新人教版六年级上册数学知识点简单总结

合集下载

六年级上册数学知识点(人教版)

六年级上册数学知识点(人教版)

六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。

人教版小学数学六年级上册知识点归纳全册

人教版小学数学六年级上册知识点归纳全册

六年级上册数学知识点 第一单元 位置 1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法 (一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。

人教版小学数学六年级上册知识点整理归纳完整版

人教版小学数学六年级上册知识点整理归纳完整版

人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。

人教版六年级上数学知识点归纳

人教版六年级上数学知识点归纳

六年级数学(上册)知识点总结第一单元 分数乘法1、分数乘法的意义(1)分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

(2)一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

2、分数乘法的计算法则(1)整数和分数相乘:整数和分子相乘的积作分子,分母不变。

(2)分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

(3)注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、分数大小的比较(1)一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

(2)如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

4、乘法应用题有关概念(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。

一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。

2. 分数的基本性质,如通分、约分等。

二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。

2. 分数四则运算,包括分数乘除法及运算顺序。

三、空间与几何1. 图形的基本认识,如点、线、面等。

2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。

3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。

四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。

2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。

五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。

2. 数学与生活的联系,如解决生活中常见的数学问题等。

具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。

在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。

通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。

六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。

例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。

此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。

七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。

学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。

八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。

如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。

这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。

新人教版六年级数学上册知识点总结

新人教版六年级数学上册知识点总结

第一单元分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思:单位“1”的量×(百分率)=百分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结一、分数乘法。

1. 分数乘法的意义。

- 分数乘整数:表示几个相同分数相加的简便运算。

例如:(2)/(3)×3表示3个(2)/(3)相加。

- 一个数乘分数:表示求这个数的几分之几是多少。

例如:5×(3)/(4)表示5的(3)/(4)是多少。

2. 分数乘法的计算方法。

- 分数乘整数:用分子乘整数的积作分子,分母不变。

能约分的先约分再计算。

例如:(2)/(3)×3=(2×3)/(3) = 2。

- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。

例如:(2)/(5)×(3)/(4)=(2×3)/(5×4)=(3)/(10)。

3. 分数乘法的简便运算。

- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

- 例如:(1)/(2)×(3)/(5)×2=(1)/(2)×2×(3)/(5)=1×(3)/(5)=(3)/(5)(运用乘法交换律);- ((1)/(3)+(1)/(4))×12=(1)/(3)×12+(1)/(4)×12 = 4 + 3=7(运用乘法分配律)。

二、位置与方向(二)1. 确定位置的要素。

- 要确定一个物体的位置,需要知道观测点、方向和距离。

- 例如,以学校为观测点,图书馆在学校东偏北30^∘方向,距离学校500米处。

2. 描述路线图。

- 描述路线图时,要按照行走的路线,依次描述出每一段的方向和距离。

- 例如,从家出发,先向东走300米到超市,再从超市向南偏东45^∘方向走400米到公园。

三、分数除法。

1. 分数除法的意义。

- 分数除法是分数乘法的逆运算。

已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:如果(2)/(3)× x=(4)/(9),那么x=(4)/(9)÷(2)/(3)。

最新人教版小学六年级数学上册知识点和题型总结

最新人教版小学六年级数学上册知识点和题型总结

最新人教版小学六年级数学上册知识点和题型总结小学六年级上册数学知识点和题型第一单元分数乘法一、分数乘法意义1.分数乘整数的意义与整数乘法的意义相同,即求几个相同加数的和的简便运算。

需要注意的是,“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2.一个数乘分数的意义就是求一个数的几分之几是多少。

二、分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。

需要注意的是:(1)为了计算简便,能约分的可先约分再计算(整数和分母约分);(2)约分是用整数和下面的分母约掉最大公因数(整数千万不能与分母相乘,计算结果必须是最简分数)。

2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母(分子乘分子,分母乘分母)。

需要注意的是:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算;(2)分数化简的方法是:分子、分母同时除以它们的最大公因数;(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简分数);(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。

