2007年高考数学(文)模拟试卷_6
07年高考数学模拟试题(6)-教育文档资料
2007年高考数学知识与能力测试题及答案(6套)(文科)
2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
2007高三数学(文科)(校)模拟试卷(附答案).doc
2007年普通高等学校招生全国统一考试数学(文科)试卷 第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+ 如果事件A B ,相互独立,那么()()()P A B P A P B =·· 球的表面积公式24πS R =,其中R 表示球的半径 球的体积公式34π3V R =,其中R 表示球的半径 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2= ( ) A. –4 B. –6 C. –8 D. –102.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( ) A. y=x 3B. y=cosxC. y=1xD. y=lg|x|3. “ m=12 ”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条4.函数f(x)=x-1 +1 (x ≥1)的反函数f -1(x)的图象是 ( )A B C D5设集合A={x||4x-1|≥9,x ∈R},B={x|xx+3≥0,x ∈R},则A ∩B= ( )A. (-3,2]B. (-3,-2]∪[0,52 ]C. (-∞,-3]∪[52 ,+∞)D. (-∞,-3)∪[52,+∞)x6.为了得到函数y=sin(2x+π3 )的图象,可以将函数y=cos2x+3的图象沿向量→a 平移,则向量→a的坐标可以是 ( ) A. (- π6 ,-3) B. (π6 ,3) C. (π12 ,-3) D. (- π12,3)7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,已知A=π3 ,a= 3 ,b=1,则c 等于 ( )A. 1B. 2C. 3 –1D. 38.若正数a 、b 的等差中项为12 ,且x=a+1a ,y=b+1b ,则x+y 的最小值为 ( )A. 4B. 5C. 6D. 79.如图,空间有两个正方形ABCD 和ADEF,M 、N 分别为BD 、AE 的中点,则以下结论: ①MN ⊥AD; ② MN 与BF 是一对异面直线;③ MN ∥平面ABF; ④ MN 与AB 所成角为600,其中正确的是( ) A. ①② B. ①③ C. ②④ D. ①②③10.已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|→MN|·|→MP|+→MN ·→NP=0,则动点P(x,y)的轨迹方程是 ( ) A. y 2=8x B. y 2=-8x C. y 2=4x D. y 2=-4x11.椭圆C 1: x2a2 + y2b2 =1(a >b >0)的左、右焦点分别为F 1、F 2,抛物线C 2以F 1为顶点,以F 2为焦点且过椭圆C 1的短轴端点,则椭圆C 1的离心率等于 ( ) A. 35 B. 14 C. 3 3 D. 1312.用四种不同的颜色给正方体ABCD-A 1B 1C 1D 1的六个面染色,要求相邻两个面涂不同的颜色,且四种颜色均用完,则所有不同的涂色方法共有 ( ) A. 24种 B. 96种 C. 72种 D. 48种第Ⅱ卷 (90分)A BCDFENM二.填空题:本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.13.设动点坐标(x,y)满足⎩⎨⎧(x-y+1)(x+y-4)≥0 x≥3,则x 2+y 2的最小值为 .14.若(x- 2a x )6的展开式中常数项为 –160,则展开式中各项系数之和为 .15.A 、B 、C 是半径为2的球面上的三点,O 为球心.已知A 、B 和A 、C 的球面距离均为π,B 、C 的球面距离为2π3 ,则二面角A-BC-O 的大小为 .16.给出下列四个命题:① 抛物线x=ay 2(a ≠0)的焦点坐标是(14a ,0); ② 等比数列{a n }的前n 项和S n =2n -1-m,则m=12;③ 若函数f(x)=x 3+ax 在(1,+∞)上递增,则a 的取值范围是(-3,+∞); ④ 渐近线方程为y=±12x 的双曲线方程是 x24- y 2=1.其中正确的命题有 .(把你认为正确的命题都填上)三.解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)设函数f(x)=cos ωx( 3 sin ωx+cos ωx),其中0<ω<2. (1)若f(x)的周期为π,求当 - π6 ≤x ≤π3 时,f(x)的值域;(2)若函数f(x)的图象的一条对称轴为x=π3 ,求ω的值.18.(12分)正项数列{a n }的前n 项和S n 满足: 4S n =a n 2+2a n -3 (n ∈N +).(1) 求数列{a n }的通项公式;(2)设b n =1anan+1 ,求数列{b n }的前n 项和T n .19.(12分)四棱锥P-ABCD 中,底面ABCD 为正方形,侧面PAB 为等边三角形,BC= 2 ,PD=2,点M为PD 的中点,N 为BC 的中点.(1) 求证:面PAB ⊥面ABCD;(2)求直线MN 与平面ABCD 所成的角; (3)求点N 到平面PAD 的距离.20.