T,V)不能全部确定其他平衡性质,也就不是特征函数。
二、勒让德变换是否还有其他不同于S、V 的独立变量的特征函数吗?有,找出的方法 勒让德变换 设有函数:Y=Y(x 1,x 2,……,x m )全微分:dY=X 1dx 1+X 2dx 2+……+X m dx m 其中:m m x Y X x Y X x Y X ∂∂=∂∂=∂∂=, , , 2211这些偏导数都独立变量是x 1, x 2, ……, x m 的函数 引入函数:Y 1=Y-X 1x 1于是:dY 1=dY-X 1dx 1-x 1dX 1将dY代入:dY 1=-x 1dX 1+X 2dx 2+……+X m dx m 也是一个全微分:Y 1=Y 1(X 1, x 2, ……, x m ) 独立变量中用X 1取代了x 1可以证明:函数Y1和函数Y 具有同样多的信息 对比两个全微分:j i j i 11x 111() , ()Y YX x x X ≠≠∂∂==−∂∂x (互为负逆变换) 如果要互换独立变量和非独立变量的地位,只要应用式: ()i i i i i i X dx d X x x dX =−即可。
工程热力学第三章 热力学第一定律
进入控制体的能量Q(h11 2c12gz1)m1
离开控制体的能量W s(h21 2c2 2gz2)m 2
控制体储存能变化: dE cv(EdE )cvE cv 根据热力学第一定律建立能量方程
Q(h11 2c1 2gz1)m 1(h21 2c2 2gz2)m 2W sdEcv Q(h21 2c2 2gz2)m 2(h11 2c1 2gz1)m 1W sdEcv
可逆过程能量方程
可逆过程能量方程 以下二式仅适用可逆过程:
q du pdv
2
q u pdv 1
闭口系统能量方程反映了热功转换的实质,是热 力学第一定律的基本方程式,其热量、内能和膨 胀功三者之间的关系也适用于开口系统
二、热力学第一定律在循环过程中的应用
q12 u2 u1 w12 q23 u3 u2 w23 q34 u4 u3 w34 q41 u1 u4 w41
h g i hi i 1
n
H n H i i 1
只有当混合气体的组成成分一定时,混合气体 单位质量的焓才是温度的单值函数
第六节 稳态稳流能量方程的应用
一、动力机
利用工质在机器中膨胀获得机械功的设备
由q
(h2
h1)
1 2
(c22
c12
)
g(z2
z1)
ws
g(z2 z1) 0
1 2
(c22
pv
对 移 动 1kg工 质 进 、 出 控 制 净 流 动 功
w
=
f
p 2 v 2-
p1v1
流动功是一种特殊的功,其数值取决于控制体进出口
界面工质的热力状态
化工热力学第三章
3、 热力学性质间的关系
(1) 均相流体系统基本方程
dU TdS PdV dH TdS VdP dA PdV SdT dG VdP SdT
以上四个关系式称为封闭系统热力学基本关系式。热力 学基本关系式适用于只有体积功存在的封闭系统。在符合封 闭系统的条件下(即组成不变),热力学基本关系式能用于 两个不同相态间性质变化,如纯物质的相变化过程。
(2) 适用范围注意以下几点
⒈ 恒组分、恒质量体系,也就是封闭体系; ⒉ 均相体系(单相); ⒊ 平衡态间的变化; ⒋ 常用于1摩尔时的性质。
(3) 如何计算U,H,A、G?
