高分子材料阻燃技术的应用分析
高分子碳酸钙功能复合材料的阻燃性能研究
高分子碳酸钙功能复合材料的阻燃性能研究摘要:高分子材料广泛应用于各个领域,但其易燃特性限制了其在某些特殊场景下的应用。
为了提高高分子材料的阻燃性能,研究人员引入了碳酸钙(CaCO3)作为功能填料进行复合改性。
本文就高分子碳酸钙功能复合材料的阻燃性能进行了综述。
1. 引言高分子材料因其轻质、柔韧、耐磨、耐腐蚀等特点,在包装、电子、汽车、建筑等领域得到广泛应用。
然而,高分子材料易燃的特性限制了其在某些领域的应用。
因此,研究人员一直在探索提高高分子材料阻燃性能的方法。
2. 高分子碳酸钙功能复合材料的制备方法高分子碳酸钙功能复合材料的制备方法一般分为两种:直接共混法和溶液法。
直接共混法是将碳酸钙颗粒与高分子材料直接混合,然后通过热压或注射成型得到复合材料。
溶液法则是将碳酸钙颗粒与高分子材料溶于有机溶剂中,然后通过溶液混合、溶剂蒸发和成型得到复合材料。
3. 高分子碳酸钙功能复合材料的阻燃机理碳酸钙填料在高分子材料中起到了阻燃的作用。
一方面,碳酸钙颗粒可以吸收部分热量,减少高分子材料的燃烧速率和温升;另一方面,碳酸钙颗粒可以与燃烧产物中的H·、HO·等自由基发生反应,抑制燃烧链反应的扩展。
4. 影响高分子碳酸钙功能复合材料阻燃性能的因素高分子碳酸钙功能复合材料的阻燃性能受多种因素的影响。
首先,碳酸钙颗粒的形态和尺寸对阻燃性能有重要影响,通常较小的颗粒尺寸更有利于阻燃效果。
其次,碳酸钙含量的增加可以提高阻燃性能,但增加到一定程度后会导致材料的力学性能下降。
此外,高分子基体和碳酸钙颗粒的界面粘结强度也会影响阻燃性能。
5. 高分子碳酸钙功能复合材料的阻燃性能评价方法为了客观评价高分子碳酸钙功能复合材料的阻燃性能,研究人员提出了各种评价方法,如热重分析(TGA)、垂直燃烧测试(UL-94)、氧指数测试等。
这些评价方法可以从各个方面对材料的阻燃性能进行评价,并为材料的进一步改性提供指导。
6. 高分子碳酸钙功能复合材料的应用前景高分子碳酸钙功能复合材料由于其优异的阻燃性能,在电子、建筑、交通等领域具有广阔的应用前景。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨范春晖摘㊀要:高分子材料的价格低廉且性能优异ꎬ因而被广泛应用在生产生活中ꎬ但因为多数的高分子材料有着热值高㊁易燃㊁燃烧后产生有毒气体的特点ꎬ导致极易对人体健康和生命安全造成威胁ꎬ提升高分子材料的阻燃性能尤为关键ꎮ文章重点从CNT(碳纳米管)材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃技术四个方面来分析论述高分子材料的阻燃技术ꎮ关键词:高分子材料ꎻ阻燃技术ꎻ膨胀阻燃技术㊀㊀高分子材料属于一种聚合物材料ꎬ其燃烧过程是一个较为复杂的热氧化反应ꎬ当聚合物质与空气中的氧气发生反应后ꎬ可燃物质的浓度与温度会在短时间内扩散ꎬ继而引发大型火灾ꎮ基于此ꎬ高分子材料的阻燃问题一直被高度重视ꎬ旨在研发出新型的阻燃材料技术ꎮ就当前阶段高分子材料阻燃技术的研究进展来看ꎬ在长期的研究过程中ꎬ已经掌握了较多的实用性技术ꎬ如微胶囊技术㊁膨胀阻燃技术等ꎬ均具有良好的应用效果ꎬ可以很好地保障高分子材料的使用安全性ꎮ文章重点对CNT(碳纳米管)材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃这四种技术作一分析探讨ꎬ现作如下的论述ꎮ一㊁CNT材料阻燃技术的应用纳米技术在高分子材料中的应用十分广泛ꎬ为高分子材料阻燃带来了新的技术突破ꎬ比如PS/OMMT纳米复合阻燃技术便是在纳米基础上所研发出的一种新型技术ꎮ长期的实践研究发现ꎬ将纳米结构加入至高分子材料时ꎬ会使高分子材料的内部结构发生较大的变化ꎬ可以很好地提升阻燃性能ꎮ就目前应用于纳米添加剂的材料来看ꎬ最为普遍的是石墨㊁层状硅酸盐㊁碳纳米管ꎮ以其中的碳纳米管为例ꎬ其是一种由碳原子二维六方晶格组成的纳米材料ꎬ是碳的同素异形体之一ꎮ因为碳纳米管特殊的纳米结构和原子间键合强度ꎬ让其有着良好的化学稳定性能和高导电性能ꎬ应用范围较为广泛ꎮ有研究发现ꎬ若是可以在高分子材料中添加PS和OMMTꎬ并将这两种元素制作成PS/OMMTꎬ则可以很好的提升高分子材料的阻燃性能ꎬ尤其是PS在燃烧过程中的放热率可以快速下降ꎬ能够有效避免热反馈现象的发生ꎬ这对于控制火焰燃烧与扩散均有十分重要的意义ꎮ目前来看ꎬCNT材料阻燃技术在多个行业中均有良好的应用效果ꎬ尤其是在汽车制造行业的应用更为普遍ꎬ值得推广应用ꎮ二㊁微胶囊技术的应用微胶囊技术属于一种重要的高分子材料阻燃技术ꎬ其是依托于单壁碳纳米管相关结构成分所得出的结果ꎬ微粒囊式的阻燃剂在当前有着十分广泛的应用ꎮ目前来看ꎬ微粒囊阻燃主要是将阻燃剂放置到胶囊中ꎬ这种胶囊往往都是以纳米为单位ꎬ材料则以两种为主ꎬ即人工高分子材料和天然高分子材料ꎮ人工高分子材料的代表是聚苯乙烯和聚酯ꎬ天然高分子材料的代表是纤维素和蛋白质这两种ꎮ当高分子材料在使用过程中发生燃烧现象后ꎬ胶囊中的阻燃剂可以在高温状态下溢出ꎬ继而阻止燃烧反应ꎮ需要注意的一点是ꎬ微胶囊技术涉及较多的专业知识ꎬ其中很多的细节性因素会直接影响和决定阻燃效果ꎬ比如胶囊壁的厚度㊁体积和阻燃剂的量ꎮ因此ꎮ在实际制备微胶囊时要对诸多因素均加以考量ꎬ严格控制制备过程中的细节因素ꎬ以此确保微胶囊技术可以发挥最佳的阻燃效果ꎮ三㊁膨胀阻燃技术的应用膨胀阻燃技术在高分子材料阻燃中的应用较为广泛ꎬ对降低火灾悲剧发生风险有十分关键的意义ꎮ就膨胀阻燃技术的原理来说ꎬ当发泡剂和炭化剂等高分子材料处于受热状态时ꎬ会在自身表面快速形成一层炭层ꎬ这一炭层可有效隔离高温和熔化ꎮ随着近年来膨胀阻燃技术的发展ꎬ其在建筑行业中的应用越来越广泛ꎬ可以与建筑装修中的装饰材料㊁涂料及电缆防护线等融合起来ꎬ对控制高分子材料燃烧和降低火灾影响力有重要的意义ꎮ四㊁化学反应阻燃技术的应用化学反应阻燃技术是指通过特殊物质的化学反应来改变高分子材料的分子链结构ꎬ可确保分子链结构中含有阻燃因素ꎬ能够最大限度降低高分子燃烧风险ꎮ目前来看ꎬ化学反应阻燃技术最为常用的技术种类是