八年级(下)期末数学试卷+参考答案与试题解析(苏科版)
苏科版八年级下册数学期末试题(带答案)
2021—2022学年第二学期八年级数学期末复习卷一.选择题(共10小题,每小题3分,共30分)1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x4.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.106.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.88.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中()A.两锐角都大于45°B.有一个锐角小于45°C.有一个锐角大于45°D.两锐角都小于45°9.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2000的纵坐标是()A.22000B.21999C.22000﹣1D.21999﹣110.如图,在平行四边形ABCD中,AB=5,AD=3,∠BAD的平分线AE交CD于点E,连接BE,若∠BAD=∠BEC,则平行四边形ABCD的面积为()A.B.C.D.15第9题第10题二、填空题(本大题共8小题,每小题3分,共24分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为.16.(3分)如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C =80°,则∠EAB = °.17.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (4,4),C (﹣2,﹣2),点B ,D 在反比例函数y =kx 的图象上,对角线BD 交AC 于点M ,交x 轴于点N ,若BN ND=53,则k 的值是 .18.(3分)如图,在矩形ABCD 中,AB =6,AD =2√3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为 .三、解答题(本大题共有9小题,共计64分)19.(6分)解方程(1)22)3(4)23(-=+x x (2)111142=+-+-x x x20.解方程:(1)x 2 - 4x + 2 = 0;(2)x (x - 1) = 2(x - 1).21.先化简,再求值:(1﹣)÷,其中x=+1.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.参考答案与试题解析1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻【分析】利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、射击运动员只射击1次,就命中靶心,是随机事件,故选项错误;B、任意一个三角形,它的内角和等于180°,是必然事件,故选项正确;C、抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件,故选项错误;D、打开电视,正在播放新闻,是随机事件,故选项错误.故选:B.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x【分析】只需把已知点的坐标代入,即可求得函数解析式.【解答】解:设该反比例函数的解析式为:y=kx(k≠0).把(1,3)代入,得3=k 1,解得k=3.则该函数解析式为:y=3 x.故选:B.【点评】此题考查的是用待定系数法求反比例函数的解析式,正确的理解题意是解题的关键.4.(3分)一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到红球是随机事件,∴选项A不符合题意;∵摸到黄球是随机事件,∴选项B不符合题意;∵白球和黄球的数量相同,∴摸到白球与摸到黄球的可能性相等,∴选项C符合题意;∵红球比黄球多,∴摸到红球比摸到黄球的可能性大,∴选项D不符合题意.故选:C.【点评】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.10【分析】首先计算出第5组的频数,再用总数减去前5组的频数可得第6组的频数.【解答】解:第5组的频数:40×0.1=4,则第6组的频数为:40﹣10﹣5﹣7﹣6﹣4=8,故选:C.6.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.【分析】熟练掌握比例和分式的基本性质,进行各种演变.【解答】解:A,根据分式的基本性质,错误;B,根据比例的性质可知该等式不成立,错误.C,根据乘法交换律,交换两内项的位置,应是,错误;D,若,根据分式的合比性质,得①,②.①÷②,得.正确.故选:D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.8【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,AD=BC,∴∠DEC=∠DCE,∴DE=DC=AB,∵ABCD的周长等于24,AE=2,∴AB+AD=12,∴AB+AE+DE=12,∴AB=5.故选:A.8.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,E是AD边的中点,菱形ABCD 的周长为32,则OE的长等于()A.4B.8C.16D.18【分析】先根据菱形ABCD的周长为32,求出边长AB,然后根据E为AD边中点,可得OE=12AB,即可求解.【解答】解:∵菱形ABCD的周长为32,∴AB=8,∵E为AD边中点,O为BD的中点∴OE=12AB=4.故选:A.【点评】本题考查了菱形的性质以及三角形中位线定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.9.(3分)已知两个函数y1=k1x+b与y2=k2x的图象如图所示,其中A(﹣1,2),B(2,﹣1),则不等式k1x+b>k2x的解集为()A.x<﹣1或x>2B.x<﹣1或0<x<2 C.﹣1<x<2D.﹣1<x<0或0<x<2【分析】不等式k1x+b>k2x的解集,在图象上即为一次函数的图象在反比例函数图象的上方时的自变量的取值范围.【解答】解:∵函数y1=k1x+b与y2=k2x的图象相交于点A(﹣1,2),B(2,﹣1),∴函数y1=k1x+b与y2=k2x的图象:x<﹣1或0<x<2,故选:B.【点评】此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,点B是反比例函数y=kx图象上的一点,矩形OABC的周长是20,正方形OCDF与正方形BCGH的面积之和为68,则k的值为()A.8B.﹣8C.16D.﹣16【分析】首先设B(a,b),再根据正方形BCGH和正方形OCDF的面积之和为68,可得a2+b2=68,由矩形OABC的周长是20,可得a+b=10,再利用完全平方公式(a+b)2=100可计算出ab的值,即可求得结论.【解答】解:设B(a,b),∵正方形BCGH和正方形OCDF的面积之和为68,∴a2+b2=68,∵矩形OABC的周长是20,∴a+b=10,∴(a+b)2=100,a2+b2+2ab=100,68+2ab=100,ab=16,设反比例函数解析式为y=kx(k≠0),∵B在反比例函数图象上,∴k=ab=16,故选:C.【点评】此题主要考查了求反比例函数解析式,以及完全平方公式,关键是根据正方形的面积与长方形的周长得到a2+b2=68,a+b=10.11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.【分析】从袋中任取一球有4+1+7=12种可能,其中摸出白球有四种可能,利用概率公式进行求解.【解答】解:随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.【分析】由已知条件得到x>0,y>0,则根据二次根式的性质化简得原式=+=+,然后通分后利用整体代入的方法计算.【解答】解:∵x+y=5>0,xy=3>0,∴x>0,y>0,∴原式=+=+=•,=×=.故答案为.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为5.【分析】将P(m,n)代入一次函数y=﹣x+3和反比例函数y=的关系式可得,m+n=3,mn=2,进而利用∴m2+n2=(m+n)2﹣2mn代入求值即可.【解答】解:∵点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,∴m+n=3,mn=2,∴m2+n2=(m+n)2﹣2mn=9﹣4=5,故答案为:5.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为24.【分析】利用因式分解法解方程得到x1=4,x2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.【解答】解:x2﹣9x+20=0,(x﹣4)(x﹣5)=0,x﹣4=0或x﹣5=0,∴x1=4,x2=5,∵菱形一条对角线长为8,∴菱形的边长为5,∵菱形的另一条对角线长=2×=6,∴菱形的面积=×6×8=24.故答案为:24.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为(,0).【分析】设点A的坐标为(m,0)(m>0),根据矩形的性质以及反比例函数图象上的坐标特征即可找出点A、C的坐标,再根据点C在反比例函数y2=(x>0)的图象上,利用反比例函数图象上点的坐标特征即可得出关于m的分式方程,解方程求出m值,将其代入点A坐标中即可得出结论.【解答】解:设点A的坐标为(m,0)(m>0),则点B坐标为(m,),点C坐标为(m+1,),∵点C在反比例函数y2=(x>0)的图象上,∴=,解得:m=,经检验m=是分式方程=的解.∴点A的坐标为(,0).故答案为:(,0).16.(3分)如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=20°.【分析】根据旋转的性质可得AC=AD,∠BAC=∠EAD,再根据等边对等角可得∠C=∠ADC,然后求出∠CAD,∠BAE=∠CAD,从而得解.【解答】解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,熟记性质并确定出△ACD是等腰三角形是解题的关键.17.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A(4,4),C(﹣2,﹣2),点B,D在反比例函数y=kx的图象上,对角线BD交AC于点M,交x轴于点N,若BNND=53,则k的值是﹣15.【分析】求得直线BD的解析式,根据题意设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,因为B、D在直线y=﹣x+2上,即可得出B(﹣5n+2,5n),D(3n+2,﹣3n),即可得出k=(﹣5n+2)•5n=(3n+2)•(﹣3n),从而求得k=﹣15.【解答】解:∵点A(4,4),C(﹣2,﹣2),∴直线AC为y=x,M(1,1),∵菱形ABCD中AC⊥BD,∴设直线BD为y=﹣x+b,代入M(1,1),求得b=2,∴直线BD为y=﹣x+2,∴N(2,0),∴ON=2,∵BNND =53,设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,∵B、D在直线y=﹣x+2上,∴B(﹣5n+2,5n),D(3n+2,﹣3n),∵点B,D在反比例函数y=kx的图象上,∴k=(﹣5n+2)•5n=(3n+2)•(﹣3n),解得n=1,∴k=﹣15,故答案为﹣15.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,表示出B、D点的坐标是解题的关键.18.(3分)如图,在矩形ABCD中,AB=6,AD=2√3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为6﹣2√7或6+2√7.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在Rt△BCE中,EC=√BC2+EB2=√(2√3)2+42=2√7,∴CF=CE=2√7,∵AB=CD=6,∴DF=CD﹣CF=6﹣2√7,当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=2√7,∴DF=CD+CF′=6+2√7故答案为6﹣2√7或6+2√7.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.19.略20.略21.先化简,再求值:(1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=+1时,原式==.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?【分析】设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,利用单价=总价÷数量,结合第二次的进价比第一次进价每千克提高了20%,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用总盈利=销售总额﹣进货成本,即可求出结论.【解答】解:设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,依题意得:=(1+20%)×,解得:x=600,经检验,x=600是原方程的解,且符合题意,∴9(x+2x+300)﹣3000﹣9000=9×(600+2×600+300)﹣3000﹣9000=6900(元).答:超市销售这种干果共盈利6900元.23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?【分析】设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为(150﹣0.5x)元,利用总价=单价×数量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:∵60×120=7200(元),(120﹣100)÷0.5+60=100(棵),100×100=10000(元),7200<8800<10000,∴购买的树苗棵树超过60棵,且不足100棵.设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为120﹣0.5(x﹣60)=(150﹣0.5x)元,依题意得:x(150﹣0.5x)=8800,整理得:x2﹣300x+17600=0,解得:x1=80,x2=220(不合题意,舍去).答:这所学校购买了80棵树苗.24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.【分析】(1)作CH⊥x轴于H,如图,利用“AAS”证明△ABO≌△CAH,得到AH=OB =2,CH=OA=4,则OH=OA+AH=6,然后根据第二象限的坐标特征写出C点坐标;(2)根据平移的性质得D(﹣4+m),E(m,2),F(﹣6+m,4),再根据反比例函数图象上点的坐标特征得到2•m=4(﹣6+m),解得m=12,则E点坐标为(12,2),F点的坐标为(6,4),所以k=24,然后利用待定系数法确定直线EF的解析式;(3)先确定G点坐标为(0,6),再根据平行四边形的性质得G点为GF为中点,根据线段的中点坐标公式得到G点坐标为(3,5),设M点坐标为(x,0),利用G点为MP为中点得到P点坐标为(6﹣x,10),然后根据反比例函数图象上点的坐标特征得到10(6﹣x)=24,解得x=,从而得到M点和P点坐标.【解答】解:(1)作CH⊥x轴于H,如图,∵A、B两点的坐标分别为(﹣4,0)、(0,2).∴OA=4,OB=2,∵∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠CAH=∠ABO,在△ABO和△CAH中,∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=4,∴OH=OA+AH=6,∴C点坐标为(﹣6,4);(2)∵△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,∴D(﹣4+m),E(m,2),F(﹣6+m,4),∵点E、F都在反比例函数y=的图象上,∴2•m=4(﹣6+m),解得m=12,∴E点坐标为(12,2),F点的坐标为(6,4),∴k=12×2=24,∴反比例函数的解析式为y=,设直线EF的解析式为y=px+q,把E(12,2),F(6,4)代入得,解得,∴直线EF的解析式为y=﹣x+6;(3)如图,∵当x=0时,y=﹣x+6=6,∴G点坐标为(0,6),∵四边形PGMF为平行四边形,∴Q点为GF为中点,∴Q点坐标为(3,5),设M点坐标为(x,0),∵Q点为MP为中点,P点坐标为(6﹣x,10),∵P(6﹣x,10)在反比例函数y=图象上,∴10(6﹣x)=24,解得x=,∴M点坐标为(,0),P点坐标为(,10).25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.【分析】(1)由已知条件可得Rt△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形AEFD是平行四边形,可得出AD=60﹣4t =20cm,AE=2t=20cm,则AD=AE,得出四边形AEFD是菱形;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.【解答】解:(1)∵Rt△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.又∵在Rt△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∵AE=2t∴DF=AE;(2)四边形AEFD是菱形.理由:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,∵当t=10时,AD=60﹣4t=20cm,AE=2t=20cm,∴AD=AE,∴四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,则DE∥BC.∴∠ADE=∠C=30°,∴AD=2AE,∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但DF=15,DE=15,∴DF≠DE,∴四边形BEDF不可能为正方形.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=(S△BED﹣S△BDP)可求解;(2)当t=时,可得BP==BE,由中位线定理可得MN∥BD,MN=BD=5,PQ ∥BD,PQ=BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【解答】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD==5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=S△DPE,∴S△DPQ=(S△BED﹣S△BDP)==t.故答案为:t.(2)当t=时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=BD=,∵t=时,∴BP==BE,且点Q是DE的中点,∴PQ∥BD,PQ=BD=,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为25.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.【分析】(1)根据四边形ABCD的面积等于正方形EBFD的面积计算即可;(2)如图乙中,延长PC至D,取CD=1,连接AD.只要证明△ABP≌△ACD(SAS),即可推出四边形ABPC的面积等于△APD的面积;(3)如图丙中,延长CD至DF=AB,连接EF、BE、CE.只要证明五边形ABCDE的面积等于四边形BCFE的面积即可;【解答】解:(1)由题可知.故答案为25.(2)如图,延长PC至D,取CD=1,连接AD.∵等边△ABC中,∠BAC=60°,∠BPC=120°,∴∠BPC+∠BAC=180°,∴四边形ABPC中,∠ABP+∠ACP=360°﹣180°=180°,∴∠ABP=∠ACD=180°﹣∠ACP,又∵AB=AC,BP=CD,∴△ABP≌△ACD(SAS),∴AP=AP,∠BAP=∠CAP.∵∠BAP+∠P AC=∠BAC=60°,∴∠CAD+∠P AC=60°,∴△APD为等边三角形且PD=PC+CD=3+1=4,∴.(3)如图,延长CD至DF=AB,连接EF、BE、CE.∵AB=DF,AE=DE,∠BAE=∠FDE=90°,∴△ABE≌△DFE(SAS),∴EB=EF.∵CD+AB=CD+DF=4,BC=4,∴CD+DF=CF=BC,∴△EBC≌△EFC(SSS),∴.。
八年级(下学期)期末数学试卷答案与解析(苏科版)
八年级(下学期)期末数学试卷答案与解析(苏科版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.若二次根式有意义,则某的取值范围是()A.某<2B.某≠2C.某≤2D.某≥22.计算A.aB.b的结果是()C.1D.﹣b3.己知反比例函数y=(k≠0)的图象经过点P(2,﹣3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.下列根式中,与A.B.C.是同类二次根式的是()D.5.有40个数据,共分成6组,第1﹣4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.25B.0.30C.0.15D.0.206.如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.107.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是()第1页共30页A.B.C.D.8.关于某的方程A.a>﹣1=1的解是正数,则a的取值范围是()C.a<﹣1D.a<﹣1且a≠﹣2B.a>﹣1且a≠09.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC 边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN 长为()A.B.4C.2D.不确定10.如图,点A、B在反比例函数y=(k>0,某>0)的图象上,过点A、B作某轴的垂线,垂足分别为M,N,延长线段AB交某轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4B.6C.8D.12二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当某=______时,分式没有意义.12.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性______(选填“大于”“小于”或“等于”)是白球的可能性.13.如果+=0,则+=______.14.已知函数y=和y=3某+n的图象交于点A(﹣2,m),则nm=______.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.第2页共30页16.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=______.17.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=k某+b的图象交于A、B两点.若y1<y2,则某的取值范围是______.18.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:20.解方程:某﹣.+|﹣3|.21.先化简,再求值:÷(m﹣),其中m=.第3页共30页22.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB;(2)如果OC:OB=1:2,CD=,则菱形的面积为______.23.某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A.身体健康;B.出行;C.情绪不爽;D.工作学习;E.基本无影响,根据调查统计结果,绘制了不完整的三种统计图百分比表.雾霾天气对您哪方面的影响最大A、身体健康B、出行C、情绪不爽D、工作学习E、基本无影响(1)本次参与调查的市民共有______人,m=______,n=______;(2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A部分扇形所对应的圆心角是______度.24.已知函数y=(k﹣2)某为反比例函数.m15%10%n5%(1)求k的值;(2)若点A(某1,2)、B(某2﹣1)、C(某3,﹣)是该反比例函数的图象上的三点,则某1、某2、某3的大小关系是______(用“<”号连接);(3)当﹣3≤某≤﹣时,求y的取值范围.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(10分)(2022春张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△A DE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.27.(10分)(2022苏州一模)如图,在直角坐标系某Oy中,一直线y=2某+b经过点A(﹣1,0)与y轴正半轴交于B点,在某轴正半轴上有一点D,且OB=OD,过D点作DC⊥某轴交直线y=2某+b于C点,反比例函数y=(某>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(某>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.。
苏科版八年级数学下册期末复习专题练习《平行四边形》(含答案)
