中考动态几何与函数问题
2023年九年级中考数学高频考点提升练习--二次函数与动态几何
2023年九年级中考数学高频考点提升练习--二次函数与动态几何1.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+ bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D 的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为√2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.2.已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO= 12,以线段BC为直径作∠M交直线AB于点D,过点B作直线l∠AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和∠M的另一个交点分别是E,F.(1)求B点坐标;(2)用含m的式子表示抛物线的对称轴;(3)线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.(4)是否存在点C(m,0),使得BD= 12AB若存在,求出此时m的值;若不存在,说明理由.3.将一个直角三角形纸片ABC放置在平面直角坐标系中,∠ACB=90°,点A(4,0),点C(0,2),点O(0,0),点B在x轴负半轴,点E在线段AO上以每秒2个单位长度的速度从A向点O运动,过点E作直线EF∠x轴,交线段AC于点F,设运动时间为t秒.将∠AEF沿EF翻折,使点A 落在x轴上点D处,得到∠DEF.(1)如图①,连接DC,当∠CDF=90°时,求点D的坐标.(2)①如图②,若折叠后∠DEF与∠ABC重叠部分为四边形,DF与边BC相交于点M,求点M的坐标(用含t的代数式表示),并直接写出t的取值范围;②∠DEF与∠ABC重叠部分的面积为S,当12≤t≤2时,求S的取值范围(直接写当出结果即可).4.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE∠AB交AC于点E①过点E作EF∠AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得∠CEQ是等腰三角形?请直接写出相应的t值.5.在平面直角坐标系中,抛物线y= −√34x 2+√32x+2√3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∠y轴交BC于点E,作PF∠BC于点F,过点B作BG∠AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当∠PEF的周长最大时,求PH+HK+ √32KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D/,N为直线DQ上一点,连接点D/,C,N,∠D/CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.6.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线G′,试结合图象探究:若在抛物线G与直线h,抛物线G′与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.7.如图,在平面直角坐标系中,在平面直角坐标系中,抛物线y=ax2+3x+c与x轴交于A、B两点,与y轴交于点C(0,8),直线l经过原点O,与抛物线的一个交点为D(6,8).(1)求抛物线的解析式;(2)抛物线的对称轴与直线l交于点E,点T为x轴上方的抛物线上的一个动点.①当∠TEC=∠TEO时,求点T的坐标;②直线BT与y轴交于点P,与直线l交于点Q,当OP=OQ时,求点P的坐标.8.如图,在Rt△ABC,∠ACB=90∘,AC=8,BC=6,点D是边AB的中点,动点P从点B 出发以每秒4个单位长度的速度向终点A运动,当P与点D不重合时,以PD为边构造Rt△PDQ,使∠PDQ=∠A,∠DPQ=90∘,且点Q与点C在直线AB同侧,设点P的运动时间为t 秒(t>0),△PDQ与△ABC重叠部分图形面积为S.(1)用含t的代数式表示线段PD的长;(2)当点Q落在边BC上时,求t的值;(3)当△PDQ与△ABC重叠部分图形为四边形时,求S与t的函数关系式.(4)当点Q落在△ABC内部或边上时,直接写出点Q与△ABC的顶点的连线平分△ABC面积时t的值.9.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于∠ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称∠ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于∠EFG,EF边上的高GH等于EF的一半,∠EFG就是半高三角形,此时,称∠EFG是EF边半高三角形,CH是“EF 边半高”.(1)在Rt∠ABC中,∠ACB=90°,AB=10cm,若∠ABC是“BC边半高三角形”,则AC=cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为.(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y =x2.上的一个动点,点Q是坐标系内一点,且使得∠RSQ为“RS边半高三角形”当点P介于抛物线上点R与点S之间,且PQ取得最小值时,求点P的坐标.10.如图1,二次函数y=a(x+3)(x−4)的图象交x轴于点A,交y轴于点B(0,−2),点P为x轴上一动点.(1)求二次函数y=a(x+3)(x−4)的表达式并化成一般形式;(2)过点P作PQ⊥x轴交线段AB于点Q,交抛物线于点C,连接AC.当OP=1时,求△ACQ的面积;(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在x轴下方的抛物线上时,求点D的坐标.11.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2−2ax−3a交x轴的负半轴于点A,交x轴的正半轴点B,交y轴的正半轴于点C,且OB=2OC.