辐射交联ꎬ这一技术可以通过射线来对高分子材料形成辐射作用ꎬ继而实现改变高分子材料分子链的目的ꎬ应用效果十分显著ꎮ在近年来的发展中ꎬ化学反应阻燃技术的实用性得到了很大程度的提升ꎬ除交联方式之外ꎬ还可以通过共聚技术和接枝技术来加以应用ꎮ一旦发生火灾后ꎬ高分子材料可以在化学反应作用下形成起防护作用的炭层ꎬ将整个材料由内而外地包裹起来ꎬ可确保高分子材料不被继续燃烧ꎮ在长期的实践应用中发现ꎬ化学反应阻燃技术的应用较为方便ꎬ在多种环境下均可以有效使用ꎬ且可以降低对周围环境的污染与破坏ꎬ这让其应用范围日益广泛ꎮ五㊁结语高分子材料的阻燃技术可以很好的抵御火灾隐患ꎬ目前所使用的CNT材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃技术均有良好的应用效果ꎬ值得进一步推广和应用ꎮ为进一步发挥相关阻燃技术的优势ꎬ后续要进一步加大研究力度ꎬ掌握更多有关于高分子材料的阻燃技术ꎬ以此更好的抵御火灾隐患ꎬ保障人民群众的生命财产安全ꎮ参考文献:[1]林修煌ꎬ李治农ꎬ陈明锋ꎬ等.含磷聚硅氮烷聚合物的制备及热稳定性能与阻燃应用[J].高分子材料科学与工程ꎬ2019ꎬ36(9):54-58.[2]张元ꎬ黄秋洁.低烟无卤阻燃电缆料的研究现状分析[J].广州化工ꎬ2019ꎬ48(19):27-28.[3]魏平.高分子材料阻燃技术运用与发展探究[J].化工管理ꎬ2018ꎬ576(33):116-117.作者简介:范春晖ꎬ扬州天启新材料股份有限公司ꎮ851。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨高分子材料广泛应用于工业、建筑、电子设备、汽车以及航空航天等领域,然而在使用过程中,高分子材料可能会遭受火灾等安全事件的侵袭,因此阻燃技术是必要的研究领域之一。
本文将探讨高分子材料的阻燃技术。
一、阻燃技术概述阻燃技术指的是在材料中添加一定量的阻燃剂,使其在火灾遇到高温时,可以减缓火势蔓延的速度,降低火灾对现场及生命财产的危害程度。
阻燃剂一般分为无机阻燃剂和有机阻燃剂两种类型。
无机阻燃剂分为磷系、氮系、硅酸铝系等,有机阻燃剂分为溴系、氯系等。
高分子材料是一种易燃材料,当受到火源的侵入时,容易燃烧并产生高热、大量的烟雾和有毒气体。
阻燃技术的引入可以有效地减少高分子材料的这些缺点,防止火灾的发生。
阻燃剂的选择很重要,因为添加不当可能会影响材料的力学性能。
此外,阻燃剂与高分子材料之间的相容性对阻燃效果也有影响。
对于一些阻燃剂,例如PA6材料,氧化铝和氢氧化铝会影响材料的强度和熔点;而对于PP材料,三氯乙磷的相容性较差。
在阻燃剂的选择方面,溴系、氯系阻燃剂常常被用于高分子材料的阻燃,但由于其会产生有毒气体,已被禁止在一些领域使用。
因此,磷系阻燃剂在近几年被广泛使用,磷系阻燃剂可以使材料形成炭化层,形成阻燃壳,避免氧气进入,从而实现阻燃效果。
对于临床应用的高分子材料,比如医用注射器和输注器,除了需要阻燃材料之外,还需要考虑其对人体的影响。
因此,应选用对人体安全无影响的阻燃剂。
三、阻燃技术的应用阻燃技术在许多领域都有广泛应用,下面我们以电子设备、车辆、建筑等作为例子,阐述阻燃技术在不同领域的作用。
1、电子设备:随着电子设备在生活中的广泛应用,一些电子产品在使用过程中会发热,因此,对于电子产品的阻燃技术至关重要。
特别是在电池充电器、移动电源等电子产品中,阻燃材料的耐热性要求更高。
2、车辆:汽车应用阻燃技术的主要原因是为了保证乘客的安全,在车内或发动机舱处出现火灾的可能性都很大。
汽车阻燃技术的发展包括内饰材料的阻燃、电线材料的阻燃等,其中座椅材料、天花板等逐渐成为重点研究领域。
浅析高分子材料的阻燃技术
浅析高分子材料的阻燃技术随着工业技术的迅速发展,高分子材料材质的抗破坏能力和阻燃性能也越来越强。
但由于高分子燃料在燃烧过程中无法在很短的时间里释放出热量,有时候还可能产生很多的有毒物质,所以因高分子的阻燃性能仍然较低所造成的火灾事故还很频繁,由此而造成的各项经济损失也很大。
因此,如何进一步增强高分子材料的阻燃性能,还需要加大对其的研究力度。
本文将从高分子材料的燃烧及阻燃机理入手,通过分析高分子阻燃剂的种类,探讨高分子阻燃技术的实际应用以及未来的发展方向。
标签:高分子材料;阻燃技术;实际应用;发展方向1 高分子材料的燃烧和阻燃机理1.1 高分子材料的燃烧机理由于热量的影响,高分子材料的化学性质会产生极大的变化,能够分解挥发出许多可燃物质,受热分解的产物在固相和气相环境下又迅速分解。
若燃烧未遵守热平衡的原理,那么高分子就会伴随其产生的热量和燃烧的热量的改变而产生质的变化。
1.2 高分子材料的阻燃机理高分子材料的阻燃技术是针对于其燃烧机理而研发的。
如果高分子材料稳定燃烧,那么必须具有可燃性、稳定性,可以把重质物质隔离起来。
因而阻燃技术就是冷却、稀释材料进而达到阻燃的最终目的。
当前的高分子材料阻燃技术的主要方法是添加型,反应型利用较少,所以在阻燃材料的研究过程中,添加剂的应用成为重中之重。
2 高分子材料阻燃添加剂的种类2.1 磷系阻燃剂含卤磷酸醋在磷系阻燃剂中应用的最为广泛,它是在高分子受热降解的过程中促使高分子材料发生脱水碳化反应,一方面减少可燃气体,另一方面利用磷化合物不挥发的特性,隔绝或凝结碳化物,限制其与外界热量和空气的接触。
2.2 卤系阻燃剂卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一,添加量少、阻燃效果显著。
含氯的阻燃剂主要有氯化石蜡、氯化聚乙烯等;含溴阻燃剂因阻燃效果较好,应用极为广泛,逐渐取代氯系阻燃剂。
卤系阻燃剂阻燃机理比较清楚,但其阻燃的同时,也带来了一些严重的问题,放出大量的有毒气体(如HCl,HBr等),卤化氢气体易吸收空气中的水分形成氢卤酸,具有很強的腐蚀作用,并产生大量的烟雾,这些烟雾、有毒气体和腐蚀性气体给灭火、逃离和恢复工作带来很大的困难。
高分子材料的热稳定性与阻燃性能研究
高分子材料的热稳定性与阻燃性能研究高分子材料一直是工业发展中不可或缺的材料之一。
它们以其良好的加工性能和丰富的性能特点,在各个领域得到广泛应用。