八年级数学期末复习专题练习《平行四边形》一.选择题(共4小题)1.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD 于M,N两点.若AM=4,则线段ON的长为()A.2B.C.2D.22.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.23.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是()A.6B.3C.9D.4.54.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =4,AF=6,则AC的长为()A.4B.6C.2D.二.填空题(共4小题)5.如图,已知在△ABC中,点D是边AC的中点,且DE∥BC.若DE=BC,CE=3,则AB=.6.如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF 沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为;如图,当B′在矩形ABCD内部时,AB′的最小值为.7.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的坐标是.8.在四边形ABCD中,对角线AC⊥BD且AC=4,BD=8,E、F分别是边AB、CD的中点,则EF=.三.解答题(共10小题)9.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.10.如图,矩形ABCD中,点P在BC边上,PE⊥AC,PF⊥BD,AB=6,BC=8,运用上述结论,求PE+PF的值.11.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.12.△ABC中,点O是AC上一动点,过点O作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠DCA的平分线于点F,连接AE、AF.(1)说明:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,证明你的结论;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF为正方形.13.如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.14.如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN,连结AM、BD.(1)AM与BD的关系是:.(2)如果将正方形BCMN绕点C顺时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.15.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.16.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.17.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请说明你的理由.18.如图,在▱ABCD中,E,F分别是AB,CD上的动点,AF与DE交于点G,CE与BF 交于点H,连接GH.(1)当E,F分别运动到AB,CD的中点时,判断四边形EHFG的形状,并说明理由;(2)试探究:①当AE,CF满足什么条件时,一定有GH∥CD,且GH=CD?②当AE,CF满足什么条件时,四边形EHFG是平行四边形?答案与解析一.选择题(共4小题)1.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD 于M,N两点.若AM=4,则线段ON的长为()A.2B.C.2D.2【分析】过M点作MH⊥AC,根据等腰直角三角形的性质求出HM长,再根据角平分线性质可得BM长,由此得到正方形的边长,求出OC和HC长,根据ON∥HM得到,从而可求ON长.【解答】解:过M点作MH⊥AC,∵∠HAM=45°,∴AH=HM=AM=4.∵CM平分∠ACB,HM⊥AC,MB⊥CB,∴BM=HM=4.∴正方形边长AB=4+,∴正方形对角线AC=4+8,OC=AC=2+4.∴HC=AC﹣AH=4+4.∵ON∥HM,∴.∴,解得ON=2.故选:C.2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.2【分析】连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC =,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【解答】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF==2,∵H是AF的中点,∴CH=AF=.故选:A.3.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是()A.6B.3C.9D.4.5【分析】连接BD,得出△ABD是等边三角形,由于菱形的对角线互相垂直平分,所以PD=BP,连接MD,由等边三角形的性质可知DM⊥AB,再根据∠ADM=30°即可求出AB的长.【解答】解:如图所示,连接DP,则根据菱形的对角线互相垂直平分,可得PD=BP,当点M,P,D三点共线时,BP+MP=DP+MP=DM=9(最短),连接BD,根据∠BAD=60°,可得△ABD是等边三角形,∵点M是AB的中点,∴DM⊥AB,∴∠ADM=30°,∵AM==3,∴AD=2AM=6,∴AB=6,故选:A.4.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =4,AF=6,则AC的长为()A.4B.6C.2D.【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=6,得出AE=CE=6,BC=BE+CE=10,由勾股定理求出AB的长,再由勾股定理求出AC即可.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.二.填空题(共4小题)5.如图,已知在△ABC中,点D是边AC的中点,且DE∥BC.若DE=BC,CE=3,则AB=6.【分析】延长ED交AB于F,根据三角形中位线定理得到DF=BC,证明四边形FBCE 为平行四边形,根据平行四边形的性质计算即可.【解答】解:延长ED交AB于F,∵DE∥BC,点D是边AC的中点,∴点F是边AB的中点,∴DF=BC,∵DE=BC,∴EF=BC,又EF∥BC,∴四边形FBCE为平行四边形,∴FB=CE=3,∴AB=2FB=6,故答案为:6.6.如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF 沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为2;如图,当B′在矩形ABCD内部时,AB′的最小值为﹣5.【分析】根据翻折变换,当点F与点C重合时,点B′到达最左边,当点E与点A重合时,点B′到达最右边,所以点B′就在这两个点之间移动,分别求出这两个位置时AB′的长度,然后两数相减就是最大距离;点B′在AC上时AB′最小,利用勾股定理列式求出AC,然后根据AB′=AC﹣B′C计算即可.【解答】解:如图1,当点F与点C重合时,根据翻折对称性可得B′C=BC=5,在Rt△B′CD中,B′C2=B′D2+CD2,即52=(5﹣AB′)2+32,解得AB′=1,如图2,当点E与点A重合时,根据翻折对称性可得AB′=AB=3,∵3﹣1=2,∴点B′在AD边上可移动的最大距离为2;如图3,B′在矩形ABCD内部时,AB′的最小值,由翻折的性质可得B′C=BC=5,由勾股定理得,AC===,∴AB′=AC﹣B′C=﹣5.故答案为:2;﹣5.7.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的坐标是(4,).【分析】延长BA使AD=CE,连接EF,OD.由题意可证△OCE≌△OAD,可得∠EOC =∠AOD,OD=OE,可证∠FOD=∠EOF,即可证△EOF≌△DOF,可得EF=FD,根据勾股定理可求AF的长,即可求点F的坐标.【解答】解:如图:延长BA使AD=CE,连接EF,OD.∵四边形ABCO是正方形,点B(4,4)∴OC=BC=AB=4=OA∵OE=2,OC=4∴CE=2∴BE=2∵CE=AD=2,OA=OC=4,∠OCB=∠OAD=90°∴△OCE≌△OAD(SAS)∴∠EOC=∠AOD,OD=OE∵∠EOF=45°,∠COA=90°∴∠COE+∠AOF=45°∴∠AOF+∠AOD=45°∴∠FOD=45°=∠EOF,且OF=OF,OD=OE∴△EOF≌△DOF(SAS)∴EF=FD在Rt△BEF中,EF2=BE2+BF2.∴(AF+2)2=4+(4﹣AF)2.∴AF=∴点F(4,)故答案为:(4,)8.在四边形ABCD中,对角线AC⊥BD且AC=4,BD=8,E、F分别是边AB、CD的中点,则EF=2.【分析】取BC的中点G,连接EG、FG,根据三角形的中位线平行于第三边并且等于第三边的一半求出EG、FG,并求出EG⊥FG,然后利用勾股定理列式计算即可得解.【解答】解:如图,取BC的中点G,连接EG、FG,∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=AC=×4=2,FG∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF=.故答案为:2三.解答题(共10小题)9.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;10.如图,矩形ABCD中,点P在BC边上,PE⊥AC,PF⊥BD,AB=6,BC=8,运用上述结论,求PE+PF的值.【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OB=OC=5,S△AOD=S矩形ABCD=12,然后由S△BOC=S△BOP+S△COP=OB(PE+PF)=12,即可求得答案.【解答】解:连接OP,如图所示:∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC=AC,OB=OD=BD,AC=BD,∠ABC=90°,∴OB=OC=AC,AC==10,∴S△BOC=S矩形ABCD=12,OB=OC=5,∴S△BOC=S△BOP+S△COP=OB•PE+OC•PF=OB(PE+PF)=×5×(PE+PF)=12,∴PE+PF=.11.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.【分析】(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8﹣x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【解答】解:(1)四边形DHBG是菱形.理由如下:∵四边形ABCD、FBED是完全相同的矩形,∴∠A=∠E=90°,AD=ED,AB=EB.在△DAB和△DEB中,,∴△DAB≌△DEB(SAS),∴∠ABD=∠EBD.∵AB∥CD,DF∥BE,∴四边形DHBG是平行四边形,∠HDB=∠EBD,∴∠HDB=∠HBD,∴DH=BH,∴▱DHBG是菱形.(2)由(1),设DH=BH=x,则AH=8﹣x,在Rt△ADH中,AD2+AH2=DH2,即42+(8﹣x)2=x2,解得:x=5,即BH=5,∴菱形DHBG的面积为HB•AD=5×4=20.12.△ABC中,点O是AC上一动点,过点O作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠DCA的平分线于点F,连接AE、AF.(1)说明:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,证明你的结论;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF为正方形.【分析】(1)由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,又∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴OE=OF;(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形;(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.13.如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.14.如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN,连结AM、BD.(1)AM与BD的关系是:AM=BD且AM⊥BD.(2)如果将正方形BCMN绕点C顺时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.【分析】(1)利用正方形的性质和已知条件证明△AMC≌△DBC,从而求出AM与BD 相等且垂直;(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变(1)中所得的结论任然成立,先求出∠ACM=∠DCB,然后利用“边角边”证明△AMC和△DBC全等,再根据全等三角形对应边相等即可得证;(3)根据AM⊥BD,得相交的角为直角,由勾股定理计算可得结论.【解答】解:(1)∵四边形ACDE和四边形BCMN都为正方形,∴AC=DC,∠ACD=∠BCD=90°,BC=CM,在△AMC和△DBC中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,延长AM交BD于F,∵∠AMC=∠DMF,∴∠ACM=∠DFM=90°,∴AM⊥BD;故答案为:AM=BD且AM⊥BD;(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变,(1)中所得的结论仍然成立,理由如下:在正方形ABCE和正方形BCMN中,AC=CD,CM=BC,∠ACD=∠MCB =90°,∵∠ACM=90°+∠MCD,∠DCB=90°+∠MCD,∴∠ACM=∠DCB,在△ACM和△DCB中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,∵∠AFC=∠DFG,∴∠ACF=∠DGF=90°,∴AM⊥BD.(3)如图2,连接AD、BM,∵AC=4,BC=2,由勾股定理得:AD2=42+42=32,BM2=22+22=8,∵AM⊥BD,∴∠AGB=∠DGM=∠AGD=∠BGM=90°,∴AB2+DM2=AG2+BG2+DG2+GM2,∵AD2+BM2=AG2+DG2+BG2+MG2=32+8=40,∴AB2+DM2=40.15.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.(1)点B的坐标(﹣3,1);(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.【分析】(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,由正方形的性质结合同角的余角相等即可证出△ADE≌△BAF,从而得出DE=AF,AE=BF,再结合点A、D的坐标即可求出点B的坐标;(2)设反比例函数为y=,根据平行的性质找出点B′、D′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k、t的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).分B′D′为对角线或为边考虑,根据平行四边形的性质找出关于m、n的方程组,解方程组即可得出结论.【解答】解:(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF.在△ADE和△BAF中,有,∴△ADE≌△BAF(AAS),∴DE=AF,AE=BF.∵点A(﹣6,0),D(﹣7,3),∴DE=3,AE=1,∴点B的坐标为(﹣6+3,0+1),即(﹣3,1).故答案为:(﹣3,1).(2)设反比例函数为y=,由题意得:点B′坐标为(﹣3+t,1),点D′坐标为(﹣7+t,3),∵点B′和D′在该比例函数图象上,∴,解得:t=9,k=6,∴反比例函数解析式为y=.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①当B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴,解得:,∴P(,0),Q(,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴,解得:,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴,解得:.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为P(,0)、Q(,4)或P(7,0)、Q(3,2)或(﹣7,0)、(﹣3,﹣2).16.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.【分析】(1)由ASA证明△OAD≌△OCB得出OD=OB,得出四边形ABCD是平行四边形,在证出∠CBD=∠CDB,得出BC=DC,即可得出四边形ABCD是菱形;(2)由菱形的性质得出OB=BD=4,OC=AC=3,AC⊥BD,由勾股定理得出BC ==5,证出△BOC∽△BED,得出=,即可得出结果.【解答】(1)证明:∵O为△ABC边AC的中点,AD∥BC,∴OA=OC,∠OAD=∠OCB,∠ADB=∠CBD,在△OAD和△OCB中,,∴△OAD≌△OCB(ASA),∴OD=OB,∴四边形ABCD是平行四边形,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OB=BD=4,OC=AC=3,AC⊥BD,∴∠BOC=90°,∴BC==5,∵DE⊥BC,∴∠E=90°=∠BOC,∵∠OBC=∠EBD,∴△BOC∽△BED,∴=,即=,∴DE=.17.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请说明你的理由.【分析】当AB=CD时,有EF⊥GH,连接GE、GF、HF、EH,根据三角形的中位线定理即可证得EG=GF=FH=EH,则四边形EFGH是菱形,利用菱形的性质即可证得.【解答】解:当AB=CD时,有EF⊥GH,连接GE、GF、HF、EH.∵E、G分别是AD、BD的中点,∴EG=AB,同理HF=CD,FG=CD,EH=CD,又∵AB=CD∴EG=GF=FH=EH∴四边形EFGH是菱形.∴EF⊥GH.18.如图,在▱ABCD中,E,F分别是AB,CD上的动点,AF与DE交于点G,CE与BF 交于点H,连接GH.(1)当E,F分别运动到AB,CD的中点时,判断四边形EHFG的形状,并说明理由;(2)试探究:①当AE,CF满足什么条件时,一定有GH∥CD,且GH=CD?②当AE,CF满足什么条件时,四边形EHFG是平行四边形?【分析】(1)由在▱ABCD中,点E、F分别是AB、CD的中点,易证得△AEG≌△FDG (AAS),可得EG=DG,同理可证得EH=CH,即可得GH是△ECD的中位线,继而推知四边形EHFG是平行四边形;(2)①由在▱ABCD中,点E、F分别是AB、CD的中点,易证得△AEG≌△FDG(AAS),可得EG=DG,同理可证得EH=CH,即可得GH是△ECD的中位线,继而证得结论GH ∥CD,且GH=CD;②通过证明两组对边分别平行,可得四边形EHFG是平行四边形.【解答】(1)证明:如图1,∵ABCD为平行四边形,∴DC∥AB,DC=AB,∵E、F分别为AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴FC=AE,∵FC∥AE,∴四边形AECF为平行四边形,∴AF∥EC,且AF=EC.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠GAE=∠GFD,∵AE=DF,在△AEG和△FDG中,,∴△AEG≌△FDG(AAS),∴EG=DG,即点G是AF的中点.同理:点H是EC的中点.∴GF=EH.∴四边形EHFG是平行四边形;(2)当AE=CF=AB时,一定有GH∥CD,且GH=CD.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠GAE=∠GFD,∵点E、F分别是AB、CD的中点,∴AE=DF,在△AEG和△FDG中,,∴△AEG≌△FDG(AAS),∴EG=DG,同理:EH=CH,∴GH∥DC且GH=DC.②AE=CF时,四边形EHFG是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形.。
2013-2014学年江苏省苏州市八年级下数学期末模拟试卷(三)及答案【苏科版】
2013-2014学年第二学期初二数学期末模拟试卷(三)(满分:150分 时间:120分钟)一、选择题(每题3分,共24分)1.下列调查中适合采用普查的是 ( ) A .调查市场上某种白酒中塑化剂的含量 B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间2.(2013.泰州)事件A :打开电视,正在播广告;事件B :抛掷一枚质地均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是 ( ) A .P(C)<P(A)=P(B) B .P(C)<P(A)<P(B) C .P(C)<P(B)=P(A)D .P(A)<P(B)=P(C)3.(2013.凉山)如果代数式1xx -有意义,那么x 的取值范围是 ( ) A .x ≥0 B .x ≠1 C .x>0 D .x ≥0且x ≠14.(2013.沈阳)计算2311x x+--的结果是 ( ) A .11x - B .11x - C .51x - D .51x-5.(2013.乐山)如图,点E 是□ABCD 的边CD 的中点,AD 、BE 的延长线相交于点F ,DF =3,DE =2,则□ABCD 的周长是 ( ) A .5 B .7 C .10 D .146.解分式方程22311x x x++=--时,去分母后变形为 ( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1) C .2-(x +2)=3(1-x)D .2-(x +2)=3(x -1)7.如图,正比例函数y 1与反比例函数y 2相交于点E(-1,2),若y 1>y 2>0,则x 的取值范围在数轴上表示正确的是 ( )8.如图,将矩形纸片ABCD 的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =12厘米,EF =16厘米,则边AD 的长是 ( )A .12厘米B .16厘米C .20厘米D .28厘米二、填空题(每题3分,共30分) 9.当x =_______时,分式32x -无意义. 10.(2013.青岛)计算:12205-+÷=_______.11.(2013.黑龙江)如图,□ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:______________,使得□ABCD 为菱形.12.(2013.宿迁)如图,一个平行四边形的活动框架,其对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线的长度也在发生改变.当∠α是_______°时,两条对角线的长度相等.13. (2013.河北)若x +y =1,且x ≠0,则22xy y x y x x x ⎛⎫+++÷⎪⎝⎭的值为_______. 14.若实数x 、y 满足3402y x y--+=,则以x 、y 的值为边长的直角三角形的周长为_______. 15.若代数式211x --的值为0,则x =_______. 16.已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_______.17.(2013.呼和浩特)如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为_______.18.如图,反比例函数y =3x(x>0)的图像与矩形OABC 的边AB 、BC 分别交于点E 、F ,且AE =BE ,则△OEF 的面积为_______. 三、解答题(共96分) 19.(8分)解方程:21x +=.20.(8分)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:(1)填写频数分布表中的空格,并补全频数分布直方图;(2)如果成绩在70分以上(不含70分)为心理健康状况良好,且心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.21.(8分)已知实数a满足a2+2a-15=0,求()()2212121121a aaa a a a+++-÷+--+的值.22.(8分)若a、b都是实数,且b=114412a a-+-+,试求2b aa b++-2b aa b+-的值.23.(10分)(2013.桂林)如图,在矩形ABCD中,E、F为BC上两点,且BE=CF,连接AF、DE 交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.24.(10分(2013.南宁)如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.(10分)(2013.南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.26.(10分)(2013.哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?‘(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来盼2倍,要使甲队总的工作量不少于乙队工作量的2倍,那么甲队至少再单独施工多少天?27.(12分)如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=kx的图像经过点C,一次函数y=ax+b的图像经过点A、C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图像上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.28.(12分)(2013.锦州)如图①,等腰直角三角尺的一个锐角顶点与正方形ABCD的顶点A重合,将此三角尺绕点A旋转,使三角尺中该锐角的两条边分别交正方形的两边BC、DC于点E、F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E、F分别是BC、CD边上的点,∠EAF=1 2∠BAD,连接EF,过点A作AM⊥EF于点M.试猜想AM与AB之间的数量关系,并证明你的猜想.参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.A 8.C二、9.2 10.5211.答案不唯一 12.90 13.1 14.12或 7+7 15.3 16.m>-6且 m ≠-4 17.12 18.94三、19.x =3是原方程的解 20.(1)表中竖着填,依次为:6、50、0.32、0.12补图略 (2)需要 21.原式=1822.223.略 24.(1)略 (2)23 25.略26.3天 27.(1)y =-x +2 (2)点P 的坐标为(25,-35)或(-25, 35) 28.(1)EF =DF +BE (2)AM =AB (3)AM =AB。