(1)求a的值;(2)如图1,点D、P分别在一、三象限的抛物线上,其中点P的横坐标为t,连接BP,交y轴于点E,连接CD、DE,设∠CDE的面积为s,若4s+3t=0,求点D的坐标;(3)如图2,在(2)的条件下,将线段DE绕点D逆时针旋转90°得到线段DF,射线AE与射线FB交于点G,连接AP,若∠AGB=2∠APB,求点P的坐标.12.如图,在平面直角坐标系xOy中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A(-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD∠AB于点D.动点P在什么位置时,∠PDE的周长最大,求出此时P 点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.13.综合与探究:在平面直角坐标系中,抛物线y=ax2+bx−7(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.(1)求抛物线的解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,则|AH−CH|的最大值是;(3)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.设运动时间为t秒且(0<t<4),求t为何值时,△PBE的面积最大并求出最大值;(4)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,请直接写出点N的横坐标.14.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2−32x−2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若∠DPQ与∠ABC相似,求其“共根抛物线”L2的顶点P的坐标.15.综合与探究在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(−3,0),B(1,0)两点,与y轴交于点C.P(1)求抛物线与直线AC的函数解析式;(2)若点P是直线AC上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AC于点D,求线段PD的最大值.(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.16.如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y= 34x2+bx+c经过点B,且对称轴是直线x=﹣5 2.(1)求抛物线对应的函数解析式;(2)将图甲中∠ABO沿x轴向左平移到∠DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∠y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣b2a,4ac−b24a),对称轴是直线x=﹣b2a.)答案解析部分1.【答案】(1)解:∵x2+4x+3=0,∴x1=−1,x2=−3,∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=−1,n=−3,∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),∴{1−b+c=0c=−3,∴{b=−2c=−3,∴抛物线解析式为y=x2−2x−3,(2)解:令y=0,则x2−2x−3=0,∴x1=−1,x2=3,∴C(3,0),∵y=x2−2x−3=(x−1)2−4,∴顶点坐标D(1,−4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;(3)解:如图,∵B(0,−3),C(3,0),∴直线BC解析式为y=x−3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t−3),M(t,t2−2t−3),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=√2,∴QF=1,当点P在点M上方时,即0<t<3时,PM=t−3−(t2−2t−3)=−t2+3t,∴S=12PM×QF=12(−t2−3t)=−12t2+32t,如图3,当点P在点M下方时,即t<0或t>3时,PM=t2−2t−3−(t−3),∴S=12PM×QF=12(t2−3t)=12t2−32t.综上所述:当点P在点M上方时,即0<t<3时,S=−12t2+32t,当点P在点M下方时,即t<0或t>3时,S=12t2−32t.2.【答案】(1)解:∵tan∠ABO= OAOB=12,且A(1,0),∴OB=2,即:点B的坐标为(0,2)(2)解:点C(m,0),A(1,0),B(0,2)在抛物线y=ax2+bx+c上,∴{a+b+c=0c=2am2+bm+c=0解之得:b=﹣2(m+1)m,a= 2m,∴x=﹣b2a= m+12.即:抛物线的对称轴为x= m+1 2(3)解:∵点E在抛物线y=ax2+bx+c上,又在直线y=2上,∴2=ax2+bx+2∴x1=0,x2=﹣b a∴E(﹣ba,2),又∵直线l∠x轴,BC是∠M的直径,∴BF∠OC,BF=OC,∴F(m,2)∴EF=﹣ba﹣m,∵点C(m,0)为x轴上一动点且m<﹣1,∴m的值是一个变量,即:线段EF的长不是定值(4)解:如下图所示:连接CD∵BCS是∠M的直径,∴∠CDB=90°,∵若BD= 12AB,即BD=DA则易证CB=CA∴√22+m 2 =1﹣m 解之得m=﹣ 32,即:存在一点C (﹣ 32 ,0),使得BD= 12AB3.【答案】(1)解:∵点A(4,0),点C(0,2),∴OA=4,OC=2, ∵∠AOC=90°, ∴tan∠CAO=OC OA =12,∵∠AEF 沿EF 翻折后,点A 落在x 轴上点D 处, ∴∠DEF∠∠AEF , ∴∠FDE=∠FAE , ∵∠CDF=90°, ∴∠FDE+∠CDO=90°, ∵∠COD=90°, ∴∠OCD+∠CDO=90°, ∴∠FDE=∠OCD , ∴∠FDE=∠OCD=∠FAE , ∴tan∠OCD=tan∠FAE=12,在Rt∠OCD 中,tan∠OCD =OD OC =12, ∴OD=12OC =1,∴D(1,0).