(12分)某项赛事,在“五进三”的淘汰赛中,需要加试综合素质测试,每位参赛选手需回答3个问题.组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.求: (1) 每位选手抽到3道彼此不同类别题目的概率; (2)每位选手至少有1次抽到体育类题目的概率.21.(12分)已知椭圆x2a2 +y2b2 =1(a >b >0)的离心率e= 6 3 ,过点A(a,0)和B(0,-b)的直线与原点的距离为32.(1)求椭圆的方程;(2)已知定点E(-1,0),D 为OB 的中点,M 、N 为椭圆上的点(点M 在x 轴上方),满足:→ME=λ→EN,且∠DME=∠DNE,求λ的值.22.(14分)二次函数f(x)=ax 2+bx+c 与其导函数f ’(x)的图象交于点A(1,0),B(m,m). (1) 求实数m 的值及函数f(x)的解析式;(2) 若不等式f(x+1)>3(x+t)4(x+1) 对任意的x ∈(0,3)恒成立,求实数t 的取值范围;(3) 若方程f(x+1)= 3(x+t)x+2 有三个不等的实根,求实数t 的取值范围.2007年普通高等学校招生全国统一考试 数学(文科)试卷(参考答案)AB CDPMN一.选择题:1. B a 1(a 1+3d)=(a 1+2d)2,∴3a 1d=4a 1d+4d 2,∴a 1= - 4d= -8, ∴a 2=a 1+d= - 6 . 2. D y=x 2与y=1x 均为奇函数,而y=cosx 在(0,+∞)上非单调.3. B 由(m+2)(m-2)+3m(m=2)=0,∴(m+2)(2m-1)=0,∴m=-2或m=12 .4. C f -1(x)=(x-1)2+1 (x ≥1).5. D 解得A=(-∞,-2)∪[52,+∞],B=(-∞,-3)∪[0,+∞].6. C y=cos2x+3=sin(π2 +2x)+3=sin2(x+π4 )+3右移π12 ,下移3得y=sin(2x+π3 ).7. B 由c 2+1-2·c ·cos π3 =3,∴c 2-c-2=0,(c-2)(c+1)=0,∴c=2 .8. B a+b=1,x+y=1+1ab ≥1+21()2a b=5 .9. B ①取AD 中点Q,则AD ⊥MQ,∴MN ⊥AD;②MN ∥BF;③由MN ∥BF,∴MN ∥面ABF;④MN 与AB 成450角.10. B →MN=(4,0),→NP=(x-2,y),∴4(x+2)2+y2 +4(x-2)=0,∴y 2=-8x,又由2-x ≥0,∴x ≤2. 11. D ∵|PF 2|=a,点P 到抛物线C 2的准线为x=-3c 的距离为3c,依抛物线的定义,a=3c,∴e=13 .12. C 同色有3对,∴共有C 23 A 44 =72种.二.填空题:13. 10 由直线x+y-4=0与x=3的交点P(3,1),∴x 2+y 2的最小值为|0P|2=9+1=10. 14. 1 由T r+1=C r 6 x 6-r ·(- 2a x )r =(-2a)r C r 6 ·x 6-2r ,令6-2r=0,∴r=3,由(-2a)3C 36 =-160,∴-8a 3=-8,∴a=1,∴各项系数之和为(1-2a)6=1.15. arctan 2 3 3∵∠AOB=∠AOC=900 ,∠BOC=600,取BC 中点D,AD=8-1 =7 ,OD= 3 ,∵AD ⊥BC,OD ⊥BC,∴∠ODA 为二面角A-BC-O 的平面角,在Rt △AOD 中,tan ∠ODA=2 33.16. ①② ① y 2=1a x 的焦点坐标(14a ,0);② S n =12 ·2n -m,∴m=12 ;③ f ’(x)=3x 2+a ≥0在[1,+∞)恒成立,∴3+a ≥0得a ≥-3;④渐近线为y=±12 x 的双曲线方程是x24 - y 2=λ(λ≠0)三.解答题: 17.(1)f(x)=3 2 sin2ωx+1+cos2ωx 2 =sin(2ωx+π6 )+12 , ∵T=2π2ω=π ,∴ω=1 , ∴f(x)=sin(2x+π6 )+12 . ∵- π6 ≤x ≤π3 , ∴- π6 ≤2x+π6 ≤5π6 ,∴-12≤sin(2x+π6 )≤1, ∴f(x)的值域为[0,32]. (2) 由 2ωπ3 +π6 =k π+π2 ,∴ω=32k+12 ,∵0<ω<2, ∴ω=12.18.(1)当n=1时,4a 1=a 12+2a 1-3 ,∴a 12-2a 1-3=0 ,(a 1-3)(a 1+1)=0, ∵a 1>0, ∴a 1=3 . 当n ≥2时,4S n-1=a n-12+2a n-1-3 ,∴4a n =a n 2-a n-12+2a n -2a n-1 ,∴(a n +a n-1)(a n -a n-1-2)=0, ∵a n >0, ∴a n -a n-1=2,∴数列{a n }是以a 1=3为首项,以2为公差的等差数列,∴a n =2n+1. (2)∵b n =1(2n+1)(2n+3) =12(12n+1 - 12n+3),∴T n =12[(13 -15 )+(15 -17)+…+(12n+1 - 12n+3 )]=12(13 - 12n+3 )=n 3(2n+3) .19.(1)∵正方形ABCD,∴DA ⊥AB,∵AD=PA= 2 ,PD=2,∴PA 2+AD 2=PD 2,∴DA ⊥PA, ∵AB ∩PA=A,∴DA ⊥面PAD,∵DA 面ABCD, ∴面PAB ⊥面ABCD.(3) 取AB 中点E,∵△PAB 为正三角形,∴PE ⊥AB, ∴PE ⊥面ABCD. 