3.小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。

三、积与因数的关系一个数(除外)乘大于1的数,积大于这个数。

a×b=c,当b>1时,c>a。

一个数(除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c<a(b≠0)。

一个数(除外)乘等于1的数,积等于这个数。

a×b=c,当b=1时,c=a。

需要注意的是,在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

四、分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

人教版六年级(上册)数学知识点汇总

人教版六年级(上册)数学知识点汇总

六年级数学知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版小学六年级数学上册全册知识点汇总

人教版小学六年级数学上册全册知识点汇总

人教版小学六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。

新人教版六年级数学上册知识点总结

新人教版六年级数学上册知识点总结

第一单元分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思:单位“1”的量×(百分率)=百分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

人教版六年级数学上册全部知识点汇总

人教版六年级数学上册全部知识点汇总

第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.“分数乘整数”指的是第二个因数必须是整数,不能是分数.2、一个数乘分数的意义就是求一个数的几分之几是多少.“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变.(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数).2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子、分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数).(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数.a×b=c,当b <1时,c<a(b≠0).一个数(0除外)乘等于1的数,积等于这个数.a×b=c,当b =1时,c=a .在进行因数与积的大小比较时,要注意因数为0时的特殊情况.(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”.例如:a×b=1则a、b互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘.2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.3、什么是速度?速度是单位时间内行驶的路程.速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等.4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二)1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行”.数对的作用:确定一个点的位置.经度和纬度就是这个原理.2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺).描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1、被除数÷除数=被除数×除数的倒数.2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数.3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算.4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角.2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算.加、减法为一级运算,乘、除法为二级运算.②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面.(a±b)÷c=a÷c±b÷c第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.4、化简比:化简之后结果还是一个比,不是一个数.(1)、用比的前项和后项同时除以它们的最大公约数.(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比.5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.分数除法和比的应用1、已知单位“1”的量用乘法.2、未知单位“1”的量用除法.3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知.(2)分析数量关系.(3)找等量关系.(4)列方程.两个量的关系画两条线段图,部分和整体的关系画一条线段图.第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形.2、圆的特征:外形美观,易滚动.3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径、定圆心、旋转一周.二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1、圆的周长总是直径的三倍多一些.2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示.即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr圆周率π是一个无限不循环小数,3.14是近似值.3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同.4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形.3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度.一个圆的半径增加a厘米,周长就增加2πa厘米.一个圆的直径增加b厘米,周长就增加πb厘米.6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π.7、常用数据π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7第六单元百分数(一)一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的.“%”的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.一般出粉率在70%、80%,出油率在30%、40%.2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”.(2)小数化百分数:小数点向右移动两位,添上“%”.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是10、100、1000等的分数再化简.(6)分数化小数:分子除以分母.二、百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几.2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少.一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数.部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税7、百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几(2)求甲比乙多百分之几——(甲-乙)÷乙×100%(3)求甲比乙少百分之几——(乙-甲)÷乙×100%第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3)扇形统计图直观显示部分和总量的关系.第八单元数学广角--数与形2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1).10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方.。

人教版六年级上册数学全册知识点归纳

人教版六年级上册数学全册知识点归纳

一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。

2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。

3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。

4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。

6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。

二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。

2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。

3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。

4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。

2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。

3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。

人教版小学数学六年级上册知识点整理归纳完整版

人教版小学数学六年级上册知识点整理归纳完整版

人教版小学数学六年级上册知识点整理归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去, 再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