江苏省苏州市吴中区八年级数学下学期期末试卷(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市吴中区2015-2016学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣23.下列根式中,与是同类二次根式的是()A. B. C.D.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.146.若=,则的值为()A.1 B.C.D.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是______ (填写序号).12.当x=______时,分式的值为0.13.约分:﹣ =______.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为______.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为______(精确到0.1).16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是______.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1=______度.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是______.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)20.解分式方程:.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=______.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM=______,BP=______;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD=______.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.2015-2016学年某某省某某市吴中区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查你班学生每位同学穿鞋的尺码属于全面调查;调查一批洗衣机的使用寿命,从中抽取5台属于抽样调查;调查一个社区所有家庭的年收入属于全面调查;调查你所在年级同学的业余爱好属于全面调查;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选B.【点评】本题主要考查了分式有意义的条件,正确理解条件是解题的关键.3.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.【点评】本题主要考查了同类二次根式,解题的关键是熟记化简根式的方法.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.【考点】可能性的大小.【分析】根据几何概率的定义,面积越大,指针指向该区域的可能性越大.【解答】解:因为四个选项中的转盘均被均分为4份,所以哪个选项中红色区域份数最多,指针落在红色区域的可能性就越大,四个选项中D中共有3份,故指针落在红色区域的可能性最大,故选D.【点评】考查了可能性的大小的知识,用到的知识点为:在总面积相等的情况下,哪部分的面积较大,相应的概率就大.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线可求得AE=AB,则可求得四边形ABCD的周长.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵BC=6,DE=2,∴AB=AE=AD﹣DE=BC﹣DE=6﹣2=4,∴▱ABCD的周长=2(AB+BC)=2×(4+6)=20,故选A.【点评】本题主要考查平行四边形的性质,根据平行四边形的性质求得AB=AE是解题的关键.6.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.【解答】解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选:A.【点评】本题考查了中点四边形,此题实际上是平行四边形的判定和三角形的中位线定理的应用,通过做此题培养了学生的推理能力,题目比较好,难度适中.8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n同号确定答案即可.【解答】解:∵mn>0,∴m、n同号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m>0时则n>0,∴A正确,故选A.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤【考点】反比例函数图象上点的坐标特征.【分析】先根据题意列出关于m的不等式,求出m的取值X围即可.【解答】解:∵反比例函数y=图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,∴点A在第三象限,点B在第一象限,∴1﹣5m>0,解得m<.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.【考点】相似三角形的判定与性质;矩形的性质.【分析】先求出△ADE的面积是矩形面积的一半,再用勾股定理求出AM,最后用面积公式求解即可.【解答】解:如图,连结DM,在矩形ABCD中,AB=1,BC=,∴S矩形ABCD=AB×BC=1×=,∵M为BC中点,∴S△ADM=S矩形ABCD=,在RT△ABM中,AB=1,BM=BC=,根据勾股定理得,AM==,∴S△ADM=AM×DE=××DE=,∴DE=,故选C【点评】本题考查了矩形的性质,三角形的面积的计算,勾股定理,解本题的关键是判断△ADE的面积是矩形面积的一半.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是③(填写序号).【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:①对顶角相等是必然事件;②矩形的对角线相等是必然事件;③同位角相等是随机事件;④平行四边形是中心对称图形是必然事件.故答案是:③【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.当x= 5 时,分式的值为0.【考点】分式的值为零的条件.【分析】由分式的值为0可得出x﹣5=0且x≠0,解方程即可得出结论.【解答】解:∵分式的值为0,∴,解得:x=5.故答案为:5.【点评】本题考查了分式的值为零的条件,解题的关键是得出x﹣5=0且x≠0.本题属于基础题,难度不大,解决该题型题目时牢记分式值为零的条件是分子等于零且分母不等于零.13.约分:﹣ =.【考点】约分.【分析】先提取出分子分母中的公因式,再消去公因式,即得最后结果.【解答】解:,故答案为:【点评】本题主要考查分式的约分,找到分子分母公因式是解题的关键.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为32cm2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ABC的面积,再与△ADE的面积作差即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∵S△ADE=4cm2,∴S△ABC=36cm2,∴四边形BCED的面积为:32cm2,故答案为:32cm2.【点评】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为0.8 (精确到0.1).【考点】利用频率估计概率.【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是 1 .【考点】反比例函数图象上点的坐标特征.【分析】由点在反比例函数图象上可得出b=a,将其代入2a﹣b+1中即可得出结论.【解答】解:∵反比例函数y=(b为常数,b≠0)的图象经过点(a,),∴=,即b=a,∴2a﹣b+1=2a﹣×a+1=1.故答案为:1.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是得出b=a.本题属于基础题,难度不大,解决该题型题目时,根据点在反比例函数图象上得出a、b之间的关系是关键.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1= 60 度.【考点】菱形的性质.【分析】根据题意可得已知菱形的一对角线的长和其边长,则可根据三角函数求得的度数,从而不难求得∠1的度数.【解答】解:由题意可得,菱形较长的对角线为20cm,∵菱形的对角线互相垂直平分,根据勾股定理可得,另一对角线的一半等于10cm,则=30°,∴∠1=60°.故答案为60.【点评】此题主要考查菱形的性质和勾股定理,综合利用了直角三角形的性质.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16 .【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可.【解答】解:∵点A在直线y=x上,横坐标为1,∴点A的坐标为(1,1),∵正方形ABCD的边长为3,∴点C的坐标为(4,4),当双曲线y=经过点A时,k=1×1=1,当双曲线y=经过点C时,k=4×4=16,∴双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16,故答案为:1≤k≤16.【点评】本题考查的是反比例函数与一次函数的交点问题以及正方形的性质,掌握反比例函数图象上点的坐标特征、以及正方形的性质是解题的关键.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再进行计算即可.【解答】解:(1)原式=3××=;(2)原式=3﹣(3﹣2x)=2x.【点评】本题考查了二次根式的混合运算,把二次根式化为最简二次根式是解题的关键.20.解分式方程:.【考点】解分式方程.【分析】左右两边同乘以最简公分母是x2﹣4,以下步骤可按解整式方程的步骤计算即可解答,注意最后一定要验根.【解答】解:方程两边同乘以最简公分母(x+2)(x﹣2),得(x﹣2)x﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,﹣6x=12,x=﹣2,经检验:x=﹣2不是原方程的根,∴原方程无解.【点评】本题主要考查分式方程的解法.注意:解分式方程时确定最简公分母很关键,解分式方程必须检验.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由AF=CE可得AE=CF,再结合平行四边形的性质证明△ABE≌△CDF,从而得出BE=DF;(2)先证明BE∥GF,由已知条件得出BG=CG=BC=AD,由平行线得出△CGF∽△ADF,得出对应边成比例,即可得出结果【解答】(1)证明:∵AF=CE,∴AF﹣EF=CE﹣EF.∴AE=CF.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.AD∥BC,AD=BC,∴∠BAE=∠DCF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴BE=DF;(2)解:如图所示:由(1)得:△ABE≌△CDF,∴∠AEB=∠DFC,∴∠BEC=∠GFC,∴BE∥GF,∵点E、F是线段AC的三等分点,∴AE=EF=FC,∴BG=CG=BC=AD,∵AD∥BC,∴△CGF∽△ADF,∴=;故答案为:.【点评】此题主要考查了相似三角形的判定与性质、全等三角形的性质与判定、平行四边形的性质等知识;熟练掌握平行四边形的性质,由平行线证明三角形相似是解决问题的关键.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)【考点】分式方程的应用.【分析】设枇杷进价为每千克x元,根据超市将枇杷全部售完后获利17 200元列出分式方程,求出方程的解即可得到结果;【解答】解:设枇杷进价为每千克x元,根据题意得:400×(2x﹣x)+(﹣400)×30%x=17200,解得:x=40,经检验x=40是分式方程的解,且符合题意,则枇杷进价为每千克40元.【点评】此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.【考点】相似三角形的判定与性质.【分析】(1)证明∠CED=∠ACB=90°,∠CDE=∠ADC,得到△CDE∽△ADC,列出比例式,化为等积式即可解决问题.(2)运用(1)中的结论,证明△BDE∽△ADB,即可解决问题.【解答】证明(1)∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD:AD=DE:CD,∴CD2=DE•AD.(2)∵D是BC的中点,∴BD=CD;∵CD2=DE•AD,∴BD2=DE•AD∴BD:AD=DE:BD;又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.【点评】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是深入把握题意、大胆猜测推理、科学求解论证.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….【考点】分母有理化.【分析】(1)根据阅读材料中的方法将各式化简即可;(2)原式分母有理化后,合并即可得到结果.【解答】解:(1)①原式====+;②原式====﹣;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.【点评】此题考查了分母有理化,弄清阅读材料中的解题方法是解本题的关键.27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM= 12﹣2t ,BP= 3+t ;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD= 12.【考点】四边形综合题.【分析】(1)先用t表示出,AM,再通过线段和差关系表示出MB、BP;(2)把t=3代入DN、BP中,若DN=BP,则四边形满足一组对边平行且相等,是平行四边形,否则就是梯形;(3)①由于△BQM沿AB翻折成△MKB,只要QM=QB,四边形BQMK就是菱形,因为QP⊥AB,MP、BP可由t表示出来,可通过MP=PB计算出t;②若四边形BQMK为正方形,则∠MQB是直角,∠QBA=45°,可通过等腰直角三角形间的三边关系,先求出t,再分别计算出BQ、DQ.【解答】解:(1)∵AB∥CD,AD⊥AB,AB=12,CD=9,过点N作NP⊥AB于点P,∴四边形APND是矩形,∴DN=AP.∵AB=12,CD=9,AM=2t,=t,∴DN=9﹣t,∴BM=AB﹣AM=12﹣2t,BP=AB﹣AP=AB﹣DN=12﹣(9﹣t)=3+t.答案:12﹣2t,3+t;(2)当t=3时,DN=9﹣t=6,BP=3+t=6,∴DN=PB,又∵DN∥BP,∴四边形BNDP是平行四边形.(3)①当t=1.5时,四边形BQMK为菱形.理由如下:∵△BQM沿AB翻折,得△BKM,∴BQ=BK,QM=MK,当QM=QB时,四边形MQBK是菱形.∵QP⊥AB,∴MP=BP.∵MP=AP﹣AM=DN﹣AM=(9﹣t)﹣2t=9﹣3t,BP=AB﹣AP=AB﹣DN=3+t,当9﹣3t=3+t时,t=1.5.即当t=1.5时,四边形BQMK为菱形.②当菱形BQMK为正方形时,∠MQB=90°,BM=12﹣2t,BP=3+t,∴∠QBM=45°.∵cos∠MBQ=cos45°===,∴BQ=6﹣t.∵cos∠MBQ=cos45°===,即6+2t=12﹣2t,解得t=1.5.∴BQ=6.∵DC∥AB,∴∠NDB=∠DBM=45°,在RT△DNQ中,DQ=DN=(9﹣t),∴BD=BQ++=12.答案:12.【点评】点评:本题是一个直角梯形与动点的结合题目,考察了矩形的性质和判定、平行四边形的判定、菱形的性质及正方形的性质.等腰直角三角形的三边1:1:间关系或者特殊角的三角函数是解决本题的关键.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.【考点】反比例函数综合题.【分析】(1)由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C 坐标,根据AC=3CD,即可得出关于k的一元一次方程,解方程即可得出结论;(2)根据(1)得出A、C的坐标,由AB∥x轴找出B点的坐标,由此即可得出AB、AC的长度,利用三角形的面积公式即可得出结论;(3)由已知可得出∠BAC=∠DOE=90°,因此分两种情况来讨论.①△ABC∽△ODE是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论;②△ABC∽△OED是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论.【解答】解:(1)∵A(a,b),且A在反比例函数y=(x>0)的图象上,∴b=,∵AC∥y轴,且C在反比例函数y=(x>0)的图象上,∴C(a,).又∵AC=3CD,∴AD=4CD,即=4•,∴k=2.(2)由(1)可知:A(a,),C(a,).∵AB∥x轴,∴B点的纵坐标为,∵点B在反比例函数y=的函数图象上,∴=,解得:x=,∴点B(,),∴AB=a﹣=,AC=﹣=,∴S=AB•AC=••=,∴在点A运动过程中,△ABC面积不变,始终等于.(3)连接DE,如图所示.∵由已知可知:∠BAC=∠DOE=90°,∴△ABC与以点O、D、E为顶点的三角形如果相似,那么点A与点O一定是对应顶点.下面分两种情况进行探究:①△ABC∽△ODE是否成立?∵==, ==,∴=.又∵∠BAC=∠DOE=90°,∴△ABC∽△ODE.∴在点A的运动过程中,△ABC∽△ODE始终成立;②△ABC∽△OED是否成立?==, ==,当=时,即=,∴a=2.∴在点A的运动过程中,当a=2时,△ABC∽△OED.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及相似三角形的判定及性质,解题的关键是:(1)根据线段间的关系找出关于k的一元一次方程;(2)用含a的代数式表示出线段AB、AC;(3)根据线段间的关系找出三角形是否相似.本题属于中档题,难度不大,解决该题型题目时,根据对应线段成比例来证出三角形相似是难点,在日常练习中应加强该方面的练习.。
【苏科版】八年级下册数学《期末考试试卷》(带答案)
苏科版八年级下册期末考试数 学 试 卷一、选择题1.下列图形,可以看作中心对称图形的是( )A. B. C. D.2.若x,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A. 2x x y+-B. 22y xC. 3223y xD.()222-y x y3.分式x yx y-+--可变形为( )A.x yx y -+- B. -x yx y-+ C.+-x yx yD.x yx y-+ 4.下列事件中,是必然事件的是( ) A. 3天内下雨B. 打开电视机,正在播放广告C. 367人中至少有2人公历生日相同D. a 抛掷1个均匀的骰子,出现4点向上5.下列说法正确的是( )A. 对角线互相垂直的四边形是菱形 B. 矩形的对角线互相垂直 C. 一组对边平行的四边形是平行四边形 D. 对角线相等的菱形是正方形 6.如图,反比例函数2y x =-的图象与菱形ABCD 的边AD 交于点()1E 4F 122--,,,,则函数2y x=-的图象在菱形ABCD 内的部分所对应的x 的取值范围是( ).A.12<x <2或-2<x <-12B. -4<x <-1C. -4<x <-1或1<x <4D.12<x <2 7.在反比例函数y 2019x=-图象上有三个点()()()112233A x y B x y C x y ,、,、,,若x 1<0<x 2<x 3,则下列结论正确的是( ) A. 132y y y <<B. 231y y y <<C. 312y y y <<D. 321y y y <<8.已知2a 4<<,则化简2212a a a 8a 16-++-+的结果是( ) A. 2a 5﹣B. 52a ﹣C. ﹣3D. 39.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A. 1B. 2C. 3D. 410.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A. 25B. 26C. 32D. 5二、填空题11.2x -x 的取值范围是________. 12.当x =________时,分式x 3x 5-+的值为零. 13.8一个同类二次根式:________.14.已知反比例函数y=2k x-(k 为常数,k≠2)的图像有一支在第二象限,那么k 的取值范围是_______. 15.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .16.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,M 、N 分别为边AB 、BC 的中点,连接MN .若MN =1,BD 23=,则菱形的周长为________.17.如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A 、B 两个顶点,过顶点C 作CD ⊥AB ,垂足为D .“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.18.如图,△ABO 的面积为3,且AO=AB,反比例函数y=kx的图象经过点A ,则k 的值为___.三、解答题19.计算:(1)232713(6322223+. (3)2x 1x 42x 4---.(4)解方程:x341 x3x3+=+ -+.20.先化简,再求值:(21a a1)a1a1--÷++,其中a13=+21.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.求证:四边形AODE是矩形;22.如图,在正方形网格中,每个小正方形的边长为1个单位长度。
苏科版八年级下册数学期末试卷含答案解析
年级数学注意事项: 1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相.应.位.置.上) 1.下列图形中,既是轴对称图形又是中心对称图形的是A. C.B. D.2.分式x-2 1有意义,则 x 的取值范围是A.x ≠ 1B.x>1C.x<1D. x ≠-13.下列说法中,正确的是 A.“打开电视,正在播放中国好声音节目”是必然事件 B.某种彩票中奖概率为 10%是指买十张一定有一张中奖 C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查4.若点 A(1,y1)、B(2,y2)在反比例函数 y= 1x的图像上,则 y1、y2 的大小关系为A.y1>y2B.y1<y2C.y1=y2D.不能确定5.下列各式计算正确的是A. 2+ 3= 5B.2 2- 2= 2C. (-4)×(-9)= -4× -9D. 6÷ 3= 36.如图,P 为正方形 ABCD 的对角线 BD 上任一点,过点 P 作 PE⊥BC 于点 E,PF⊥CD 于点 F,连接 EF.给出以下 4 个结论:①△FPD 是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是ADA.①①B.①①C.①①①D.①①①第1页 共6页PFBEC二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答 请把答案直接填写在答.题.卡.相.应.位.置.上)7.使式子 x-3有意义的 x 的取值范围是 ▲ .(第 6 题)过程,8.若分式xx2--11的值为零,则 x 的值为 ▲ .9.计算32 2- 12的结果是 ▲ .10.已知反比例函数的图象经过点(m,2)和(-2,3),则 m 的值为 ▲ . 11.如图,转盘被平均分成 8 个区域,每个区域分别标注数字 1、2、3,4、5、6、7、8,任意 转动转盘一次,当转盘停止转动时, 对于下列事件:①指针落在标有 5 的区域; ①指针落在 标有 10 的区域; ①指针落在标有奇数的区域;①指针落在能被 3 整除的区域.其中,发生可 能性最大的事件是 ▲ .(填写序号) 12.已知菱形的面积是 5,它的两条对角线的长分别为 x、y(x>0,y>0),则 y 与 x 的函数 表达式为 ▲ .13.如图,□ABCD 的对角线 AC,BD 相交于点 O,点 E,F 分别是线段 AO,BO 的中 点.若 AC+BD=24 cm,△OAB 的周长是 18 cm,则 EF 的长为 ▲ cm.y18273645(第 11 题)ADEOFBC(第 13 题)CEBD PxOA(第 15 题)14.已知等式n(n1+1) = 1n-n+1 1,对任意正整数 n 都成立.计算:1×12+ 2×13+3×14+4×15+…+n(n1+1) =▲.15.如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y= kx(k>0)的图像经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE 的面积为 ▲ .16.设函数 y=x-2 与 y=3x的图象的交点坐标为(m,n),则m1 -1n的值为▲.三、解答题(本大题共 11 小题,共 88 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说 明、证明过程或演算步骤)17.(7 分)解方程:x-1 2 = xx--21-3.第2页 共6页18.(8 分)计算:(1) 2a3 · 8a(a≥0);(2) 6 (2 3-31 3).19.(8 分)先化简[x-3 1-3 (x-1)2]÷xx- -21,然后从-1,0,1,2 中选取一个你认为合适的数作为 x 的值代入求值.20.(8 分)在一个不透明的盒子里装有黑、白两种颜色的球共 40 只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数 n1002003005008001 000 3 000摸到白球的次数 m651241783024815991803m 摸到白球的频率 n0.650.620.593 0.604 0.601 0.599 0.601(1)请估计:当 n 很大时,摸到白球的频率将会接近 ▲ ;(精确到 0.1) (2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为 ▲ ; (3)试估算盒子里黑、白两种颜色的球各有多少只?21.(8 分)某校开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生对这三项活动 课程的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计 图,请你结合图中信息解答问题. (1)本次抽样调查的样本容量是 ▲ ; (2)将条形统计图补充完整; (3)已知该校有 1 200 名学生,请你根据样本估计全校学生中喜欢剪纸的人数.喜欢三类活动课程的学生人数条形统计图 人数30 302418141210660 武术舞蹈剪纸女生喜欢三类活动课程的人数扇形统计图男生 女生剪纸 武术 20% 舞蹈第3页 共6页22(. 8 分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(y 度) 是镜片焦距 x(厘米)(x>0)的反比例函数,调查数据如下表:眼镜片度数 y (度) 400 625 800 1000 1250 …镜片焦距 x (厘米) 25 16 12.5 10 8 … 表达式;(1)求 y 与 x 的函数(2)若小明所戴近视眼镜镜片的度数为 500 度,求该镜片的焦距.23.(8 分)著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第 n 个数为 15[1+2 5n -1-2 5n](n 为正整数),例如这 个数列的第 8 个数可以表示为 15[1+2 58 -1-2 58].根据以上材料,写出并计算:(1)这个数列的第 1 个数; (2)这个数列的第 2 个数.24.(8 分)如图,在□ABCD 中,∠BAD 的平分线交 BC 于点 E,∠ABC 的平分线交 AD 于点 F.(1)求证:四边形ABEF是菱形;(2)若AB=5,BF=8,AD=125, 则□ABCD的面积是 ▲ .AFDBEC(第 24 题)第4页 共6页25.(8分)“五一”期间,某商铺经营某种旅游纪念品.该商铺第一次批发购进该纪念品共花费 3 000元,很快全部售完.接着,该商铺第二次批发购进该纪念品共花费9 000元.已知第二次 所购进该纪念品的数量是第一次的2倍还多300个,第二次的进价比第一次的进价提高了20%. (1)求第一次购进该纪念品的进价是多少元? (2)若该纪念品的两次售价均为9元/个,两次所购纪念品全部售完后,求该商铺两次共盈利 多少元?26.(10 分)如图,在平面直角坐标系中,点 B 是反比例函数 y=kx的图像上任意一点,将点 B 绕原点 O 顺时针方向旋转 90°到点 A. (1)若点 A 的坐标为(4,2).①求 k 的值;①在反比例函数 y=kx的图像上是否存在一点 P,使得①AOP 是等腰三角形且①AOP 是顶 角,若存在,写出点 P 的坐标;若不存在,请说明理由.(2)当 k=-1,点 B 在反比例函数 y=kx的图像上运动时,判断点 A 在怎样的图像上运动? 并写出表达式.yB AOx(第 26 题)第5页 共6页27.(7 分)(1)方法回顾 在学习三角形中位线时,为了探索三角形中位线的性质,思路如下: 第一步添加辅助线:如图 1,在△ABC 中,延长 DE (D、E 分别是 AB、AC 的中点)到点 F,使得 EF=DE,连接 CF; 第二步证明△ADE①△CFE,再证四边形 DBCF 是平行四边形,从而得到 DE∥BC,DE=12BC.ADEFBC图1(2)问题解决 如图 2,在正方形 ABCD 中,E 为 AD 的中点,G、F 分别为 AB、CD 边上的点,若 AG= 2,DF=3,∠GEF=90°,求 GF 的长.AEDGFB图2CD E AFGCB图3(3)拓展研究 如图 3,在四边形 ABCD 中,∠A=105°,∠D=120°,E 为 AD 的中点,G、F 分别为 AB、CD 边上的点,若 AG=3,DF=2 2 ,∠GEF=90°,求 GF 的长.第6页 共6页。
苏科版八年级数学下册第7章 数据的收集、整理、描述测试卷及答案
第七单元数据的收集、整理、描述综合测试卷一、选择题(每题3分.共24分)1.下列调查适合做普查的是( )A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查2.下列调查中,选取的样本具有代表性的有( )A.为了解某地区居民的防火意识,对该地区的初中生进行调查B·为了解某校1 200名学生的视力情况,随机抽取该校120名学生进行调查C.为了解某商场的平均日营业额,选在周末进行调查D.为了解全校学生课外小组的活动情况,对该校的男生进行调查3.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指( )A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高4.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是( )A.36⁰B.72⁰C.108⁰D.1 80⁰5.某工厂上半年生产总值增长率的变化情况如图所示,从图上看,下列结论中不正确的是( ) A.1~5月份生产总值增长率逐月减少B.6月份生产总值的年增长率开始回升C.这半年中每月的生产总值不断增长D.这半年中每月的生产总值有增有减6.已知样本数据的个数为30,且被分成4组,各组数据的个数之比为2:4:3:1,则第二小组和第三小组的频率分别为( )A.0.4、0.3 B.0.4、9 C.12、0.3 D.1 2、97.为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在:169.5 cm~1 74.5 cm 的人数有( )A.12 B.48 C.72 D.968.在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10 个小长方形面积之和的四分之一.且样本数据有160个.则中间一组的频数为( )A.0.2 B.32 C.0.25 D.40二、填空题(每题3分。
江苏省常熟市2012-2013学年八年级下期末考试数学试题含答案(word版)【苏科版】