然而,由于高分子材料在高温和火灾条件下的性能表现不佳,阻碍了它们在一些关键领域的应用。
因此,研究高分子材料的热稳定性和阻燃性能就显得尤为重要。
首先,热稳定性是高分子材料在高温环境下性能稳定的能力。
在高温下,高分子材料很容易发生降解、氧化、老化等反应,导致性能下降甚至失效。
因此,研发具有良好热稳定性的高分子材料对提高材料的耐用性和可靠性至关重要。
在研究高分子材料的热稳定性时,人们一直致力于寻找适合的稳定剂。
通常,稳定剂可以通过两种方式提供热稳定性。
首先,稳定剂可以作为自由基的捕获剂,阻止高分子材料在高温下发生自由基反应。
其次,稳定剂还可以通过抑制高分子材料中的氧化反应或粘接反应来提高其热稳定性。
随着科学技术的不断发展,一些新型的稳定剂逐渐被发现和应用,例如有机锡化合物、富勒烯及其衍生物等。
这些稳定剂在增强高分子材料的热稳定性方面表现出良好的应用前景。
与此同时,高分子材料的阻燃性能也是研究的焦点之一。
高分子材料在遭遇火灾时,容易燃烧并释放有毒气体和大量热量,给人身和环境带来极大的危害。
因此,提高高分子材料的阻燃性能具有重要意义。
阻燃材料的研究可以分为三个方向:阻止火焰的形成、减缓火焰的蔓延和降低火焰的热释放。
研究者们通过调整高分子材料的结构和添加阻燃剂来提高其阻燃性能。
常用的阻燃剂包括无机阻燃剂和有机阻燃剂。
无机阻燃剂通常在高温下,通过吸热分解形成非燃性产物,从而降低火焰的温度和热释放速率。
而有机阻燃剂则通过抑制高分子材料燃烧的化学反应链或在高温下分解,生成难燃气体来达到阻燃的目的。
但是,目前绝大部分阻燃剂都存在着对环境的毒性和难降解性等问题,因此研发环境友好型的阻燃剂已成为当下的研究热点。
热稳定性和阻燃性能往往是密不可分的。
在提高高分子材料的阻燃性能时,研究人员通常也要考虑其热稳定性。
阻燃剂在高分子材料中的作用机理与应用
愈 发 受 到 人 们 重 视 , 电 线 电 缆 用 高 分 子 聚 合 材 料 大 部 分 是 热 传 导后 的② — — ⑥ 环 节 中 的任 一 环 节 达 到 阻 燃 效 果 : 由碳 、 氧 、 氧 等 元 素 组 成 , 基 本 属 于 易 燃 、 可 燃 材 料 , 并
a 、 阻燃 剂 发生 吸热 反应 阻断② ③环 节 的热辐 射 与热
且 燃 烧 过 程 中 热 量 释 放 速 率 大 、 热 值 高 、 火 焰 传 播 快 、 不 传 导 ;
易熄 灭 ,从 而使 高分子 聚合 材料用 阻燃 剂和 阻燃材料 的研
b 、 提 高高分 子树 脂 本身 的耐热 性从 而抑 制环 节④ 的
制 生 产 及 其 推 广 应 用 得 以迅 速 发 展 。 本 文 试 图 从 燃 烧 四要 热 裂 解 ; 素 着 手 ,通 过 分 析 阻 燃 剂 作 用 机 理 及 其 在 线 缆 材 料 中 的 作 用,希望能给读者一定的参考价值 。
效 粜 及 埘 材 料 体 能 的 影 响 。A 厅。 t l 力 口 入 无 卤 阻 燃 剂 总 称 。 聚烯 烃 材 料 也 u 以简 . 定 义 为 以 聚 乙 烯 、聚 烯 为 M g ( O t t ) ,B 办- { 卜嘤J J l l 入 肉 系 燃 剂 中 溴系 阻燃 剂 及 少 量 主 的 一 切 均 聚 物 、共 聚 物 、泄 介 物 的 总 称 。 尢岗 燃 剂M l g ( 0 1 1 ) , 体添 J J l l 比例 卜 2 。 我 们 知 道 聚 烯 烃 术 添 加 燃 利 时 的 氧 指 数 为 I 5 % 左
” 。 。
企业专栏
Com pan y Wi nd ow
l 几 {I ; I l 燃 剂
阻燃高分子材料
阻燃高分子材料
阻燃高分子材料是一种具有阻燃性能的新型材料,它在高温下不易燃烧,能够有效地阻止火焰的蔓延,具有很强的火灾安全性能。
这种材料在各种工业领域和日常生活中有着广泛的应用,对于提高材料的防火性能和保障人们的生命财产安全起着重要作用。
首先,阻燃高分子材料的主要特点是其具有很高的阻燃性能。
它在遭受火焰侵袭时,能够迅速形成一层保护膜,阻止氧气和燃烧物质的进一步接触,有效地抑制火焰的蔓延。
这种特性使得阻燃高分子材料在建筑、交通工具、电子产品等领域得到广泛的应用,为人们的生命和财产安全提供了有力的保障。
其次,阻燃高分子材料具有良好的加工性能和稳定性。
它可以通过各种成型工艺进行加工,可以制成各种形状和规格的制品,适用于不同的工程需求。
同时,阻燃高分子材料的稳定性也非常好,不易受到外界环境的影响,能够长时间保持其阻燃性能和物理性能,具有很高的可靠性和持久性。
另外,阻燃高分子材料还具有很好的环保性能。
它在生产过程中不会产生有害物质,不会对环境造成污染,符合现代社会对于绿色环保产品的需求。
同时,由于其阻燃性能能够有效地减少火灾事故的发生,可以降低资源的浪费和环境的破坏,对于可持续发展具有积极的意义。
总的来说,阻燃高分子材料具有很高的阻燃性能、良好的加工性能和稳定性,以及良好的环保性能,对于提高材料的防火性能和保障人们的生命财产安全具有重要意义。
未来,随着科技的不断进步和材料工程的发展,相信阻燃高分子材料将会得到更广泛的应用,并为人们的生活带来更多的便利和安全。
高分子材料阻燃技术研究
燃 及抑 制 火 焰传 播 的助 剂 。按 阻 燃剂 与被 阻 燃基 材
的关 系 , 燃 剂 可 分 为 添 加 型 及 反 应 型 两 大 类 。 前 者 阻
与基 材 的其 他组 分不 发生 化学 反 映 , 只是 以物理 方式 分散 于 基材 中 , 多用 于热 塑性 高分 子 材料 。后者 或者 为 高分 子材 料 的单体 . 者作 为辅 助试 剂 而参 与合成 或
高 分 子 材 料 的 化 学 反 应 , 后 成 为 高 分 子 材 料 的 结 构 最
单元 , 多用 于热 固性 高 分 子材 料 。按 阻燃 元 素 种类 . 阻燃 剂 常 分 为 卤 系 、 机 磷 系及 卤一 系 、 系 、 一 有 磷 氮 磷 氮系 、 系 、 一 系 、 锑 铝 镁 无机 磷 系 、 系 、 系等 。 硼 钼 2 1 卤系阻 燃剂 .