(2)解:①过点M 作MN∠x 轴,如图所示:∵∠MNB=90°, ∴∠MBN+∠BMN=90°,∵∠ACB=90°, ∴∠CBA+∠CAB=90°, ∴∠BMN=∠CAB ,在RtΔBMN 中,tan∠BMN=tan∠CAB =MN DN =12, ∴MN=2BN ,在RtΔDMN 中,tan∠MDN=tan∠CAB =MN DN =12, ∴DN=2MN=4BN , ∴BD=DN ﹣BN=3BN , ∵∠ACB=∠AOC=90°,∴∠BCO+∠ACO=∠ACO+∠CAB=90°, ∴∠BCO=∠CAB , 在RtΔBOC 中,tan∠BCO =OB OC =12, ∴OB=12OC=1,∴AB=5, ∴∠DEF∠ΔAEF , ∴AE=DE=2t ,∴BD=AD ﹣AB=4t ﹣5, ∴4t ﹣5=3BN , ∴BN =4t−53,MN=2BN =8t−103,∴M (4t−83,8t−103),要使重叠部分为四边形,则2AE >AB , 即4t >5,解得t >54,∵点E 在线段AO 上, ∴AE ≤AO , 即2t ≤4, 解得:t ≤2,∴t 的取值范围是54<t ≤2;②14≤S ≤25134.【答案】(1)解:点A 的坐标为(4,8)将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx 得8=16a+4b 0=64a+8b解得a= −12,b=4∴抛物线的解析式为:y=- 12x 2+4x(2)解:①在Rt∠APE 和Rt∠ABC 中,tan∠PAE= PE AP = BC AB ,即 PE AP =48=12PE= 12 AP= 12t .PB=8-t .∴点E 的坐标为(4+ 12 t ,8-t ).∴点G 的纵坐标为:- 12 (4+ 12 t )2+4(4+ 12 t )=- 18 t 2+8. ∴EG=- 18 t 2+8-(8-t) =- 18 t 2+t.∵- 18 <0,∴当t=4时,线段EG 最长为2 ②共有三个时刻:t 1= 163 ,t 2= 4013 ,t 3= 852+55.【答案】(1)解:易求A(-2,0),B(4,0),C(0, 2√3 ),D(1, 9√34),∠PEF∠∠BOC. ∴当PE 最大时,∠PEF 的周长最大.易求直线BC 的解析式为y= −√32x +2√3 设P(x, −√34x 2+√32x +2√3 ),则E(x, −√32x +2√3 ) ∴PE= −√34x 2+√32x +2√3 -( −√32x +2√3 )= −√34x 2+√3x ∴当x=2时,PE 有最大值. ∴P(2, 2√3 ),此时 如图,将直线OG 绕点G 逆时针旋转60 °得到直线l , 过点P 作PM∠l 于点M ,过点K 作KM /∠l 于M /.则PH+HK+ √32KG= PH+HK+KM /≥PM 易知∠POB=60°.POM 在一直线上. 易得PM=10,H(1, √3 )(2)解:易得直线AC 的解析式为y= √3x +2√3 ,过D 作AC 的平行线,易求此直线的解析式为y= √3x +5√34 ,所以可设D /(m, √3m +5√34 ),平移后的抛物线y 1= −√34(x −m)2+√3m +5√34 .将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5, 25√34).设N(1,n),又C(0, 2√3 ),D /(5, 25√34).所以NC 2=1+(n- 2√3 )2,D /C 2= 52+(25√34−2√3)2= 126716 ,D /N 2= (5−1)2+(25√34−n)2 . 分NC 2= D /C 2 D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解.答案N 1(1, 8√3+3√1394 ),N 2(1, 8√3−3√1394 ),N 3(1, 25√3+√10114 ),N 4(1, 25√3−√10114),N 5(1, 641√3136).6.【答案】(1)解:当m =1时,抛物线G :y 1=x 2−1,直线ℎ:y 2=x +1,令x 2−1=x +1,解得x =−1或x =2,∴抛物线G 与直线ℎ交点的坐标为(−1,0)或(2,3);(2)证明:令mx 2−(3m −3)x +2m −3=mx +3−2m ,整理得mx 2−(4m −3)x +4m −6=0,即(x −2)(mx −2m +3)=0,解得x =2或x =2m−3m, 当x =2时,y =3;当x =2m−3m时,y =0; ∴抛物线G 与直线ℎ的交点分别为(2,3)和(2m−3m,0), ∴必有一个交点在x 轴上;(3)解:①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线G :y 1=mx 2−(3m −3)x +2m −3=(mx −2m +3)(x −1),则抛物线G 与x 轴的交点为(1,0),(2m−3m,0),∵抛物线G 与抛物线G′关于原点对称, ∴抛物线G′过点(−1,0),(−2m−3m,0), ∴抛物线G′的解析式为:y′=−m(x +1)(x +2m−3m)=−mx 2−(3m −3)x −2m +3, 令−mx 2−(3m −3)x −2m +3=mx +3−2m ,整理得mx 2+(4m −3)x =0, ∴x =0或x =3−4mm, 即四个交点分别为:(0,3−2m),(2,3),A(2m−3m ,0),(3−4mm,6−6m),当0⩽3−4m m⩽2时,即12⩽m ⩽34时,0为最小值,2为最大值, ∴0<2m−3m<2(m >0),不等式无解,这种情况不成立; 当3−4m m <0时,则0<m <34,则3−4m m <2m−3m<2,解得m >1,不成立; 当3−4m m >2时,得0<m <12,此时0<2m−3m <3−4m m ,解得得0<m <12, ∴0<3m−32m <32.即抛物线G 对称轴的取值范围为:0<3m−32m<32. 7.