a)由公式知U,H,A,G =f(P,V,T,S) b)P、V、T、 S中只有两个是独立变量。S不能直接测定,
以(T, P )和( T ,V)为自变量最有实际意义。
由欧拉连锁式可知
T PVV TPV PT1
V
V 1V TP; V 1V PT
P
T
V
T V P
P T
V V
0.00018 4.675MPa 0.0000385
查 手 册 知 液 态 汞 的 0 . 0 0 0 1 8 K 1 ; 0 . 0 0 0 0 3 8 5 M P a - 1
x z
y
②欧拉连锁式(循环关系式)
X ZYX YZY ZX1
③热容关系式
CpCVT V TP T PV理 气R
C P P T T T 2 V 2 P
C V V T T T 2 P 2 V
3.3.2 热力学基本关系式、偏导数关系式和Maxwell方程 的意义
V S
P
T P
S
S V
T
P T
V
S P T
热力学一般关系(热学 高等数学 偏微分)
第二部分工质的热力性质六热力学函数的一般关系式由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。
这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。
热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。
从数学上说,状态函数必定具有全微分性质。
这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。
下面我们扼要介绍全微分的一些基本定理。
设函数),(y x f z =具有全微分性质dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (6-1) 则必然有(1) 互易关系令式(6-1)中),(y x M x z y=⎪⎪⎭⎫⎝⎛∂∂,),(y x N y z x=⎪⎪⎭⎫⎝⎛∂∂ 则 yx x N yM ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫⎝⎛∂∂ (6-2)互易关系与⎰=0dz 等价。
它不仅是全微分的必要条件,而且是充分条件。
因此,可反过来检验某一物理量是否具有全微分。
(2) 循环关系当保持z 不变,即0=dz 时,由式(6-1),得 0=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂z xz y dy y z dx x z则 xy zy z x z x y ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 故有 1-=⎪⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂y z xz x x y y z (6-3)此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。
结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。
第三章 实际气体状态方程及热力性质
范德华引力
①静电力:当极性分子相互接近时,它们的固有偶极将同极相 斥而异极相吸,定向排列,产生分子间的作用力,叫做静电 力。偶极矩越大,取向力越大。
②诱导力:当极性分子与非极性分子相互接近时,非极性分子 在极性分子的固有偶极的作用下,发生极化,产生诱导偶极, 然后诱导偶极与固有偶极相互吸引而产生分子间的作用力, 叫做诱导力。当然极性分子之间也存在诱导力。
• 自我测验:试将范德瓦尔方程展开成维里形式 ?
3.4 二常数方程
目的:为了预测和计算高密度及液相区的体积
性质,提出了数百个状态方程。其中较常用
的有:
一、范德瓦尔方程
p RT a V b V2
1873年,范德瓦尔提出了第一个有意义的实际气体
P:绝对压力Pa ;v:比容
m3/kg; T:热力学温度K
V:质量为mkg气体所占的
容积;
工程热力学的两大类工质
1、理想气体( ideal gas)
可用简单的式子描述 如汽车发动机和航空发动机以空气为 主的燃气、空调中的湿空气等
2、实际气体( real gas)
不能用简单的式子描述,真实工质 火力发电的水和水蒸气、制冷空调中 制冷工质等
③色散力:非极性分子之间,由于组成分子的正、负微粒不断 运动,产生瞬间正、负电荷重心不重合,而出现瞬时偶极。 这种瞬时偶极之间的相互作用力,叫做色散力。分子量越大, 色散力越大。当然在极性分子与非极性分子之间或极性分子 之间也存在着色散力。
氢键
• 以HF为例说明氢键的形成。在HF分子中,由 于F的电负性(4.0)很大,共用电子对强烈偏 向F原子一边,而H原子核外只有一个电子,其 电子云向F原子偏移的结果,使得它几乎要呈 质子状态。这个半径很小、无内层电子的带部 分正电荷的氢原子,使附近另一个HF分子中含 有孤电子对并带部分负电荷的F原子有可能充 分靠近它,从而产生静电吸引作用。这个静电 吸引作用力就是所谓氢键。即F-H...F。
第三章流体的热力学性质焓和熵
T
p
T
V