一
成 为 当前 消 防工作 一个 急需 解决 的问题 。
1 高 分 子 材 料 的 燃 烧 及 阻 燃 机 理
种 阻燃体 系 往往 是几 种 阻燃机 理 同时起 作 用 。
高分 子材 料在 空气 中受 热 时 , 分解 生 成挥 发性 会 可燃物 , 当可燃 物 浓 度 和体 系 温 度 足够 高 时 , 即可 燃 烧 。所 以高 分 子材 料 的燃 烧 可分 为 热 氧 降 解 和燃 烧 两 个 过程 , 涉及 传 热 、 分子 材 料 在 凝 聚 相 的热 氧 降 高 解 、 解 产物 在 固相及 气 相 中 的扩 散 、 空 气混 合 形 分 与 成 氧 化 反应 场及 气 相 中的链 式 燃 烧 反 应 等 一 系列 环 节 。当高 分 子材 料 受 热 的热 源热 量 能 够 使 高分 子 材 源自21 世 纪 建 筑 材 料
阻燃材料的研究及应用综述
第17期 收稿日期:2019-06-05基金项目:2018年横向项目(2018H65)作者简介:廖立敏(1981—),湖南祁阳人,硕士,副教授。
阻燃材料的研究及应用综述廖立敏,李建凤,黄 茜(内江师范学院化学化工学院,四川内江 641100)摘要:对阻燃剂及应用、阻燃材料的种类、特点及应用现状和发展趋势进行了分析和综述,为新型阻燃材料的开发提供一定的参考。
阻燃剂、阻燃材料种类繁多,目前主要应用的有氢氧化镁阻燃材料、氢氧化铝阻燃材料、卤素阻燃材料、红磷阻燃材料、二氧化硅阻燃材料等,各种阻燃材料各具有优缺点。
新型廉价、燃烧过程无烟、无有毒有害气体产生、阻燃性能良好的阻燃剂及阻燃材料是未来的发展趋势。
关键词:阻燃;材料;阻燃剂中图分类号:TQ314.24+8 文献标识码:A 文章编号:1008-021X(2019)17-0087-02ResearchandApplicationofFlameRetardantMaterialsLiaoLimin,LiJianfeng,HuangXi(CollegeofChemistryandChemicalEngineering,NeijiangNormalUniversity,Neijiang 641100,China)Abstract:Thetypes,characteristics,applicationstatusanddevelopmenttrendofflameretardantsandapplications,flameretardantmaterialswereanalyzedandsummarized,whichprovidedareferenceforthedevelopmentofnewflameretardantmaterials.Therearemanykindsofflameretardantsandflameretardantmaterials.Atpresent,therearemainlymagnesiumhydroxideflameretardantmaterials,aluminumhydroxideflameretardantmaterials,halogenflameretardantmaterials,redphosphorusflameretardantmaterials,silicaflameretardantmaterials,etc.Flameretardantmaterialseachhaveadvantagesanddisadvantages.Anewtypeoflow-cost,smoke-freecombustionprocess,notoxicandharmfulgases,flameretardantandflameretardantmaterialsarethefuturedevelopmenttrend.Keywords:flameretardant;material;flameretardant 阻燃材料应用广泛,尤其在高层建筑中阻燃材料对于防止或减轻火灾而导致的损失起到举足轻重的作用。
高分子化学论文
高分子材料阻燃技术的研究摘要:本文从高分子材料的阻燃机理入手,阐述了高分子材料阻燃剂的分类,研究了高分子材料阻燃技术的进展情况。
关键词:高分子材料;阻燃机理;阻燃剂;进展前言高分子材料因其性能优异、价格低廉而被广泛地应用于各类建筑和人民生活的各个领域,但是大多数高分子材料属于易燃、可燃材料,在燃烧时热释放速率大,热值高,火焰传播速度快,不易熄灭,有时还产生浓烟和有毒气体,对人们生命安全和环境造成巨大的危害。
因此,如何提高高分子材料的阻燃性,已经成为当前消防工作一个急需解决的问题。
1高分子材料的燃烧及阻燃机理高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。
所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。
当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。
而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。
当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。
从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。
其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。
目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。
一般阻燃机理分为气相阻燃机理、凝聚相阻燃机理和中断热交换阻燃机理。
燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用。