取ED 的中点F,∵M 为PD 的中点, ∴MF ∥PE, ∴MF ⊥面ABCD,∴∠MNF 为MN 与面ABCD 所成的角.在梯形EBCD 中,NF=12( 2 2 + 2 )=34 2 ,而MF=12PE= 6 4,∴tan ∠MNF= 64342 =3 3,∴∠MNF=300 ,∴直线MN 与平面ABCD 所成的角为300. (3)∵AD ⊥面PAB,∴面PAB ⊥面PAD,取PA 的中点H,则BH ⊥面PAD.又∵BN ∥AD,∴BN ∥面PAD,ABCDPMNHE F∴点N 到平面PAD 的距离等于点B 到平面PAD 的距离,∵BH=3 2 · 2 = 6 2, ∴点N 到面PAD 的距离为6 2. 20.(1)设事件“抽到3道彼此不同类别题目”为A,依题有P(A)=C 16C 12C 12C 310 =15 ;答: 抽到3道彼此不同类别题目的概率为15;(2) 设事件“至少有1次抽到体育类题目”为B,依题有P(B)=1-C 38C 310=1- 115 =815 ; 答: 至少有1次抽到体育类题目的概率为815 .21.(1)由C=6 3 a,∴b 2=a 2- 23 a 2=13a 2 , 又直线AB: x a - yb =1,即bx-ay-ab=0,∴d=ab b2+a2 = 32 ,∴ab 43a 2= 3 2 ,∴b=1 ,a 2=3 ,∴所求椭圆方程为: x23 +y (3) 设M(x 1,y 1),N(x 2,y 2),(y 1>0),由→ME=λ→EN,∴y 1+λy 2=0. 设直线MN: x=my-1 , 消x 得: (m 2+3)y 2-2my-2=0 ,△=4m 2+8(m 2+3)>0,y 1+y 2=2m m2+3 ,∴MN 的中点为(- 3m2+3 ,m m2+3) ∴MN 的中垂线方程为: y - m m2+3 = - m(x+ 3m2+3) ,将OB 的中点D 的坐标(0,- 12 )代入得:- 12 - m m2+3 = - 3m m2+3 ,∴m 2-4m+3=0 , (m-1)(m+3)=0, ∴m=1或m=3 . 当m=1时,2y 2-y-1=0 ,(2y+1)(y-1)=0,∵y 1>0,∴y 1=1,y 2=- 12 ,∴λ=y1-y2=2 ;当m=3时,6y 2-3y-1=0 ,y=3±33 12 ,∴y 1=3+33 12, y 2=3-33 12 ,∴λ=y1-y2 =6+33 4.综合得,λ=2或λ=6+334.22.(1)f ’(x)=2ax+b ,∴⎩⎨⎧a+b+c=02a+b=0am2+bm+c=m 2am+b=m∴c=a,b=-2a ,代入得: am 2-2am+a=2am-2a ,∵a ≠0 ,∴m 2-4m+3=0 ,(m-1)(m-3)=0, 当m=1时,2a+b=1与2a+b=0矛盾,∴m=3 . ∴6a+b=3得a=34 ,b=-32 ,c=34 ,∴f(x)=34 x 2-32 x+34 =34 (x-1)2.(2) 由34 x 2>3(x+t)4(x+1)x ∈(0,3),∴t <x 3+x 2-x .记g(x)=x 3+x 2-x ,g ’(x)=3x 2+2x-1=(3x-1)(x+1), 令g ’(x)=0 ,∴x=13 或x=-1 ,∴g(x)在(0,3)内的最小值为g(13 )= - 527 .∴t < - 527 .(3) 由34 x 2=3(x+t)(x+2) ,当x+2≠0时,方程化为 : x 3+2x 2-4x-4t=0 ,记F(x)=x 3+2x 2-4x-4t .∵ F ’(x)=3x 2+4x-4=(3x-2)(x+2) ,令F ’(x)=0 ,∴x=23 或x=-2 ,F 极大值(x)=F(-2)=8-4t ; F 极小值(x)=F(23 )=- 4027-4t;要使方程f(x+1)= 3(x+t)x+2 有三个不等的实根,只要⎩⎨⎧F 极大值(x)>0F 极小值(x)<0 ,即⎩⎪⎨⎪⎧8-4t >0- 4027 -4t <0 ,∴⎩⎪⎨⎪⎧t <2t >- 1027 , ∴ t 的取值范围是( - 1027 ,2) .。
2007年高考数学模拟试题(文科)(全国卷)
第Ⅰ卷 ( 选择题 共 60 分 )
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个 选项中,只有一项是符合题意要求的 .
1. 已知映射 f: A
B , 其中 A B R , 对应法则 f: x
y
2
x
2x
2,若对实数
k B , 在集合 A 中不存在原象 , 则 k 的取值范围是
2,或 2 x 2
C. x | 2 x
22
,或
x2
2
2
D. x | 2 x 2,且 x 0
11. 用正偶数按下表排列 第1列
第2列
第 3列
第 4列
第5列
第一行
2
4
6
8Leabharlann 第二行1614
12
10
第三行
18
20
22
24
…
…
28
26
则 2006 在第
行第
列.
A.第 251 行第 3 列
B.第 250 行第 4 列
()
A. 无法确定
B
.
36
C
.
18
8.已知直线 ax by 1 0 ( a,b 不全为 0 )与圆 x2 y 2
D
.
12
50 有公共点 ,且公共点的横、纵
坐标均为整数 ,那么这样的直线有
()
A.66 条
B.72 条
C.74 条
D.78 条
9. 从 8 名女生, 4 名男生中选出 6 名学生组成课外小组,如果按性别比例分层抽样,则不
3
(1)求证: GE∥侧面 AA1B1B ; (2)求平面 B1GE与底面 ABC所成锐二面角的大小 .