【答案】(1)解:把C 、D 两点的坐标代入抛物线解析式可得 {c =836a +18+c =8,解得 {c =8a =−12, ∴抛物线解析式为y=﹣ 12 x 2+3x+8(2)解:①∵y=﹣ 12 x 2+3x+8=﹣ 12 (x ﹣3)2+ 252 ,∴抛物线对称轴为x=3,设直线l解析式为y=kx,把D(6,8)代入可得8=6k,解得k= 3 4,∴直线l的解析式为y= 43x,∴E(3,4),∵O(0,0),C(0,8),∴OE=CE,∴点E在线段OC的垂直平分线上,∵∠TEC=∠TEO,∴TE∠x轴,∴T的纵坐标为4,在y=﹣12x2+3x+8中,令y=4可得4=﹣12x2+3x+8,解得x=3+ √17或x=3﹣√17,∴T的坐标为(3+ √17,4)或(3﹣√17,4);②在y=﹣12x2+3x+8中,令y=0可得0=﹣12x2+3x+8,解得x=﹣2或x=8,∴B(8,0),∵E(3,4),∴OE=5,如图2,过点E作BP的平行线,交y轴于点F,交x轴于点H,∴OPOF=OQOE,∵OP=OQ,∴OF=OE=5,∴F(0,5),∴可设直线PB的解析式为y=kx+5,把E点坐标代入可得4=3k+5,解得k=﹣1 3,∴直线EF的解析式为y=﹣13x+5,∴可设直线PB的解析式为y=﹣13x+m,把B点坐标代入可得0=﹣13×8+m,解得m=83,∴P点坐标为(0,8 3)8.【答案】(1)解:由题意得,AB= √AC2+BC2=√62+82=10,AD=BD= 12AB=5 当P在线段BD上且不与D重合时,有PD=5-4t(0<t<54);当P在线段AD上且不与D重合时,有PD=4t-5(0<t<54);则当0<t<54时,PD=5−4t;当54<t≤52时,PD=4t−5;(2)解:如图1∵∠PDQ=∠A, ∠DPQ=∠ACB=90°,∴∠DQP∠∠ABC∴DQAB=DPAC,DQ=54PD=54(5−4t)=254−5t又∵∠PDQ=∠A∴DQ//AC,∵点D是边AB的中点∴DQ为∠ABC的中位线∴当点Q落在BC上时,DQ= 12AC=4∴254−5t=4,解得t=920;(3)解:由(1)(2)可知:①如图2:当0<t<920时,重叠部分为四边形S=S∠BND-S∠BPM= 12×3×4−12×(4t)2×43= =−333t2+6;②如图3:当Q在AC上时,P在AD的中点,即此时t= 15 8当158<t<52时,重叠部分为四边形S=S∠ADQ-S∠APM= 12×5×52×34−12×(10−4t)2×34= −6t2+30t−52516;(4)t的值为920,365228,17209.【答案】(1)2 √5(2)4或2√6+2√2或2√6−2√2(3)解:将抛物线的表达式y=x2与直线方程y=x+2联立并解得:x=−1或2,即:点R、S的坐标分别为(−1,1)、(2,4),则RS=3 √2,则RS边上的高为:12×3 √2= 32√2,则点Q在于RS平行的上下两条直线上,如下图,设直线RS与y轴交于点N,则N(0,2),过点N作NQ∠TQ于点Q,则NQ= 32√2,则NT=NQsin45°=3,∴点T(0,5),则点Q所在的直线方程为:y=x+5,同理:当点Q所在的直线在直线RS的下方时,y=x−1,∴点Q所在的直线方程为:y=x+5或y=x−1;如图4,当点P介于点R与点S之间时,设与RS平行且与抛物线只有一个交点p′的直线方程为:y=x+d,将该方程与抛物线方程联立并整理得:x2−x−d=0,∴∠=1+4d=0,解得:d=−1 4,此时,x2−x+14=0,解得:x=12,∴点p′(12,14),此时,P(p′)Q取得最小值.10.【答案】(1)解:将B(0,﹣2)代入y=a(x+3)(x﹣4),∴a =16,∴y =16(x+3)(x ﹣4)=16x 2﹣16x ﹣2;(2)解:令y =0,则16(x+3)(x ﹣4)=0,∴x =﹣3或x =4, ∴A (4,0),设直线AB 的解析式为y =kx+b , ∴{b =−24k +b =0, ∴{k =12b =−2, ∴y =12x ﹣2,∵OP =1, ∴P (1,0), ∵PQ∠x 轴,∴Q (1,﹣32),C (1,﹣2),∴AP =3,∴S ∠ACQ =S ∠ACP ﹣S ∠APQ =12×3×2﹣12×3×32=34;(3)解:设P (t ,0),如图3,过点D 作x 轴垂线交于点N ,∵∠BPD =90°,∴∠OPB+∠NPD =90°,∠OPB+∠OBP =90°, ∴∠NPD =∠OBP , ∵BP =PD ,∴∠PND∠∠BOP (AAS ), ∴OP =ND ,BO =PN , ∴D (t+2,﹣t ),∴﹣t =16(t+2+3)(t+2﹣4),解得t =1或t =﹣10,∴D (3,﹣1)或D (﹣8,10).11.【答案】(1)解: ∵ 抛物线 y =ax 2−2ax −3a 交x 轴的负半轴于点A ,交x 轴的正半轴点B ,交y 轴的正半轴于点C ,且 OB =2OC , 令 x =0 ,则 y =−3a ,则 C(0,−3a) , ∴OC =−3a ,由 y =ax 2−2ax −3a =a(x 2−2x −3)=a(x −3)(x +1) , 则 A(−1,0) , B(3,0) , ∴OB =3 , ∵ OB =2OC , 即 3=2×(−3a) ,解得 a =−12,(2)解: ∵ a =−12 ,∴y =−12x 2+x +32 ,∵ 点P 的横坐标为t ,则 P(t ,−12t 2+t +32) , A(−1,0) , B(3,0) , C(0,32) ,设 D 的横坐标为 m ,设直线 BP 的解析式为 y =kx +b ,则 {kt +b =−12t 2+t +323k +b =0解得 {k =−t 2+2t+32t−6=−12(t +1)b =3t 2−6t+92t−6=32(t +1) ∴y =−12(t +1)x +32(t +1) ,∴OE =−b =3t 2−6t+96−2t =3(t 2−2t+3)2(3−t)=−32(t +1) ,CE=32−32(t+1)=−32t,设∠CDE的面积为s,则S=12CE⋅x D=12×(−32t)×m=−34mt,∵4s+3t=0,∴−3mt+3t=0,解得m=1,∴x D=1,将x=1代入y=−12x2+x+32=−12+1+32=2,∴D(1,2),(3)解:如图,连接AD,BD,过D作DH⊥x轴与H∵A(−1,0),B(3,0),C(0,32),D(1,2),P(t,−12t2+t+32),E(0,32t+32)∴AD=√(1+1)2+22=2√2,BD=√(3−1)2+22=2√2,AB=4∴AD2+BD2=16,AB2=16,AD=BD∴△ABD是等腰直角三角形∴∠ADB=90°∵将线段DE绕点D逆时针旋转90°得到线段DF,∴∠EDF=90°,DE=DF∴∠ADE+∠EDB=∠EDB+∠BDF∴∠ADE=∠BDF∴△AED≌△BFD ∴AE=BF,DA=DB,∠DAE=∠DBF延长GF至R,使得FR=EG,连接DR,DG,∵AE=BF,FR=EG∴AG=BR在△DAG与△DBR中{DA=DB ∠DAG=∠DBR AG=BR∴△DAG≌△DBR∴DG=DR,∠ADG=∠BDR,∵∠ADB=90°∴∠ADG+∠GDB=90°∴∠BDR+GDB=90°即∠GDR=90°∴△DRG是等腰直角三角形∴∠DRG=∠DGR=45°∵∠DGA=∠DRB∴∠DGA=45°∴∠AGB=∠DGA+∠DGB=90°∵∠AGB=2∠APB∴∠APB=45°过点P引坐标的两条垂线,垂足为Y,Z,作直线BP关于x轴对称的直线BT,交DH于点T,过点T作TS⊥DB,设T关于x轴对称的点为T′,∵∠APE=45°∴∠EPZ+∠YPA=45°设∠PBA=α,则∠TBO=α,∠EPZ=α,∠YPA=45°−α∵DH⊥x轴,△ADB是等腰直角三角形,∴∠DBO=45°∴∠SBT=45°−α=∠YPA∴tan∠SBT=tan∠YPA,∴STSB=YAYP∵D(1,2),DH⊥x轴,∴T,T′的横坐标为1,∵直线BP的解析式为y=−12(t+1)x+32(t+1)令x=1解得y=t+1∴T′(1,t+1)∴T(1,−t −1) ∴DT =3+t∴ST =DS =DT ⋅sin45°=√22(3+t)∵ D(1,2) , H(1,0) ∴ DH =2∴SB =DB −DS =DHsin45°−DS =2√2−√22(3+t)=√22−√22t∵ P(t ,−12t 2+t +32) , A(−1,0) ,∴YA =−1−t , YP =12t 2−t −32=12(t +1)(t −3) ,∴ST SB =YAYP, 即 √22(3+t)√22−√22t =−1−t12t 2−t−32 , 整理得 t 2−2t −7=0 ,解得 t 1=1+2√2,t 2=1−2√2 , ∵t <0 , ∴t =1−2√2 ,将 t =1−2√2 t 代入 −12t 2+t +32=−2 ,∴P(1−2√2,−2) .12.【答案】(1)解:∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴{9a −3b +c =0c =3a +b +c =0 ,解得: {a =−1b =−2c =3 , 所以,抛物线的解析式为y=-x 2-2x+3; (2)解:∵A (-3,0),B (0,3),∴OA=OB=3,∴∠AOB 是等腰直角三角形,∴∠BAO=45°, ∵PF∠x 轴,∴∠AEF=90°-45°=45°,又∵PD∠AB ,∴∠PDE 是等腰直角三角形,∴PD 越大,∠PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB平行的直线解析式为y=x+m,联立{y=x+my=−x2−2x+3,消掉y得,x2+3x+m-3=0,当∠=9-4(m-3)=0,即m= 214时,直线与抛物线只有一个交点,PD最长,此时x=- 32,y=154,∴点(- 32,154),∠PDE的周长最大;(3)解:设直线x=-2与x轴交于点E,作点A关于直线x=-2的对称点D,则D(-1,0),连接MA,MD,MC.∴MA=MD,∠MAC=∠MDA=2∠MCA,∴∠CMD=∠DCM∴MD=CD=2 ,∴ME= √3∴点M(-2,√3)或(-2,- √3).13.【答案】(1)解:∵点B、C在直线为y=x+n上,∴B(−n,0)、C(0,n),∵点A(1,0)在抛物线上,∴{a+b−7=0an2−bn−7=0n=−7,∴a=−1,b=8,∴抛物线解析式:y=−x2+8x−7(2)解:5√2(3)解:由题意,得,PB=6−t,BE=2t,由OB=OC,∠BOC=90°,得∠OBC=45°,∴点P 到BC 的高h 为BP ·sin45°=√22(6−t),∴S ΔPBE =12BE ⋅ℎ=12×√22(6−t)×2t =−√22t 2+3√2t =−√22(t −3)2+9√22,当t =3时,面积最大,最大值为9√22;(4)解:6或7+√732或7−√73214.【答案】(1)解:令 y =0 ,则 12x 2−32x −2=0 ,解得 x 1=−1 , x 2=4 ,∴A(−1,0) , B(4,0) ,根据题意设抛物线L 2的解析式为: y =a(x +1)(x −4) , 把点 (2,−12) 代入,得 −6a =−12 ,解得 x =2 , ∴y =2(x +1)(x −4)=2x 2−6x −8 ;(2)解:∵抛物线L 2与L 1是“共根抛物线”, A(−1,0) , B(4,0) ,∴它们的对称轴都是直线 x =32 ,∴点P 在直线 x =32上,如图,当A 、C 、P 共线时, BP −CP 的值最大,∵PA =PB ,∴BP −CP =AP −CP =AC ,此时点P 是直线AC 与直线 x =32的交点,∵A(−1,0) , C(0,−2) ,∴直线AC 的解析式为: y =−2x −2 ,∴P(32,−5) ;(3)解:∵A(−1,0) , B(4,0) , C(0,−2) ,∴AB =5 , CB =2√5 , CA =√5 ,∴AB 2=CB 2+CA 2 ,∴∠ACB =90° , CB =2CA ,∵y =12x 2−32x −2=12(x −32)2−258, ∴D(32,258) , 根据题意, ∠PDQ 不可能是直角,第一种情况,当 ∠DPQ =90° 时,①如图,当 △QDP ∼△ABC 时, QP DP =AC BC =12设 Q(x,12x 2−32x −2) ,则 P(32,12x 2−32x −2) , ∴DP =12x 2−32x −2−(−258)=12x 2−32x +98, QP =x −32 , ∵DP =2QP ,∴12x 2−32x +98=2(x −32) ,解得 x 1=112 , x 2=32(舍去), ∴P(32,398) ; ②如图,当 △DQP ∼△ABC 时,则 PQ =2PD ,∴x −32=2(12x 2−32x +98) ,解得 x 1=52 , x 2=32 (舍去), ∴P(32,−218) ; 第二种情况:当 ∠DQP =90° 时,①如图,当 △PDQ ∼△ABC 时, PQ DQ =AC BC =12 ,过点Q 作 QM ⊥PD 于点M ,则 △QDM ∼△PDQ ,∴QM MD =PQ DQ =12 ,由图知, M(32,398) , Q(112,398) , ∴MD =8 , MQ =4 ,∴DQ =4√5 ,由 DQ DM =PD DQ ,得 PD =10 ,∵D(32,−258) , ∴P(32,558) ; ②如图,当 △DPQ ∼△ABC 时,过点Q 作 QM ⊥PD 于点M ,同理得 M(32,−218) , Q(52,−218) ,∴DM =12 , QM =1 , QD =√52 ,由 QD DM =PD DQ ,得 PD =52 ,∴P(32,−58) ;综上:点P 的坐标是 (32,398) 或 (32,−218) 或 (32,558) 或 (32,−58) .15.