常熟市2012-2013学年第二学期期末考试试卷初二数学2013.6 本试卷由填空题、选择题和解答题三大题组成.共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.函数12yx=-中自变量x的取值范围是A.x>2 B.x<2 C.x≠2 D.x≠-2 2.下列分式中,属于最简分式的是A.42xB.221xx+C.211xx--D.11xx--3.在反比例函数1kyx-=的图象的每个象限内,y随x的增大而增大,则k值可以是A.-1 B.1 C.2 D.34.若两个相似三角形的面积之比为1:4,则它们的周长之比为A.1:2 B.1:4 C.1:5 D.1:165.已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为A.90米B.80米C.45米D.40米6.下列各式中,成立的是A =-B x y =+C =D .当x ≤2且x ≠-1有意义 7.已知反比例函数y =k x 的图象经过点A (-1,-2).则当自变量x >1时,函数值y 的取值范围是A .y <2B .0<y <1C .y >2D .0<y <28.若a 是满足(x 2=100的一个数,b 是满足(y -4)2=17的一个数,且a 、b 都是正数,则a -b 之值为A .5B .6CD .109.如图,等腰直角△ABC 的两直角边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,等腰直角△MNP 与等腰直角△ABC 是以AC 的中点O '为中心的位似图形,已知AC =,若点M 的坐标为(1,2),则△MNP 与△ABC 的相似比是A .12BC .13D .2310.如图,在第一象限内,点P (2,3),M (a ,2)是双曲线y =k x(k ≠0)上的 两点,PA ⊥x 轴于点A ,MB ⊥x 轴于点B ,PA 与OM 交于点C ,则△OAC的面积为A .32B .43C .2D .83二、填空题 本大题共8小题.每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11的结果是 ▲ .12.命题“任何数的平方大于0”是 ▲ 命题(填“真”或“假”).13.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于 ▲ .14.若分式2231x x -+的值是负数,则x 的取值范围是 ▲ . 15.如图,点E 是□ABCD 的边BC 延长线上的一点,AE 与CD 相交于点G ,则图中相似三角形共有 ▲ 对.16.若a <11-的结果为 ▲ .17.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 ▲ .18.设a >b >0.a 2+b 2=4ab ,则22a b ab -的值等于 ▲ . 三、解答题 本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5-.20.(本题满分5分)先化简,再求值:221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭,其中x -1.21.(本题满分5分)解方程:242111x x x++=---.22.(本题满分6分)一个口袋中有4个相同的小球,分别写有字母A 、B 、C 、D ,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或画树状图中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.23.(本题满分6分)已知反比例函数y=kx(k<0)的图象经过点M(m, m-4).(1)求m的取值范围;(2)点A(1,a)B(3,b),C(c,-2)也在上述图象上,试比较a、b、c的大小(直接写出结果).24.(本题满分6分)如图,△ABC中,点D、E分别在边AB、AC上,BE、CD相交于点F,且AD·AB=AE·AC.求证:(1)△ABE∽△ACD;(2)FD·FC=FB·FE.25.(本题满分8分)小琳、晓明两人在A、B两地间各自做匀速跑步训练,他们同时从A地起跑(1)设A、B两地间的路程为s(m),跑完这段路程所用的时间t(s)与相应的速度v(m/s)之间的函数关系式是▲ ;(2)在上述问题所涉及的3个量s、v、t中,▲ 是常量,t是▲ 的▲ 比例函数;(3)已知“A→B”全程200m,小琳和晓明的速度之比为4:5,跑完全程小琳要比晓明多用了8s.求小琳、晓明两人匀速跑步的速度各是多少?26.(本题满分8分)如图,正方形ABCD和正方形CEFG各有两个顶点在坐标轴上,其中A(0,1),B(2,0),E、F两点同在x轴上,双曲线y=kx(k>0)经过边AD的中点P和边CE的一点Q.(1)求该双曲线所表示的函数关系式;(2)探索点Q是否恰为CE的中点?请说明理由.27.(本题满分8分)如图,四边形ABCD 中,AB =5cm ,CB =3cm .∠DAB =∠ACB =90°.AD=CD ,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于E 点.(1)求CD 的长度;(2)已知一动点P 以2cm /s 的速度从点D 出发沿射线DE 运动,设点P运动的时间为ts ,问当t 为何值时,△CDP 与△ABC 相似.28.(本题满分9分)已知凡是正整数,A =1111111111112233n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,B ()11111223341n n =+++⨯⨯⨯+ . (1)求2A -B 的值(结果用含n 的式子表示);(2)当n 取何值时,2A -B 的值等于712(直接写出答案).29.(本题满分10分)△ABC 中,∠ACB =90°,AB =2,点E 是BC 延长线上的一点,且ED ⊥AB ,垂足为D ,ED 与AC 交于点H .取AB 中点O ,连结OH.(1)若ED ,OD =13,求ED 的长; (2)若ED =AB ,求HD +OH 的值.。
苏科版八年级下册数学期末试卷 (1)
苏科版八年级下册数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)使二次根式的有意义的x的取值范围是( )A.x>0B.x>1C.x≥1D.x≠12.(3分)下列图形中,是中心对称图形但不是轴对称图形的为( )A.等边三角形B.平行四边形C.矩形D.圆3.(3分)下列事件中的必然事件是( )A.一箭双雕B.守株待兔C.水中捞月D.旭日东升4.(3分)下列分式中属于最简分式的是( )A.B.C.D.5.(3分)如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是( )A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形6.(3分)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查7.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为( )A.2B.2C.4D.48.(3分)已知一次函数y=kx+b的图象经过一、二、四象限,则下列关于反比例函数y=的描述,其中正确的是( )A.图象在一、三象限B.y随x的增大而减小C.y随x的增大而增大D.当x<0时,y>09.(3分)已知:a2+b2=3ab(a>b>0),则的值为( )A.B.3C.D.510.(3分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE、BE,若AD平分∠OAE,反比例函数y=(k<0,x<0)的图象经过AE上的点A、F,且AF=EF,△ABE的面积为18,则k的值为( )A.﹣6B.﹣12C.﹣18D.﹣24二、填空题(本大题共8小题,每小题2分,共16分.)11.(2分)给出下列3个分式:,,,它们的最简公分母为.12.(2分)当x= 时,分式的值为零.13.(2分)一枚质地均匀的骰子的六个面上分别刻有1~6的点数,抛掷这枚骰子,若抛到偶数的概率记作P1,抛到奇数的概率记作P2,则P1与P2的大小关系是.14.(2分)已知实数a、b满足+|6﹣b|=0,则的值为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k= .16.(2分)如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=8,OH=6,则菱形ABCD的面积为.17.(2分)已知正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象有一个交点的坐标为(3,﹣1),则关于x的不等式k1x﹣>0的解集为.18.(2分)如图,E为正方形ABCD中BC边上的一点,且AB=3BE=6,M、N分别为边CD、AB上的动点,且始终保持MN⊥AE,则AM+NE的最小值为.三、解答题(本大题共9小题,共74分.)19.(8分)计算:(1)+|3﹣|﹣()2;(2)﹣(3+)(3﹣).20.(8分)(1)计算:;(2)解方程:.21.(6分)化简代数式÷(x+),并求当x=7时此代数式的值.22.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m= ,E组对应的圆心角度数为°;(2)补全频数分布直方图;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)如图,在▱ABCD中,延长BC到点E,使得BC=CE,连接AE、DE.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE=4,BE=2,求四边形ACED的面积.24.(8分)某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?25.(8分)如图1,在矩形ABCD中,AB=6,BC=10,P是AD边上一点,将△ABP沿着直线PB折叠,得到△EBP.(1)请在图2上用没有刻度的直尺和圆规,在AD边上作出一点P,使P、E、C三点在一直线上(不写作法,保留作图痕迹),此时AP的长为;(2)请在图3上用没有刻度的直尺和圆规,在AD边上作出一点P,使BE平分∠PBC (不写作法,保留作图痕迹),此时△BEC的面积为.26.(10分)如图,在平面直角坐标系中,B、C两点在x轴的正半轴上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=(x>0,k >0)的图象经过点A,且与边CD相交于点E.(1)若BC=4,求点E的坐标;(2)连接AE,OE.①若△AOE的面积为24,求k的值;②是否存在某一位置使得AE⊥OA,若存在,求出k的值;若不存在,请说明理由.27.(10分)如图,在平面直角坐标系中,矩形ABCO的边OC、OA分别在x轴、y轴上,已知B(m,4)(m>0),AB上有一点P(n,4),将△OAP绕着点O顺时针旋转60°得到△OA1P1.(1)点A1的坐标为;连接PP1,若PP1⊥x轴,则n的值为;(2)如果m﹣n=2.①当点P1落在OC上时,求CP1的长;②请直接写出CP1最小值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.2.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形,故本选项不符合题意;B.平行四边形是中心对称图形但不是轴对称图形,故本选项符合题意;C.矩形既是轴对称图形,又是中心对称图形,故本选项不符合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不符合题意.故选:B.3.【分析】根据必然事件的定义即可判断.【解答】解:A、一箭双雕,是随机事件,不符合题意;B、守株待兔,是随机事件,不符合题意;C、水中捞月,是不可能事件,不符合题意;D、旭日东升,是必然事件,故选项符合题意;故选:D.4.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、是最简分式,故本选项符合题意;B、原式=﹣,不是最简分式,故本选项不符合题意;C、原式=,不是最简分式,故本选项不符合题意;D、原式=x﹣3,该式子不是最简分式,故本选项不符合题意;故选:A.5.【分析】利用矩形的判定、正方形的判定及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、当∠ABC=90°时,可以得到平行四边形ABCD是矩形,不能得到正方形,故错误,C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;故选:B.6.【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调查最具有具体性和代表性,故选:D.7.【分析】根据直角三角形的性质求出AB,进而求出AE、EB,根据三角形中位线定理得到DE∥BC,得到∠AED=∠AED=60°,根据等边三角形的判定定理和性质定理解答即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.8.【分析】根据一次函数y=kx+b的图象经过一、二、四象限,可以得到k<0,b>0,从而可以得到b﹣k>0,然后根据反比例函数的性质,即可判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴b﹣k>0,∴反比例函数y=的图象在第一、三象限,故选项A正确;在每个象限内,y随x的增大而增大,故选项B错误、选项C错误;当x<0时,反比例函数y=的函数值y<0,故选项D错误;故选:A.9.【分析】首先进行配方,得出a+b以及a﹣b的值,进而求出答案.【解答】解:∵a>b>0,a2+b2=3ab,∴(a﹣b)2=ab,(a+b)2=5ab,∴a+b>0,a﹣b>0,∴的值为:.故选:A.10.【分析】连接BD,先由AD平分∠EAO得∠DAE=∠OAD,由矩形ABCD的性质得到∠OAD=∠ODA,从而得到∠EAD=∠ADO,故而AE∥BD,再由平行线的性质得到△ABE和△AOE的面积相等,然后设点A的坐标,结合AF=EF得到点F和点E的坐标,最后结合△AOE的面积求出k的取值.【解答】解:连接BD,则OA=OD,∴∠OAD=∠ADO,∵AD平分∠EAO,∴∠EAD=∠OAD,∴∠EAD=∠ADO,∴AE∥BD,∴S△AEB=S△AEO=18,设A(a,),∵AF=EF,∴F(2a,),E(3a,0),∴S△AEO=×(﹣3a)×=18,∴k=﹣12,故选:B.二、填空题(本大题共8小题,每小题2分,共16分.)11.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是ab、a3b,abc,故最简公分母是a2bc;故答案为a2bc.12.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣2=0且x+2≠0,解得x=2.故当x=2时,分式的值为零.故答案为:2.13.【分析】直接利用概率公式求出P1,P2的值,进而得出答案.【解答】解:抛到偶数的概率P1==,抛到奇数的概率P2==,则P1=P2.故答案为:P1=P2.14.【分析】先根据非负数的和为0求出a、b的值,再代入化简.【解答】解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:15.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.【解答】解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.【分析】由菱形的性质得OA=OC=8,OB=OD,AC⊥BD,则AC=16,再由直角三角形斜边上的中线性质求出BD的长度,然后由菱形的面积公式求解即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD,AC⊥BD,∴AC=2OA=16,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH=2×6=12,∴菱形ABCD的面积=AC•BD=×16×12=96,故答案为:96.17.【分析】利用反比例函数和正比例函数的性质判断两个交点关于原点对称,然后根据关于原点对称的点的坐标特征写出另一个交点的坐标.根据交点坐标和图象即可得出不等式的解集.【解答】解:∵正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象关于原点对称,∴正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象的交点关于原点对称,∵一个交点的坐标为(3,﹣1),∴另一个交点的坐标是(﹣3,1),如图,则关于x的不等式k1x﹣>0的解集为x<﹣3或0<x<3,故答案为:x<﹣3或0<x<3.18.【分析】由勾股定理可求AE的长,由“ASA”可证△ABE≌△DAH,可得DH=AE=2,通过证明四边形NEGM是平行四边形,可得NE=MG,MN=EG=AE=2,由AM+NE =AM+MG,则当点A,点M,点G三点共线时,即AM+NE的最小值为AG,由勾股定理可求解.【解答】解:如图,过点D作DH∥MN,交AB于H,过点E作EG∥MN,过点M作MG∥NE,两直线交于点G,连接AG,∵四边形ABCD是正方形,∴AB∥CD,∠B=∠BAD=90°,∵AB=3BE=6,∴BE=2,∴AE===2,∵DH∥MN,AB∥CD,∴四边形DHNM是平行四边形,∴DH=MN,∵MN⊥AE,DH∥MN,EG∥MN,∴DH⊥AE,AE⊥EG,∴∠BAE+∠AHD=90°=∠AHD+∠ADH,∠AEG=90°,∴∠BAE=∠ADH,在△ABE和△DAH中,,∴△ABE≌△DAH(ASA),∴DH=AE=2,∴MN=DH=AE=2,∵EG∥MN,MG∥NE,∴四边形NEGM是平行四边形,∴NE=MG,MN=EG=AE=2,∴AM+NE=AM+MG,则当点A,点M,点G三点共线时,AM+NE的最小值为AG,∴AG===4,故答案为4.三、解答题(本大题共9小题,共74分.)19.【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简,进而合并得出答案;(2)直接分母有理化以及结合乘法公式计算得出答案.【解答】解:(1)原式=3+3﹣2﹣3=;(2)原式=﹣(9﹣6)=4+4+3﹣3=4+4.20.【分析】(1)先因式分解,再通分,最后同分母相加,结果化为最简分式;(2)先因式分解,再去分母、去括号、移项、合并同类项、把x系数化为一,最后一定检验.【解答】解:(1)原式=+===;(2)x(x+2)﹣(x+2)(x﹣2)=8,x2+2x﹣x2+4=8,2x=8﹣4,x=2,经检验x=2为原方程的增根,∴原方程无解.21.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可.【解答】解:÷(x+)=÷==,当x=7时,原式==.22.【分析】(1)根据A组的频数和所占的百分比,可以求得本次调查的人数,然后即可计算出m的值,以及E组对应的圆心角度数;(2)根据D组所占的百分比和(1)中的结果,可以计算出D组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出该校3000名学生中每周的课外阅读时间不小于6小时的人数.【解答】解:(1)本次调查的人数为:10÷10%=100,m%=40÷100×100%=40%,∴m=40,E组对应的圆心角度数为:×360°=14.4°,故答案为:40,14.4;(2)D组的频数为:100×25%=25,补全的频数分布直方图如右图所示;(3)3000×=870(人),答:估计该校3000名学生中每周的课外阅读时间不小于6小时的有870人.23.【分析】(1)由平行四边形的性质得AD∥BC,AD=BC,再证AD=CE,即可得出结论;(2)由等腰三角形的性质得∠ACE=90°,则平行四边形ACED是矩形,再由勾股定理得AC=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)解:由(1)得:四边形ACED是平行四边形,∵AB=AE,BC=CE=BE=,∴AC⊥BE,∴∠ACE=90°,∴平行四边形ACED是矩形,在Rt△ACE中,由勾股定理得:AC===,∴矩形ACED的面积=AC×CE=×=.24.【分析】(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意:某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,列出分式方程,解方程即可;(2)设剩余的笔记本每本打y折,由题意:王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,列出一元一次不等式,解不等式即可.【解答】解:(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意得:,解之得:x=8,经检验,x=8为原方程的解,答:第一批笔记本每本进价为8元.(2)第二批笔记本有:=60(本),设剩余的笔记本每本打y折,由题意得:,解得:y≥7.5,答:剩余的笔记本每本最低打七五折.25.【分析】(1)以C为圆心,BC长为半径作弧交AD于点P,则∠CBP=∠CPB,而∠CBP =∠APB,所以AP=2(2)以为AB边再矩形内作等边三角形ABE,作∠ABE的角平分线BP与AD交于点P,则BE平分∠PBC,作EH⊥BC,然后求出BE,从而得到△BEC的面积.【解答】解:(1)如图2,点P为所作;∵CP=CB=10,∴PD===8,∴AP=AD﹣DP=10﹣8=2;故答案为2;(2)如图3,点P为所作,过E作EH⊥BC于H,∵△ABE为等边三角形,∴∠ABE=60°,BE=BA=6,∴∠EBC=30°,∴EH=BE=3,∴S△BEC=×10×3=15.故答案为15.26.【分析】(1)根据正方形的性质得到AB=BC=4,求得A(2,4),得到k=2×4=8,于是求得点E的坐标为;(2)①设A(a,2a)(a>0),则点,根据梯形的面积公式即可得到答案;②根据余角的性质得到∠OAB=∠BAE,根据全等三角形的性质得到OB=DE,由①可知,A(a,2a)(a>0),则点,求得OB=a,,推出k=0,于是得到答案.【解答】解:(1)在正方形ABCD中,AB=BC=4,∴A(2,4),∵A(2,4)在的图象上,∴k=2×4=8,∵OC=OB+BC=6,∴x E=6,将x E=6代入中,得:,∴点E的坐标为;(2)①设A(a,2a)(a>0),则点,∵S梯形ABCE=S△AOE=24,∴得a2=9,∴k=2a2=18;②答:不存在,理由:∵AE⊥OA,∴∠OAB+∠BAE=90°,∵∠BAD=∠BAE+∠DAE=90°,∴∠OAB=∠DAE,∵∠ABO=∠D=90°,AB=AD,∴△OAB≌△EAD(ASA),∴OB=DE,由①可知,A(a,2a)(a>0),则点,∴OB=a,,∴,∴a=0,∴k=0,∵k>0,∴不符合题意,不存在.27.【分析】(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,根据将△OAP 绕着点O顺时针旋转60°得到△OA1P1,B(m,4),可得∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,即得A1D=OA1=2,OD==2,故A1(2,2),由PP1⊥x轴,可得∠POE=30°,在Rt△POE中,即得OP=8,OE=4,故n =4;(2)①连接PP1,过P作PF⊥x轴于F,由△POP1是等边三角形,PF⊥x轴,知P1F=OP1=PP1,而PF=4,即得P1F=,根据m﹣n=2,即BP=2=CF,即得CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,由m﹣n=2,得m=2+n,C(2+n,0),证明△A1RO∽△P1A1S,可得OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,从而有P1(2+n,2﹣n),即得CP12=(n﹣)2+1,故CP12最小为1,CP1最小值是1.【解答】解:(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,如图:∵将△OAP绕着点O顺时针旋转60°得到△OA1P1,B(m,4),∴∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,∴∠A1OD=30°,△POP1是等边三角形,∴A1D=OA1=2,OD==2,∴A1(2,2),∵△POP1是等边三角形,∴∠OPP1=60°,∵PP1⊥x轴,∴∠OEP=90°,∴∠POE=30°,在Rt△POE中,PE=OA=4,∴OP=8,OE==4,∴P(4,4),即n=4,故答案为:(2,2),;(2)①连接PP1,过P作PF⊥x轴于F,如图:∵△POP1是等边三角形,PF⊥x轴,∴P1F=OP1=PP1,∵PF=4,∴P1F==,∵m﹣n=2,即BP=2=CF,∴CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,如图:∵m﹣n=2,∴m=2+n,∴C(2+n,0),∵∠OA1P1=∠OAP=90°,∴∠RA1O=90°﹣∠SA1P1=∠A1P1S,又∠A1RO=∠A1SP1,∴△A1RO∽△P1A1S,∵∠AOA1=60°,OA=OA1=4,∴OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,∵P(n,4),∴A1P1=AP=n,∴A1S=n,P1S=n,∴P1(2+n,2﹣n),∴CP12=(2+n﹣2﹣n)2+(2﹣n﹣0)2=n2﹣2n+4=(n﹣)2+1,∴n=时,CP12最小为1,∴当P1(,),C(3,0)时,CP1取最小值,最小值是1.。
苏科版八下数学 第7-8章复习卷及参考答案(完美打印版)