2007年高考数学模拟考试卷六
2007年高考数学模拟考试卷六第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)化简得 ( )(A) (B)(C)1 (D)-1(2)双曲线的一个焦点是(0,-3),则k的值是 ( )(A)1 (B)-1 (C) (D)-(3)已知过点(3,5),g(x)与f(x)关于直线x=2对称,则y=g(x)必过点 ( )(A)(-1,3) (B)(5,3) (C)(-1,1) (D)(1,5)(4)已知复数,则 ( )(A) (B)- (C) (D)(5)(理)曲线上有且仅有三点到直线的距离为1,则r属于集合 ( )(A)(B) (C) (D){9}(文)已知两条直线,其中a为实数,当这两条直线的夹角在内变动时,a的取值范围是 ( )(A)(0,1) (B) (C) (D)6.半径为2cm的半圆纸片卷成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )(A)4cm (B)2cm (C) (D)7.(理)的值等于 ( )(A) (B) (C) (D)(文)函数的最小正周期为 ( )(A) (B) (C) (D)28.某校有6间电脑室,每晚至少开放2间,则不同安排方案的种数为 ( )① ②③ ④其中正确的结论为 ( )(A)仅有① (B)有②和③ (C)仅有② (D)仅有③9.正四棱锥P—ABCD的底面积为3,体积为E为侧棱PC的中点,则PA与BE所成的角为 ( )(A) (B) (C) (D)10.给出四个函数,分别满足① ②③ ④又给出四个函数的图象则正确的配匹方案是 ( )(A)①—M ②—N ③—P ④—Q (B)①—N ②—P ③—M ④—Q(C)①—P ②—M ③—N ④—Q (D)①—Q ②—M ③—N ④—P11.P是双曲线左支上一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心横坐标为 ( )(A) (B) (C) (D)12.某债券市场发行的三种值券:甲种面值为100元,一年到期本利共获103元;乙种面值为50元,半年期本利共50.9元;丙种面值为100元,但买入时只付97元,一年到期拿回100元,这三种投资收益比例从小到大排列为 ( )(A)乙,甲,丙 (B)甲、丙、乙 (C)甲、乙、丙 (D)丙、甲、乙第Ⅱ卷 (非选择题)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.一个球的内接长方体的长、宽、高分别为1,2,3,则这个球的表面积是 .14.若展开式中的x3项的系数为20,则非零实数a= .15.△ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且△ABC的重心在原点,则过B、C两点的直线方程为 .16.设正数数列{a n}的前n项和为S n,且存在正数t,使得对于所有的自然数n,有成立,若,则t的取值范围是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)设复数且.求的值.18.(理)(本题满分共12分)已知正三棱柱ABC—A1B1C1的每条棱长均为a,M为棱A1C1上的动点.(Ⅰ)当M在何处时,BC1//平面MB1A,并证明之;(Ⅱ)在(I)下,求平面MB1A与平面ABC所成的二面角的大小;(Ⅲ)求B—AB1M体积的最大值.18.(文)(图同理18,本题满分12分)已知正三棱柱ABC—A1B1C1的每条棱长均为a,M为棱A1C1的中点(Ⅰ)求证BC1//平面MB1A;(Ⅱ)求平面MB1A与平面ABC所成的二面角的正切值;(Ⅲ)求B—AMB1的体积.19.(理)(本题满分12分)设常数不等式的解集为M(Ⅰ)当ab=1时,求解集M;(Ⅱ)当M=(1,+∞)时,求出a,b应满足的关系.19.(文)(本题满分12分)已知函数 (其中a>0,且a≠1),解关于x的不等式20.(本题满分12分)一家企业生产某种产品,为了使该产品占有更多的市场份额,拟在2001年度进行一系列的促销活动,经过市场调查和测算,该产品的年销量x万件与年促销费用t万元之间满足:3-x与t+1(t≥0)成反比例,如果不搞促销活动,该产品的年销量只能是1万件,已知2001年生产该产品的固定投资为3万元,每生产1万件该产品需再投资32万元,当该产品的售价g(x)满足时,则当年的产销量相等.(Ⅰ)将2001年的利润y表示为促销费t万元的函数;(Ⅱ)该企业2001年的促销费投入多少万元时,企业的年利润最大?(注:利润=收入-生产成本-促销费)21.(本题满分12分)A、B是两个定点,且|AB|=8,动点M到A点的距离是10,线段MB的垂直平分线l交MA于点P,若以AB所在直线为x轴,AB的中垂线为y轴建立直角坐标系.(Ⅰ)试求P点的轨迹c的方程;(Ⅱ)直线与点P所在曲线c交于弦EF,当m变化时,试求△AEF的面积的最大值.22.(本题满分14分)已知函数f(x)在(-1,1)上有定义,且满足x、y∈(-1,1)有.(Ⅰ)证明:f(x)在(-1,1)上为奇函数;(Ⅱ)对数列求;(Ⅲ)(理)求证(文)求证[参考答案]一、选择题(理)CBACD DCBCD AB(文)CBACD DCBCD AB二、填空题(13)14π (14)5 (15) (16)三、解答题17.解: (2分)即 即即 (6分)(8分)即 (12分)18.(理)解:(I)当M在A1C1中点时,BC1//平面MB1A∵M为A1C1中点,延长AM、CC1,使AM与CC1延长线交于N,则NC1=C1C=a连结NB1并延长与CB延长线交于G,则BG=CB,NB1=B1G (2分)在△CGN中,BC1为中位线,BC1//GN又GN平面MAB1,∴BC1//平面MAB1 (4分)(II)∵△AGC中, BC=BA=BG ∴∠GAC=90°即AC⊥AG 又AG⊥AA1(6分)∴∠MAC为平面MB1A与平面ABC所成二面角的平面角∴所求二面角为 (8分)(Ⅲ)设动点M到平面A1ABB1的距离为h M.即B—AB1M体积最大值为此时M点与C1重合. (12分)18.(文)(Ⅰ)同(理)解答,见上(Ⅱ)同理科解答:设所求二面角为θ,则(Ⅲ)19.(理)解:(I)首先即即(3分)得解得(舍去)或(6分)(II)令,先证时为单调递增函数得证 (8分)欲使解集为(1,+∞),只须f(1)=1即可,即a-b=1,∴a=b+1 (12分)19.(文)解:可知0<a<1 (4分)∴不等式(8分)∴原不等式的解集为{x|0<x<1} (12分 )20.解:(I)由题意得 (2分)从而生产成本为万元,年收入为(4分)(6分)∴年利润为y (8分)(II)y(万元)当且仅当 (12分)∴当促销费定为7万元时,利润最大.21.解(I)以AB所在直线为x轴,AB中垂线为y轴,则A(-4,0),B(4,0)|PA|+|PB|=|PA|+|PM|=10 (2分)∴2a=10 2c=8 ∴a=5,c=4∴P点轨迹为椭圆 (4分)(II)过椭圆右焦点B(4,0)整理得 (6分)*(8分)∵m为直线的斜率,∴可令m=tgθ代入*得当且仅当即时,(12分)22.证:(I)令则令则 为奇函数 (4分)(II),是以-1为首项,2为公比的等比数列.(4分)(III)(理)而(6分) (III)(文)。
数学2007年高考文科试题及解析