2高分子材料阻燃剂的分类阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。
浅谈高分子材料阻燃技术
根据高分子材料燃烧的特点,可以采用各种不同方式阻断其燃烧过程的进行,从而达到阻燃的目的。
随着高分子材料的迅速发展,对于阻燃技术、阻燃机理的研究也日益广泛深入。
在气相阻燃、凝聚相阻燃和中断热交换阻燃机理方面,人们做了各种阻燃技术的研究探讨。
近年来,如复合阻燃、协效阻燃、大分子阻燃等阻燃技术得到一定程度的发展。
1 复合阻燃技术1.1 层状双氢氧化物(LDH)层状双金属氢氧化物(LDHs)为层状无机纳米材料,与氢氧化铝(Al(OH)3,亦称水合氧化铝,ATH)和氢氧化镁(Mg(OH)2,亦称水合氧化镁,MH)具有相似的组成和结构,兼具两者的优点,且其本身不含有任何有毒物质,因此是一种理想的阻燃和抑烟型绿色阻燃剂。
LDHs的阻燃机理为LDH在燃烧过程中可以分解成CO2、H2O、金属氧化物等。
一方面,CO2和H2O可以稀释可燃气体和O2,降低燃烧时的温度;另一方面,金属氧化物有利于炭层的形成,起到隔绝O2和热量的作用,进一步降低基材的降解速率[1]。
LDHs在阻燃领域具有较好的应用前景。
1.2 纳米金属有机框架材料(MOFs)MOFs是由有机配体与金属离子或团簇通过自组装的方式形成的具有网状结构的有机-无机杂化多孔材料,其结构见图1。
MOFs的设计具有灵活性,结构具有可调性。
不论是针对有机配体还是金属配位物,只要经过合理的改性设计都可获得具有某种特定性能的MOFs, 这预示着MOFs具有广阔的应用前景。
图1复合材料中加入MOFs能显著提高热稳定性和阻燃性。
在MOFs质量分数仅为2%的情况下,复合材料的热释放速率峰值(PHRR)分别降低超过14%和28%,因此MOFs可用作填料来改善聚合物的阻燃性能。
MOFs还会抑制燃烧过程中毒性CO和苯乙烯低聚物的释放,这意味着气相降解产物的毒性将降低[2]。
1.3 石墨烯(GNS)GNS是一种单层碳原子组成的二维纳米片层材料,图2为GNS及氧化石墨烯(GO)的结构示意图。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨高分子材料在现代工业中广泛应用,但由于其易燃性,使用过程中可能会引发火灾事故。
开展高分子材料的阻燃技术研究具有重要意义。
本文将就高分子材料的阻燃技术进行探讨。
高分子材料的阻燃技术可分为添加阻燃剂和改性高分子两种方法。
添加阻燃剂是将阻燃剂添加到高分子材料中,通过改变高分子材料的燃烧性能来实现阻燃的效果。
常见的阻燃剂包括无机阻燃剂和有机阻燃剂。
无机阻燃剂主要是指氢氧化铝、磷酸铝、氧化镁等,通过在高温下分解释放出大量水分和惰性气体来降低材料的燃烧温度,并形成一层不易燃烧的保护层。
有机阻燃剂主要是指氯化磷、三溴丙磷等,通过生成不稳定的自由基,吸热效应和惰化效应来减缓燃烧速率。
改性高分子材料则是通过改变高分子材料的结构和性能来实现阻燃的效果。
常见的改性方法有复合改性、交联改性和填充改性等。
复合改性是将阻燃剂和高分子材料进行机械混合,通过物理或化学相互作用来实现阻燃效果。
交联改性是在高分子材料中引入交联剂,使高分子材料产生交联网络结构,减少材料的燃烧性能。
填充改性是将无机颗粒填充到高分子材料中,形成阻燃保护层。
高分子材料的阻燃技术需要综合考虑材料的性能要求和阻燃效果。
一方面,高分子材料在实际应用中需要具备一定的力学性能、耐热性能等。
在进行阻燃技术研究时,需要确保阻燃剂的添加不会对材料的性能产生明显影响。
阻燃技术的目标是降低材料的燃烧速率和烟气产生量,提高材料的阻燃性能。
在选择阻燃剂和进行改性时,需要进行全面的评价和研究,确保阻燃效果达到预期。
高分子材料的阻燃技术发展迅速,目前已经涌现出很多新的阻燃材料和技术。
氧化石墨烯、磷氮复合阻燃剂等具有优异的阻燃性能和机械性能,成为高分子材料阻燃技术发展的热点研究领域。
随着环保意识的提升,绿色阻燃技术也得到广泛关注。
使用天然阻燃剂、生物基阻燃剂等可降解的材料,具有循环利用和环境友好的特点。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨高分子材料在现代工业生产和生活中扮演着重要角色,但其可燃性也带来了一定的安全隐患。
阻燃技术成为高分子材料研究领域的热点之一。
本文将探讨高分子材料的阻燃技术。
阻燃技术是通过改变高分子材料的结构和性能,使其在受到高温或火焰作用时不燃或燃烧速度减慢,以达到阻止火势蔓延的目的。
目前,常见的高分子材料阻燃技术包括添加阻燃剂、改变材料结构和配方,以及表面改性等。
添加阻燃剂是一种常见的阻燃技术。
阻燃剂能够抑制高分子材料在高温下的燃烧反应。
目前常用的阻燃剂主要包括无机阻燃剂、有机阻燃剂和卤素化合物等。
无机阻燃剂主要包括氢氧化铝、硅酸镁等,有机阻燃剂主要有陈化剂、磷酸盐等,卤素化合物主要包括六价和四价溴化物等。
这些阻燃剂通过吸热分解、阻碍燃烧的气体扩散和形成阻燃壳层等方式,改变高分子材料的燃烧性能,达到阻燃的效果。
改变高分子材料的结构和配方也是一种常用的阻燃技术。
通过在高分子材料中引入含氮、磷、硅等元素,增加材料的抗燃性能。
聚氨酯改性材料、磷拓研材料等的研发,使高分子材料的阻燃性能得到了明显提高。
改变高分子材料的配方也可以达到阻燃的效果。
在聚丙烯中添加石墨烯、碳纳米管等纳米材料,可以形成层状结构,阻止火焰蔓延。
表面改性是另一种常用的高分子材料阻燃技术。
表面改性主要通过在高分子材料表面形成阻燃薄膜,起到阻燃的作用。
常用的表面改性技术包括电浆处理、离子注入等。
这些技术能够在高分子材料表面形成致密、阻燃的薄膜,阻止火焰的进一步蔓延,从而提高阻燃性能。
高分子材料的阻燃技术包括添加阻燃剂、改变材料结构和配方,以及表面改性等。
这些技术通过改变高分子材料的结构和性能,提高其抗燃性能,达到阻止火势蔓延的目的。
