北师大版必修5数列
北师大版高中数学必修五第一章《数列》整合课件
-1-
本章整合
列表法 表示方法 解析法 图像法 ������������ 与������������ 的关系 ������������ = 概念 项数 分类 项的大小 ������1 ������������ -������������ -1 (������ = 1) (������ ≥ 2) 通项公式 递推公式
知识建构
综合应用
真题放送
应用3已知数列{an},a1=2,an=2an-1-1(n≥2),求通项公式an. 解:an=2an-1-1=2(2an-2-1)-1 =22an-2-2-1 =22(2an-3-1)-2-1 =23an-3-22-2-1 =… =2n-1a1-2n-2-2n-3-…-22-2-1 =2n-(2n-2+2n-3+…+22+2+1)
������1 (1-������������ ) ������1 -������������ ������ = (������ ≠ 1) 1-������ 1-������
������������ = ������������1 (������ = 1)
-2-
本章整合
专题一 专题二
知识建构
综合应用
-3-
本章整合
专题一 专题二
知识建构
综合应用
真题放送
应用 1
1 在数列{an}中,a1=1,an+1= an+1(n∈N+),求 an. 2
提示:已知递推关系an+1=kan+b求通项,用辅助数列求解的步骤: ①设an+1+λ=k(an+λ),②与已知式比较,求出λ,③由辅助数列{an+λ} 是等比数列即可得解.
北师大版高中必修5第一章数列课程设计
北师大版高中必修5第一章数列课程设计一、背景数列是数学中一种基本的概念,也是高中数学必修的一个章节。
数列的概念不仅在数学中有广泛的应用,也涉及到某些实际问题的策略和方法。
因此,数列的学习对高中数学的日常课程以及未来的学习和发展有重要的影响。
二、课程设计目标通过本课程,学生应该能够达到以下目标:•掌握数列的概念和性质;•熟练进行数列的公式推导及题目求解;•对数列的应用能够有一定的理解和掌握。
三、教学内容3.1 数列的概念1.数列概念1.等差数列的概念2.等比数列的概念3.斐波那契数列的概念2.数列的性质1.数列有界性及数列极限的概念2.数列的递推公式及通项公式3.2 数列的基本操作1.求和公式的推导及实际应用2.数列基本操作题目讲解及习题完成3.3 数列的应用1.数列在实际问题中的应用2.数列应用题目讲解及习题完成四、教学步骤4.1 第一课时4.1.1 导入数列是数学中的一个基础概念,本章的教学将介绍所涉及到的数列类型及数列的基本性质,让同学们对此有一个清晰的认识。
4.1.2 引入本节课将主要讲解等差数列的概念及性质,包括差、首项、公差等。
学生应该学会如何求出等差数列的通项公式及其与和式的关系。
4.1.3 操作1.老师首先讲解等差数列的概念及性质。
2.引导学生完成一系列简单的等差数列题目,以掌握其推导和应用方法。
3.最后让学生独立完成几道综合性的等差数列应用题目。
4.2 第二课时4.2.1 导入本节课将主要讲解等比数列的概念及性质,包括比、首项、公比等。
学生应该学会如何求出等比数列的通项公式及其与和式的关系。
4.2.2 引入本章主要讲解斐波那契数列的概念及其应用,引导学生从一个简单的问题入手,渐渐深入到一系列的高层应用。
4.2.3 操作1.老师首先讲解等比数列的概念及性质。
2.引导学生完成一系列简单的等比数列题目,以掌握其推导和应用方法。
3.最后让学生独立完成几道综合性的等比数列应用题目。
4.3 第三课时4.3.1 导入数列学习的最后一个环节是数列的应用,是这个学习过程的重点,将深入介绍数列在实际问题中的应用。
数学北师大版高中必修5北师大版高中数学必修5第一章《数列》第一课时 数列的概念
第一课时 1.1.1 数列的概念一、教学目标1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。
2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。
3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣二、教学重点:数列及其有关概念,通项公式及其应用教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓生一般折5、6次就不能折下去了,厚度太高了师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生随着对折数厚度依次为:2,4,8,16,…,256,…;随着对折数面积依次为21,41 ,81 ,161 ,…,2561生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数生 还有一定次序师 它们的共同特点:都是有一定次序的一列数[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗?生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列4、通项公式法:如数列的通项公式为 ;的通项公式为 ;的通项公式为 ;数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一. [知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n[例题剖析]例1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1 n n ;(2)a n =(-1)n ·n师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65 (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-师 好!