2007年普通高等学校招生全国统一考试浙江卷数 学(文史类)试题全解全析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A)∩B = (A){6} (B){5,8} (c){6,8} (D){3,5,6,8} (2)已知cos 22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tan ϕ=(A) (B)(C)(D) (3)“x >1”是“x 2>x ”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(4)直线x -2y +1=0关于直线x =1对称的直线方程是(A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=0(5)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是(A) 6 (B) 5 (C) 4 (D) 3(6)91x ⎫⎪⎭展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 84(7).若P 是两条异面直线L ,M外的一点,则 (A)过点P 有且仅有一条直线与l 、m 都平行 (B)过点P 有且仅有一条直线与l 、m 都垂直 (C)过点P 有且仅有一条直线与l 、m 都相交 (D)过点P 有且仅有一条直线与l 、m 都异面(8)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 (A1 0.216 (B)0.36 (C)0.432 (D)0.648(9) 若非零向量,a b 满足-=a b b ,则( ) A.22>-b a b B.22<-b a b C.2>-2a a bD.2<-2a a b(10)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是()C.2D.3二.填空题:本大题共7小题.每小题4分.共28分.(11)函数()221x y x R x =∈+的值域是______________.(12)若1sin cos 5θθ+=,则sin 2θ的值是________. (13)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.(14)2z x y =+中的x 、y 满足约束条件250300x y x x y -+≥⎧⎪-≥⎨⎪+≥⎩则z 的最小值是_________.(15)曲线32242y x x x =--+在点(1,一3)处的切线方程是___________(16)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是__________(用数字作答).(17)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.三.解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知△ABC 的周长为+1,且sinA +sin B =(I)求边AB 的长;(Ⅱ)若△ABC 的面积为16sin C ,求角C 的度数.(19)(本题14分)已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程()232320k kx k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…).(I)求1357,,,a a a a 及2n a (n ≥4)(不必证明); (Ⅱ)求数列{n a }的前2n 项和S 2n .(20)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点.(I)求证:CM ⊥EM : (Ⅱ)求DE 与平面EMC 所成角的正切值.(21)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程.(22)(本题15分)已知()221f x x x kx =-++.(I)若k =2,求方程()0f x =的解;(II)若关于x 的方程()0f x =在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明12114x x +<(第21题)2007年普通高等学校统一考试(浙江卷)数学(文)试题答案解析1.【答案】:B【分析】:由于U ={1,3,5,6,8},A ={1,6} ∴C U A={3,5,8}∴(C U A)∩B={5, 【高考考点】集合的交集及补集运算【易错点】:混淆集中运算的含义或运算不仔细出错【备考提示】:集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分。
2007年高考数学(文)模拟试卷
2007年高考数学(文)模拟试卷广东仲元中学 谭曙光本试卷分选择题和非选择题两部分,满分150分. 考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上用2B 铅笔将答题卡上试卷类型(A )涂黑在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号列表”内填写座位号,并用2B 铅笔将相应的信息点涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷 选择题 (共50分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.(北师大必修一第5页第3题,人教B 必修一第14页第1题改编) 下列四个集合中,空集是( )(A ){∅} (B ){0}(C ){x|x>8}∪{x|x<5} (D) R M C M (M ⊆ R )解:(本题考查集合的概念,运算,特别是考查空集的意义,命题思想是重视数学概念)(A )表示含一个元素∅的集合,(B )含一个元素0的集合,(C )表示小于5或大于8的实数组成的集合。
故选D 。
2.(人教A 必修四第78页第10题改编)已知sin(π+α )=- 12 ( π2 <α <π),则tan(α -7π)的值为( )(A )3 3 (B )- 3 3(C ) 1 (D ) 3(本题考查诱导公式与同角三角函数的基本关系式)由sin(π+α )=- 12 得sin α =12 ,又 π2 <α <π),则cos α = -3 2 , tan(α -7π)=tan α =- 3 3 ,选B 。
2007年全国高考文科数学试卷及答案