人教版小学数学六年级上册知识点总结

人教版小学数学六年级上册知识点总结

人教版小学数学六年级上册知识点总结第一章:整数整数是由正整数、0和负整数组成的数。

1. 整数的表示方法整数可以用数轴表示,数轴上0点表示正整数和负整数之间的分界点。

2. 整数的比较比较两个整数的大小时,可以通过它们在数轴上的位置关系来判断。

3. 整数的运算整数的加法、减法、乘法和除法运算规则与正整数相同,需要特别注意负数的运算规则。

4. 整数的绝对值整数的绝对值是该数到0点的距离,绝对值大于0的整数称为正整数。

5. 整数的借位和进位在整数的加法和减法中,可能会涉及到借位和进位的操作。

第二章:分数1. 分数的基本概念分数表示了一个整体被分成若干等分,其中的分子表示被分的部分,分母表示整体被分成的等分数。

2. 分数的大小比较比较两个分数的大小时,可以通过找出它们的公共分母,然后比较分子的大小来判断。

3. 分数的运算分数的加法、减法、乘法和除法运算规则可以通过分子、分母的相应运算来得出。

4. 分数的化简将一个分数化简到最简形式,即分子和分母没有公共因子。

5. 分数的整数部分和小数部分分数可表示为整数部分和真分数部分之和,也可以表示为小数的形式。

第三章:小数小数是整数和分数之间的数。

1. 小数的读法小数的读法与整数相似,小数点后的数按照数位读取。

2. 小数的大小比较比较两个小数的大小时,可以按照数位从左到右逐个比较。

3. 小数的运算小数的加法、减法、乘法和除法运算规则与整数和分数类似,需要注意小数点的对齐。

4. 小数的化简将一个小数化简到最简形式,即去掉尾部0后使得剩余数字最少。

5. 小数与分数的转换小数可以转化为分数,分数可以转化为小数。

第四章:几何图形几何图形是由点、线、面组成的图形。

1. 点、线和线段点是几何图形的最基本单位,线是连接两个点的直线轨迹,线段是连接两个点并且包含这两个点的线。

2. 直线、射线和角直线是一条连续的无限延伸的线,射线是起点是一个点,向一个方向无限延伸的线,角是由两条射线共享一个端点组成的图形。

新人教版六年级数学上册各单元知识点归纳

新人教版六年级数学上册各单元知识点归纳

新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。

用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。

2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。

3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。

4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。

第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。

2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。

3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。

4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。

第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。

2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。

3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。

4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。

第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。

2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。

3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。

4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。

第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。

2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。

最全面人教版数学六年级上册知识点归纳总结

最全面人教版数学六年级上册知识点归纳总结

最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。

下面是数学六年级上册知识点的详细归纳总结。

第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。

知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。

知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。

知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。

第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。

知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。

知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。

知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。

知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。

知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。

第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。

知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。

最新人教版六年级(上册)数学知识点归纳与整理

最新人教版六年级(上册)数学知识点归纳与整理

最新人教版六年级(上册)数学知识点归纳与整理六年级数学上册知识点归纳与整理第一单元分数乘法一、分数乘法的意义1.分数乘整数的意义与整数乘法相同,都是求几个相同加数和的简便运算。

例如:3/4×6,表示6个3/4相加的和是多少,也表示6的3/4倍是多少。

2.一个数(小数、分数、整数)乘以分数的意义不同于整数乘法,它表示这个数的几分之几是多少。

例如:6×2/3,表示6的2/3是多少。

二、分数乘法的计算法则1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3.注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

三、分数大小的比较1.一个数(除外)乘以一个真分数,所得的积小于它本身。

一个数(除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(除外)乘以一个带分数,所得的积大于它本身。

2.如果几个不相等的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

四、解决实际问题1.分数应用题一般解题步骤:1)找出含有分数的关键句。

2)找出单位“1”的量。

3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。

4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念:1)乘法应用题的解题思路是:已知一个数,求这个数的几分之几是多少?2)找单位“1”的方法是:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。

4)在应用题中,例如“小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?”题目中的“增产”是指多的意思,因此应该是“多比少多”。

即今年水稻的亩产量比去年水稻的亩产量多几分之几。

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总

人教版六年級數學上冊知識點匯總第一單元分數乘法(一)分數乘法的意義1、分數乘整數:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數和得簡便運算。

例如:512×6,表示:6個512相加是多少,還表示512的6倍是多少。

2、一個數(小數、分數、整數)乘分數:一個數乘分數的意義與整數乘法的意義不相同,是表示這個數的幾分之幾是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)分數乘法的計算法則1、整數和分數相乘:整數和分子相乘的積作分子,分母不變。