就这样解例2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n-+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,a n =n +2)1(1n -+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,a n =(-1)n +1n (n +师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式(三)、学生课堂练习:课本本节练习1、2、3、4补充题:已知数列{a n }的通项公式是a n =2n 2-n ,那么(A.30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决答案:点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A(四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。
北师大版高中数学必修五《数列知识点总结》.pdf
北师⼤版⾼中数学必修五《数列知识点总结》.pdf S=a+a+……+a+an12n?1n相加2S=a+a+a+a+…+a+a…()()()n1n2n?11nS=a+a+……+a+annn?121?2x[练习]已知fx()=,则21+x111f(1)+f(2)+f+f(3)+f+f(4)+f=2342122??11xxx由f(x)+f=+=+=12222x1+x1+x1+x11+x11111∴原式=f(1)+f(2)+f+f(3)+f+f(4)+f=+1+1+1=323422(附:a.⽤倒序相加法求数列的前n项和如果⼀个数列{an},与⾸末项等距的两项之和等于⾸末两项之和,可采⽤把正着写与倒着写的两个和式相加,就得到⼀个常数列的和,这⼀求和⽅法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同⼀类知识的⼯具,例如:等差数列前n项和公式的推导,⽤的就是“倒序相加法”。
b.⽤公式法求数列的前n项和对等差数列、等⽐数列,求前n项和Sn可直接⽤等差、等⽐数列的前n项和公式进⾏求解。
运⽤公式求解的注意事项:⾸先要注意公式的应⽤范围,确定公式适⽤于这个数列之后,再计算。
c.⽤裂项相消法求数列的前n项和裂项相消法是将数列的⼀项拆成两项或多项,使得前后项相抵消,留下有限项,从⽽求出数列的前n项和。
d.⽤错位相减法求数列的前n项和错位相减法是⼀种常⽤的数列求和⽅法,应⽤于等⽐数列与等差数列相乘的形式。
即若在数列{an·bn}中,{an}成等差数列,{bn}成等⽐数列,在和式的两边同乘以公⽐,再与原式错位相减整理后即可以求出前n项和。
e.⽤迭加法求数列的前n项和迭加法主要应⽤于数列{an}满⾜an+1=an+f(n),其中f(n)是等差数列或等⽐数列的条件下,可把这个式⼦变成a-a=f(n),代⼊各项,得到⼀系列式⼦,把所有的式⼦加到⼀起,经过整理,可求出a,n+1nn从⽽求出S。
北师大版高中数学必修5数列数列概念
项数无限的数列叫做无穷数列。
1, 例如:数列
1, 1,1, 1, 2 345
16
按项的大小分: 递增数列 —— a n <a n + 1 递减数列 —— a n >a n + 1
常数列 : a n = a n + 1
摆动数列 : a n -1 <a n 且 a n >a n + 1
17
数列的例题1
通2. 项数公列式2是,:4a,n 6,n8,3…(n≤7的) 通项
公式是: an 2n
3. 数列 1,4,7,10,… 的通
项公式是:an 3n 2
10
实质:从映射、函数的观点 看,数列可以看作是一个定
义域为正整数集N*(或它的 有限子集{1,2,…,n})
的函数,当自变量从小到大 依 次取值时对应的一列函数 值。
4
堆 放 的 钢 管
4,5,6,7,8,9,10.
5
正整数的的倒数:
1, 1 , 1 , 1 , 1 , 2 345
2精确到1,0.1,0.01,0.001, 的值:
1, 1.4, 1.41,1.414, …,
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1, 1,-1, 1, -1, 1, …
(2)能力目标:学会观察、分析、猜测、归纳; 数形结合法的应用;数学归纳法的应用。
2
(3)认知目标:通过教学培养学生观察问题、分析 问题的能力,学习辩证的观点从特殊到一般的认识事 物规律,大胆猜测、归纳。
(4)德育目标:从德育方面进行教育、善比较、细 分析、做生活中的有心人,发现规律,不要马马虎虎、 似是而非,做符合时代的“创新型”的人才。
例1 根据数列 an 的通项公式,写出它的前5项。
北师大版高中数学必修5第一章数列知识点及方法总结
数列知识点知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图像表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图像是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
(6 )数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥注意:此公式较重要!!!等差数列知识点1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
高中数学北师大版必修五课件:第1章 §1-1.2 数列的函数特性
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
本部分内容讲解结束
按ESC键退出全屏播放
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
【答案】 B
因为 an 是关于 n 的二次函数,本题易错解为函数对称轴k2≤1, k≤2,故选 A.错因是忽视了 n 为正整数这一条件.对于数列的 增减性的判断一般要通过比较 an+1 与 an 的大小来判断:若 an+1>an,则数列为递增数列;若 an+1<an,则数列为递减数列.