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )A.4B.C.D.8第Ⅱ卷注意事项: 2.第Ⅱ3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492496 494 495 498 497 501 502 504 496 497503506508507492496500501499(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .(18)(本小题满分12分)(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .SCDAB(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角. 所以,直线SD 与平面SBC 所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为AO BO AB ===1SO =,又BC =0)A ,, (0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC的法向DBCASE量,所以α与β互余.22cos 11OA SD OA SDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为arcsin 11. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k+=-+,21223632k x x k -=+,2221222121)(1)()432k BD x x kx x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点p ,且AC 的斜率为1k-.所以,2211132k AC k⎫+⎪⎝⎭==⨯+四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年高考数学综合模拟试卷(三)
2007年高考数学综合模拟试卷(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()C (1)k k n k n nP k P P -=- 正棱锥、圆锥的侧面积公式S 锥体侧S 锥体侧=12cl 其中c 表示底面周长, l 表示斜高或母线长.球的体积公式 球V 球= 343R π 其中R 表示球的半径.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={Z x x y x ∈-=,1|2}, },1|{2A x x y yB ∈+==,则B A 为 ( )A .∅B .[)+∞,0C .{1}D .{(1,0)} 2.若函数()12-=x x f 的定义域是()[)5,21, ∞-,则其值域为( )A .()0,∞-B .(]2,∞-C .⎥⎦⎤ ⎝⎛21,0 D .()1,0,22⎛⎤-∞ ⎥⎝⎦3.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足)(AC AB OA OP ++=λ,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的 ( )A .外心B .垂心C .内心D .重心 4.在坐标平面上,不等式组⎩⎨⎧+≤-≥11||2x y x y 所表示的平面区域的面积为 ( )A .22B .38C .322 D .25.全国十运会期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( ) A .124414128C C CB .124414128C A AC .12441412833C C C AD .12443141283C C C A 6.对于不重合的两个平面βα与,给定下列条件:①存在平面γ,使得,αβ都垂直于γ; ②存在平面γ,使得,αβ都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //;④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有 ( ) A .1个 B .2个 C .3个 D .4个 7.已知首项为正数的等差数列{a n }满足:a 2005+a 2006>0,a 2005·a 2006<0,则使前项S n >0成立的最大自然数n 是 ( )A . 4009B .4010C . 4011D .4012 8. 函数()10xy x-=≠的反函数图像大致是( )A B C 9. 在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 1、B 1C 1的中点,则在面BCC 1B 1内到BC 的距离是到EF 的距离的2倍的点的轨迹是( )A .一条线段B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分.10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A .324+B .13-C .213+ D .13+11.已知函数⎪⎭⎫ ⎝⎛+-=21lo g )(2x ax x f a 在⎥⎦⎤⎢⎣⎡23,1上恒正,则实数a 的取值范围是 ( )A .⎪⎭⎫⎝⎛98,21 B .⎪⎭⎫⎝⎛+∞,23 C . ⎪⎭⎫ ⎝⎛98,21 ⎪⎭⎫ ⎝⎛+∞,23 D . ⎪⎭⎫⎝⎛+∞,21 12. 如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离 比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运 货物.经测算,从M 到B 、M 到C 修建公 路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( ) A .(27-2)a 万元 B .5a 万元C .(27+1) a 万元D .(23+3) a 万元第Ⅱ卷(非选择题,共90分)二、填空题:本大题4个小题,每小题4分,共16分.13.已知函数f (x )=Acos 2(ωx +ϕ)+1(A >0,ω>0)的最大值为3,f (x )的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则f (1)+f (2)+f (3)+…+f (100)=____________ 14. 设点P 是曲线y =x 3-3x +2上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______________15. 已知5(cos 1)x θ+的展开式中2x 的系数与45()4x +的展开式中3x 的系数相等,则cos θ=_____________.16.若函数)(x f 满足:对于任意,0,21>x x 都有0)(1>x f ,0)(2>x f 且)()()(2121x x f x f x f +<+成立,则称函数)(x f 具有性质M .给出下列四个函数:①3x y =,②),1(log 2+=x y ③12-=xy ,④x y sin =.其中具有性质M 的函数是 (注:把满足题意的所有..函数的序号都.填上) 17.如图,在杨辉三角中,斜线l 上方,从1开始箭头所示的数组成一个锯齿数列:1,3,3,4,6,5,10,…,记其前n 项和为S n ,则S 19等于____________.1 l11 11 … … …18. 已知f (x +y )=f (x )·f (y )对任意的实数x 、y 都成立,且f (1)=2,则f (1)f (0)+f (2)f (1)+f (3)f (2)+…+f (2005)f (2004)+f (2006)f (2005)= ___________________.三、解答题:本大题6小题,共74分,解答应写出必要的文字说明.推理过程或计算步骤. 19.(本题满分12分)已知向量= (θθsin ,cos ) 和=(θθcos ,sin 2-),θ∈[π,2π]. (Ⅰ)求||+的最大值;(Ⅱ)当||+=528时,求cos 28θπ⎛⎫+ ⎪⎝⎭的值.20.(本小题满分12分)甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是23,乙取胜的概率为13,且每局比赛的胜负是独立的,试求下列问题:(Ⅰ)比赛以甲3胜1而结束的概率; (Ⅱ)比赛以乙3胜2而结束的概率;(Ⅲ)设甲获胜的概率为a ,乙获胜的概率为b ,求a :b 的值.21.(本题满分14分)如图,已知正方形ABCD 和矩形ACEF 所在平面互相垂直,AB,AF =1,M 是线段EF 的中点。