八下数学第7-- 8章复习题1.下列调查中,适合采用普查方式的是()A.调查某种品牌洗手液的质量情况B.调查珠江的水质情况C.调查某校七年级500名学生的视力情况D.调查元宵节期间市场上汤圆的质量情况2.下列调查中,调查方式选择合理的是()A.为了了解白银市所有中小学教师的身体状况,选择抽样调查B.为了了解黄河石林国家地质公园全年的游客流量,选择全面调查C.为了了解某品牌木质地板的甲醛含量,选择全面调查D.新冠肺炎疫情期间,为了了解出入某小区的居民的体温,选择抽样调查3.下列说法错误的是()A.随着试验次数的增多,某一事件发生的频率就会不断增大B.一个事件A试验中出现的次数越多,频数就越大C.试验的总次数一定时,频率与频数成正比D.频数与频率都能反映一个事件出现的频繁程度4.为了解某校学生的视力情况,在全校的1800名学生中随机抽取了450名学生,下列说法正确的是()A.此次调查是普查B.随机抽取的450名学生的视力情况是样本C.全校的1800名学生是总体D.全校的每一名学生是个体5.某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()个.①这种调查方式是抽样调查;②7万名学生是总体;③每名学生的数学成绩是个体;④1000名学生的数学成绩是总体的一个样本;⑤1000名学生是样本容量.A.1B.2C.3D.46.为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.4300名考生是总体C.每位学生的数学成绩是个体D.100名学生是样本容量7.在“生命安全”主题教育活动中为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,制定了如下方案,你认为最合理的是()A.抽取乙校七年级学生进行调查B.在丙校随机抽取600名学生进行调查C.在其中两个学校各随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查8.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A.20B.22C.24D.309.小明对本班同学阅读兴趣进行调查统计后,欲通过统计图来反映同学感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图10.某次考试中,某班级的数学成绩被绘制成了如图所示的频数分布直方图.下列说法错误的是()A.得分在70~80分之间的人数最多B.及格(不低于60分)的人数为26C.得分在90~100分之间的人数占总人数的5%D.该班的总人数为4011.下列事件中,属于不确定事件的是()A.科学实验,前10次实验都失败了,第11次实验会成功B.投掷一枚骰子,朝上面出现的点数是7点C.太阳从西边升起来了D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形12.下列事件中,是随机事件的是()A.拔苗助长B.守株待兔C.水中捞月D.瓮中捉鳖13.下列成语所描述的事件中是不可能事件的是()A.守株待兔B.瓮中捉鳖C.百步穿杨D.水中捞月14.下列事件中,属于必然事件的是()A.任意抛掷一只纸杯,杯口朝下B.任选三角形的两边,其差小于第三边C.打开电视,正在播放动画片D.在一个没有红球的袋中摸球,摸出红球15.下列事件是必然事件的是()A.任意一个五边形的外角和等于540°B.投掷一个均匀的硬币100次,正面朝上的次数是50次C.367个同学参加一个聚会,他们中至少有两名同学的生日是同月同日D.正月十五雪打灯16.两个不透明的口袋中分别装有两个完全相同的小球,将每个口袋中的小球分别标号为1和2.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于3B.两个小球的标号之和等于6C.两个小球的标号之和大于0D.两个小球的标号之和等于117.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼.通过多次实验后发现捕捞的鱼中有作记号的频率稳定在 2.5%左右,则鱼塘中鱼的条数估计为()A.600条B.1200条C.2200条D.3000条18.在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是()A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢19.在一个不透明的布袋中装有50个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有()A.13B.19C.24D.3020.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数是大于2的概率D.朝上的点数是3的倍数的概率21.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:抛掷次数100500100015002000正面朝上的频数452535127561020若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A.1000B.1500C.2000D.250022.某校生物兴趣小组为了解种子发芽情况,重复做了大量种子发芽的实验,结果如下:实验种子的数量n1002005001000500010000发芽种子的数量m9818248590047509500种子发芽的频率m/n0.980.910.970.900.950.95根据以上数据,估计该种子发芽的概率是()A.0.90B.0.98C.0.95D.0.9123.以下调查:①了解全班同学每周体育锻炼的时间;②调查某批次汽车的抗撞击能力;③调查新闻联播的收视率.其中,适合全面调查的是(填序号即可).24.对我国最后一颗北斗卫星各零部件的调查,最适合采用的调查方式是.25.为了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析,在这个问题中,样本是.26.为了解今年本科毕业生的就业情况,一家网站对签约情况进行了网络调查.到5月底,参加网络调查的13500人中,已有7300人与用人单位签约.在这个问题中,样本容量是.27.小明将本班全体同学假期用于读书的时间制成了频数分布直方图,图中从左到右各小长方形的高的比为2:3:4:1,且第二小组的频数是15,则小明班的学生人数是.28.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的数约为.29.夏季在南方烹饪小龙虾是一道美味的佳肴.为了估计虾塘里小龙虾的数量,第一次在虾塘的不同地方捕捞a只小龙虾,在这些虾的身上做上标记,然后放回虾塘,几天后,第二次捕捞b只虾,发现其中有c只虾身上有标记,则该虾塘里约有只小龙虾.30.在计算机上,为了让使用者清楚、直观地看出硬盘的“已用空间”占“整个磁盘空间”的百分比,使用的统计图是统计图.31.疫情期间,张老师为了了解本班学生居家学习期间每天体育锻炼的情况.张老师随机抽查了本班20名学生,统计数据如表所示:每天锻炼时间(小时)0.51 1.52人数4565若这20名学生每天体育锻炼时间的平均数为m小时,则m的值为.32.为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:m)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是.33.有60个数据,共分成4组,第1、2组的频数分别为25,19,第4组的频率是0.15,则第3组的频数是.34.在某次数据分析中,该组数据最小值是149,最大值是172,若以4为组距,则可分为组.35.将一批数据分成4组,并列出频率分布表,其中第一组的频率是0.23,第二组与第四组的频率之和是0.52,那么第三组的频率是.36.小晖统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201596则通话时间不超过10min的频率为.37.2020年11月20日,深圳第六次获得“全国文明城市”称号.“来了就是深圳人,来了就是志愿者”,如今深圳活跃了208万“红马甲”志愿者,共同服务深圳.某校随机抽取了部分学生对志愿服务活动情况进行如下调查:A.未参加过志愿服务活动;B.参加志愿服务活动1次;C.参加志愿服务活动2次;D.参加志愿服务活动3次及以上;并将调查结果绘制成了两幅不完整的统计图,请你根据图中提供的信息回答以下问题:(1)共调查了名学生;(2)补全条形统计图;(3)计算扇形统计图中“参加志愿服务活动2次”部分所对应的圆心角度数为;(4)该校共有1200名学生,估计“参加志愿服务活动3次及以上”的学生大约有多少名?38.某学校为了解同学们对“垃圾分类知识”的知晓情况,某班数学兴趣小组随机调查了学校的部分同学,根据调查情况制作的统计图表的一部分如图所示:“垃圾分类知识”知晓情况统计表知晓情况频数频率A.非常了解80nB.比较了解700.35C.基本了解m0.20D.不太了解100.05(1)本次调查取样的样本容量是,表中n的值是.(2)根据以上信息补全条形统计图.(3)若基本了解和不太了解都属于“不达标”等级,根据调查结果,请估计该校1800名同学中“不达标”的学生有多少人?39.某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:(1)补全频数分布表和频数分布直方图.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<140范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?40.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸球的次数m10020030050080010003000摸到白球的次数n6612817130248159918060.660.640.570.6040.6010.5990.602摸到白球的频率(1)若从盒子里随机摸出一球,则摸到白球的概率约为;(精确到0.1)(2)估算盒子里约有白球个;(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?41.某种油菜籽在相同条件下的发芽实验结果如表:每批粒数n1001502005008001000发芽的粒数m651111363455607000.650.740.680.69a b发芽的频率(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?42.某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.如图1和图2为经销人员正在绘制的两幅统计图,请根据图中信息回答下列问题.(1)第四个月两品牌电视机的销售量是多少台?(2)先通过计算,再在图2中补全表示B品牌电视机月销量的折线:(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,抽到A品牌和抽到B品牌电视机的可能性哪个大?请说明理由.第7--8章复习卷参考答案1.C2.A3.A4.B5.C6.C7.D8.A9.C10.B11.A12.B 13.D 14.B15.C16.A 17.B18.A19.A20.D21.B 22.C 23.①24.普查25.被抽取150名考生的中考数学成绩26.13500 27.50人28.400 29.30.扇形31.1.3 32.0.15 33.7 34.635.0.25 36.0.737.解:(1)50;(2)“B.参加志愿服务活动1次”的人数为:50×30%=15(人),“D.参加志愿服务活动3次及以上”的人数为:50﹣5﹣15﹣20=10(人),补全条形统计图如图所示:(3)144°;(4)1200×=240(人),答:该校1200名学生中“参加志愿服务活动3次及以上”的学生大约有240人.38.(1)200,0.40;(2)知晓情况为C的学生有:200﹣80﹣70﹣10=40(人),补全的条形统计图如右图所示;(3)1800×(0.20+0.05)=1800×0.25=450(人),即估计该校1800名同学中“不达标”的学生有450人.39.(1)如图,成绩在60≤x<80的人数为2人,成绩在160≤x<180的人数为4人,(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<140范围的学生有31人,全班人数为2+4+18+13+8+4+1=50(人);(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.40.(1)0.6;(2)24;(3)根据题意知,24+1=0.5(40+x),解得x=10,答:推测x可能是10.41.(1)a==0.70,b==0.70;(2)这种油菜籽发芽的概率估计值是0.70,因为:在相同条件下,多次实验,某一事件的发生频率近似等于概率;(3)10000×0.70×90%=6300(棵),答:10000粒该种油菜籽可得到油菜秧苗6300棵.42.(1)根据题意得:400×(1﹣15%﹣30%﹣25%)=120(台),答:第四个月两品牌电视机的销售量是120台;(2)三月份的销售额是:400×25%=100(台),则三月份B品牌电视机销量是100﹣50=50(台),四月份B品牌电视机销量是400×30%﹣40=80(台),补图如下:(3)∵第四个月售出的电视机共有120台,其中销售A品牌有40台,B品牌有80台,∴抽到A品牌的概率是=,抽到B品牌电视机的概率是=,∴抽到B品牌电视机的可能性大.。
(苏科版)八年级(下)期末数学试卷+答案与解析
八年级(下)期末数学试卷一、选择题1.函数y=的图象与直线y=x没有交点,那么k的取值范围是( )A.k>1 B.k<1 C.k>﹣1 D.k<﹣12.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )A.B.C.D.3.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是( )A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥1 4.如图,矩形AOBC中,顶点C的坐标(4,2),又反比例函数y=的图象经过矩形的对角线的交点P,则该反比例函数关系式是( )A.y=(x>0)B.y=(x>0)C.y=(x>0)D.y=(x>0)二、填空题(共9小题,每小题3分,满分27分)5.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为__________(保留根号).6.如图所示,P1(x1,y1)、P2(x2,y2),…,P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2,…,A n﹣1A n,都在x轴上,则y1+y2=__________,y1+y2+…+y n=__________.7.如图,已知双曲线)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k=__________.8.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为__________.9.已知n为正整数,是整数,则n的最小值是__________.10.若分式方程有增根,则m=__________.11.一个对角线长分别为6cm和8cm的菱形,顺次连接它的四边中点得到的四边形的面积是__________.12.如图,正方形ABCD的面积为36cm2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为__________.13.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行__________次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是__________.二、解答题14.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.15.已知x是正整数,且满足y=+,求x+y的平方根.16.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.17.如图,两个边长均为2的正方形ABCD和正方形CDEF,点B、C、F在同一直线上,一直角三角板的直角顶点放置在D点处,DP交AB于点M,DQ交BF于点N.(1)求证:△DBM≌△DFN;(2)延长正方形的边CB和EF,分别与直角三角板的两边DP、DQ(或它们的延长线)交于点G和点H,试探究下列问题:①线段BG与FH相等吗?说明理由;②当线段FN的长是方程x2+2x﹣3=0的一根时,试求出的值.18.如图,经过原点的两条直线l1、l2分别与双曲线y=(k≠0)相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求k值及B点坐标;(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(3)若P点坐标为(m,n),且∠APB=90°,求P点坐标.19.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图象,指出当x<﹣1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP=S△ABO?若存在,求出点P坐标;若不存在,请说明理由.20.如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为__________,点E坐标为__________;(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由.八年级(下)期末数学试卷一、选择题1.函数y=的图象与直线y=x没有交点,那么k的取值范围是( )A.k>1 B.k<1 C.k>﹣1 D.k<﹣1考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:根据正比例函数及反比例函数的性质作答.解答:解:直线y=x过一、三象限,要使两个函数没交点,那么函数y=的图象必须位于二、四象限,那么1﹣k<0,则k>1.故选A.点评:本题考查了反比例函数与一次函数的交点问题,结合函数图象解答较为简单.2.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是( )A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:分类讨论.分析:根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b >0两方面分类讨论得出答案.解答:解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.点评:本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是( )A.﹣1<x<0 B.x<﹣1或0<x<1 C.x≤1或0<x≤1 D.﹣1<x<0或x≥1考点:反比例函数与一次函数的交点问题.分析:求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.解答:解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.点评:本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.4.如图,矩形AOBC中,顶点C的坐标(4,2),又反比例函数y=的图象经过矩形的对角线的交点P,则该反比例函数关系式是( )A.y=(x>0)B.y=(x>0)C.y=(x>0)D.y=(x>0)考点:反比例函数图象上点的坐标特征.分析:过P点作PE⊥x轴于E,PF⊥y轴于F,根据矩形的性质得S矩形OEPF=S矩形OACB=2,然后根据反比例函数的比例系数k的几何意义求得反比例函数关系式.解答:解:过P点作PE⊥x轴于E,PF⊥y轴于F,如图,∵四边形OACB为矩形,点P为对角线的交点,∴S矩形OEPF=S矩形OACB=×8=2.∴k=2.∴反比例函数关系式为y=(x>0),故选:B.点评:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题(共9小题,每小题3分,满分27分)5.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△A OB的面积为1,则AC的长为(保留根号).考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.专题:压轴题.分析:由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.解答:解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.点评:本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.6.如图所示,P1(x1,y1)、P2(x2,y2),…,P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2,…,A n﹣1A n,都在x轴上,则y1+y2=3,y1+y2+…+y n=3.考点:反比例函数图象上点的坐标特征;等腰直角三角形.专题:计算题.分析:作P1B⊥x1轴于B,P2C⊥x轴于C,P3D⊥x轴于D,如图,根据等腰直角三角形的性质得x1=y1,根据反比例函数图象上点的坐标特征得到x1•y1=9,易得y1=3,则A1(6,0),于是有x 2=6+y2,再利用x2•y2=9解得y2=3﹣3,同理得到x3=6+y3,y n=3﹣3,所以y1+y2+…+y n=3.解答:解:作P1B⊥x1轴于B,P2C⊥x轴于C,P3D⊥x轴于D,如图,∵△OP1A1为等腰直角三角形,∴x1=y1,而x1•y1=9,∴y1=3,∴A1(6,0),∴x2=6+y2,∵x2•y2=9,∴(6+y2)•y2=9,解得y2=3﹣3,∴y1+y2=3;∴A1A2=6﹣6,∴OA2=6,∴x3=6+y3,而x3•y3=9,∴(6+y3)•y3=9,解得y3=3﹣3,∴y n=3﹣3,∴y 1+y2+…+y n=3++3﹣3+3﹣3+3﹣3=3.故答案为3,3.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.7.如图,已知双曲线)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k=2.考点:反比例函数系数k的几何意义.分析:如果设F(x,y),表示点B坐标,再根据四边形OEBF的面积为2,列出方程,从而求出k的值.解答:解:设F(x,y),E(a,b),那么B(x,2y),∵点E在反比例函数解析式上,∴S△COE=ab=k,∵点F在反比例函数解析式上,∴S△AOF=xy=k,∵S四边形OEBF=S矩形ABCO﹣S△COE﹣S△AOF,且S四边形OEBF=2,∴2xy﹣k﹣xy=2,∴2k﹣k﹣k=2,∴k=2.故答案为:2.点评:本题的难点是根据点F的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.8.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为﹣6.考点:反比例函数系数k的几何意义.分析:先由正方形ADEF的面积为4,得出边长为2,BF=2AF=4,AB=AF+BF=2+4=6.再设B点坐标为(t,6),则E点坐标(t﹣2,2),根据点B、E在反比例函数y=的图象上,利用根据反比例函数图象上点的坐标特征得k=6t=2(t﹣2),即可求出k=﹣6.解答:解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.已知n为正整数,是整数,则n的最小值是21.考点:二次根式的定义.分析:如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.解答:解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故填:21.点评:本题考查了二次根式的意义,主要考查学生的理解能力和求值能力,题目比较典型,是一道比较好的题目.10.若分式方程有增根,则m=2.考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.解答:解:方程两边都乘(x﹣3),得m=2+(x﹣3),∵方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=2.故答案为2.点评:解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.一个对角线长分别为6cm和8cm的菱形,顺次连接它的四边中点得到的四边形的面积是12cm2.考点:中点四边形.分析:根据顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半,问题得解.解答:解:∵E、F、G、H分别为各边中点∴EF∥GH∥AC,EF=GH=AC,EH=FG=BD,EH∥FG∥BD∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形,∵EH=BD=3cm,EF=AC=4cm,∴矩形EFGH的面积=EH×EF=3×4=12cm2,故答案为:12cm2.点评:本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.12.如图,正方形ABCD的面积为36cm2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为6cm.考点:轴对称-最短路线问题;正方形的性质.分析:根据正方形的面积求出边长,根据正方形的性质,点B、D关于AC对称,再根据轴对称确定最短路线问题,BE与AC的交点即为所求的使PD+PE的和最小时的点P的位置,然后根据PD+PE=BE计算即可得解.解答:解:∵正方形ABCD的面积为36cm2,∴边长AB=6cm,∵△ABE是等边三角形,∴BE=AB=6cm,由正方形的对称性,点B、D关于AC对称,∴BE与AC的交点即为所求的使PD+PE的和最小时的点P的位置,∴PD+PE的和的最小值=BE=6cm.故答案为:6cm.点评:本题考查了轴对称确定最短路线问题,正方形的对称性,熟记性质以及最短路线的确定方法确定出PD+PE的和的最小值=BE是解题的关键.13.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行3次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.考点:估算无理数的大小.专题:压轴题;新定义.分析:①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.解答:解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力.二、解答题14.先化简,再求值:÷(a﹣1﹣),其中a是方程x2﹣x=2014的解.考点:分式的化简求值;一元二次方程的解.分析:将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可.解答:解:原式=÷[﹣]=÷=•==,∵a是方程x2﹣x=2014的解,∴a2﹣a=2014,∴原式=.点评:本题考查了分式的化简求值和一元二次方程的解,熟悉约分、通分和因式分解是解题的关键.15.已知x是正整数,且满足y=+,求x+y的平方根.考点:二次根式有意义的条件;平方根;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算求出x的值,再求出y的值,然后根据平方根的定义解答即可.解答:解:由题意得,2﹣x≥0且x﹣1≠0,解得x≤2且x≠1,∵x是正整数,∴x=2,∴y=4,x+y=2+4=6,x+y的平方根是±.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.16.某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补全频数分布直方图(图1);(2)若该中学共有1000名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.分析:(1)根据时间是0.5小时的有10人,占20%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1.5小时的一组的人数,即可作出直方图;(2)先求出1小时的学生人数所占的百分比,再乘以总人数即可.解答:解:(1)根据题意得:10÷20%=50(人),1.5小时的人数是:50×24%=12(人),如图:(2)根据题意得:1000×=400(人),答:该校每天参加户外活动的时间为1小时的学生人数是400人.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.如图,两个边长均为2的正方形ABCD和正方形CDEF,点B、C、F在同一直线上,一直角三角板的直角顶点放置在D点处,DP交AB于点M,DQ交BF于点N.(1)求证:△DBM≌△DFN;(2)延长正方形的边CB和EF,分别与直角三角板的两边DP、DQ(或它们的延长线)交于点G和点H,试探究下列问题:①线段BG与FH相等吗?说明理由;②当线段FN的长是方程x2+2x﹣3=0的一根时,试求出的值.考点:四边形综合题.分析:(1)如图1,根据正方形的性质就可得出BD=FD,∠ADB=∠CDF=∠ADB=∠CFD=45°,由直角三角形的性质就可以得出∠1=∠ADM,进而得出∠3=∠4,由ASA就可以得出结论;(2)①如图1,根据正方形的性质及直角三角形的性质就可以得出△GCD≌△HED就有CG=EH,由等式的性质就可以得出结论;②先解方程x2+2x﹣3=0就可以求出FN=1,得出CN=1,如图2,就可以得出△CND≌△FNH,得出CD=FH=2,就可以得出GB=2,GN=5,由勾股定理就可以求出NH 的值,进而得出结论.解答:解:(1)如图1,∵四边形ABCD和四边形CDEF是边长正方形,∴BC=FC,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠E=∠HFN=∠ADC=90°.∴∠ADM+∠CDM=90°,∵∠PDQ=90°,∴∠CDM+∠CDN=90°.∴∠ADM=∠CDN.∴∠ADB﹣∠ADM=∠CDF﹣∠CDN,∴∠MDB=∠NDF.在△DBM和△DFN中,,∴△DBM≌△DFN(ASA);(2)①四边形ABCD和四边形CDEF是边长正方形,∴BC=FC=EF,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠CDE=∠E=∠HFN=∠ADC=90°.∴∠EDH+∠1=90°,∵∠PDQ=90°,∴∠CDM+∠1=90°.∴∠CDM=∠EDH.在△CDG和△EDH中,,∴△CDG≌△EDH(ASA),∴CG=EH,∴CG﹣CB=EH﹣EF,∴BG=FH.②∵x2+2x﹣3=0,∴x1=1,x2=﹣3.∵FN的长是方程x2+2x﹣3=0的一根,∴FN=1.∴CN=1,∴CN=FN.在△CND和△FNH中,,∴△CND≌△FNH(ASA),∴CD=FH=2,∴GB=2,∴GN=5.在Rt△FNH中,由勾股定理,得NH=.∴==.点评:本题考查了正方形的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等式的性质的运用,解答时证明三角形全等灵活运用全等三角形的性质是关键.18.如图,经过原点的两条直线l1、l2分别与双曲线y=(k≠0)相交于A、B、P、Q四点,其中A、P两点在第一象限,设A点坐标为(3,1).(1)求k值及B点坐标;(2)若P点坐标为(a,3),求a值及四边形APBQ的面积;(3)若P点坐标为(m,n),且∠APB=90°,求P点坐标.考点:反比例函数综合题.专题:综合题.