1.下列说法中不正确的是( ) A.数列 a,a,a,…是无穷数列 B.数列{f(n)}就是定义在正整数集 N+上或它的有限子集{1,2, 3,…,n}上的函数值 C.数列 0,-1,-2,-3,…不一定是递减数列 D.已知数列{an},则{an+1-an}也是一个数列
A.136
B.133
C.4
D.0
(2)作出数列-1,1,-1,1,…,(-1)n,…的图像,并判断
数列的增减性.
解:(1)选 D.因为 an=-3n-522+34,由二次函数性质,得当 n =2 或 3 时,an 最大,最大为 0. (2)作出数列的图像如图所示,数列各项的值负正相间,表示数 列的各点相对于横轴上下摆动,它既不是递增的,也不是递减 的.
高中数学北师大版必修五第一章:1.1 数列的概念
数列的项,有的是分数,有的是整数,可将各项都统一成分数再观察: 1 4 9 16 25 2,2,2, 2 , 2 ,…, n2 所以,它的一个通项公式为 an= 2 ,n∈N+.
(3)9,99,999,9 999; 解答
各项加1后,变为10,100,1 000,10 000,…,此数列的通项公式为10n,
-1nn+1 例2 已知数列{an}的通项公式an= ,n∈N+. 2n-12n+1
(1)写出它的第10项; 解答
-110×11 11 a10= =399. 19×21
2 (2)判断 33 是不是该数列中的项. 解答
n +1 2 令 =33,化简得 8n2-33n-35=0, 2n-12n+1 7 解得 n=5(n=-8,舍去). 2 2 当 n=5 时,a5=-33≠33. 2 所以33不是该数列中的项.
思考2
数列的记法和集合有些相似,那么数列与集合的区 别在哪儿? 答案 数列中的数讲究顺序,集合中的元素具有无序性;数 列中可以出现相同的数,集合中的元素具有互异性.
梳理
(1)按 一定次序 排列的 一列数 叫作数列,数列中的每一个数叫作这个数
列的 项 .
(2) 数列的一般形式可以写成 a1,a2,a3,…,an,… ,简记为{an},其
A.an=n,n∈N+
解析
C.an=n+2,n∈N+
√
B.an=n+1,n∈N+
D.an=2n,n∈N+
这个数列的前4项都比序号大1,所以,它的一个通项公式为an=n+1,
n∈N+.
1
2
3
-1n-1· n 1 ;an+1 3.已知数列{an}的通项公式an= ,n∈N+,则a1=__ n 2n-1 -1 n+1
北师版数学高二北师大版必修5课件数列的概念
思考3 函数y=7x+9与y=3x,当依次取1,2,3,… 时,其函数值构成的数列各有什么特点? 答 对于第一个数列,从第2项起,每一项与前一项 的差都等于7; 对于第二个数列,从第2项起,每一项是前一项的3倍.
明目标、知重点
小结 (1)如果数列{an}的第n项an与n之间的函数关系可 以用一个式子an=f(n)来表示,那么这个式子就叫作这个 数列的通项公式. (2)并不是所有的数列都有通项公式,有些数列的通项公 式不唯一. (3)通项公式的作用:①求数列中任意一项;②检验某数 是不是该数列中的项.
n为偶数
或 an=
2
(n∈N+)或
1+cos nπ
an= 2
(n∈N+).
明目标、知重点
呈重点、现规律
1.用符号{an}表示数列,只不过是“借用”集合的符号,它们之 间有本质上的区别: (1)集合中的元素是互异的,而数列中的项可以是相同的; (2)集合中的元素是无序的,而数列中的项必须按一定顺序排列, 也就是必须是有序的. 2.据所给数列的前几项求其通项公式时,需仔细观察分析,抓 住其几方面的特征:
明目标、知重点
反思与感悟 解决此类问题的方法是根据数列的 定义及所含项数的多少与项的变化情况确定.