2007年高考数学模拟测验题(文科卷2)及答案长沙宁
2007年高考数学模拟考试卷(文科卷2)长沙宁时量120分钟. 满分150分一、 选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的.)1、 条件p :“log 2x<1”,条件q :“x<2”,则⌝p 是⌝q 成立的 ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、非充分非必要条件2、 在等比数列{}n a 中,3453a a a =,67824a a a =,则91011a a a 的值为()A 、48B 、72C 、144D 、1923、 一个容量为20的样本数据,分组后,组别与频数如下:组别 (10,20] (20,30] (30,40] ]50,40( (50,60] (60,70]频数 2 3 4 5 4 2则样本在]50,20(上的频率为 ( )A 、12%B 、40%C 、60%D 、70%4、 设函数()f x 是定义在实数集上的以3为周期的奇函数,若23(1)1,(2)1a f f a ->=+,则 ( )A 、23a <B 、23a <且1a ≠-C 、213a -<<D 、23a >或1a <- 5、 过点(1,0)P -作圆22:(1)(2)1C x y -+-=的两切线,设两切点为A 、B ,圆心为C ,则过A 、B 、C 的圆方程是 ( )A 、22(1)2x y +-=B 、22(1)1x y +-=C 、22(1)4x y -+=D 、22(1)1x y -+= 6、 已知椭圆2214x y n +=与双曲线2218x y m-=有相同的准线,则动点(,)P n m 的轨迹为( ) A 、椭圆的一部分 B 、双曲线的一部分C 、抛物线的一部分D 、直线的一部分7、 把函数()y f x =的图象沿直线0y x +=的方向向右下方移动22个单位长度,得到的图形恰好是函数2log y x =的图象,则()y f x =是( )A 、2log (2)2y x =++B 、2log (2)2y x =-+C 、2log (2)2y x =+-D 、 2log (2)2y x =--8、 若圆x 2+y 2=r 2(r>0)至少能盖住函数r xx f 2sin 30)(π=的一个最大值点和一个最小值点,则r 的取值范围是( )A 、),30[+∞B 、),6[+∞C 、),2[+∞πD 、以上都不对9、 从6名教师中选派4人分别到A 、B 、C 、D 四个农村学校去支教,要求每个学校有一人支教,每人只能支援一个学校,由于种种原因,教师甲不能去A 校,教师乙不能去B 校,则不同的选派方案共有 ()A 、360种B 、300种C 、252种D 、192种10、 已知A 、B 、C 三点共线,O 是这条直线外一点,设,a OA =,b OB =,c OC =且存在实数m ,使=+-c b a m 30成立,则点A 分BC 的比为( )A 、 31-B 、 21-C 、 31D 、 21第Ⅱ卷(非选择题共100分)二、填空题:(本大题共5小题,每小题4分,共20分), 11、若椭圆13422=+y x 上一点P 到右焦点)0,1(F 的距离为25,则点P 到x 轴的距离为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高考数学(文)模拟试卷广东仲元中学 谭曙光本试卷分选择题和非选择题两部分,满分150分. 考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上用2B 铅笔将答题卡上试卷类型(A )涂黑在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号列表”内填写座位号,并用2B 铅笔将相应的信息点涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷 选择题 (共50分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.(北师大必修一第5页第3题,人教B 必修一第14页第1题改编) 下列四个集合中,空集是( )(A ){∅} (B ){0}(C ){x|x>8}∪{x|x<5} (D) R M C M (M ⊆ R )解:(本题考查集合的概念,运算,特别是考查空集的意义,命题思想是重视数学概念)(A )表示含一个元素∅的集合,(B )含一个元素0的集合,(C )表示小于5或大于8的实数组成的集合。
故选D 。
2.(人教A 必修四第78页第10题改编)已知sin(π+α )=- 12 ( π2 <α <π),则tan(α -7π)的值为( )(A )3 3 (B )- 3 3(C ) 1 (D ) 3(本题考查诱导公式与同角三角函数的基本关系式)由sin(π+α )=- 12 得sin α =12 ,又 π2 <α <π),则cos α = -3 2 , tan(α -7π)=tan α =- 3 3 ,选B 。
3.(北师大必修五第22页,第11题改编)在10与100之间插入50个数,使之成等差数列,则插入的50个数的和为( ) (A )2750 (B )3160 (C )5000 (D )5500 解:(本题考查等差数列的性质与前n 项和,本题有多种解法) 由等差数列的性质及求和公式得S 50=50(10+100)2=2570,选A 。
4.(人教A 必修一第27页第2题改编)下图中图像与下述四件事不相吻合的是( )(1)我离开学校不久,发现自己把作业本忘在家里了,于是返回家里找到作业本再上学。
(2)我骑着车一路匀速行驶,只是在途中遇到了一次交通堵塞,耽误了一些时间。
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
(4)我出发后,为了不迟到,开始走得很快,但随着时间推移,渐渐累了,也就越走越慢了。
解:(本题考查函数的概念与图像以及用数学方法解决生活中的问题的能力) (2)A ,(3)B ,(4)C ,不相吻合的是(1)与D ,因回家后找作业本的时间从图像上反映不出来。
5.(北师大必修二第14页,第1题改编)已知一个几何体的三视图如下,则它的表面积为( )(A )28+π (B ) 28+2π (C )40 (D )36+π 解(本题考查三视图与几何体的表面积问题)选D 。