分析:(1)根据分别莲花山图象上点的坐标特征得到k=3×1=3,再根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣3,﹣1);(2)先根据反比例函数图象上点的坐标特征得到a=1,即P点坐标为(1,3),再根据正比例函数图象和反比例函数图象的性质得到点P与点Q关于原点对称,所以点Q的坐标为(﹣1,﹣3),由于OA=OB,OP=OQ,则根据平行四边形的判定得到四边形APBQ为平行四边形,然后根据两点间的距离公式计算出AB,PQ,可得到即AB=PQ,于是可判断四边形APBQ 为矩形,再计算出PA和PB,然后计算矩形APBQ的面积;(3)前面已经证明四边形APBQ为平行四边形,加上∠APB=90°,则可判断四边形APBQ 为矩形,则OP=OA,根据两点间的距离公式得到m2+n2=10,且mn=3,则利用完全平方公式得到(m+n)2﹣2mn=10,可得到m+n=4,根据根与系数的关系可把m、n看作方程x2﹣4x+3=0的两根,然后解方程可得到满足条件的P点坐标.解答:解:(1)把A(3,1)代入y=得k=3×1=3,∵经过原点的直线l1与双曲线y=(k≠0)相交于A、B、∴点A与点B关于原点对称,∴B点坐标为(﹣3,﹣1);(2)把P(a,3)代入y=得3a=3,解得a=1,∵P点坐标为(1,3),∵经过原点的直线l2与双曲线y=(k≠0)相交于P、Q点,∴点P与点Q关于原点对称,∴点Q的坐标为(﹣1,﹣3),∵OA=OB,OP=OQ,∴四边形APBQ为平行四边形,∵AB2=(3+3)2+(1+1)2=40,PQ2=(1+1)2+(3+3)2=40,∴AB=PQ,∴四边形APBQ为矩形,∵PB2=(1+3)2+(3+1)2=32,PQ2=(3﹣1)2+(1﹣3)2=8,∴PB=4,PQ=2,∴四边形APBQ的面积=PA•PB=2•4=16;(3)∵四边形APBQ为平行四边形,而∠APB=90°,∴四边形APBQ为矩形,∴OP=OA,∴m2+n2=32+12=10,而mn=3,∵(m+n)2﹣2mn=10,∴(m+n)2=16,解得m+n=4或m+n=﹣4(舍去),把m、n看作方程x2﹣4x+3=0的两根,解得m=1,n=3或m=3,n=1(舍去),∴P点坐标为(1,3).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、正比例函数图象与反比例函数图象的性质、等腰三角形的性质、矩形的判定与性质;会利用两点间的距离公式计算线段的长;理解坐标与图形的性质.19.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图象,指出当x<﹣1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP=S△ABO?若存在,求出点P坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP=S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.解答:解:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠BON+∠NBO=90°∵∠BOA=90°∴∠BON=∠AOM=90°∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴==,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵y A=y B,∴AB∥x轴,∴S△ABP=S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(y P﹣2)=5,即×5×(y P﹣2)=5,解得y P=4,∴点P坐标为(﹣,4).点评:本题考查的是反比例函数综合题,涉及到用待定系数法求反比例函数的解析式、三角形的面积及相似三角形的判定与性质等知识,难度适中.20.如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为(2,0),点E坐标为(0,1);(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由.考点:相似形综合题.分析:(1)由于∠BAD=120°,易知∠OAD=60°,通过解直角△AOD来求OD、OA的长度;然后利用相似比来求OE的长度;(2)由(1)和相似多边形的性质知,OA=2,OD=2,EF=2.①作PM⊥OA于点M,易求AM、PM的长度;②如果四边形AFEP是平行四边形,那么首要满足的条件是AP∥FE,由于∠FEO=60°,因此∠APO必为60°,此时△AOP中,∠APO=∠OAP=60°,因此△AOP是等边三角形,已知两菱形的位似比为2:1,因此EF=AD,也就是EF=AP,由此可得出当α=60°时,AP EF,即四边形APEF是平行四边形.解答:解:(1)如图①,∵∠BAD=120°,四边形ABCD是菱形,∴∠OAD=∠BAD=60°.又∵在直角△AOD中,AD=4,∴OA=AD•cos60°=4×=2,OD=AD•sin60°=4×=2.又菱形EFGH与菱形ABCD的相似比为1:2,∴OE:OA=1:2,∴OE=1,∴点D坐标为(2,0),点E坐标为(0,1).故答案是:(2,0),(0,1);(2)①由(1)知,OA=2,OD=2,∠OAD=60°.∵菱形EFGH与菱形ABCD的相似比为1:2,AD=4,∴EF=AB=AD=2.①当α=30°时,∠APO=90°,则AP=OA=1.如图②,作PM⊥OA于点M.则AM=AP=,PM=,∵OM=OA﹣AM=,∴点P的坐标是(,);②当α=60°时,四边形AFEP是平行四边形.理由如下:∵在旋转过程中,EF=2,∠FEO=60°,∠OAP=60°,当射线OE旋转角度α=60°时,得△AOP 是等边三角形,此时∠APO=60°,AP=2,∴AP=EF,∴∠APO=∠FEO,得AP∥EF,∴四边形AFEP是平行四边形,∴当α=60°时,四边形AFEP是平行四边形.点评:本题考查了菱形的性质、解直角三角形、图形的旋转变换以及相似多边形的性质等知识点,综合性强.在求线段OA和OD时,也可以利用“在直角三角形中,30度角所对的直角边是斜边的一半”和勾股定理进行解答.。
江苏省南通市如皋市2017-2018学年苏科版八年级(下)期末数学试卷
江苏省南通市如皋市2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,恰有项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列汽车标志中,是中心对称图形的是()A.B.C.D.2.下列成语描述的事件为必然事件的是()A.瓮中捉鳖B.拔苗助长C.水中捞月D.缘木求鱼3.八年级(1)班“环保小组”的5位同学组织了一次捡废弃塑料袋的活动,他们捡废弃塑料袋的个数分别为:16,4,6,8,16,这组数据的中位数为()A.16B.8C.6D.44.一个不透明的盒子中装有6个乒乓球,其中4个是黄球,2个是白球,这些球除颜色外无其他差别.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.5.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元6.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()A.32×20﹣2x2=570B.32×20﹣3x2=570C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=5708.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°9.若α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为()A.2020B.2019C.2018D.201710.如图,以Rt△ABC的斜边BC为边,在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO.若AB=4,AO=6,则AC的长等于()A.12B.16C.8+6D.4+6二、填空题(本大题共B小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)11.将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为.12.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀;再摸出一个球,记下颜色后放回,搅匀;…,通过大量重复实验后发现,摸到红球的频率稳定在0.2左右,则m的值为.13.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.14.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.15.如图,▱ABCD绕点A逆时针旋转45°,得到▱AB′C′D′(点B′与B是对应点,点C′与点C是对应点,点D′与点D是对应点).点B′恰好落在BC边上,则∠C=.16.如果A(﹣1,2),B(2,﹣1),C(m,m)三点在同一条直线上,则m的值等于.17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.平面直角坐标系xOy中.已知点P(x,y)在直线y=mx+2m+2上.且线段PO≥2,则m的取值为.三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应写出文字说(本小题满分64分)资料,侵权必究明、证明过程或演算步骤)19.(5分)某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9(环).(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选名队员参赛.20.(5分)解方程2x(2﹣x)=3(x﹣2)21.(5分)学校广播站要招聘一名播音员,需考查应聘学生的应变能力、知识面、朗读水平三个项目,决赛中,小文和小明两位同学的各项成绩如下表,评委计算三项测试的平均成绩,发现小明与小文的相同.(1)评委按应变能力占10%,知识面占40%,朗诵水平占50%计算加权平均数,作为最后评定的总成绩,成绩高者将被录用,小文和小明谁将被录用?(2)若(1)中应变能力占x%,知识面占(50﹣x)%,其中0<x<50,其它条件都不改变,使另一位选手被录用,请直接写出一个你认为合适的x的值.22.(7分)李师傅去年开了一家商店,今年2月份开始盈利,3月份盈利2000元,5月份的盈利达到2420元,且从3月份到5月份每月盈利的平均增长率都相同.(1)求从3月份到5月份每月盈利的平均增长率;(2)按照(1)中的平均增长率,预计6月份这家商店的盈利将达到多少元?23.(7分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.24.(8分)“端午节”期间,小明一家自驾游去了离家200km的某地,如图是他们离家的距离y (km)与汽车行驶时间x(h)之间的函数图象.根据图象,解答下列问题:(1)点A的实际意义是;(2)求出线段AB的函数表达式;(3)他们出发2.3h时,距目的地还有多少km?25.(8分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.26.(9分)平面直角坐标系xOy中,对于点P(x,y)和Q(﹣x,y′),给出如下定义:y′=,称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(﹣1,2),点(﹣1,2)的“可控变点”为点(1,﹣2)根据定义,解答下列问题;(1)点(3,4)的“可控变点”为点.(2)点P1的“可控变点”为点P2,点P2的“可控变点”为点P3,点P3的“可控变点”为点P4,…,以此类推.若点P2018的坐标为(3,a),则点P1的坐标为.(3)若点N(a,3)是函数y=﹣x+4图象上点M的“可控变点”,求点M的坐标.27.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.(1)求证:四边形ABDE是平行四边形;(2)求四边形ABDE的周长和面积;(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,恰有项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.2.解:瓮中捉鳖是必然事件,故正确;B、拔苗助长是不可能事件,故错误;C、是不可能事件,故错误;D、不可能事件,故错误.故选:A.3.解:把这组数据从小到大排列为4,6,8,16,16,最中间的数是8,则中位数是8,故选:B.4.解:∵一个不透明的盒子中装有6个除颜色外其他均相同的兵乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是:=.故选:A.5.解:数据20元出现了20次,次数最多,所以众数是20元.故选:A.6.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.7.解:设道路的宽为xm,则剩余的六块空地可合成长(32﹣2x)m、宽(20﹣x)m的矩形,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.8.解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.9.解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.10.解:在AC上取一点G使CG=AB=4,连接OG∵∠ABO=90°﹣∠AHB,∠OCG=90°﹣∠OHC,∠OHC=∠AHB ∴∠ABO=∠OCG∵OB=OC,CG=AB∴△OGC≌△OAB∴OG=OA=6,∠BOA=∠GOC∵∠GOC+∠GOH=90°∴∠GOH+∠BOA=90°即:∠AOG=90°∴△AOG是等腰直角三角形,AG=12(勾股定理)∴AC=16.故选:B.二、填空题(本大题共B小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)11.解:将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x+3﹣4,即y=﹣2x﹣1.故答案为y=﹣2x﹣1.12.解:根据题意得,=0.2解得m=2.故答案为:2.13.解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.14.解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.15.解:∵▱ABCD绕点A逆时针旋转45°,得到▱A B′C′D′,∴∠BAB′=45°,AB=AB′,∴∠ABB′=∠AB′B=67.5°,∴∠C=180°﹣67.5°=112.5°.故答案为:112.5°.16.解:设经过A(﹣1,2),B(2,﹣1)两点的直线解析式为y=kx+b,把点的坐标代入解析式,得,解得所以:y=﹣x+1把C(m,m)代入解析式,得m=﹣m+1解得m=.17.解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1218.解:∵y=mx+2m+2,∴(x+2)m=y﹣2,∵m有无数个值,∴x+2=0,y﹣2=0,∴直线y=mx+2m+2经过定点A(﹣2,2),而OA==2,而线段PO≥2,∴直线y=mx+2m+2与直线y=﹣x垂直于A,∴直线y=mx+2m+2经过(0,4)∴2m+2=4,解得m=1.故答案为1.三、解答题(本大题共9小题,共64分.请在答题纸指定区域内作答,解答时应写出文字说(本小题满分64分)资料,侵权必究明、证明过程或演算步骤)19.解:(1)甲、乙六次测试成绩的方差分别是2=×[(10﹣9)2+(9﹣9)2+(8﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=,S甲2=×[(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(7﹣9)2+(9﹣9)2]=,S乙(2)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.20.解:3(x﹣2)+2x(x﹣2)=0,(3+2x)(x﹣2)=0,∴x﹣2=0或2x+3=0,∴x1=2,x2=﹣.21.解:(1)小文的总成绩=70×10%+80×40%+87×50%=82.5(分),小明的总成绩=80×10%+72×40%+85×50%=79.3(分),因为82.5>79.3,所以小文将被录用.(2)取x=40,则小文的总成绩=70×40%+80×10%+87×50%=79.5(分),小明的总成绩=80×40%+72×10%+85×50%=81.7(分),因为81.7>79.5,所以小明将被录用.22.解:(1)设该商店从3月份到5月份每月盈利的平均增长率为x,根据题意得:2000(1+x)2=2420,解得:x1=0.1=10%,x2=﹣2.2(舍去).答:该商店的每月盈利的平均增长率为10%.(2)2420×(1+10%)=2662(元).答:6月份盈利为2662元.23.解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为=.24.解:(1)点A的实际意义是:当汽车行驶到1h时,汽车离家60km;故答案为:当汽车行驶到1h时,汽车离家60km;(2)设线段AB的函数表达式为y=kx+b.∵A(1,60),B(2,170)都在线段AB上,∴解得∴线段AB的函数表达式为y=110x﹣50.(3)线段BC的函数表达式为y=60x+50(2≤x≤2.5).∴当x=2.3时,y=60×2.3+50=188,200﹣188=12.∴他们出发2.3h时,离目的地还有12km.25.证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.26.解:(1)∵x=3>0,∴根据“可控变点”的定义可得,点(3,4)的“可控变点”为点(﹣3,4),故答案为:(﹣3,4);(2)当x≥0时,点P1(x,y)的“可控变点”为点P2(﹣x,y),点P2(﹣x,y)的“可控变点”为点P3(x,﹣y),点P3(x,﹣y)的“可控变点”为点P4(﹣x,﹣y),点P4(﹣x,﹣y)的“可控变点”为点P5(x,y),…,故每四次变化出现一次循环;当x<0时,同理可得每四次变化出现一次循环;∵2018=4×504+2,∴当点P2018的坐标为(3,a),则点P1的坐标为(﹣3,﹣a),故答案为:(﹣3,﹣a);(3)由题意知,点M的横坐标为﹣a.当﹣a≥0时,a≤0,此时点M(﹣a,3).代入y=﹣x+4,得3=a+4,a=﹣1,符合题意,∴点M的坐标为(1,3);当﹣a<0时,a>0,此时点M(﹣a,﹣3).代入y=﹣x+4,得﹣3=a+4,a=﹣7,不合题意,舍去.综上所述,点M的坐标为(1,3).27.(本小题满分10分)(1)证明:∵四边形ABCD是菱形,∴AB∥CD,即AB∥DE.…………………………………(1分)∵BD∥AE,∴四边形ABDE 是平行四边形.………………………………… (2)解:设对角线AC 与BD 相交于点O .∵四边形ABCD 是菱形,∠ABC =60°,∴∠ABD =∠CBP =∠ABC =30°,AC ⊥BD .在Rt △AOB 中,AO =AB =1,…………………………………(3分)∴OB =.…………………………………(4分)∴BD =2BO =2.∴▱ABDE 的周长为:2AB+2BD =4+4,…………………………………(5分)▱ABDE 的面积为:BD •AO =2×1=2.…………………………………(6分)(3)①∵C1+C2=AB+PB+AP+PD+PE+DE =2AB+BD+AP+PE =4+2+AP+PE , ∵C 和A 关于直线BD 对称,∴当P 在D 处时,AP +PE 的值最小,最小值是2+2=4,当P 在点B 处时,AP +PE 的值最大,如图2,过E 作EG ⊥BD ,交BD 的延长线于G ,∵∠BDE =150°,∴∠EDG =30°,∵DE =2,∴EG =1,DG =,Rt △PEG 中,BG =2+=3,由勾股定理得:PE ===2,∴AP +PE 的最大值是:2+2, ∵P 为边BD 上的一个动点(不与端点B ,D 重合),∴4+4+2<C 1+C 2<4+2+2+2,即8+2<C 1+C 2<6+2+2;(8分) (写对一边的范围给一分)②S 1+S 2的值为定值,这个定值为;理由是:S 1+S 2==(BP +PD )=×1=.…………………………………(10分)。
苏科版八年级下册数学期末试题(含答案)
2021~2022学年第二学期期末试卷初二数学一、选择题:本大题共10小题,每小题3分,共30分.请将各小题的唯一正确....选项填写在答题卷的相应位置上.......... 1.下列四个“中国结“的图案中,既是中心对称图形又是轴对称图形的有( )A .1个B .2个C .3个D .4个 223=( )A 5B 6C .23D .323.下列方程中,属于一元二次方程的是( ) A .2330x x -+= B .22x xy -= C .212x x+=D .()21x x -=4.若反比例函数()0ky x x=≠的图象过点(1,-2),则这个反比例函数的表达式是( )A .12y x =B .12y x =-C .2y x= D .2y x=-5.利用配方法解方程221x x +=时,方程可变形为( )A .()212x += B .()212x -=C .()210x +=D .()210x -=6.若53a b =,则a bb +的值为( ) A .23 B .35C .83D .17.菱形具有而矩形不一定...有的性质是( ) A .对角线互相平分 B .四条边都相等 C .对角相等 D .对边平行8.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到4亿元.若增长率为x ,则下列方程正确的是( ) A .14x += B .()214x +=C .()2114x ++=D .()()21114x x ++++=9.如图,在△ ABC 中,DE BC ∥,若23AE BE =,则AED BCDE S S 四边形△的值为( )A .23B .49 C .425D .42110.关于x 的方程()()221x x p -+=(p 为常数)根的情况,下列结论中正确的是( )A .有两个相异正根B .有两个相异负根C .有一个正根和一个负根D .无实数根二、填空题:本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填在答题卷相应位置上......... 11.计算22=________.121x +x 的取值范围是________.13.在平行四边形ABCD 中,如果△A +△C =200°,那么△A 的度数是________度. 14.关于x 的一元二次方程230x mx ++=的一个根是2,则m 的值为________. 15.如图,在矩形ABCD 中,E ,F 分别是AD ,AB 的中点,若AC =4,则EF 的长是________.16.反比例函数()0ky k x=<,当13x ≤≤时,函数y 的最大值和最小值之差为4,则k =________. 17.分式41m -的值是整数,则正整数m 的值等于________. 18.如图,在菱形ABCD 中,△B =60°,BC =4,动点E ,F 分别在线段AB ,AD 上,且BE =AF .则EF 长度的最小值等于________.三、解答题:本大题共10小题,共76分.请在答题卷指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 19.(本题满分6分)计算:(11827123(2)1212363⎛⎝ 20.(本题满分8分) 解方程:(1)2x x =; (2)()2215x x +=.21.(本题满分8分) 解分式方程:(1)3202x x -=-; (2)31244xx x -+=--. 22.(本题满分5分) 先化简,再求值:352242a a a a -⎛⎫÷+- ⎪--⎝⎭,其中12a =-. 23.(本题满分6分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题: (1)本次抽样调查的样本容量是________; (2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数. 24.(本题满分6分)如图,四边形ABCD 中,AB =DC ,点E ,F 对角线AC 上,且AE =CF .连接BE ,DF ,若BE =DF .证明:四边形ABCD 是平行四边形.25.(本题满分9分)类比和转化是数学中解决新的问题时最常用的数学思想方法. 【回顾旧知,类比求解】12x +=.解:去根号,两边同时平方得一元一次方程________,解这个方程,得x =________. 经检验,x =________是原方程的解. 【学会转化,解决问题】 运用上面的方法解下列方程:(1230x -=; (224521x x x +=.26.(本题满分9分)如图,直线y =3x 与反比例函数ky x=交于点A ,B ,点C 的坐标为(5,0),AC =5. (1)求反比例函数的解析式; (2)直接写出不等式30kx x-<的解集为________;(直接写出结果,无需解答过程) (3)过点B 作y 轴的垂线,垂足为D ,求△ ACD 的面积.27.(本题满分9分)如图,在△ABC 中,BC 的垂直平分线分别交BC ,AC 于点D ,E ,BE 交AD 于点F ,AB =AD .(1)求证:BFD CAB ∽△△; (2)求证:AF =DF ; (3)EFFB的值等于________.(直接写出结果,无需解答过程)28.(本题满分10分)如图,正方形ABCD 中,5AB =E 为正方形ABCD 内一点,DE =AB ,()090EDC αα∠=︒<<︒连结CE ,AE ,过点D 作DF △AE ,垂足为F .直线DF 交CE的延长线于点G ,连结AG .(1)当α=20°时,求△DAE 的度数; (2)判断△AEG 的形状,并说明理由; (3)当GF =1时,求CE 的长.参考答案11.2 12.1x ≥- 13.100 14.72-15.2 16.6-17.2,3,518.23三、解答题19.(1)解:原式=323323332= (2)解:原式27232=12232=92=20.(1)解:移项得:20x x -=,∴()10x x -=,∴10x =,21x =(2)解:去括号并移项得:22520x x -+=,∴()()2120x x --=∴12x =,212x =21.(1)解:去分母得:3(x -2)-2x =0 解得:x =6经检验:x =6是原方程的解 △ 原方程的解为x =6(2)解:去分母得:–3+2(x -4)=1-x 解得:x =4经检验:x =4是原方程的增根 △ 原方程无解22.解:原式()23452222a a a a a ⎛⎫--=÷- ⎪---⎝⎭()()()322233a a a a a --=⨯-+-()123a =-+ 当12a =-时,原式1115232=-=-⎛⎫-+ ⎪⎝⎭23.解:(1)100(2)略 (3)2010120003600100+⨯= 24.证明:在△AEB 和△CFD 中AE CF AB CD BE DF =⎧⎪=⎨⎪=⎩∴()SSS AEB CFD ≌△△∴EAB FCD ∠=∠∴AB CD ∥ △AB =CD ∴四边形ABCD 是平行线四边形 25.(1)x +1=4;3;3 (2)△ 23x -= 两边平方得x -2=9△x =11经检验x =11是原方程的解 △ 原方程的解为x =11△ 24512x x x +=+两边同时平方得2245441x x x x +=++ 解得1x =经检验x =1是原方程的解 △ 原方程解为x =1 26.解:(1)设点A 坐标为(t ,3t ),作AE △x 轴,则OE =t ,AE =3t ,△ CE =5-3t 在Rt△AEC 中,222AE CE AC += △()()222355t t +-= 解得t =1△ A (1,3)△ k =xy =3 △反比例函数解析式为3y x= (2)由反比例函数的对称性可知B (-1,-3) △ 不等式的解集为x <-1或0<x <1 (3)依题意点D 坐标为(0,-3) 设直线AD 的解析式为()1130y k x k =-≠ 将A 点坐标代入得16k =()1630y x k =-≠ 令0y =得12x =∴1,02F ⎛⎫ ⎪⎝⎭ ∴()192733222ACD ACF DCFS S S =+=⨯⨯+=△△△27.解:(1)△ DE 垂直平分BC ,∴12BD CD BC ==,BE CE = △△C =△EBD△AB =AD ,△△FDB =△ABD ,△BFD CAB ∽△△ (2)由(1)可知12FD BD AB BC ==,1122FD AB AD AF ===,即AF =FD (3)1328.解:(1)△四边形ABCD 是正方形,△△ADC =90°,AB =AD , △△CDE =20°,△△ADE =70°,△DE =AB ,△DA =DE ,△ ()118070552DAE DEA ∠=∠=⨯︒-︒=︒. (2)结论:△AEG 是等腰直角三角形. 理由:△AD =DE ,DF △AE ,△ DG 是AE 的垂直平分线,△ AG =GE ,△ △GAE =△GEA , △DE =DC =AD ,△△DAE =△DEA ,△DEC =△DCE ,△△DAE +△DEA +△DEC +△DCE +△ADC =360°,△△DEA +△DEC =135°, △△GEA =45°,△△GAE =△GEA =45°,△△AGE =90°, △△AEG 为等腰直角三角形.(3)如图,连接AC ,△四边形ABCD 是正方形,△210AC ==,△△AEG 为等腰直角三角形,GF △AE ,△GF =AF =EF =1,△2AG GE ==,∵222AC AG GC =+,∴22GC =2EC =。