由Maxwell关系式:
S
p
T
V T
p
H
p
T
V
T
V T
p
H=H(p,T), S=S(p,T)
dH
H T
p
dT
H p
T
dp
dS
S T
p
dT
S p
T
dp
最终得到:
dH
C p dT
V
T
V T
p
dp
dS
Cp
dT T
V T
p
T
II
(100MPa,25 ℃)
dS
C
l p
dT T
Vdp
I
(0.1MPa,50 ℃)
② (100MPa,50 ℃)
p
HI
Cl p1
T2
T1
1 T2
V (T2 ) p2 p1
SI
C
l p1
ln T2 T1
V (T2 ) p2
p1
当p=0.1MPa时
C
l p
75.305 75.314 2
(2.590)
0.10
1.700
2.470
0.50
1.514
2.186
2
1.293
1.759
4
1.290
1.591
6
1.395
1.544
8
1.560
1.552
10
1.777
1.592
12
2.073
1.658
14
2.432
1.750
15.41
热力学一般关系
热力学一般关系本章提要及安排本章提要:1.工质的平衡热力性质是指工质状态参数间的函数关系,特别以可测参数为独立变量的热力学能、焓、熵函数在工程应用中尤为重要。
2.对热力学状态函数的研究通常从它们的偏微商着手。
在常用状态函数的偏微商中,有的是可以通过实验测定的,常将它们定义为各种热系数;有的则不能用实验的方法得出。
3.工质在准平衡变化中的热力学基本定律表达式同时也表达了热力学状态函数之间的基本关系,又称基本热力学关系式。
通过勒让德变换,基本热力学关系可以用不同的组合参数表达。
基本热力学关系的一阶偏微商和二阶混合偏微商给出状态函数偏微商之间的一般关系。
当然,与热力学基本定律一样这些一般关系对任何工质都是适用的。
4.按照基本热力学关系,可以用可测的状态参数和热系数来表达不能通过实验直接得出的偏微商,从而将各常用状态函数的全微分式用可测的参数及免系数表达出来。
这样,就为在实验测定数据的基础上得出工质的状态函数开辟了道路。
5.在工质热力性质研究中,并非所有热系数都是必需沤过实验测定的,应用热系数间的一般关系可以由少虽测得的热系数得到所需的其它热系数。
这样,可以大大减少研究中的实验工作量.同时减小由于有限的实验精确度带来的误差。
6.依据本章所导出的一般关系式,应用所讲述的推导方法,还可导得工程中需用的各种函数关系。
7.本章所导出的一般关系式只适用于简单可压缩系统。
本章要求:1.了解热力学一般关系的内容及其在工质热力性质研究中的地位和作用;2.掌握导出热力学一般关系的思路和推导方法;3.熟悉简单可压缩工质基本的和常用的热力学一般关系。
学习建议:本章学习时间建议共2学时:1.常用状态函数的偏微商;基本热力学关系; 1学时2.热力学能、焓和熵的微分式;热系数之间的一般关系; 1学时4.1 常用状态函数的偏微商本节知识点:状态方程的偏微商热力学能函数的偏微商焓函数的偏微商熵函数的偏微商本节参考图片:麦克斯韦汤姆逊汤姆逊实验本节疑问解答:思考题4.1.1 思考题4.1.2 思考题4.1.3本节基本概念:定温压缩系数压力的温度系数绝热压缩系数比定容热容比定压热容绝热节流系数工程中常用的状态函数有状态方程 F(p ,v ,T )=0,和以可测参数为独立变量的热力学能、焓、熵函数,通常热力学能函数u(T ,v ),焓函数h(T ,p),和熵函数s(T ,v),s(T ,p)的导得较为方便。
化工热力学_Chapter3-02
Mar. 25, 2011主要内容3.1 热力学性质间的关系3.2 热力学性质的计算3.3 逸度与逸度系数3.4 两相系统的热力学性质及热力学图表关键:剩余焓H R和剩余熵S R的计算!计算方法:①根据p-V-T实验数据计算②状态方程法③普遍化关系法3.2.4 气体热力学性质的普遍化关系面临难题:实际工程计算中,如计算高压下热力学函数,通常缺乏所需的p-V-T实验数据及所需物质的热力学性质图表。
策略:借助近似的方法处理,即将压缩因子的普遍化方法扩展到对剩余性质的计算。
特点:¾对比态原理可以作为高压下的热力学函数的近似计算方法;¾根据具体条件,选择普遍化维里系数法或普遍化压缩因子法;¾普遍化方法适用性广,既可用公式计算,也可采用图表估算,但精度低。
(1)普压法1Z Z Zω=+要点:采用式(2-38)计算方法——普维法和普压法微分后代入普遍化式(3-57)、(3-58),整理后得到相关H R 、S R 计算式。
(3)注意点¾普遍化关系式(普维法,普压法)仅适用于极性较弱,非缔合物质,不适用于强极性和缔合性物质;¾选择算式之前,一定要进行判据,图2-9中曲线上方或Vr≧2用普维法,否则,需采用普压法。
()mol/J .HHHH H H R R v 3407685822056413402175421=−++=++−+==∗ΔΔΔ()()K mol /J .....SSSS S S R R v ⋅=−++=++−+==∗27883814142287210647921ΔΔΔ63340767100.28151032106/U H pV J mol−=−=−×××=例3-7 确定过热水蒸汽在473.15K 和9.807 ×105Pa时的逸度和逸度系数。