6.(自编)下表是对某班某次数学考试成绩的统计图表,则分数在100~120之间的概率为( )(解:(本题考查统计与概率的概念及学生阅读统计数表的能力)从统计数表上可看出,成绩在100~120分之间人数为25人,总人数为50人,从而成绩在100~120分之间的概率为12。
选A 。
7. (自编) 已知圆的圆心为抛物线24x y =的焦点,且与抛物线的准线相切,则圆的方程为( )(A)(x-1)2+y 2=4 (B)(x-1)2+y 2=1(C)x 2+(y-1)2=4 (D)x 2+(y-1)2=4 解:(本题考查抛物线的几何意义与圆的方程)由24x y =知,抛物线的焦点坐标为(0,1),准线方程为y=-1,则所求圆的圆心坐标为(0,1),半径为2,故所求圆的方程为x 2+(y-2)2=4。
选D 。
8.(人教A 必修五第102页例7改编)已知正整数x 、y 满足 ⎩⎨⎧ x +2y -6≤0 x +y-4≤0,则z=2x+y 的最大值是( )(A )8 (B )6 (C )7 (D )3 解:(本题考查线性规划的问题)选A 、B 、D的错误是没注意x 、y 为正整数的条件。
主视图 2左视图9.(自编)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊥β,有如下的两个命题:①若α∥β,则l ⊥m ;②若l ∥m ,则α⊥β.那么( )(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题 解:(本题考查直线与平面的位置关系、简易逻辑知识及考查学生数学语言、符号语言的能力和数学推理能力)由α∥β,m ⊥β知,m ⊥α ,又l ⊂α,则l ⊥m ,从而命题① 是真命题;由l ∥m ,m ⊥β知,l ⊥β,又l ⊂α,所以α ⊥β,故② 也为真命题。
选C 。
10.(自编)定义运算a ⊙b= ⎩⎨⎧ a a ≥b b a <b,已知 f (x )=x 2+1,g (x )= 2x+1,且F(x )= f (x )⊙g (x ),则F(F(- 12 ))等于( )(A ) 72 (B )1(C )4 (D )- 12解:(本题考查分段函数、函数求值、解不等式及运用数学定义解决实际问题的能力)由(x 2+1)-( 2x+1)=0得,x=0或x=2,所以F(x )= f (x )⊙g (x )= ⎩⎨⎧ x 2+1 x ≤0或x ≥2 2x +1 0<x <2,则F(F(- 12 ))=72 。
选A 。
第Ⅱ卷 非选择题 (共100分)二.填空题:本大题共4小题,每小题5分,满分20分. 11.(人教A 选修1-2第71页第5题改编) 2i1-2i的实部为 。
解:(本题考查复数的概念与代数运算) 2i 1-2i = 2i (1+2i )5 = -45 + 25 i ,所以实部为-45 12.(人教A 必修五第57页例2改编) 右图是打印数列11()2n n a -=前5项的程序框图,判断框应填写的内容是 ,处理框应填写内容 是 。
解:(本题考查算法与框图的知识) N=5?,A=A*(1/2) 13.(严运华:类比推理练习第10题)设ΔABC 的三边长分别为a 、b 、c ,ΔABC 的面积为S ,则内切圆半径2Sr a b c=++; 设四面体S —ABC的四个面的面积分别为1S ,2S ,3S ,4S ,体积为V ,则内切球的半径为r .解:(本点考查类比推理能力)12343Vr S S S S =+++14.在下面2道小题中选做一题,2题都做的只计算第① 题的得分 ① (王书主编《平面几何一题多解指南》第22页例5改编)在△ABC 中,AB=AC ,延长AB 到D ,使BD=AB ,取AB 的中点E 。
则CDCE =解:(本题考查学生几何推理论证能力)取CD 的中点F ,连结BF ,则BF 是△ADC 的中位线,则BF ∥ 12 AC ,又E 是AB 的中点,AB=AC ,所以BE=12 AB=12 AC=BF ,又BF ∥AC ,所以∠ABC==∠ACB=∠CBF ,又BC=BC ,所以△BEC ≌△BFC ,所以BC=FC=12 DC ,即CD CE =12。
② (人教A 选修4-4第16页第4题改编)方程ρ =2cos θ -4sin θ 表示的曲线是 。
解:(本题考查极坐标方程与直角坐标方程的互化)由ρ =2cos θ -4sin θ 得ρ 2=2ρ cos θ -4ρ sin θ ,由互化公式得x 2+y 2=2x-4y ,所以ρ =2cos θ -4sin θ 表示的曲线是以(1,-2)为圆心, 5 为半径的圆。
三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程. 15.(本小题满分13分)(谭曙光主编《学海导航高考数学第二轮复习教师用书》第164页,备用题第2题)某运动队研制了一种有助于男运动员在大运动量的训练后快速恢复的口服制剂,为了实验新药的效果而抽取270名运动员来实验,所得资料如下:(Ⅰ)根据此表绘制二维条形图;(Ⅱ)服用此药对男运动员的恢复是否有影响? 解:(本题考查统计图表和统计分析) (Ⅰ)(Ⅱ)从二维条形图中可以看出,用药与不用药对运动员的恢复情况有很大差异,又由2()()()()()n ad bc K a b c d a c b d -=++++得2270(120456045)7.01 6.63518090105165K ⨯⨯-⨯=≈>⨯⨯⨯ ∴有99%的把握认为“服用此药对男运动员的恢复有影响”。
16.(本小题满分13分)(自编)已知2()cos cos f x ωθωθωθ+ (Ⅰ)求 f (x );(Ⅱ)已知ABC ∆外接圆半径为1,1()2f A =-且 acosB+bcosA=1,求角B 的值。
解:(本题考查三角变形、三角求值、三角函数的图象与性质、正弦定理等)(Ⅰ)1cos 2()22xf x x ωω+=+112cos 222x x ωω=++= 1sin(2)62x πω++ ,又54()126T πππ=-=,∴ω=1。
∴ f (x ) =1sin(2)62x π++(Ⅱ)由(I )可知:1sin(2)62A π++=12-,∴sin(2)6A π+= -1 ,∵(0,)A π∈,3262A ππ+=,23A π=,由acosB+bcosA=1和正弦定理有sinAcosB+sinBcosA=12 ,∴sin(A+B)=12 ,又 π2 <A+B <π,∴A+B= 5π6 ,∴B= π617.(本小题满分13分) (自编)在长方体1111D C B A ABCD -中,底面ABCD 是边长为1的正方形,侧棱21=AA ,E 是侧棱1BB 上一点,D 1E ⊥EC 。
(Ⅰ)求证:D 1E ⊥平面AEC ; (2) 求三棱锥B 1-AEC 的体积. 解:(本题考查直线与平面的位置关系、几何体的体积及空间想象能力、推理论证能力和计算能力)(Ⅰ)连BD ,∵ABCD 是边长为1的正方形 ∴BD ⊥AC ,又1111D C B A ABCD -为长方体,∴平面BB 1D 1D ⊥平面ABCD ,∴AC ⊥平面平面BB 1D 1D又D 1E ⊂平面BB 1D 1D ,∴ D 1E ⊥AC ,又D 1E ⊥EC ,AC ∩EC =C ,∴D 1E ⊥平面AEC 。