与此阻燃技术也能为高分子材料的应用提供更多的安全保障。
未来,随着科技的不断进步,高分子材料的阻燃技术还将不断发展和完善,为人们的生产和生活带来更多的便利和安全。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨随着现代化的发展,高分子材料广泛应用于现代化的工业生产中。
然而,高分子材料因具有易燃、易熔和有毒等特性,使得其在生产、运输、储存和使用过程中产生火灾事故,严重威胁到人们的生命财产安全和环境保护。
因此,高分子材料的阻燃技术的研究与发展显得尤为重要。
高分子材料的阻燃技术是指通过添加阻燃剂、改变材料结构等手段,使材料具有一定的阻燃性能,使其在一定的火焰来源下,能够避免或抑制燃烧反应的继续进行。
高分子材料的阻燃技术主要是从防火和环保两个方面出发,采用物理、化学和结构等多种手段综合防护,以控制热分解产物和气体的释放速率和种类,从而限制火势的扩散和减少有毒气体的产生。
(1)物理隔离法物理隔离法是通过在高分子材料的表面或内部添加隔热隔氧层的方式降低材料燃烧反应的程度,从而抑制火势的扩散。
这种隔离层需要具备一定的厚度和热稳定性,能够承受高温,同时不能影响材料的机械性能和加工性能。
(2)气相阻燃法气相阻燃法是指在高分子材料中添加具有热解产物中的“无效”部分,从而减少可燃物的含量,阻止火焰的蔓延。
这种方法的优点是制品加热后会产生大量凝聚相和非易挥发相,从而降低了材料的火焰扩散速度。
这种方法的实现需要深入了解材料的热解过程以及热解产物的性质。
(3)化学反应法化学反应法是指通过在高分子材料中添加化学阻燃剂,使其在遇到火源时发生化学反应,生成难燃或不易燃的产物,从而达到阻燃的目的。
这种方法的优点是能够针对材料的特性和所需的性质,选用不同类型的阻燃剂,而且材料制品不受质量变化和不受环境影响。
但也有其不足,如阻燃剂的添加量过多,会导致材料的成本增加或导致固化不良等质量问题。
(4)改变材料结构法改变高分子材料结构的思路与化学反应法非常类似,这种方法是通过改变高分子碳链的结构,增加三聚氰胺等复合材料的含量,从而增加材料的耐火性和机械性能。
此外还可以通过特殊增强剂的添加,增加高分子材料的耐热性和耐氧化性,提高材料的阻燃性能。
试析建筑阻燃防火材料应用及技术
试析建筑阻燃防火材料应用及技术摘要:在建筑工程施工技术中,把阻燃材料应用于建筑结构中,不仅可以提高建筑的质量和安全,同时也可以提高其耐久性,探讨分析阻燃材料在建筑工程中的应用,对于社会和经济的发展起着积极的作用。
关键词:阻燃材料;建筑;应用技术在工程建筑中应用阻燃材料,所采用的施工工艺是设计合适的防火材料以阻止火势的快速蔓延,通常采用涂刷防火涂料、设置防火板材以及防火玻璃等构造设施,并采取正确的符合规范的施工技术措施,有效提高建筑物的安全性能,提高工程建设的质量安全。
1阻燃材料的主要作用机理阻燃材料在建筑中的作用就是阻止或延缓建筑材料燃烧过程中和蔓延,避免对整个建筑物产生影响,阻燃材料主要的阻燃方式有热量吸收的方式、隔离氧气的方式、捕获自由基的方式。
热量吸收的方式主要是指有些阻燃剂不仅仅具有阻燃的功能,同时可以吸收建筑材料在燃烧的过程中放出的热量,从而可以保护结构的性能,避免构件由于温度超过限值而降低承载力,发生质量事故,阻燃剂在分解的过程中产生惰性气体如二氧化碳等,这些气体使燃烧的建筑材料同外界空气隔绝,从而可以阻断材料的燃烧。
氧气隔离的方式是指当结构材料燃烧时,在建筑结构材料的外表面涂刷的防火隔离剂,遇到高温环境而释放出的一种灭火气体,这种气体可以阻断燃烧的材料与氧气反应,从而达到灭火的目的,或是在涂层遇到高温环境时会产生膨胀现象,形成均匀致密的绝热层以有效的隔绝氧气,并阻断火源向结构材料方向的蔓延,从而起到防火的作用。
自由基捕获方式是一种高效的防火方式,是由于建筑中的高分子材料的燃烧反应是依靠氢氧根离子的作用发生的链式化学反应,而阻燃剂与高分子材料中的氢氧根反应生成水分,可以有效的切断氢氧根的链式化学反应,同时阻燃剂在燃烧的过程中可以捕获游离氧中的的自由基并与之发生反应,在建筑结构构件的表面生成一种酸性隔膜,这种隔膜阻断了材料暴露在大气中,可以起到阻燃的功能。
2建筑结构中阻燃防火材料的应用技术2.1防火涂料的应用防火涂料具有不可燃或难以燃烧的特性,一般涂刷于建筑的结构表面层,隔断火源对主体结构的损害,并相对于其他防火材料来说,涂料具有质量轻厚度薄的特点,不仅可以减轻结构自重,而且节省室内的空间,所以防火涂料被广泛应用于建筑工程中,主要用在建筑内部的装饰工程中,增强其防火的性能,以保障建筑物的质量安全。
高分子阻燃材料
高分子阻燃材料
高分子阻燃材料是一种具有阻燃性能的材料,它能够有效地抑制火灾的发生和蔓延,保护人们的生命和财产安全。
随着社会的发展和科技的进步,人们对材料的阻燃性能要求越来越高,因此高分子阻燃材料的研究和应用变得日益重要。
高分子阻燃材料通常是指在高分子基体中加入阻燃剂或者改性剂,以提高材料的阻燃性能。
阻燃剂是一种能够在材料燃烧时产生惰性气体或者化学反应,阻止火焰蔓延的物质,而改性剂则是通过改变高分子材料的结构和性能,来提高材料的阻燃性能。
高分子阻燃材料具有许多优点。
首先,它能够有效地抑制火灾的发生和蔓延,提高人们的生命安全。
其次,高分子阻燃材料具有良好的加工性能,能够满足不同形状和尺寸的要求,广泛应用于建筑、交通、电子、航空航天等领域。
此外,高分子阻燃材料还具有良好的耐热性能和机械性能,能够在恶劣环境下长期稳定工作。
在实际应用中,高分子阻燃材料的研究和开发具有重要意义。
首先,我们需要不断地改进阻燃剂和改性剂的配方和性能,提高材料的阻燃性能和稳定性。
其次,我们需要开发新的高分子材料,以满足不同领域对阻燃材料的需求。
此外,我们还需要加强高分子阻燃材料的应用研究,推动其在建筑、电子、交通等领域的广泛应用。
总之,高分子阻燃材料是一种具有重要意义的材料,它能够有效地抑制火灾的发生和蔓延,保护人们的生命和财产安全。