()1.9612879.0/9.652/ii p kPa H kJ kg S kJ kg K ∗∗∗===⋅解: 根据附表中473.15K时的最低压力,并假设蒸汽处于该状态时为理想气体,则从蒸汽表中查出如下的基准态值:例3-8 计算1-丁烯蒸气在473.15K,7MPa下的f 和φ。
无机化学 课件 PPT 第三章 化学热力学基础
第一节 热力学基本概念
7. 可逆过程
可逆过程是热力学中一个重要的概念,指在系统状态变化的全 过程中,不仅系统内部任何瞬间都无限接近平衡态,而且系统与环 境间也无限接近平衡。例如,系统与环境间在无限小的温度差下发 生的热交换过程,即T(环)=T±dT(dT为具有正值的无限小量);又如 在无限小的压力差下发生的体积变化过程,即p(环)=p±dp(dp为具 有正值的无限小量)。上述在一系列无限接近平衡条件下进行的过程, 在热力学中称为可逆过程。可逆过程是一种理想化的过程。这种过 程实际上是不可能的,因为每个过程的发生都要引起状态的改变, 而状态的改变一定会破坏平衡。
第一节 热力学基本概念
三、 状态与状态函数
在热力学中,系统所处的状态是由系统的物理性质和化学 性质确定的。状态是系统所有性质的总体表现。换言之,系统 所有的性质确定后,状态就完全确定。反之,系统状态确定后, 它的所有性质均有确定值,与系统到达该状态前的经历无关。 鉴于状态与性质之间的这种单值对应关系,所以系统的热力学 性质又称作状态函数。
第一节 热力学基本概念
2. 定压过程
状态变化的过程中,p(系)=p(环)=常 数的过程称为定压过程。若系统的始态压 力p1及终态压力p2与环境压力相等,即 p1=p2=p(环)=常数时,称为等压过程。
第一节 热力学基本概念
3. 定外压过程
当系统状态改变时,环境 压力恒定,即p(环)=常数,而 系统的始态压力p1不等于环境 压力p(环),但终态压力p2等于 p(环)的过程,称为定外压过程。 定压过程与定外压过程是两个 不同的概念。
第3章-流体的热力学性质
8
3.1 热力学性质之间的关系
由于
M
y
z
2z
x y x y x xy
z
2z
N
x y x y x y yx
S T
因
p V T V p V T p V
C p T
S S T
V p T p V p T V p
得第三dS方程:
T V
1 V
V T p
pV
z
RT
T
J
p H
第三章 流体的热力学性质
6
3.1 热力学性质之间的关系
3.1.2 单相流体系统热力学基本方程
dU=TdS-pdV
dH=TdS+Vdp
dA=-SdT-pdV
dG=-SdT +Vdp
上述方程也称为微分能量表达式。有关定义式:
10
3.1 热力学性质之间的关系
[证] Q dU pdV
U
U
dU
dT
dV
T V
V T
U
U
Q
dT
dV pdV
T V
V T
U
U
dT
的数学方法求得不可测定的热力学性质(H、U、S、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u u s,v
du
u s
v
ds
u v
s
dv
与du Tds pdv比较:
T
u s
v
p
u v
s
25
根据
h u pv f u Ts g h Ts
h u v u v s
f u s u s v
1/ Pa
定容压力温度系数:
1 p
p
T
v
1/ K
2.相互关系
由循环关系可导得: V p T
29
3.其他热系数 等熵压缩率(coefficient of adiabatic compressibility):
s
1 v
v p
s
焦耳-汤姆逊系数(the Joule-Thomson coefficient)等
δq dh δwt dh Tds vdp
dg dh Tds sdT sdT vdp
定温过程:
g
2
1
vdp
24 所以可逆定温过程中自由焓的减少量是过程的技术功。
三.特性函数 某些状态参数若表示成特定的两个独立参数的函数
时,只需一个状态参数就可以确定系统的其他参数,这 样的函数称之为“特性函数”。如
4.这些热系数有明显物理意义,由可测量(p,v,T)构 成,故应用广泛。例 由实验测定热系数,并据此 积分求得状态方程。
例题\第六章\A420275.ppt
例题\第六章\A422265.ppt
30 例题\第六章\A3223733.ppt
§6–6 热力学能、焓和熵的一般关系式
一.熵的微分方程式(generalized entropy relations) 令s=s(v,T),则
δq du δw Tds du pdv du Tds pdv
23 df du Tds sdT sdT pdv
定温过程
f
2
pdv
1
所以,可逆定温过程中自由能的减少量是过程膨胀功。
2.吉布斯函数G(比吉布斯函数g)—又称自由焓 a)定义:G=H–TS g=h–Ts b)因H,T,S均为状态参数,所以G也是状态参数 c)单位 J (kJ) d)物理意义
特点:
1)用统计力学方法能导出维里系数; 2)维里系数有明确物理意义;如第二维里系数表示
二个分子间相互作用;
3)有很大适用性,或取不同项
11
数,可满足不同精度要求。
§6–4 对应态原理与通用压缩因子图