明目标、知重点
跟踪训练1 下列叙述正确的是( ) A.数列1,3,5,7和数列3,1,5,7是同一个数列 B.同一个数在数列中可能重复出现 C.数列的通项公式是定义域为正整数集N+的函数 D.任何数列的通项公式都存在
第一章 数列
§
内容 索引
01 明目标
知重点
填要点 记疑点
02
03
探要点 究所然
当堂测 查疑缺
04
明目标、知重点
北师大版高中数学必修五第一章数列小结与复习教案
北师大版高中数学必修五第一章数列小结与复习教案一、数列的概念及相关知识点1.数列的定义:按照一定的顺序排列的一组数。
2.数列的表示:一般表示为{a₁,a₂,a₃,...,aₙ,...}或者(a₁,a₂,a₃,...,aₙ,...),其中a₁,a₂,a₃,...,aₙ,...依次称为数列的项,a₁称为数列的首项,aₙ称为数列的第n项。
3.数列的分类:-等差数列:差值相等的数列,常用公式:aₙ=a₁+(n-1)d。
-等比数列:比值相等的数列,常用公式:aₙ=a₁q^(n-1)。
-幂次数列:各项是公比的幂次方的数列。
-斐波那契数列:前两项为1,从第3项开始,每一项都等于前两项的和。
-拍数列:数列以递增或递减的方式排列,常用公式:aₙ=a₁+(n-1)bₙ。
4.数列的前n项和:-等差数列:Sₙ=(a₁+aₙ)*n/2-等比数列:Sₙ=(a₁*(q^n-1))/(q-1),当,q,<1时,Sₙ=a₁/(1-q)。
-幂次数列:Sₙ=(aₙ*q-a₁)/(q-1)。
-斐波那契数列:Sₙ=Fₙ₊₂-1-拍数列:Sₙ=(n*(a₁+aₙ))/2二、数列的综合性题目解法与常用技巧1.求等差数列的和时,如果不能确定Sₙ的公式,则可以考虑用递推公式Sₙ=Sₙ₋₁+aₙ来求解。
2.求证一些结论时,可以尝试先计算前几项得出猜想,然后再进行严格的数学证明。
3.涉及等差数列与等差中项,常使用等差中项的性质:中项等于首项与末项的平均数。
4.利用等差数列的性质进行特殊的构造:例如构造等差数列a,a+d,a+2d,可以进行各种相加,相减和相乘操作。
5.利用平方差公式代数化简计算等差数列时,注意式子的变换与运算。
6.求证题目中如果存在级数或者级数之差的求和,可以考虑用数学归纳法进行证明。
三、教学重点与难点1.教学重点:数列的基本概念与常见分类,数列的各种公式与常用技巧,数列的前n项和公式的推导。
2.教学难点:利用数列的概念与公式解决实际问题,数学证明的推导与展示。
高中数学第1章数列111数列的概念课件北师大版必修5
3.是否所有的数列都有通项公式?若有,通项公式是否唯 一?
答:①不是,如π的不足近似值组成的数列 1,1.4,1.41, 1.414,……就没有通项公式.
②若一个数列有通项公式,也不一定唯一,如数列:-1,1, -1,1,……的通项公式可以写成 an=(-1)n,也可以写成 an=(- 1)n+2,也可以写成 an=- 1(1n为(偶n为数奇).数),
(5)将数列各项写为93,939,9399,….
第17页
【解析】 所给五个数列的通项公式分别为 (1)an=2n2-n 1; (2)an=n22; (3)an=1+(2-1)n; (4)an=- 3n 1n((nn==22kk-)1,)其,中k∈N*
第18页
由于 1=2-1,3=2+1,所以数列的通项公式可合写成 an =(-1)n·2+(n-1)n;
第24页
【解析】 (1)an=n(n+1)=600=24×25,所以 n=24. (2)①a4=3×42-28×4=-64, a6=3×62-28×6=-60. ②由 3n2-28n=-49,解得 n=7 或 n=37(舍).所以-49 是 该数列的第 7 项;由 3n2-28n=68 解得 n=-2 或 n=334,均不 合题意,所以 68 不是该数列的项.
B.9
C.6
D.20
答案 C
第32页
3.数列 2, 5,2 2, 11,…,则 2 5是该数列的( )
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
答案 B
第33页
4.数列{n2+n}中的项不能是( )
A.56
B.72
C.60
D.132
答案 C
第34页
北师大版高中数学必修5第一章《数列》数列的概念
2
(3)认知目标:通过教学培养学生观察问题、分析 问题的能力,学习辩证的观点从特殊到一般的认识事 物规律,大胆猜测、归纳。
(4)德育目标:从德育方面进行教育、善比较、细 分析、做生活中的有心人,发现规律,不要马马虎虎、 似是而非,做符合时代的“创新型”的人才。
0(n为奇数) (1 n为偶1数9 )
例3 已知数数列列的例a题n 3的第1项是1,
以写后出的这各个项数由列公的式前5a项n 。1
1 给出, an1
a3
a1 1
1 1 a2
1
a2 1 13 22
1 1 a1
a4 1
1
1
1 1 a3
2
2 3
4
堆 放 的 钢 管
4,5,6,7,8,9,10.