【答案】(1)解:∵二次函数 y =ax 2+bx +2 的图象与x 轴交于 A(−3,0) ,B(1,0) 两点, ∴{9a −3b +2=0a +b +2=0 ,解得: {a =−23b =−43∴这个二次函数的解析式为 y =−23x 2−43x +2 ;∵二次函数 y =−23x 2−43x +2 与y 轴交于点C ,∴点C 的坐标为 (0,2)设直线 AC 的解析式为 y =kx +2 ,∵直线 AC 经过点 A(−3,0)∴0=−3k +2解得 k =23 ,∴直线 AC 的解析式为 y =23x +2 ;(2)解:由(1)得 y =−23x 2−43x +2 ,设点 P(m,−23m 2−43m +2) ,则 D(m,23m +2) ,∴PD =−23m 2−43m +2−(23m +2) =−23m 2−2m =−23(m +32)2+32 ∴当 m =−32时, PD 最大,最大值是 32 . (3)存在, Q 1(−5,0) , Q 2(−1,0) , Q 3(2+√7,0) , Q 4(2−√7,0)16.【答案】(1)解:由于抛物线y= 34x 2+bx+c 与y 轴交于点B (0,3),则 c=3; ∵抛物线的对称轴 x=﹣ b 2a =﹣ 52, ∴b=5a= 154; 即抛物线的解析式:y= 34 x 2+ 154x+3. (2)解:∵A (4,0)、B (0,3),∴OA=4,OB=3,AB= √OA 2+OB 2 =5;若四边形ABCD 是菱形,则BC=AD=AB=5,∴C (﹣5,3)、D (﹣1,0).将C (﹣5,3)代入y= 34 x 2+ 154 x+3中,得: 34 ×(﹣5)2+ 154×(﹣5)+3=3,所以点C 在抛物线上;同理可证:点D 也在抛物线上.(3)解:设直线CD 的解析式为:y=kx+b ,依题意,有:{−5k +b =3−k +b =0 ,解得 {k =−34b =−34∴直线CD :y=﹣ 34 x ﹣ 34. 由于MN∠y 轴,设 M (t , 34 t 2+ 154t+3),则 N (t ,﹣ 34 t ﹣ 34 ); ② t <﹣5或t >﹣1时,l=MN=( 34 t 2+ 154 t+3)﹣(﹣ 34 t ﹣ 34 )= 34 t 2+ 92 t+ 154 ; ②﹣5<t <﹣1时,l=MN=(﹣ 34 t ﹣ 34 )﹣( 34 t 2+ 154 t+3)=﹣ 34 t 2﹣ 92 t ﹣ 154; 若以M 、N 、C 、E 为顶点的四边形是平行四边形,由于MN∠CE ,则MN=CE=3,则有: 34 t 2+ 92 t+ 154=3,解得:t 1=﹣3+2 √2 ,t 2=﹣3﹣2 √2 ;﹣ 34 t 2﹣ 92 t ﹣ 154=3,解得:t=﹣3; 综上,l= {34t 2+92t +154(t <−5或t >−1)34t 2−92t −154(−5<t <−1)且当t=﹣3+2 √2 ,t=﹣3﹣2 √2 或﹣3时,以M 、N 、C 、E 为顶点的四边形是平行四边形.。
专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)
《中考压轴题》专题24:动态几何之双(多)动点形成的函数关系问题一、选择题1.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是A .AE=6cmB .4sin EBC 5∠=C .当0<t ≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。
2023年中考数学高频考点突破- -二次函数动态几何问题
2023年中考数学高频考点突破- -二次函数动态几何问题1.如图,在平面直角坐标系中,二次函数的图象与轴交于、两点,点在原点的左则,点的坐标为,与轴交于点,点是直线下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形的面积最大时的P点坐标和四边形ABPC的最大面积;2.已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=14x2相交于B、C两点.(1)如图,当点C的横坐标为1时,求直线BC的表达式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.3.已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点,(1)求这个二次函数的解析式(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6.求点B的坐标。
4.如图,抛物线y=x2+bx+c与直线y=12x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC△x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.5.如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=−12x+2经过A,C两点,抛物线的顶点为D,对称轴与x轴交于点E.(1)求此抛物线的解析式;(2)求ΔDAC的面积;(3)在抛物线上是否存在一点P,使它到x轴的距离为4,若存在,请求出点P的坐标,若不存在,则说明理由.6.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.7.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣45x+c与直线y=25x+25交于A、B两点,已知点B的横坐标是4,直线y=25x+25与x、y轴的交点分别为A、C,点P是抛物线上一动点.(1)求抛物线的解析式;(2)若点P在直线y=25x+25下方,求△PAC的最大面积;(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.8.二次函数y=ax2+2x-1与直线y=2x-3交于点P(1,b)。