在未来的发展中,我们需要不断地加强对高分子阻燃材料的研究和开发,推动其在各个领域的广泛应用,为社会的发展和人们的生活带来更多的福祉。
高分子材料的阻燃性能与应用
高分子材料的阻燃性能与应用高分子材料是一类在工业和生活中广泛应用的材料,具有轻质、高强度、耐腐蚀等特点,但由于其易燃的特性,给人们的使用带来了一定的安全隐患。
因此,提高高分子材料的阻燃性能对于保障人们的生命财产安全至关重要。
本文将探讨高分子材料的阻燃性能及其应用。
1. 高分子材料的阻燃性能高分子材料的阻燃性能是指材料在受到火焰、高温等外界条件刺激时,降低其燃烧性能和烟雾产生的能力的能力。
好的阻燃性能可以有效抑制火灾的发生和蔓延,减少火灾带来的破坏和伤害。
(1)阻燃剂的添加阻燃剂是一种常用的提高高分子材料阻燃性能的方法。
阻燃剂能够抑制材料的燃烧自由基的形成,减少燃烧过程中的热释放,降低燃烧温度,从而延缓燃烧速度,并抑制火焰的蔓延。
常用的阻燃剂包括氢氧化铝、含氯阻燃剂、磷系阻燃剂等。
(2)添加阻燃填充剂阻燃填充剂的添加也是一种提高高分子材料阻燃性能的有效方法。
阻燃填充剂以其高储能特性,在材料受到热源刺激时可以释放吸热,从而有效降低材料的燃烧温度和火焰蔓延速度。
常用的阻燃填充剂包括纳米氧化锆、氮磷酸铵等。
2. 高分子材料阻燃性能的应用高分子材料在阻燃领域的应用十分广泛,以下将介绍几个典型的应用领域。
(1)建筑领域在建筑领域,高分子材料广泛应用于隔热材料、电线电缆、防火胶带等产品中。
通过在这些材料中添加阻燃剂或阻燃填充剂,可以大大提高材料的阻燃性能,减少火灾的发生和蔓延。
(2)交通运输领域在交通运输领域,高分子材料被广泛应用于汽车内饰、飞机座椅等部件中。
提高这些部件的阻燃性能,可以有效降低火灾发生时的破坏和伤害,并提高人员的撤离时间。
(3)电子电器领域在电子电器领域,高分子材料被用于制造电线电缆、电子封装材料等产品。
好的阻燃性能可以减少电器设备发生火灾的几率,并降低火灾对设备造成的破坏。
3. 高分子材料阻燃性能的挑战与发展与提高高分子材料的阻燃性能相关的挑战主要包括:阻燃剂的选择、添加量的控制、阻燃性能与材料性能的平衡等。
高分子材料的阻燃技术探讨
高分子材料的阻燃技术探讨阻燃技术是通过改变高分子材料的化学结构和添加阻燃剂,以提高其抗火性能的方法。
适当的阻燃技术可以有效地减少高分子材料在火灾中的燃烧程度和烟雾产生,降低火灾风险和火灾对人类和环境造成的危害。
本文将重点讨论高分子材料的阻燃技术。
一、改变高分子材料的化学结构1. 引入阻燃元素:在高分子材料中引入含氮、含磷、含硅等阻燃元素,通过其独特的化学性质,阻断火焰的传播和燃烧过程。
引入含磷基团可以通过热分解产生胺和磷酸盐,消耗燃烧产生的自由基和热量,有效抑制火焰的扩散。
2. 交联聚合技术:通过交联聚合反应,形成三维网络结构,提高高分子材料耐热性和抗火性能。
交联还可以改善材料的机械性能和耐候性。
3. 共聚物改性:通过引入其他功能单体或聚合物,使高分子材料具有更好的阻燃性能。
共聚丙烯腈-丙烯酸酯和氰丙基聚磷酸酯可以显著提高聚丙烯腈的阻燃性能。
二、添加阻燃剂1. 烘托型阻燃剂:烘托型阻燃剂可以在高温下产生稳定的气体或液体,包裹住材料表面,形成物理屏障,减缓火焰的燃烧速度。
常用的烘托型阻燃剂有氯化铵、醇酸铵等。
2. 高效耐热型阻燃剂:高效耐热型阻燃剂主要作用是在高温下分解形成惰性气体和稳定的碳层,起到阻燃和隔热的作用。
常用的高效耐热型阻燃剂有聚磷酸铵酯、硅酸铝等。
3. 扩散型阻燃剂:扩散型阻燃剂可以增加材料内部形成的炭化层,减慢火焰的传播速度。
常用的扩散型阻燃剂有磷酸胺、磷酸盐等。
三、表面改性技术1. 化学改性:通过在高分子材料表面涂覆具有阻燃性的化学物质,形成阻燃层,提高材料的抗火性能。
常用的化学改性方法有溶胶凝胶修饰、化学气相沉积等。
2. 物理改性:通过在高分子材料表面改变其物理形态,形成抗火保护层,减缓火焰的传播速度。
常用的物理改性方法有表面处理、涂层等。
在阻燃技术中,还有一些其他的方法值得探讨,如微胶囊技术、纳米阻燃剂等。
微胶囊技术可以将阻燃剂封装在微小的胶囊中,延缓阻燃剂的释放,以增加其长期使用和阻燃效果。
超高分子量聚乙烯纤维的无卤阻燃整理
超高分子量聚乙烯纤维的无卤阻燃整理超高分子量聚乙烯纤维是一种具有无卤阻燃性能的纤维材料,其广泛应用于防火领域。
本文将从材料特性、制备方法、应用领域等方面介绍超高分子量聚乙烯纤维的无卤阻燃整理。
超高分子量聚乙烯纤维是一种由聚乙烯高分子聚合而成的纤维材料,具有超高的分子量和优异的物理性能。
由于其特殊的分子结构和分子量分布特性,超高分子量聚乙烯纤维具有很高的拉伸强度、模量和耐磨性,同时具有较低的密度和良好的耐化学性。
在防火领域,超高分子量聚乙烯纤维的无卤阻燃性能使其成为一种重要的材料。
相比传统的溴系阻燃剂,无卤阻燃剂在阻燃过程中不会产生有毒气体和有害物质,更加环保和安全。
无卤阻燃剂通常采用磷系化合物、氮系化合物等作为主要添加剂,通过阻断燃烧链反应,降低材料的燃烧速率和热释放量,从而实现阻燃效果。
制备超高分子量聚乙烯纤维的方法主要有熔融纺丝法和溶液纺丝法。
熔融纺丝法是将超高分子量聚乙烯原料加热至熔融状态后,通过纺丝装置将熔融聚乙烯挤出成纤维。
溶液纺丝法则是将超高分子量聚乙烯溶解于适当的溶剂中,形成聚合物溶液后,通过纺丝装置将溶液挤出成纤维。
无论是熔融纺丝法还是溶液纺丝法,都需要控制纺丝工艺参数,如温度、挤出速度等,以获得理想的纤维形态和性能。
超高分子量聚乙烯纤维的无卤阻燃整理主要通过添加无卤阻燃剂或采用无卤阻燃工艺来实现。
添加无卤阻燃剂是一种常见的方法,可以通过将无卤阻燃剂与超高分子量聚乙烯原料混合,或者在纺丝过程中向熔融聚乙烯中添加无卤阻燃剂,使纤维具有无卤阻燃性能。
此外,采用无卤阻燃工艺也是一种有效的方法,通过调整纺丝工艺参数和后续处理工艺,如拉伸、热定型等,使纤维具有无卤阻燃性能。
超高分子量聚乙烯纤维的无卤阻燃性能使其在防火领域具有广泛的应用。