5
正整数的的倒数:
1, 1 , 1 , 1 , 1 , 2 345
2精确到1,0.1,0.01,0.001,的值:
1, 1.4, 1.41,1.414, …,
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1, 1,-1, 1, -1, 1, …
北师大版高中数学必修 5第一章《数列》
法门高中姚连省制1作
1、教学内容: 本节的主要内容是数列的概念和通项公式。掌握数 列函数集合三者的关系用函数观点理解序号与项的 关系,再分析给出项或通项公式,分析就深刻具体, 面面俱到,发现规律,了解递推公式也是数列的一 种表示方法。
2、教学目标: (1)知识目标:理解数列概念;给出前几项, 求通项的分析方法;数列的表示方法;递推公式 的定义及简单应用。
高中数学第一章数列本章归纳总结课件北师大版必修5
(5)等差数列和的最大值、最小值. ①在等差数列{an}中,a1>0,d<0,则 Sn 有最大值;若①a1<0,d>0,则 Sn 有 最小值. ②求 Sn 的最值的方法: 1° 因为 Sn=d2n2+a1-d2n,所以可转化为二次函数求最值,但应注意 n∈N+; 2° 若aann≥ +1<00,, 则 Sn 最大;若aann≤ +1>00,, 则 Sn 最小.
[解析] 解法一:由已知 an+1=23an+1 得:(an+1-3)=23(an-3) ∴aan+n-1-33=23, ∴{an-3}为以 a1-3=-2 为首项,q=23的等比数列.
∴an-3=(-2)×(23)n-1,
∴an=3-2·(23)n-1.
解法二:由已知得 an+1-23an=1, ①
4.数列的分类 (1)根据数列的项数可以对数列进行分类:项数有限的数列叫作有穷数列,项 数无限的数列叫作无穷数列. (2)按照项与项之间的大小关系,可以分为以下几类: ①一般地,一个数列{an},如果从第 2 项起,每一项都大于它前面的一项,即 an+1>an,那么这个数列叫作递增数列. ②一个数列{an},如果从第 2 项起,每一项都小于它前面的一项,即 an+1<an, 那么这个数列叫作递减数列.
得aa21·aa32·aa34·…·aan-n 1=2·22·23·…·2n-1,
n(n-1)
∴an=a1×21+2+3+…+(n-1)=2 2 .
4.构造转化法 例题 4 在数列{an}中,a1=1,an+1=23an+1,求 an.
[分析] 通过整理变形,进而构造等比数列,由等比数列的通项间接求数列{an} 的通项公式.
(2)由(1)得 bn=1+2(n-1)=2n-1, 即 an+1-an=2n-1.
高中数学北师大版必修五课件:数列的概念及通项公式
2.数列的项的性质 (1)可重复性. (2)有序性:一个数列不仅与构成数列的数有关,而且与这些数 的排列次序有关, 两个数列只有对应项相同, 且项数也相同时, 数列才相同,如 1,2,3,4,…,n 与 1,2,3,4,…,n,… 为不同的两个数列.
3.解读数列的通项公式 (1)数列的通项公式实际上是一个以正整数集 N+(或它的有限子 集{1,2,3,…,n})为定义域的函数解析式. (2)并不是所有的数列都有通项公式;同一个数列的通项公式不 一定是唯一的.
1 0 1 0 1 0 1 0 ③把数列改写成 , , , , , , , ,…,分母依次为 1, 1 2 3 4 5 6 7 8 2,3,…,而分子 1,0,1,0,…周期性出现,因此数列的一 1+(-1)n 1 个通项公式为 an= . 2n
a2=a1+2=2×2+1,a3=a2+2=2×2+3=2×3+1, a4=a3+2=3+2×3=2×4+1,…. 根据归纳推理可知 an=2n+1. 故填 2n+1.
(2)①符号问题可通过(-1)n 或(-1)n 1 表示, 其各项的绝对值的
+
排列规律为:后面的数的绝对值总比前面数的绝对值大 6,故 数列的一个通项公式为 an=(-1)n(6n-5). 8 8 ②将数列变形为 (1-0.1), (1-0.01), 9 9 8 (1-0.001),…, 9 1 8 所以 an= 1-10n. 9
1.对数列的概念的理解 (1)数列定义中的“次序”,既可以是从小到大的次序,也可以 是从大到小的次序, 也可以是随机的次序, 只要把数排列起来, 就构成一个数列. (2){an}与 an 是不同概念, {an}表示数列 a1, a2, a3, …, an , …; 而 an 表示数列{an}中的第 n 项.