2、分數和分數相乘:分子相乘的積作分子,分母相乘的積作分母。

3、注意:能約分的先約分,然後再乘,得數必須是最簡分數。

當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。

(三)分數大小的比較:1、一個數(0除外)乘以一個真分數,所得的積小於它本身。

一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。

一個數(0除外)乘以一個帶分數,所得的積大於它本身。

2、如果幾個不為0的數與不同分數相乘的積相等,那麼與大分數相乘的因數反而小,與小分數相乘的因數反而大。

(四)解決實際問題。

1、分數應用題一般解題步行驟。

(1)找出含有分率的關鍵句。

(2)找出單位“1”的量(3)根據線段圖寫出等量關係式:單位“1”的量×對應分率=對應量。

(4)根據已知條件和問題列式解答。

2、乘法應用題有關注意概念。

(1)乘法應用題的解題思路:已知一個數,求這個數的幾分之幾是多少?(2)找單位“1”的方法:從含有分數的關鍵句中找,注意“的”前“比”後的規則。

當句子中的單位“1”不明顯時,把原來的量看做單位“1”。

(3)甲比乙多幾分之幾表示甲比乙多的數占乙的幾分之幾,甲比乙少幾分之幾表示甲比乙少數占乙的幾分之幾。

(4)在應用題中如:小湖村去年水稻的畝產量是750千克,今年水稻的畝產量是800千克,增產幾分之幾?題目中的“增產”是多的意思,那麼誰比誰多,應該是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多幾分之幾,結合應用題的表達方式,可以補充為“今年水稻的畝產量比去年水稻的畝產量多幾分之幾?”(5)“增加”、“提高”、“增產”等蘊含“多”的意思,“減少”、“下降”、“裁員” 等蘊含“少”的意思,“相當於”、“占”、“是”、“等於”意思相近。

人教版小学六年级上册数学知识点汇总

人教版小学六年级上册数学知识点汇总

第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版六年级上册数学知识点简单总结第一单元 分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分) 例如:53✖4=543⨯=512 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

例如:351275437453=⨯⨯=⨯ 3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数, 积大于这个数。

例如:5356253〉=⨯一个数(0除外)乘小于1的数(0除外),积小于这个数。

例如:5335127453〈=⨯ 一个数(0除外)乘1, 积等于这个数。

例如:5353153==⨯ (三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”:在分率句中分率的前面;或 “占”、“是”、“比”的后面。

“是”前用乘,“是”后用除2、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少:一个数×几分之几。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 + - 分率)=分率对应量第二单元位置与方向1、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。

以谁为参照物,就以谁为观测点。

2、东偏北30。

也可说成北偏东60。

,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

3、确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

4、根据方向和距离确定物体位置的方法:(1)确定好方向并用量角器测量出被测物体所在的方向(角度);(2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;(3)根据方向(角度)和距离准确判断或描述被测物体的位置。

5、要标出物体的位置必须先确定方向,再确定在这一方向上的距离。

6、绘制平面图时,要根据实际距离确定好单位长度,即代表多长距离。

7、在平面图上标出物体位置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后找出物体的具体位置,标上名称。

8、描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。

两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。

9、两地的位置关系具有相对性,以这;两个不同地点为观测点描述对方所在的方向时,方向正好相反(甲在乙东偏南30°100米,则乙在甲西偏北30°100米)10、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。

11、在平面图上确定物体的位置与方向关键要做到三点:(1)确定好观测点及单位长度;(2)找准方向;(3)线段上每一段的长度要与单位长度统一。

12、以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离13、绘制路线图的步骤①画出↑北,确定方向标和单位长度比例尺( )②确定起点的位置。

③根据描述,从起点出发,找好方向和距离,一段一段地画。

画每一段都要以每一段新的起点为观测点④以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。

⑤标出数据、名称、角度。

(绘制的路线图只有一条线,所作的线是首尾相连的)第三单元分数除法1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

因为1×1=1;0乘任何数都得0, (分母不能为0)4、对于任意数a(a ≠0),它的倒数为1a 。

非零整数a 的倒数为1a 。

分数b a 的倒数是a b5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):当除数大于 1, 商小于被除数;当除数小于1(不等于 0), 商大于被除数;当除数等于 1, 商等于被除数。

4、 “[ ] ”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题(已知单位“1”的几分之几是多少,单位“1”的量是要求的问题。

就用除法)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 +-分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为,用方程解答。

(2)算术(用除法):分率对应量÷对应分率= 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数–1②求少几分之几:1 - 小数÷大数或①求多几分之几(大数-小数)÷比后面的数②求少几分之几(大数-小数)÷比后面的数求的不是单位“1”单位“1”的量×对应分率单位“1”的量×对应分率第四单元比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)∶∶∶∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:①用比的前项和后项同时除以它们的最大公因数。

②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意: 最后结果要写成比的形式。

如:15∶10 = 15÷10 = = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如:已知两个量之比为a :b ,则设这两个量分别为a b6、路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第五单元圆一、圆的基本概念1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的12 用字母表示为:d =2r 或r = 12 d8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形(也叫正三角形)只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C 表示。

2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai)表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π≈3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式:C= πd d = C ÷π或C=2πr r = C÷2÷π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

相关文档
最新文档