一.对应态原理(principle of corresponding states)
对比参数(reduced properties):
6
表2-1 临界参数及a、b值
7
二、R-K方程
p
RT Vm
b
T
a
V 0.5 m
Vm
b
a,b—物性常数 1)由p,v,T实验数据拟合; 2)由临界参数求取
a
0.427480R
T2 2.5 c
b 0.08664RTc
8
pc
pc
三.多常数方程 1.B-W-R方程
p
RT Vm
B0 RT
A0
C0 T2
临界点p、v、T值满足范氏方程
pc
RTc Vmc b
a
Vm2c
p 0
v Tc
p v Tc
RTc Vmc b
2
2a Vm3c
0
2p v2
Tc
0
2p v2
Tc
2RTc
Vmc b3
6a Vm4c
0
a 27 R2Tc2 64 pc
b 1 RTc 8 pc
R 8 pcVmc 3 Tc
的微分关系求解。
21
一.全微分(total differential)条件和循环关系 1.全微分判据
设 z z x, y
则
dz Mdx Ndy
其中M
z x
y
,
N
z y
x
M y
x
2z xy
2z yx
N x
y
2.循环关系 若dz=0,则
z x
y
dx
z y
x
s v T
p T
ds
v
s v
T
dv
s T
v
dT
s T
v
T u
v
u s
v
1
s T
v
u T v u s v
cV T
h
ps
g
u
ds
cV T
dT
p T
v
dv
Tv
f
第一ds方程(the first Tds equation)
31
类似可得
ds
cp T
dT
or
dh
cV
v
p T
v
dT
T
p T
v
v
p v
T
dv
34
§2–7 比热容的一般关系式
(generalized relations for cp and cV)
研究比热容一般关系式的目的: 1)s,u,h的微分方程中均含有cp,cV; 2)利用较易实验测量的cp计算cV; 3)利用由实验数据构造的cp导出状态方程。
一.比热容与p,v关系
ds
cp T
dT
v T
p
dp
cp
p
T
2v
T
T
2
p
A
ds
cV T
dT
p T
v
dv
cV v
T
T
2 p T 2
v
B
36
讨论:
1)若已知气体状态方程f(p,v,T)=0,只需测得该数据
在某一足够低压力时的cp,可据(A)式计算任
意压力p时的cp大大减少实验工作量。因为定温下
relations) 将第一ds方程
ds
cV T
dT
p T
v
dv
du Tds pdv
du
cV
dT
T
p T
v
p
dv
第一du方程(the first du equation)
类似得
du
cp
p
v T
p
dT
T
v T
p
v
p
p
T
dp
第二du方程
33
对于理想气体:
pv RgT
dp dv dT pv T
p T
v
p T
Rg v
T
p T
v
p
RgT v
p
0
u v
T
0
u与v无关,只取决于T
三.焓的微分方程(generalized enthalpy relations) 将ds方程代入dh=Tds+vdp可得
dh
cpdT
T
v T
p
v
dp
其中Vm,i,c 临界状态作理想气体计算的摩尔体积
13
二.通用压缩因子和通用压缩因子图
1.压缩因子图
pVm zRT
幻灯片 15
2.通用压缩因子图
z pVm / RT zc pcVmc / RTc
prVmr Tr
z f1 pr ,Tr , zc
14 若取zc为常数,则
z f2 pr,Tr
2)从对比态方程中可看出
相同的p,T下,不同气体的v不同
相同的pr,Tr下,不同气体的vr相同,即 各种气体在对应状态下有相同的比体积——
对应态原理 f(pr,Tr,vr)=0 3)对大量流体研究表明,对应态原理大致是正确
的,若采用“理想对比体积”—Vm',能提高计算
精度。
Vm'
Vm Vm,i,c
幻灯片 16
15
幻灯片 14
16
17
18
19
§6–5 麦克斯伟关系和热系数
理想气体
实际气体
du cV dT
dh cpdT
ds
cV
dT T
Rg
dv v
du ? dh ? ds ?
气体的u,h,s等参数无法直接测量,实际气体 的u,h,s也不能利用理想气体的简单关系,通常需 依据热力学第一,第二定律建立这些参数与可测参数
pr
p pc
把对比参数 pr Tr
Tr
T Tc
Vmr
Vmr
Vm Vcm
及 a 27 R2Tc2
64 pc
b RTc 8 pc
R 8 pcVmc 3 Tc
代入范氏方程:
p
a Vm2
Vm
b
RT
可导得
pr
3 Vm2r
3Vmr
1
8Tr
12
范德瓦尔对比态方程
讨论:
1)对比态方程中没有物性常数,所以是通用方程;
z pv
RgT
z pv v v
>1
RgT RgT vi
=1
p
<1
2
氢不同温度时压缩因子 与压力关系
r r0 r r0
r r'
f2 f1 f 0 分子当量作用半径
V0
4 3
r03
4 1030 m3
f 0 r'分子有效作用半径
在标准状态下(p=1atm,273.15K)
Vm 22.4103 m3/mol 有6.02 1023个分子