2019-2020高中北师版数学必修5第1章 §1 1.1 数列的概念
§1数列§11.1数列的概念1.数列的基本概念阅读教材P3~P4,完成下列问题(1)数列的有关概念①一般形式:a1,a2,a3,…,a n,…;②字母表示:上面数列也可记为{a n}.③数列的分类思考:(1)数列1,2,3,4,5和数列5,4,3,2,1是同一个数列吗?[提示]数列1,2,3,4,5和数列5,4,3,2,1不是同一个数列,因为二者的项的排列次序不同.(2)数列的项和项数有何区别?[提示]数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号,如数列1,2,3,4,5中第1项为a1=1,其项数是1.2.通项公式阅读教材P5“抽象概括”以下至“例1”以上的内容,完成下列问题.(1)如果数列{a n}的第n项a n与n之间的函数关系可以用一个式子表示成a n =f(n),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.(2)数列可以看作是定义域为正整数集N+(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.思考:(1)若a n=2n-1,则a2+a3的值是什么?[提示]因为a n=2n-1,所以a2=2×2-1=3,a3=2×3-1=5,则a2+a3=3+5=8.(2)数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?[提示]数列可以看成以正整数集N+(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域:数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.1.已知数列{a n}的通项公式是a n=n2+1,则122是该数列的()A.第9项B.第10项C.第11项D.第12项C[由n2+1=122得n2=121,∴n=11.故选C.]2.若数列{a n}的通项公式为a n=2n2-3n,则a2=________.2[a2=2×22-3×2=2.]3.数列1,2,3,4,5,…的通项公式为________.a n=n(n∈N+)[观察知数列的通项公式为a n=n(n∈N+).]4.已知数列{a n}的通项公式为a n=(-1)n,n∈N+,则它的第8项是________,第9项是________.1-1[当n=8时,a8=(-1)8=1.当n=9时,a9=(-1)9=-1.]A.数列4,7,3,4的首项是4B.数列{a n}中,若a1=3,则从第2项起,各项均不等于3C.数列1,2,3,…就是数列{n}D.数列中的项不能是三角形(2)下列各组元素能构成数列吗?如果能,构成的数列是有穷数列,还是无穷数列?并说明理由.①8,8,8,8;②-3,-1,1,x,5,7,y,11;③当n取1,2,3,4,…时,(-1)n的值排成的一列数.(1)B[根据数列的相关概念,数列4,7,3,4的第1项就是首项,即4,故A 正确;同一个数在数列中可以重复出现,故B错误;根据数列的相关概念可知C 正确;数列中的项必须是数,不能是其他形式,故D正确.](2)[解]①能构成数列,且构成的是有穷数列.②当x,y代表数时是数列,此时构成的是有穷数列;当x,y中有一个不代表数时,便不能构成数列,这是因为数列必须是由一列数按一定的顺序排列组成的.③能构成数列,且构成的是无穷数列.所构成的数列是-1,1,-1,1,….数列及其分类的判定方法(1)判断所给的对象是否为数列,关键看它们是不是按一定次序排列的数;(2)判断所给的数列是有穷数列还是无穷数列,只需观察数列含有限项还是无限项,若数列含有限项,则是有穷数列,否则是无穷数列.1.下列说法正确的是()A.1,2,3,4,…,n是无穷数列B.数列3,5,7与数列7,5,3是相同数列C.同一个数在数列中不能重复出现D.数列{2n+1}的第6项是13D[A错误,数列1,2,…,n,共n项,是有穷数列.B错误,数列是有次序的.C错误,数列中的数可以重复出现.D正确,当n=6时,2×6+1=13.](1)23,415,635,863,…;(2)12,2,92,8,252,…;(3)-1,2,-3,4,…;(4)2,22,222,2 222,….[解](1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9,…是两个相邻奇数的乘积.故a n=2n(2n-1)(2n+1).(2)将分母统一成2,则数列变为12,42,92,162,252,…,其各项的分子为n2.∴a n =n 22.(3)该数列的前4项的绝对值与序号相同,且奇数项为负,偶数项为正,故a n =(-1)n ·n .(4)通过观察分析可知所求通项公式为a n =29(10n -1).由数列的前几项求通项公式的思路(1)通过观察、分析、联想、比较,去发现项与序号之间的关系.(2)如果关系不明显,可将各项同时加上或减去一个数,或分解、还原等,将规律呈现,便于找通项公式.(3)要借助一些基本数列的通项,如正整数数列、正整数的平方数列、奇数列、偶数列等.(4)符号用(-1)n 或(-1)n +1来调整.(5)分式的分子、分母分别找通项,还要充分借助分子、分母的关系.2.(1)数列1,23,35,47,59,…的一个通项公式a n =( ) A .n2n +1B .n 2n -1C .n 2n -3D .n 2n +3(2)根据以下数列的前4项写出数列的一个通项公式. ①12×4,13×5,14×6,15×7,…; ②-3,7,-15,31,…; ③2,6,2,6,….