例如,在航空航天、交通运输等领域中,超高分子量聚乙烯纤维可以用于制作防火服装、座椅材料等,提供人身安全保护。
在建筑领域,超高分子量聚乙烯纤维可以用于制作无卤阻燃隔热材料、防火板等,提高建筑物的防火安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子材料阻燃技术的应用分析
随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,以下是搜集的一篇探究高分子材料阻燃技术应用的,供大家阅读查看。
原有阻燃技术在处理工艺方面存有一定的缺陷,出现排烟量大、滴落面积大、毒害气体,严重威胁着人们的身体健康。
而现有技术通过高分子加聚反应产生的化合物,不但能够降低反应温度,而且还不会产生有害产物。
为了降低物质易燃特性,笔者针对高分子材料阻燃技术进行了分析。
其中包括:无机阻燃剂、卤系阻燃剂以及磷系阻燃剂,这几种阻燃剂不但能够隔断物质与空气的接触面积,而且还能降低物质燃烧时的温度,以此达到较为理想的阻燃效果。
高分子材料的阻燃机理是破坏原有高分子成分,形成新的保护膜或隔离层,达到抑制分子燃烧的效果。
一般阻燃性质从两个原理中进行分析,分别为隔氧及温度,隔氧采用凝聚相阻燃机理,高分子阻燃材料在燃烧过程中,形成阻燃细微分子,中断该链式反应。
链式反应中断后,分子热分解的温度较高,所以燃烧后期会形成水蒸气,阻燃材料高分子中含有大量的氢氧元素,与空气接触后,便会形成水雾覆盖在材料表层。
其次便是能隔断与空气的接触,形成的水雾除了降低表层温度外,还能堵塞阻燃材料的气孔,形成密闭环境,隔断与空气的接触。
凝聚相在作用机理中有4种阻燃模式,阻
燃材料在燃烧过程中,会产生惰性气体,延缓阻燃材料的燃烧;燃烧期间会产生多碳气孔,使其阻燃材料难以燃烧;反应过程中会吸收大量的热量,降低反应温度;其次无机比热容较大的分子,在燃烧过程中,通过分子之间的氧化还原反应,使分子发生质变,促使反应中断停止。
该两种反应在作用机理中大致相同,但在反应中作用的机理很多,所以在划分高分子阻燃体系结构上仍十分复杂。
2.1 无机阻燃剂
无机阻燃剂作用机理便是通过无机化合物的热分解,产生保护膜或水蒸气,隔断与空气接触及降低燃烧温度。
无机阻燃剂在燃烧过程中会产生结晶水,温度升高后,吸收周围热量,降低其燃烧温度,阻断其物质的燃烧;另一种便是通过阻燃剂燃烧形成保护膜,例如:Al(OH)3燃烧过程中,产生致密的氧化层薄膜,隔断物质与空气的接触面积。
无机阻燃剂化学性质稳定,不会产生较为污染有害气体,一般常用作防火无机阻燃剂。
2.2 卤系阻燃剂
在元素周期表中,卤系元素包括:氟、氯、溴、碘,该元素形成的化合物具有高效的阻燃效果。
化合物中含有氟利昂,该化合物易散发,破坏臭氧层。
在该物质中分别添加氯元素及氟元素,然后对
标准沸点进行比对。
其中添加氯元素标准沸点升高,化合物中含有3个氯分子时,标准沸点为61.2℃;其中添加氟元素标准沸点降低,化合物中含有3个氟分子时,标准沸点为-128℃,具体数据量如表1所示。
含氯化合物阻燃剂具有良好的阻燃性,化学性质稳定,能与多种高分子化合物相融,不影响化学反应。
溴元素阻燃化合物包括:十溴联苯醚、四溴苯酚、六溴环十二烷等,化学稳定性位于氯和碘元素之间,具有良好的`阻燃性。
卤系元素虽然具有良好的阻燃性,一般阻燃剂内都添加少量的卤系元素,保证达到阻燃效果。
2.3 磷系阻燃剂
磷系阻燃剂包括:红磷、白磷、磷酸氢二铵以及亚磷酸酯等化合物,磷系化合物在燃烧过程中会形成性碳膜,该膜除了降低外围温度外,还能起到隔断空气的作用,达到理想的阻燃效果。
其次红磷与白磷的混合,也能起到良好的阻燃性。
红磷在空气中燃烧发出淡蓝色的火焰,并产生大量白烟;白磷燃烧性质与红磷相似,最终产物都是五氧化二磷,两种磷在制备次磷酸阻燃剂中,能够提升与液体水的混合比例。
次磷酸(H3PO2),分子量60,与强氧化剂反应时,产生磷酸氢及氢气等,不会产生助燃气体成分。
针对磷系阻燃剂的配比关系,其中次磷酸中磷含量占有比例在35%,亚磷酸中磷含量占有比例在27%,保证磷系元素达到理想的阻燃效果。
3.1 纳米技术
随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,日本曾研发出纳米硅酸盐黏土纳米材料,这种材料具有优异的阻燃特性。
纳米材料在燃烧过程中,产生抑制剂,改变燃烧物质的内部结构,使其发生质变。
研制出的纳米硅酸盐黏土分子直径在0.4-0.5nm,产生的凝聚产物能够封闭其气孔,隔断与空气的接触面积。
其次在热释放速率上也具有延缓效应,保证有效时间内散发的热值最小。
3.2 接枝和交联改性技术
接枝和交联改性技术利用的是光敏技术与化学接枝,将多种无机化合物交织在一起,使其形成共聚化合物。
共聚化合物在燃烧过程中会产生无机绝缘层,吸收易燃物质内的高分子,减少助燃物质内的有效成分。
其次该技术也可用于减少燃烧物质后的产物,提高其阻燃性,最终达到理想状态。
3.3 膨胀技术
膨胀技术般采用发泡剂作为阻燃物质,发泡剂具有三个优点,包括:无排烟量、无毒气、无滴落。
原有技术在做阻燃处理工艺中,
产生大量的有毒气体,例如四溴苯酚在阻燃处理工艺中,产生大量的有毒气体,不但会污染环境,而且还对人体健康造成伤害。
无滴落主要体现在该阻燃剂不会产生腐蚀性液体,导致局部腐蚀。
通过对高分子材料阻燃技术的应用分析,使得笔者对此该技术有了更为深刻的认知。
这种技术不但能够对物质燃烧起到阻燃特性,而且也不会污染环境。
[1]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,xx,34(17):33-34.
[2]张军.聚合物燃烧与阻燃技术[M].北京:化工工业出版社,xx,38(24):58-59.
[3]欧育湘.阻燃高分子材料[M].北京:国防工业出版社,xx,48(37):22-23.
模板,内容仅供参考。