苏科版八年级数学下册期末测试卷-带参考答案
苏科版八年级数学下册期末测试卷-带参考答案一、选择题(每题3分,共24分)1.下列语句所描述的事件是随机事件的是( )A .两点确定一条直线B .清明时节雨纷纷C .没有水分,种子发芽D .太阳从东方升起2.下列图形中,既是轴对称图形又是中心对称图形的是( )3.若式子x +3x -3+x +5x -4有意义,则x 满足的条件是( )A .x ≠3且x ≠-3B .x ≠3且x ≠4C .x ≠4且x ≠-5D .x ≠-3且x ≠-5 4.下列计算正确的是( )A .(-3)2=-3B .3×5=15C .(2)2=4D .14÷7=2 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O .若∠AOB =60°,则ABBC =( )A .12 B .3-12 C .32 D .336.(教材P132练习T2)点(-5,y 1),(-3,y 2),(3,y 3)都在反比例函数y =kx (k >0)的图像上,则( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 2>y 1>y 3D .y 1>y 3>y 2 7.代数式x -2x 2-4x +4÷1x +6的值为F ,则F 为整数值的个数有( )A .0个B .7个C .8个D .无数个8.如图,点E 是正方形ABCD 内的一个动点,且AD =EB =8,BF =2,则DE +CF的最小值为()A.10B.311C.7 2D.97二、填空题(每题3分,共30分)9.函数y=xx+3中,自变量x的取值范围是________.10.计算:(5+1)(5-1)=________.11.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x 轴正半轴上.若BC=3,则点A的坐标是________.12.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1 000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有________棵.13.反比例函数y=kx(k≠0)在第一象限的图像如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值为________.14. 若关于x的分式方程3-mx+2=1的解为负数,则m的取值范围为________.15.当今大数据时代,“二维码”广泛应用于我们的日常生活中,某兴趣小组从某个二维码中截取部分开展数学实验活动.如图,在边长为3 cm 的正方形区域内通过计算机随机掷点,经过大量重复试验,发现点落在区域内黑色部分的频率稳定在0.7左右,据此可以估计这个区域内白色部分的总面积约为________.16.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段OB ,OA 上的点,若AE =BF ,AB =5,AF =1,BE =3,则BF 的长为________. 17.如图,Rt △OAB 与Rt △OBC 位于平面直角坐标系中,∠AOB =∠BOC =30°,BA ⊥OA ,CB ⊥OB ,若AB =3,反比例函数y =kx (k ≠0)的图像恰好经过点C ,则k =________.18.如图,∠BOD =45°,BO =DO ,点A 在OB 上,四边形ABCD 是矩形,连接AC ,BD 交于点E ,连接OE 交AD 于点F .下列四个判断:①OE 平分∠BOD ;②∠ADB =30°;③DF =2AF ;④若点G 是线段OF 的中点,则△AEG 为等腰直角三角形.其中,判断正确的是________(填序号). 三、解答题(19~26题每题6分,27~28题每题9分,共66分) 19.计算: (1)x xy 2÷⎝ ⎛⎭⎪⎫-23x y ×12x 4y ; (2)(3-2)2+12.20.解方程: (1)3x x -1-21-x =1; (2)x x -2-1=4x 2-4x +4.21.先化简,再求值:⎝ ⎛⎭⎪⎫1-x +1x ÷x 2-1x 2-x ,其中x =2-1.22.今年五一文旅消费强势爆发,旅游数据创新高,国家文旅部公布的5年来全国“五一”假期旅游数据见下表: 年份 接待游客(亿人次) 同比增长率 旅游收入(亿元)同比增长率 2019 1.95 13.70% 1 200.0 16.10% 2020 1.15 -41.03% 480.0 -60.00% 2021 a 100.00% 1 152.0 140.00% 2022 1.6 -30.43% 660.0 -42.71% 20232.7471.25%b125.00%知识链接:同比增长率=(当年发展水平-上一年同期水平)÷上一年同期水 平×100%,如2023年的接待游客同比增长率=(2.74-1.6)÷1.6×100%=71.25%,2020年的旅游收入同比增长率=(480-1 200)÷1 200×100%=-60.00%. (1)求表中的数据a ;(2)请补全如下的接待游客人数与年份的折线统计图;(3)小明说“在接待游客人数和旅游收入两个方面2023年全国‘五一’假期已全面超越2019年全国‘五一’假期”,你同意他的说法吗?请说明你的理由.23.随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,某人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为12 km,甲路线的平均速度为乙路线的32倍,甲路线的行驶时间比乙路线少10 min,求甲路线的行驶时间.24.如图,已知四边形ABCD是平行四边形,其对角线相交于点O,OA=3,BD =8,AB=5.(1)△AOB是直角三角形吗?请说明理由;(2)求证:四边形ABCD是菱形.25.如图,在平面直角坐标系中,直线y1=k1x+b与双曲线y2=k2x相交于A(-2,3),B(m,-2)两点.(1)求y1,y2对应的函数表达式;(2)过点B作BP∥x轴交y轴于点P,求△ABP的面积;(3)根据函数图像,直接写出关于x的不等式k1x+b<k2x的解集.26.如图,已知在△ABC中,点D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求四边形ABCF的周长.27.△ABC中,∠ACB=90°,AC=BC,点D为边AB的中点,点E在线段CD上,连接AE,将线段AE绕点A逆时针旋转90°得到线段AF,连接CF.(1)如图①,当点E与点D重合时,求证:CF=AE;(2)当点E在线段CD上(与点C,D不重合)时,依题意补全图②;用等式表示线段CF,ED,AD之间的数量关系,并证明.28.[概念认识]有一组对角都是直角的四边形叫做“对直角四边形”.[数学理解](1)下列有关“对直角四边形”的说法正确的是________(填写序号);①对直角四边形是轴对称图形;②对直角四边形的对角互补;③对直角四边形的一个外角等于与它相邻内角的对角;④对直角四边形的对角线互相垂直.(2)如图①,在四边形ABCD中,∠A=90°,AB=20,BC=24,CD=7,AD=15.求证:四边形ABCD是对直角四边形;[问题解决](3)如图②,在对直角四边形ABCD中,∠DAB=∠BCD=90°,若CA平分∠BCD.求证AB=AD.答案一、1.B 2.A 3.B 4.B5.D 【点拨】∵矩形ABCD 的对角线AC ,BD 相交于点O ∴∠ABC =90°,AO =BO .∵∠AOB =60°,∴△ABO 是等边三角形. ∴∠BAO =60°.∴∠ACB =30°.∴AC =2AB . ∴BC =3AB .∴AB BC =33. 6.B7.B 【点拨】x -2x 2-4x +4÷1x +6=x -2(x -2)2·(x +6)=x +6x -2=x -2+8x -2=1+8x -2.∵代数式x -2x 2-4x +4÷1x +6的值为F ,且F 为整数∴8x -2为整数,且x ≠2. ∴x -2的值为1,8,4,-1,-8,-2,-4,共7个 ∴F 为整数值的个数有7个.8.A 【点拨】如图,取BG =BF =2,连接EG ,CE .∵四边形ABCD 是正方形 ∴BC =CD =AD =8 ∴CG =BC -BG =6. ∵EB =8,BF =2 ∴EF =6.在△BGE 和△BFC 中⎩⎨⎧BG =BF ,∠EBG =∠CBF ,BE =BC =8,∴△BGE ≌△BFC (SAS).∴∠BEG=∠BCF,∠BGE=∠BFC.∴∠EGC=∠CFE.∵BE=BC=8,∴∠BEC=∠BCE,即∠FEC=∠GCE.∴∠FCE=∠GEC.又∵CG=EF=6,∠EGC=∠CFE,∴△GEC≌△FCE.∴EG=CF.∴DE+CF=DE+EG.∴当E,G,D三点共线时,DE+CF=DE+EG取得最小值,最小值为DG的长.在Rt△CDG中,DG=DC2+CG2=10,即DE+CF的最小值为10.二、9.x>-310.411.(3,0)12.28013.1(答案不唯一)14.m>1且m≠315.2.7 cm2【点拨】∵经过大量重复试验,发现点落在区域内黑色部分的频率稳定在0.7左右,∴估计点落在区域内白色部分的概率为1-0.7=0.3.∴估计区域内白色部分的总面积约为3×3×0.3=2.7(cm2).16.22 【点拨】如图,过A作AN⊥BD于N,过B作BM⊥AC于M∴∠ANO=∠ANB=∠BMA=90°.∵四边形ABCD是矩形∴OB=12BD,OA=12AC,AC=BD.∴OB=OA.∵S△AOB=12OB·AN=12OA·BM,∴AN=BM.∵AE=BF,∴Rt△ANE≌Rt△BMF(HL).∴FM=EN.∵AN=BM,AB=BA,∴Rt△ABN≌Rt△BAM(HL).∴BN=AM.设FM=EN=x.∵AF=1,BE=3,∴BN=3-x,AM=1+x.∴3-x=1+x.∴x=1.∴FM=1,AM=2.∵AB=5,∴BM=AB2-AM2=21.∴BF=FM2+BM2=1+21=22.17.4 3 【点拨】如图,过点C作CE⊥x轴,垂足为E.∵BA ⊥OA ,CB ⊥OB ,∴∠OAB =∠OBC =90°.∵∠AOB =∠BOC =30°,AB = 3 ∴OB =2AB =23,BC =12OC ,∠COE =90°-30°-30°=30°.在Rt △OBC 中,OB 2+BC 2=OC 2,∴12+14OC 2=OC 2.∴OC =4(负值已舍去).∴CE =12OC =2,∴OE =OC 2-CE 2=2 3.∴点C (23,2),∴k =23×2=4 3.18.①③④ 【点拨】①∵四边形ABCD 是矩形∴EB =ED .又∵BO =DO ,∴OE 平分∠BOD ,故①正确.②∵∠BOD =45°,BO =DO∴∠ABD =12×(180°-45°)=67.5°.∵四边形ABCD 是矩形,∴∠OAD =∠BAD =90°.∴∠ABD +∠ADB =90°.∴∠ADB =90°-67.5°=22.5°,故②错误.③易知OE ⊥BD ,∴∠OEB =90°.∴∠BOE +∠OBE =90°.∵∠BDA +∠OBE =90°,∴∠BOE =∠BDA .∵∠BOD =45°,∠OAD =90°,∴∠ADO =45°=∠BOD .∴AO =AD .∴△AOF ≌△ADB (ASA).∴AF =AB .连接BF ,∵∠BAD =90°,∴BF =2AF .∵BE =DE ,OE ⊥BD .∴DF =BF .∴DF =2AF ,故③正确.④根据题意作出图形,如图所示.∵G 是OF 的中点,∠OAF =90°∴AG =OG .∴∠AOG =∠OAG .∵∠AOD =45°,OE 平分∠AOD∴∠AOG =∠OAG =22.5°.∴∠F AG =67.5°.∵四边形ABCD 是矩形,∴EA =ED .∴∠EAD =∠EDA =22.5°.∴∠EAG =∠EAD +∠F AG =90°.∵∠AGE =∠AOG +∠OAG =45°∴∠AEG =45°=∠AGE .∴AE =AG .∴△AEG 为等腰直角三角形,故④正确.综上,判断正确的是①③④.三、19.【解】(1)原式=⎝⎛⎭⎪⎫-x ×32×12 xy 2·y x ·x 4y = -34x x 4y 4=-34x ·x 2y 2=-34x 3y 2;(2)原式=3-4 3+4+2 3=7-2 3.20.【解】(1)方程两边同乘x -1,得3x +2=x -1.解这个方程,得x =-32.检验:当x =-32时,x -1≠0∴x =-32是原方程的解.(2)方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4.解这个方程,得x =4.检验:当x =4时,(x -2)2≠0∴x =4是原方程的解.21.【解】原式=x -(x +1)x ·x (x -1)(x +1)(x -1)=-1x ·x x +1=-1x +1当x =2-1时,原式=-12-1+1=-22. 22.【解】(1)a =1.15×(1+100%)=2.3.(2)补全折线统计图如图:(3)同意.理由如下:由题意知b =660.0×(1+125%)=1 485∵2.74>1.95,1 485>1 200∴2023年全国“五一”假期已全面超越2019年全国“五一”假期.23.【解】设甲路线的行驶时间为x min ,则乙路线的行驶时间为(x +10)min由题意得12x =32×12x +10,解得x =20 经检验,x =20是原方程的解,且符合题意.答:甲路线的行驶时间为20 min.24.(1)【解】△AOB 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,BD =8∴OB =OD =12BD =4.∵OA =3,OB =4,AB =5,∴OA 2+OB 2=AB 2∴△AOB 是直角三角形,且∠AOB =90°.(2)【证明】由(1)可知,∠AOB =90°.∴AC ⊥BD∴平行四边形ABCD 是菱形.25.【解】(1)∵直线y 1=k 1x +b 与双曲线y 2=k 2x 相交于A (-2,3),B (m ,-2)两点∴3=k 2-2,解得k 2=-6. ∴双曲线y 2的表达式为y 2=-6x .把B (m ,-2)代入y 2=-6x ,得-2=-6m ,解得m =3∴B (3,-2).把点A (-2,3)和B (3,-2)的坐标代入y 1=k 1x +b ,得⎩⎨⎧-2k 1+b =3,3k 1+b =-2,解得⎩⎨⎧k 1=-1,b =1.∴直线y 1的表达式为y 1=-x +1.(2)过点A 作AD ⊥BP ,交BP 的延长线于点D .∵BP ∥x 轴,∴AD ⊥x 轴,BP ⊥y 轴.∵A (-2,3),B (3,-2)∴BP =3,AD =3-(-2)=5.∴S △ABP =12BP ·AD =12×3×5=152.(3)-2<x <0或x >3.26.(1)【证明】∵在△ABC 中,点D 是AC 的中点∴AD =DC .∵AF ∥BC ,∴∠F AD =∠ECD ,∠AFD =∠CED .∴△AFD ≌△CED (AAS).∴AF =EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵DE ⊥AC ,∴四边形AECF 是菱形.(2)【解】如图,过点A 作AG ⊥BC 于点G .由(1)知四边形AECF是菱形,∴AE=CE=AF=CF=2.∵∠F AC=30°∴∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∵AG⊥BC,∴∠AGB=∠AGE=90°.∴∠GAE=30°.∴GE=12AE=1,∴AG= 3.∵∠B=45°,∴∠BAG=90°-45°=45°=∠B.∴BG=AG= 3.∴BC=BG+GE+CE=3+1+2=3+3,AB= 6.∴四边形ABCF的周长=AB+BC+CF+AF=6+3+3+2+2=6+3+7.27.(1)【证明】∵∠ACB=90°,AC=BC,点D为边AB的中点∴CD⊥AD,AD=CD.∵将线段AE绕点A逆时针旋转90°得到线段AF∴AF=AE,∠F AE=90°.∵点E与点D重合,∴AF⊥AD,AF=AD.∴AF∥CD,且AF=CD.∴四边形AFCD为平行四边形.∴CF=AD,即CF=AE.(2)【解】依题意补全图形,如图所示.线段CF,ED,AD之间的数量关系为CF=ED+AD.证明:如图,过点F作FG⊥AB,交DA的延长线于点G,则∠FGA=90°. ∵∠ACB=90°,AC=BC,点D为边AB的中点∴CD⊥AB,AD=CD.∴∠FGA=∠ADE=90°.∴FG∥CD.∵将线段AE绕点A逆时针旋转90°得到线段AF∴AF=AE,∠F AE=90°.∴∠F AG+∠EAD=90°.∵∠F AG+∠GF A=90°∴∠GF A=∠EAD.∴△F AG≌△AED(AAS).∴AG=ED,FG=AD=CD.易证四边形FGDC为矩形∴CF=DG=AG+AD=ED+AD.28.(1)②③(2)【证明】如图①,连接BD.∵∠A=90°,AB=20,AD=15∴BD=AB2+AD2=202+152=25.在△BCD中,CD=7,BC=24∵CD2+BC2=72+242=252=BD2∴△BCD为直角三角形,且∠C=90°.∴四边形ABCD是对直角四边形.(3)【证明】如图②,过点A作AE⊥CD,AF⊥BC,分别交CD的延长线,BC于点E,F∴∠1=∠2=∠3=90°.又∵CA平分∠BCD,∴AE=AF.在四边形AFCE中,∠1=∠3=∠BCD=90°,∴∠EAF=90°.又∵∠BAD=90°,∴∠EAF-∠DAF=∠BAD-∠DAF.∴∠DAE=∠BAF.∴△DAE≌△BAF (ASA).∴AD=AB.。
2024-2025学年苏科新版八年级科学下册月考试卷100
2024-2025学年苏科新版八年级科学下册月考试卷100考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、单选题(共9题,共18分)1、用毛皮摩擦橡胶棒,橡胶棒带了负电,这是由于 ( )A. 毛皮束缚电子的能力比较强B. 橡胶棒的正电荷转移到毛皮上C. 摩擦过程中创造了负电荷D. 橡胶棒上有了多余的电子2、如图所示,为一电阻箱结构示意图,下面关于此电阻箱接入电路电阻值大小的说法正确的是()A. 只拔出铜塞a、b,接入电路电阻为7欧姆B. 只拔出铜塞c、d,接入电路电阻为7欧姆C. 要使接入电路电阻为7欧姆,只有拔出铜塞c、d才行D. 将铜塞a、b、c、d全拔出,接入电路的电阻最小3、如图所示,甲图表示氯化钠在水中的溶解度曲线,乙图表示硝酸钾在水中的溶解度曲线.下列说法错误的是()A.由甲图可知,氯化钠在40℃时的溶解度为36.6gB.由乙可知,硝酸钾在水中的溶解度随温度的升高而增大C.比较甲乙可知,可采用蒸发结晶来提纯混有少量氯化钠的硝酸钾晶体D.比较甲乙可知,相同温度下影响固体溶质溶解度的因素是溶质的性质4、判断两根钢条甲和乙是否有磁性时,可将它们分别靠近一枚小磁针。
当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近,由此可知()A. 两根钢条均有磁性B. 两根钢条均无磁性C. 钢条甲一定有磁性,钢条乙一定无磁性D. 钢条甲一定有磁性,钢条乙可能有磁性5、原子结构模型的建立,经过了几代科学家的艰辛努力,直到现在仍在探索中。
其中,行星模型的提出标志着原子结构的现代模型的问世,如图2-3-2所示是锂原子结构的行星模型,图中原子核内有3个质子、4个中子。
不能根据原子结构的行星模型得出的结论是( )A. 原子始终在做无规则的运动B. 原子核的体积只占整个原子体积的很小部分C. 构成原子核的粒子之间存在一种互相吸引的力D. 原子呈电中性6、下列说法错误的是()A. 空气是一种十分重要的天然资源B. 没有经过处理的工业污水不可任意排放C. 塑料、棉花、合成纤维、合金都属于合成有机高分子材料D. 油脂和糖类物质都能够为人体提供能量7、根据化学方程式AgNO3+ HCl AgCl↓+ HNO3,不能获得的信息是()A. 反应进行得非常快B. 生成的氯化银是固态C. 反应在常温下进行D. 反应物是硝酸银和盐酸8、如图所示,质量分布均匀,厚度相同且均匀的等腰梯形物体A放在水平地面上,若在其二分之一的高度处,沿着水平方向将其切成B、C两块梯形物体,然后将B,C两块梯形物体放在水平地面上,现在这两块物体对地面的压强分别为P B和P C,则()A. P B>P CB. P B=P CC. P B<P CD. 无法判断9、下列动物中,学习能力最强的是()A. 蚯蚓B. 大山雀C. 马D. 黑猩猩评卷人得分二、填空题(共5题,共10分)10、人们的生活已经离不开现代通信,现代通信可分为微波通信、____ 、____ 和____ .11、将塑料绳的一端扎紧,尽可能将其撕成更多的细丝,用干燥的手从上向下捋几下,观察到如图所示的现象,这是因为塑料丝带了____ 电荷(选填“同种”或“异种”),这种使塑料丝带电的方法称为____ ,塑料丝带电的实质是____ 在物体间转移12、现在已经进入用电高峰期,家里的空调有时不能正常启动,电风扇转速变慢.请你用所学的物理知识分析造成这种情况出现的主要原因是电路中的用电器增多后,电路中的电流变____,导线上分的电压变____,用电器的实际功率____(选填“大于”、“小于”或“等于”)额定功率。
(苏科版)初中数学八年级下册第10章综合测试03含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第10章综合测试一、选择题(共8小题,满分24分)1.在代数式中2xπ,223xy ,34x +,2252x x +,22x −分式共有( ) A .2个B .3个C .4个D .5个 2.分式31x x +−有意义,则x 的取值范围是( ) A .1x >B .1x <C .11x −<<D .1x ≠± 3.如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍B .缩小3倍C .缩小6倍D .不变 4.计算222255a a a b b b⎛⎫−⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的结果为( ) A .31254b a B .54ab C .31254b a − D .54ab− 5.某学校计划挖条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成若设原计划每天挖x 米,那么下面所列方程正确的是( )A .300300105x x −=+B .300300105x x −=−C .300300105x x −=+D .300300105x x −=− 6.下列各式中,从左到右的变形正确的是( )A .11x x y y+=+ B .x x y y −=−− C .2xy x y y = D .22x x y y = 7.若分式113x y −=,则21422x xy y x xy y −−−−的值为( ) A .1 B .2 C .3 D .48.若关于x 的分式方程111m x x x +=−−有增根,则m 的值是( ) A .1m =− B .1m = C .2m =− D .2m =二、填空题(共8小题,满分24分) 9.当x =________时,分式313x x −+值为0. 10.分式22a 与分式52ab的最简公分母是________. 11.化简22122x x x +++的结果是________.12.化简:22214244x x x x x x x x +−−⎛⎫−÷= ⎪−−+⎝⎭________. 13.若关于x 的方程3221x a x +=−的解是负数,则a 的取值范围是________. 14.某学校为了丰富学生的课外活动,准备购买一批体育器材,已知A 类器材比B 类器材的单价高10元,用300元购买A 类器材与用200元购买B 类器材的数量相同,则B 类器材的单价为________元.15.若111x y −=,则分式2xy x y−的值是________. 16.若()()121212121a b n n n n =+−+−+,对任意自然数n 都成立,则a = ________,b = ________;计算:1111=1335571921m =++++⨯⨯⨯⨯…________. 三、解答题(共8小题,满分52分)17.约分(1)32262789x x x x x −−−−(2)322121x x x x x −−+−+(3)2239n nn n x y x y+−(4)42426923x x x x −+−−18.解方程:31523162x x −=−−.19.先化简,再求值:2321121x x x x x −⎛⎫−−÷ ⎪−−+⎝⎭,其中x 是不等式组()3224251x x x x ⎧−−⎪⎨−−⎪⎩≥①<②的一个整数解.20.化简2221432a a a a a a+−−−−,并求值,其中a 与2、3构成ABC △的三边,且a 为整数.21.探索: (1)如果34311x m x x +=+++,则m =________; (2)如果53522x m x x −=+++,则m =________; 总结:如果ax b m a x c x c+=+++(其中a 、b 、c 为常数),则m =________; 应用:利用上述结论解决:若代数式431x x −−的值为整数,求满足条件的整数x 的值.22.解方程:①12111x x =−++的解x =________. ②24111x x =−++的解x =________. ③36111x x =−++的解x =________.④48111x x =−++的解x =________. ……(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n 的式子表示上述规律,并求出它的解.23.某市对一段全长2 000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?24.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①211x x −+;②222a b a b −−;③22x y x y +−;④()222a b a b −+.其中是“和谐分式”是________(填写序号即可);(2)若a 为正整数,且214x x ax −++为“和谐分式”,请写出a 的值; (3)在化简22344a a b ab b b −÷−时, 小东和小强分别进行了如下三步变形:小东:()()22232223232232444444a b a ab b a a a a ab b b b ab b b ab b b−−=−⨯=−=−−−原式 小强:()()()22223222444444a a a b a a a a ab b b b b a b b a b b −−=−⨯=−=−−−原式 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:________, 请你接着小强的方法完成化简.第10章综合测试答案解析一、1.【答案】B【解析】代数式中2xπ,223xy是整式34x+,2252xx+,22x−是分式.故选:B. 2.【答案】D【解析】∵分式31xx+−有意义,10x−≠∴,解得:1x≠±.故选:D.3.【答案】A【解析】把原分式中的x换成3x,把y换成3y,那么23362333x y xy xy x y x y x y==⨯+++.故选:A. 4.【答案】B【解析】解:2224255454a b ab a b ab=⨯⨯=原式,故选:B.5.【答案】A【解析】设原计划每天挖x米,则实际每天挖()5x+天,依题意,得:300300105x x−=+.故选:A.6.【答案】C【解析】解:(A)分子分母没有公因式,故不能约分,故A错误;(B)xy=原式,故B错误;(D)分子分母没有同时乘以一个因式,故D错误.故选:C.7.【答案】D【解析】()2142x y xyx y xy −−=−−原式3y x xy −=∵,614204325xy xy xy xy xy xy−−−===−−−∴原式, 故选:D. 8.【答案】C【解析】方程两边同时乘以1x −,得1m x +=−,解得:1x m =−−,∵方程有增根,1x =∴,11m −−=∴,2m =−∴,故选:C.二、9.【答案】13【解析】由分子310x −=,解得:13x =. 当13x =时,分母10303x +=≠. 所以13x =. 故答案是:13. 10.【答案】22a b 【解析】分式22a 与分式52ab的分母分别是2a 和2ab , 故最简公分母是22a b ,故答案为22a b .11.【答案】1x 【解析】()()()22122122222x x x x x x x x x x x x++=+==+++++; 故答案为:1x .12.【答案】()212x −−【解析】()()221242x x x x x x x ⎡⎤+−−⨯⎢⎥−−−⎢⎥⎣⎦=原式 ()()()22224422x x x xx x x x x ⎡⎤−−⎢⎥−⨯−⎢⎥−−⎣⎦=()2442x x x x x −⨯=−−()212x =−−.