(1)B [由已知得,数列可写成11,23,35,47,59,…,故通项公式为n 2n -1.] (2)[解] ①均是分式且分子均为1,分母均是两因数的积,第一个因数是项数加上1,第二个因数比第一个因数大2,所以a n =1(n +1)(n +3).②正负相间,且负号在奇数项,故可用(-1)n 来表示符号,各项的绝对值恰是2的整数(项数加1)次幂减1,所以a n =(-1)n (2n +1-1).③此数列为摆动数列,一般求两数的平均数2+62=4,而2=4-2,6=4+2,中间符号用(-1)n 来表示.所以a n =4+(-1)n·2或a n =⎩⎨⎧2,n 是奇数,6,n 是偶数.1.已知数列{a n }的通项公式,如何求数列的某一项?[提示] 把n 的值代入通项公式进行计算即可,相当于函数中,已知函数的解析式和自变量的值求函数值.2.已知数列{a n }的通项公式,如何判断某一个数是否为该数列中的项? [提示] 假定这个数是数列中的第n 项,由通项公式可得方程,解方程求得n ,若n 是正整数,则该数是数列中的项;若方程无解或n 不是正整数,则该数不是数列中的项.【例3】 数列{a n }的通项公式是a n =n 2-21n2(n ∈N +). (1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项? 思路探究:(1)令a n =0,a n =1⇒求n ⇒判断(2)假设存在连续且相等的两项⇒列方程⇒求解⇒判断[解] (1)若0是{a n }中的第n 项,则n 2-21n2=0, 因为n ∈N +,所以n =21.所以0是{a n }中的第21项. 若1是{a n }中的第n 项,则n 2-21n2=1,所以n 2-21n =2,即n 2-21n -2=0. 因为方程n 2-21n -2=0不存在正整数解, 所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,解得m =10. 所以数列{a n }中存在连续的两项,即第10项与第11项相等.1.(变条件)在例3中,把“a n =n 2-21n2”改为“a n =n 2-3n ”,解答(1)(2)两题.[解] (1)若0是{a n }中的第n 项,则n 2-3n =0,因为n ∈N +,所以n =3,故0是{a n }中的第3项.若1是{a n }中的第n 项,则n 2-3n =1,即n 2-3n -1=0,因为方程n 2-3n -1=0不存在正整数解,所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,所以m 2-3m =(m +1)2-3(m +1),解得m =1.所以数列{a n }中存在连续的两项,第1项与第2项相等. 2.(变结论)例3的条件不变,求a 3+a 4的值和a 2n .[解] a 3+a 4=32-21×32+42-21×42=-61,a 2n =(2n )2-21×2n 2=2n 2-21n .1.由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.2.判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.1.观察法写通项公式的注意事项据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.2.并非每一个数列均有通项公式,如2的不同近似值,依不同的近似值,可得数列1,1.4,1.41,1.414,…,便无通项公式,有些数列通项公式也不唯一.3.通项公式的应用.1.判断正误(正确的打“√”,错误的打“×”) (1)数列中的项不能相等.( )(2)数列1,2,3,4,…,n -1,只有n -1项.( ) (3)数列1,2,3,4,…,n 2是无穷数列.( ) [答案] (1)× (2)√ (3)×[提示] 数列中的项可以相等,故(1)错;数列1,2,3,4,…,n 2共n 2项,是有穷数列,故(3)错.2.在数列-1,0,19,18,…,n -2n 2,…中0.08是它的( ) A .第100项 B .第12项 C .第10项D .第8项C [由题意知,a n =n -2n 2. 令a n =0.08,即n -2n 2=8100, 所以n =10,n =52(舍去),故选C .]3.若数列{a n }的通项公式是a n =3-2n,则a 2n =________,a 2a 3=________.3-4n15 [根据通项公式我们可以求出这个数列的任意一项. 因为a n =3-2n , 所以a 2n =3-22n =3-4n ,a 2a 3=3-223-23=15.]4.已知数列{a n }的通项公式为a n =4n 2+3n .(1)写出数列的前三项;(2)110和1627是不是数列{a n }中的项?如果是,是第几项? [解] (1)数列的前三项:a 1=412+3×1=1,a 2=422+3×2=410=25,a 3=432+3×3=418=29.(2)令4n 2+3n =110,则n 2+3n -40=0, 解得n =5或n =-8,注意到n ∈N +,故n =-8舍去. 所以110是数列{a n }的第5项. 令4n 2+3n=1627,则4n 2+12n -27=0, 解得n =32或n =-92,注意到n ∈N +,所以1627不是数列{a n }中的项.。
数学北师大版高中必修5数列的概念与简单表示法
4.数列 的第4项是.