九年级数学下册常考【压轴题】类型+解题思路
九年级数学下册常考【压轴题】类型+解题思路中考数学常考压轴题类型1、线段、角的计算与证明中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以,在中考中面对这类问题,一定要做到避免失分。
4、列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。
方程,可以说是初中数学当中最重要的部分,所以也是中考中必考内容。
从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。
实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5、动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
2023年中考数学高频考点-二次函数动态几何问题
2023年中考数学高频考点-二次函数动态几何问题1.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一个动点,求△PBC周长最小时的P点坐标;(3)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值和M点的坐标.2.已知抛物线y=x2+bx+c与x轴相交于A(−1,0),B(3,0)两点.(1)填空:抛物线的对称轴为;(2)求b,c的值;(3)设抛物线上一动点P(s,t)关于原点的对称点为点Q,当点Q落在第一象限内,且AQ2取得最小值时,求s的值.3.如图,在平面直角坐标系中,抛物线y=ax2+bx顶点坐标为(2,4),图象交x轴正半轴于点A.(1)求二次函数的表达式和点A的坐标.(2)点P是抛物线上的点,它在对称轴右侧且在第一象限内.将点P向左平移2n(n>0)个单位,将与该二次函数图象上的点Q重合,若△OAQ的面积为6n,求n的值.4.如图,在平面直角坐标系中,二次函数y= 12x²-32x-2的图象交x轴于点A,B(点A在点B的左侧),与y轴交于点C,函数图象的顶点为点D。
(1)求点B,D的坐标,并根据该函数图象写出当x>0时y的取值范围;(2)将点C向上平移m(m>0)个单位到点G,过点G作x轴的平行线,与二次函数的图象交于点E,F,若FG=2EG,求m的值。
5.如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(-1,2),将此矩形绕点O顺时针旋转90°得矩形DEFO,抛物线y=-x2+bx+c过B,E两点.(1)求此抛物线的函数关系式;(2)将矩形ABCO向上平移,并且使此抛物线平分线段BC,求平移距离.6.如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)、动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动、其中,点M沿OA向终点A运动,点N沿BC向终点C运动、过点N作NP⊥BC,交AC于P,连结MP、已知动点运动了t秒、(1)P点的坐标为(,)(用含t的代数式表示);(2)试求△MPA面积的最大值,并求此时t的值;(3)请你探索:当t为何值时,△MPA是一个等腰三角形?7.先让我们一起来学习方程m2+1= √m2+3的解法:解:令m2=a,则a+1= √a+3,方程两边平方可得,(a+1)2=a+3解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1点评:类似的方程可以用“整体换元”的思想解决.不妨一试:如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式;(2)①当P点运动到A点处时,通过计算发现:POPH(填“>”、“<”或“=”);(3)当△PHO为等边三角形时,求点P坐标;(4)如图2,设点C(1,﹣2),问是否存在点P,使得以P、O、H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.8.如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.(1)求该抛物线所对应的函数关系式;(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;②求矩形ABCD的周长的最大值,并写出此时点A的坐标;③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断并说明理由.9.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=﹣14与抛物线分别交于点D、E,求线段DE的长.(3)点P是线段OB上一点(不与点B、O重合),过点P作PM⊥x轴交抛物线于点M,连接CM、BM,求△BCM面积的最大值,及此时点M坐标.10.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N 为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.11.已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,3).(1)求抛物线的表达式及顶点D的坐标;(2)如图甲,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图乙,过点A作y轴的平行线,交直线BC于点F,连接DA、DB四边形OAFC沿射线CB 方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动,设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.12.