故答案为:()212x −−.13.【答案】2a −< 【解析】3221x ax +=−,方程两边同乘以21x −,得()3221x a x +=−,解得,2x a =+,∵关于x 的方程3221x ax +=−的解是负数,20a +∴<且210x −≠,20a +∴<且230a +≠,解得2a −<,即a 的取值范围是2a −<.故答案为:2a −<.14.【答案】20【解析】设B 类器材的单价为x 元,A ∴类器材的单价为()10x +元,30020010x x =+∴,解得:20x =,经检验,20x =是原分式方程的解,故答案为:20.15.【答案】2− 【解析】111x y−=, 则1y x xy−=, y x xy −=∴,2222xy xy xy x y y x xy=−=−=−−−∴, 故答案为:2−.16.【答案】12 12− 1021【解析】()()()()()()21211212121212121a n b n a b n n n n n n ++−=+=−+−++−, 可得()21n a b a b ++−=,即01a b a b +=⎧⎨−=⎩, 解得:12a =,12b =−; 1111111110112335192122121m ⎛⎫⎛⎫=−+−++−=−= ⎪ ⎪⎝⎭⎝⎭…, 故答案为:12;12−;1021. 三、17.【答案】(1)()()()()2393191x x x x x x x x +−+==+−+原式; (2)()()()()()()()()()()2222211111111111x x x x x x x x x x x x −−−−−−−+====+−−−原式; (3)()()31333n n n n n n n n x y x yx y x y +==−+−原式; (4)()()()22222233131x x x x x −−==+−+原式. 18.【答案】解:设31x y −=则原方程可化为:325y −=, 解得73y =,∴有7313x −=,解得109x =, 将109x =代入最简公分母进行检验,620x −≠, 109x =∴是原分式的解. 19.【答案】解:()()()2311112x x x x x −+−−−−原式=()()()222112x x x x x −+−−=−−()()21x x =−+−22x x =−−+,解不等式组()3224251x x x x ⎧−−⎪⎨−−⎪⎩≥①<②, 由①得2x ≤,由②得1x −>,所以不等式组的解集为12x −<≤,其整数解为0,1,2,由于x 不能取1和2,所以当0x =时,0022=−−+=原式.20.【答案】解: ()()()()()()()()()21111321223223223233aa a a a a a a a a a a a a a a a ++−−=+=+===+−−−−−−−−−−−原式, a ∵与2、3构成ABC △的三边,且a 为整数,15a ∴<<,即2a =,3,4,当2a =或3a =时,原式没有意义,则4a =时,1=原式.21.【答案】(1)1(2)13− b ac −应用:()4114314111x x x x x −+−==+−−−, x ∵为整数且431x x −−为整数, 11x −=±∴,2x =∴或0.【解析】(1)已知等式整理得:343311x x m x x +++=++,即3433x x m +=++,解得:1m =;故答案为:1.(2)已知等式整理得:5351022x x m x x −++=++,即53510x x m −=++, 解得:13m =−;总结:m b ac =−;故答案为:m b ac =−;22.【答案】①0x =②1x =③2x =④3x = (1)第⑤个方程:510111x x =−++解为4x =. 第⑥个方程:612111x x =−++解为5x =. (2)第n 个方程:2111n n x x =−++解为1x n =−. 方程两边都乘1x +,得()21n n x =−+.解得1x n =−.23.【答案】(1)设原计划每天修x 米,由题意得()200020005125%x x −=+解得80x =,经检验80x =是原方程的解, 则200025x=天 答:修这段路计划用25天.(2)设甲工程队要修路a 天,则乙工程队要修路20a −天,根据题意得()12080202000a a +−≥解得10a ≥所以a 最小等于10.答:甲工程队至少要修路10天.24.【答案】(1)②(2)∵分式214x x ax −++为和谐分式,且a 为正整数, 4a =∴,5a =;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,()()()22222444444a a ab ab a a a b b a b b a b b ab b −+====−−−−原式 故答案为:小强通分时,利用和谐分式找到了最简公分母.【解析】(1)②分式()()2222a b a b a ba b a b−−=−+−,不可约分, 222a ba b −−∴分式是和谐分式,故答案为:②.。
苏科版八年级下学期数学《分式》章节测试题(含解析)
苏科版八年级下学期数学《分式》章节测试题(含解析)一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)46.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠110.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)期末数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)(2015春•兴化市校级期末)下列各式中,与是同类二次根式的是()A.B.C.D.2.(3分)(2015春•兴化市校级期末)在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定3.(3分)(2015•丽水)分式﹣可变形为()A.﹣B.C.﹣D.4.(3分)(2015春•兴化市校级期末)利用配方法将x2﹣2x+3=0化为a(x﹣h)2+k=0 (a≠0)的形式为()A.(x﹣1)2﹣2=0 B.(x﹣1)2+2=0 C.(x+1)2+2=0 D.(x+1)2﹣2=05.(3分)(2015春•兴化市校级期末)下列命题是假命题的是()A.平分弦的直径垂直于弦B.不在同一直线上的三点确定一个圆C.矩形的四个顶点在同一个圆上D.三角形的内心到三角形三边的距离相等6.(3分)(2015春•兴化市校级期末)如图,在⊙O的内接六边形ABCDEF中,∠CAE=80°,则∠B+∠F的度数为()A.220° B.240° C.260° D.280°二、填空题(本大题共有10小题,每小题3分,共30分)7.(3分)(2015春•兴化市校级期末)若分式有意义,则a的取值范围是.8.(3分)(2015春•兴化市校级期末)写出以3,﹣5为根且二次项系数为1的一元二次方程是.9.(3分)(2015春•兴化市校级期末)一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.10.(3分)(2015春•兴化市校级期末)已知点A(3,m)与点B(﹣2,1﹣m)是反比例函数y=图象上的两个点,则m的值为.11.(3分)(2014•盐都区一模)如图,已知A点是反比例函数y=(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为2,则k的值为.12.(3分)(2015春•兴化市校级期末)直角三角形的两边是6和8,则它的外接圆的直径为.13.(3分)(2015•姜堰市一模)已知圆锥的母线为10,底面圆的直径为12,则此圆锥的侧面积是.14.(3分)(2015春•兴化市校级期末)一个扇形的圆心角为120°,半径为3,则这个扇形的弧长为.(结果保留π)15.(3分)(2015春•兴化市校级期末)两个连续负奇数的积是143,则这两个数是.16.(3分)(2015春•兴化市校级期末)如图,在每个小正方形边长都为1的正方形网格中,经过格点A、B、C的弧所在圆的面积为.(结果保留准确值)三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(12分)(2015春•兴化市校级期末)(1);(2).18.(8分)(2015春•兴化市校级期末)解方程:(1)+=1;(2)(x﹣2)2=2x﹣4.19.(8分)(2015春•兴化市校级期末)先化简再求值:,其中m是方程x2﹣x=2015的解.20.(8分)(2015春•兴化市校级期末)己知函数y=为反比例函数.(1)求k的值;(2)它的图象在第象限内,在各象限内,y随x增大而;(填变化情况)(3)求出﹣2≤x≤﹣时,y的取值范围.21.(10分)(2015春•兴化市校级期末)已知一元二次方程x2﹣4x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k+1=0与x2+mx+m﹣1=0有一个相同的根,求此时m的值.22.(10分)(2015春•兴化市校级期末)如图,在Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按下列要求作图:(保留作图痕迹,不写作法)①作∠BCA的角平分线,交AB于点O;②以O为圆心,OB为半径作圆.(2)在(1)所作的图中,①AC与⊙O的位置关系是(直接写出答案);②若BC=3,AB=4,求⊙O的半径.23.(10分)(2015春•兴化市校级期末)如图,用长6m的铝合金条制成“日“字形窗框,请问宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?24.(10分)(2015春•兴化市校级期末)如图,在△ABC中,∠ACB=90°,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=3.(1)求证:∠A=2∠DCB;(2)求线段AD的长度.25.(12分)(2015春•兴化市校级期末)如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)已知x1、x2是方程x2+4x﹣2=0的两个实数根,求+的值;(2)已知方程x2+bx+c=0的两根分别为+1、﹣1,求出b、c的值;(3)关于x的方程x2+(m﹣1)x+m2﹣3=0的两个实数根互为倒数,求m的值.26.(14分)(2015春•兴化市校级期末)如图,点E(3,4)在平面直角坐标系中的⊙O上,⊙O与x轴交于点A、B,与y轴交于点C、D,点F在线段AB上运动,点G与点F关于AE对称,HF⊥FG于点F,并交GE的延长线于点H,连接CE.(1)求⊙O的半径和∠AEC的度数;(2)求证:HE=EG;(3)若点F在运动过程中的某一时刻,HG恰好与⊙O相切,求出此时点F的坐标.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)(2015春•兴化市校级期末)下列各式中,与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:化简各选项后,根据同类二次根式的定义判断.解答:解:A、与不是同类二次根式,错误;B、与不是同类二次根式,错误;C、与是同类二次根式,正确;D、与不是同类二次根式,错误;故选C.点评:此题考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.注意只有同类二次根式才能合并.2.(3分)(2015春•兴化市校级期末)在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定考点:可能性的大小.分析:根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.解答:解:∵某班有25名男生和24名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为=,女生当选的可能性为=,∴男生当选的可能性大于女生当选的可能性.故选B.点评:此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.(3分)(2015•丽水)分式﹣可变形为()A.﹣B.C.﹣D.考点:分式的基本性质.分析:先提取﹣1,再根据分式的符号变化规律得出即可.解答:解:﹣=﹣=,故选D.点评:本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.4.(3分)(2015春•兴化市校级期末)利用配方法将x2﹣2x+3=0化为a(x﹣h)2+k=0 (a≠0)的形式为()A.(x﹣1)2﹣2=0 B.(x﹣1)2+2=0 C.(x+1)2+2=0 D.(x+1)2﹣2=0考点:解一元二次方程-配方法.专题:计算题.分析:方程移项后,配方得到结果,即可做出判断.解答:解:方程x2﹣2x+3=0,移项得:x2﹣2x=﹣3,配方得:x2﹣2x+1=﹣2,即(x﹣1)2+2=0,故选B点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.(3分)(2015春•兴化市校级期末)下列命题是假命题的是()A.平分弦的直径垂直于弦B.不在同一直线上的三点确定一个圆C.矩形的四个顶点在同一个圆上D.三角形的内心到三角形三边的距离相等考点:命题与定理.分析:根据垂径定理的推理理可对A进行判断;根据确定圆的条件对B进行判断;根据矩形的对角线相等且互相平分可对C进行判断;根据三角形内心的性质对D进行判断.解答:解:A、平分弦(非直径)的直径垂直于弦,所以A选项为假命题;B、不在同一直线上的三点确定一个圆,所以B选项为真命题;C、矩形的四个点在同一个圆上,所以C选项为真命题;D、三角形的内心到三角形三边的距离,所以D选项为真命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2015春•兴化市校级期末)如图,在⊙O的内接六边形ABCDEF中,∠CAE=80°,则∠B+∠F的度数为()A.220° B.240° C.260° D.280°考点:圆周角定理.分析:根据∠CAE=80°,求出的度数,根据圆周角的度数等于它所对的弧的度数的一半列式计算即可.解答:解:∵∠CAE=80°,∴的度数为160°,∠B+∠F的度数=(的度数+的度数)=(360°+160°)=260°.故选:C.点评:本题考查的是圆周角定理,掌握圆周角的度数等于它所对的弧的度数的一半是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)7.(3分)(2015春•兴化市校级期末)若分式有意义,则a的取值范围是a≠﹣1.考点:分式有意义的条件.分析:先根据分式有意义的条件列出关于a的不等式,求出a的取值范围即可.解答:解:∵分式有意义,∴a+1≠0,解得a≠﹣1.故答案为:a≠﹣1.点评:本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.8.(3分)(2015春•兴化市校级期末)写出以3,﹣5为根且二次项系数为1的一元二次方程是x2+2x﹣15=0.考点:根与系数的关系.专题:计算题.分析:先计算出3与﹣5的和与积,然后根据根与系数的关系写出满足条件的一元二次方程.解答:解:∵3+(﹣5)=﹣2,3×(﹣5)=﹣15,∴以3,﹣5为根且二次项系数为1的一元二次方程是x2+2x﹣15=0,故答案为x2+2x﹣15=0.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.9.(3分)(2015春•兴化市校级期末)一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.考点:频数与频率.分析:根据频数=频率×数据总和求解即可.解答:解:数据总和==200.故答案为;200.点评:本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.10.(3分)(2015春•兴化市校级期末)已知点A(3,m)与点B(﹣2,1﹣m)是反比例函数y=图象上的两个点,则m的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据反比例函数图象上点的坐标特征得3m=k,﹣2(1﹣m)=k,消掉k得到3m=﹣2(1﹣m),然后解关于m的一元一次方程即可.解答:解:把A(3,m)、B(﹣2,1﹣m)分别代入y=得3m=k,﹣2(1﹣m)=k,所以3m=﹣2(1﹣m),解得m=﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.11.(3分)(2014•盐都区一模)如图,已知A点是反比例函数y=(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为2,则k的值为4.考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=2,又反比例函数的图象位于第一象限,k>0,则k=4.故答案为:4.点评:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.12.(3分)(2015春•兴化市校级期末)直角三角形的两边是6和8,则它的外接圆的直径为10或8.考点:三角形的外接圆与外心;勾股定理.专题:计算题;分类讨论.分析:有两种情况:(1)当两直角边是6和8时,求出AB长即可得到答案;(2)当一个直角边是6,斜边是8时,即可得出答案.解答:解:此题有两种情况:(1)当两直角边是6和8时,由勾股定理得:AB===10,此时外接圆的半径是5,直径是10;(2)当一个直角边是6,斜边是8时,此时外接圆的半径是4,直径是8.故答案为:10或8.点评:本题主要考查了三角形的外接圆和外心,勾股定理等知识点,解此题的关键是知道直角三角形的外接圆的半径等于斜边的长,求出斜边长即可,用的数学思想是分类讨论思想.13.(3分)(2015•姜堰市一模)已知圆锥的母线为10,底面圆的直径为12,则此圆锥的侧面积是60π.考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面圆的半径为6,则底面周长=12π,圆锥的侧面积=×12π×10=60π.故答案为:60π.点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.14.(3分)(2015春•兴化市校级期末)一个扇形的圆心角为120°,半径为3,则这个扇形的弧长为2π.(结果保留π)考点:弧长的计算.分析:根据弧长的公式l=进行计算即可.解答:解:根据弧长的公式l=,得到:l==2π,故答案是:2π.点评:本题考查了弧长的计算,熟记弧长公式是解题的关键.15.(3分)(2015春•兴化市校级期末)两个连续负奇数的积是143,则这两个数是﹣13,﹣11.考点:一元二次方程的应用.专题:数字问题.分析:设较小的奇数为未知数,根据连续奇数相差2得到较大的奇数,根据两个数的积是143列出方程求解即可.解答:解:设这两个连续奇数为x,x+2,根据题意x(x+2)=143,解得x1=11(不合题意舍去),x2=﹣13,则当x=﹣13时,x+2=﹣11.答:这两个数是﹣13,﹣11.故答案为:﹣13,﹣11.点评:考查一元二次方程的应用;得到两个奇数的代数式是解决本题的突破点;根据两个数的积得到等量关系是解决本题的关键.16.(3分)(2015春•兴化市校级期末)如图,在每个小正方形边长都为1的正方形网格中,经过格点A、B、C的弧所在圆的面积为.(结果保留准确值)考点:垂径定理;勾股定理.专题:网格型.分析:连接AB、BC,分别做AB、BC的垂直平分线交于点O,根据图形确定OD、BD的长,根据勾股定理求出圆的半径,根据圆的面积公式求出面积.解答:解:连接AB、BC,分别做AB、BC的垂直平分线交于点O,OD=,DB=,根据勾股定理,OB==,圆的面积为:π×OB2=π,故答案为:π.点评:本题考查的是垂径定理和勾股定理的运用,正确确定圆的圆心是解题的关键,注意弦的垂直平分线经过圆心.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(12分)(2015春•兴化市校级期末)(1);(2).考点:二次根式的混合运算.分析:(1)先化简,再进一步合并即可;(2)利用二次根式的乘法展开计算化简,进一步合并即可.解答:解:(1)原式=4﹣+4﹣2=5;(2)原式+1﹣1﹣=.点评:此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.18.(8分)(2015春•兴化市校级期末)解方程:(1)+=1;(2)(x﹣2)2=2x﹣4.考点:解分式方程;解一元二次方程-因式分解法.专题:计算题.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程整理后,利用因式分解法求出解即可.解答:解:(1)去分母得:6+x(x+3)=x2﹣9,解得:x=﹣5,经检验x=﹣5是原方程的根;(2)方程整理得:(x﹣2)2﹣2(x﹣2)=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x1=2,x2=4.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)(2015春•兴化市校级期末)先化简再求值:,其中m是方程x2﹣x=2015的解.考点:分式的化简求值;一元二次方程的解.分析:先根据分式混合运算的法则把原式进行化简,再根据m是方程x2﹣x=2015的解得出m2﹣m=2015,再代入原式进行计算即可.解答:解:原式=•=.∵m是方程x2﹣x=2015的解,∴m2﹣m=2015,∴原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(8分)(2015春•兴化市校级期末)己知函数y=为反比例函数.(1)求k的值;(2)它的图象在第二、四象限内,在各象限内,y随x增大而增大;(填变化情况)(3)求出﹣2≤x≤﹣时,y的取值范围.考点:反比例函数的性质;反比例函数的定义.分析:(1)根据反比例函数的定义确定k的值即可;(2)根据反比例函数的性质结合求得的k的符号描述其图象的位置及增减性即可;(3)分别代入自变量的值结合其增减性即可确定函数值的取值范围.解答:解:(1)由题意得:k2﹣5=﹣1,解得:k=±2,∵k﹣2≠0,∴k=﹣2;(2)∵k=﹣2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;(3)∵反比例函数表达式为,∴当x=﹣2时,y=2,当时,y=8,∴当时,2≤y≤8.点评:本题考查了反比例函数的性质,能够根据反比例函数的定义确定k的值是解答本题的关键,难度不大.21.(10分)(2015春•兴化市校级期末)已知一元二次方程x2﹣4x+k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k+1=0与x2+mx+m﹣1=0有一个相同的根,求此时m的值.考点:根的判别式;解一元二次方程-因式分解法.分析:(1)由题意得△>0,得到关于k的不等式,解得即可;(2)k符合条件的最大整数为2,代入方程x2﹣4x+k+1=0,解得方程的根,把方程的根分别代入x2+mx+m﹣1=0即可得解.解答:解:(1)∵一元二次方程x2﹣4x+k+1=0有两个不相等的实数根,∴△=16﹣4(k+1)>0解得:k<3;(2)∵k符合条件的最大整数为2,∴把k=2代入x2﹣4x+k+1=0得x2﹣4x+3=0,解得;x1=1,x2=3,把x1=1代入x2+mx+m﹣1=0,得m=0,把x2=3代入x2+mx+m﹣1=0,得m=﹣2,综上所述,m=0或m=﹣2.点评:本题考查了一元二次方程的解法,根的判别式,根的定义,熟练掌握一元二次方程的解法是解题的关键.22.(10分)(2015春•兴化市校级期末)如图,在Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按下列要求作图:(保留作图痕迹,不写作法)①作∠BCA的角平分线,交AB于点O;②以O为圆心,OB为半径作圆.(2)在(1)所作的图中,①AC与⊙O的位置关系是相切(直接写出答案);②若BC=3,AB=4,求⊙O的半径.考点:切线的判定;作图—复杂作图.分析:(1)利用角平分线的作法得出CO,进而以O为圆心,OB为半径作圆;(2)①利用角平分线的性质和切线的判定方法得出即可;②利用切线长定理以及勾股定理得出⊙O的半径.解答:解:(1)如图所示:(2)①相切;②连接点O与AC上的切点E,设半径为x,则AO=4﹣x,AE=AC﹣EC=AC﹣BC=2,所以(4﹣x)2=x2+4,解得:x=1.5.点评:此题主要考查了切线的判定与性质以及角平分线的作法等知识,正确利用勾股定理得出圆的半径是解题关键.23.(10分)(2015春•兴化市校级期末)如图,用长6m的铝合金条制成“日“字形窗框,请问宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?考点:一元二次方程的应用.专题:几何图形问题.分析:首先设宽为xm,则高为m,根据矩形的面积公式:长×宽=面积可得方程,再解方程即可.解答:解:设宽为xm,则高为m,由题意得:x×=1.5,解得:x1=x2=1,高是=1.5(米).答:宽为1米,高为1.5米.点评:本题考查一元二次方程的应用,关键是正确理解题意,设出宽,表示出高,然后根据面积是1.5列方程求解.24.(10分)(2015春•兴化市校级期末)如图,在△ABC中,∠ACB=90°,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=3.(1)求证:∠A=2∠DCB;(2)求线段AD的长度.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度数,关键三角形内角和定理求出∠A,即可得出答案;(2)根据勾股定理求出BD,设AD为x,利用勾股定理列出方程解答即可.解答:(1)证明:连接OD,则∠ODB=90°,∴∠BOD+∠B=90°,∵∠A+∠B=90°,∴∠A=∠BOD,∵OC=OD,∴∠BOD=2∠DCB,∴∠A=2∠DCB;(2)解:如图,连接AO,则△ACO≌△ADO,∴AD=AC,在△OBD中,BD==,设AD=x,则AB=+x,AC=x,BC=9,,∴,即AD=.点评:本题考查了含30度角的直角三角形性质,勾股定理,扇形的面积,勾股定理,切线的性质等知识点的应用,主要考查学生综合性运用性质进行推理和计算的能力.25.(12分)(2015春•兴化市校级期末)如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)已知x1、x2是方程x2+4x﹣2=0的两个实数根,求+的值;(2)已知方程x2+bx+c=0的两根分别为+1、﹣1,求出b、c的值;(3)关于x的方程x2+(m﹣1)x+m2﹣3=0的两个实数根互为倒数,求m的值.考点:根与系数的关系.分析:(1)利用根与系数的关系得出x1+x2=﹣4,x1•x2=﹣2,进一步整理代入求得数值即可;(2)利用根与系数的关系直接求得答案即可;(3)利用两个实数根互为倒数得出m2﹣3=1,求得m的数值,进一步判断得出答案即可.解答:解:(1)∵x1+x2=﹣4,x1•x2=﹣2,∴=2.(2)=,=1;(3)∵m2﹣3=1,∴m=±2(2分),当m=2时,方程没有实数根,舍去,当m=﹣2时,方程有两个实数根互为倒数.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.26.(14分)(2015春•兴化市校级期末)如图,点E(3,4)在平面直角坐标系中的⊙O上,⊙O与x轴交于点A、B,与y轴交于点C、D,点F在线段AB上运动,点G与点F关于AE对称,HF⊥FG于点F,并交GE的延长线于点H,连接CE.(1)求⊙O的半径和∠AEC的度数;(2)求证:HE=EG;(3)若点F在运动过程中的某一时刻,HG恰好与⊙O相切,求出此时点F的坐标.考点:圆的综合题.分析:(1)根据点E的坐标利用勾股定理求得圆的半径,然后利用院内接四边形的性质求得∠AEC的度数即可;(2)连接EF,则得到EF=EG,从而得到∠EFG=∠G,然后根据∠HFG=90°,得到∠EFH=∠H,利用等角对等边得到EF=HE,从而证得HE=EG;(3)如图,连接OE、EF,根据HG为切线得到∠GEA+∠OEA=90°,然后根据OE=OA得到∠OEA=∠EAO,再利用点G与点F关于AE对称,得到∠GEA=∠AEF,进而得到EF⊥AB,从而求得结论.解答:解:(1)∵点E(3,4),∴⊙O的半径为=5,∵∠AOC=90°,∴∠ABC=45°,∴∠AEC=135°;(2)如图1,连接EF,则EF=EG,∴∠EFG=∠G,∵∠HFG=90°,∴∠EFH=∠H,∴EF=HE,∴HE=EG;(3)如图2,连接OE、EF,∵HG为切线,∴∠GEA+∠OEA=90°,∵OE=OA,∴∠OEA=∠EAO,∵点G与点F关于AE对称,∴∠GEA=∠AEF,∴∠AEF+∠EAO=90°,∴EF⊥AB,∴点F的坐标为(3,0).点评:本题考查了圆的综合题.解答该题时,用到了坐标与图形的性质、切线的判定与性质等知识点.在解答(3)题时,也用到了对称点的性质,难度较大.。