5.写出数列 , , , 的一个通项公式.
6.已知数列 ,则数列 是().
A.递增数列B.递减数列
C.摆动数列D.常数列
7.数列 中, ,则此数列最大项的值是().
A. 3 B. 13 C. 13 D. 12
8.数列 满足 , (n≥1),则该数列的通项 ().
教学过程
一自主学习
⒈数列的定义:的一列数叫做数列.
⒉数列的项:数列中的都叫做这个数列的项.
反思:
⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?
⑵同一个数在数列中可以重复出现吗?
3.数列的一般形式: ,或简记为 ,其中 是数列的第项.
4.数列的通项公式:如果数列 的第n项 与n之间的关系可以用来表示,那么就叫做这个数列的通项公式.
课题
数列的概念与简单表示法
学习重点
数列及其有关概念,通项公式及其应用.
学习难点
根据一些数列的前几项,抽象、归纳出数列的通项公式.
学习目标
1.理解数列及其有关概念,了解数列和函数之间的关系;
2.了解数列的通项公式,并会用通项来自式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的个通项公式.
三巩固练习
1.下列说法正确的是().
A.数列中不能重复出现同一个数
B. 1,2,3,4与4,3,2,1是同一数列
C. 1,1,1,1…不是数列
D.两个数列的每一项相同,则数列相同
2.下列四个数中,哪个是数列 中的一项().
A. 380 B. 392 C. 321 D. 232
3.在横线上填上适当的数:
反思:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:数列的概念与简单表示法(一)
一、教学要求:
理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.
二、教学重点、教学难点:
重点:数列及其有关概念,通项公式及其应用.
难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.
三、教学过程:
导入新课
“有人说,大自然是懂数学的”“树木的,。
”,
(一)、复习准备:
1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“
12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18
,、、、、、、 2. 生活中的三角形数、正方形数. 阅读教材
提问:这些数有什么规律?与它所表示的图形的序号有什么关系?
(二)、讲授新课:
1. 教学数列及其有关概念:
(1)三角形数:1,3,6,10,···
(2)正方形数:1,4,9,16,··· (2)1,2,3,4……的倒数排列成的一列数:
(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。
(4)无穷多个1排列成的一列数:1,1,1,1,。
有什么共同特点? 1. 都是一列数;2. 都有一定的顺序
① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?
与“1,3,2,4,5”呢? ----------数列的有序性
(2)数列中的数可以重复吗?
(3)数列与集合有什么区别?
集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。
② 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.
③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .
④ 数列的分类:(1)按项数分:有穷数列与无穷数列,
(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.
⑤ 数列中的数与它的序号有怎样的关系?
序号可以看作自变量,数列中的数可以看作随着变动的量。
把数列看作函数。
即:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列
函数值。
反过来,对于函数)(x f y =,如果、2、3、4)i i f 1)((=有意义,可以得到一个数列:
......\)3(\)2(\)1(f f f
如果数列}{n a 的第n 项与项数之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
⋯⋯,,,,4131211
函数 数列(特殊的函数)
定义域 R 或R 的子集 *N 或它的子集
解析式 )(x f y = )(n f a n = 图象 点的集合 一些离散的点的集合
2.应用举例
例1、写出下列数列的一个通项公式,使它的前4项分别是下列各数:
(1);41,31
,21
,1-- (2) 2,0,2,0.
练习:根据下面数列的前几项的值,写出数列的一个通项公式:
(1) 3, 5, 7, 9, 11,……; (2) 32
, 154
, 356
, 638
, 9910
, ……;
(3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……;
(5) 2, -6, 18, -54, 162, …….
例2. 写出数列 (135)
,104
,73
,42
,1的一个通项公式,并判断它的增减性。
思考:是不是所有的数列都存在通项公式?根据数列的前几项写出的通项公式是唯一的吗? 例3.根据下面数列{}n a 的通项公式,写出前五项:
(1)1+=n n
a n (2)n a n n ∙-=)1(
例4.求数列}{3922++-n n 中的最大项。
例5.已知数列{}n a 的通项公式为2)3(log 22-+=n a n ,求3log 2是这个数列的第几项?
三. 小结:数列及其基本概念,数列通项公式及其应用.
四、巩固练习:
1. 练习:P31面1、2、题、
2. 作业:《习案》九。