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.13.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(4,0),C(−2,−6),直线BC与y 轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E是直线BC上方抛物线上一点,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.14.如图,抛物线y=-12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.15.如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.16.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.。
中考数学专题 动态几何与函数10题-含答案
动态几何与函数10题(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;
(2)请在平面直角坐标系中画出1y ,2y 的图象,并写出1y 的一条性质;
(3)求当12y y >时,t 的取值范围.
(1)求出12,y y与x的函数关系式,并注明
(2)先补全表格中1y的值,再画出
x123456
y12632
1
(3)在直角坐标系内直接画出2y的函数图像,结合1y和2y的函数图像,x的取值范围.(结果取精确值)
(1)请求出1y 和2y 关于x 的函数解析式,并说明x 的取值范围;
(2)在图2中画出1y 关于x 的函数图象,并写出一条这一函数的性质:(3)若12103
y y -≥,请结合函数图像直接写出x 的取值范围(近似值保留一位小数,误差不超过0.2)
4.
(2023春·重庆江津·九年级校联考期中)如图,在矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,以每秒2个单位的速度沿折线A B C D →→→运动,当它到达D 点时停止运动;同时,点Q 从点A 出发,以每秒1个单位的速度沿射线AD 运动,过Q 点做直线l 平行于AB ,点M 为直线l 上的一点,满足AMQ △的面积为2,设点P 点Q 的运动时间为t (0t >),ADP △的面积为1y ,QM 的长度为2y .
(1)分别求出1y ,2y 与t 的函数关系,并注明t 的取值范围;
(2)在坐标系中画出1y ,2y 的函数图象;
(3)结合函数图象,请直接写出当12y y <时t 的取值范围.。
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学专题:动态几何与函数问题试卷
中考数学专题:动态几何与函数问题动态几何问题整体来说主要是代数和几何综合题,而代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
本次讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
专题26 动态几何之面动形成的函数关系问题(压轴题)-决胜2021中考数学压轴题全揭秘精品(解析版)
一、选择题1.(2016贵州省黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.考点:动点问题的函数图象;动点型;分类讨论.2.(2016甘肃省天水市)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】分为0<x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解析】如图1所示:当0<x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,∴△DBC′为等边三角形,∴DE=32BC′=32x,∴y=12BC′•DE=23x.当x=1时,y=3,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×32=34,∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=12B′C•DE=23(2)x ,函数图象为抛物线的一部分,且抛物线开口向上.故选B.考点:动点问题的函数图象;分类讨论;分段函数.3.(2015年辽宁铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB 向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是()A. B. C. D.【答案】D.【考点】面动问题的函数图象,相似三角形的判定和性质,数形结合思想和分类思想的应用.【分析】设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,当E点在点A左侧时,S=0.4.(2015年山东省潍坊市)如图,在矩形ABCD中,AB=4cm,AD=23cm,E为CD边上的中点,点P从点A 沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A. B. C. D.【答案】B.考点:1.动点问题的函数图象;2.动点型;3.分段函数;4.分类讨论.5.(2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B. C. D.【答案】B.【考点】1.面动平移问题的函数图象问题;2.由实际问题列函数关系式;3.二次函数的性质和图象;4.分类思想和排它法的应用.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式应用排它法判断函数的图象的形状: ①当t ≤1时,两个三角形重叠面积为小三角形的面积, ∴133y 1224=⋅⋅=.故可排除选项D . ②当1<x ≤2时,重叠三角形的边长为2﹣x ,高为()322x -,∴()()()232x 13y 2x x 2224-=⋅-⋅=-,它的图象是开口向上,顶点为()2,0 的抛物线在1<x ≤2的部分. 故可排除选项A ,C . 故选B .6.(2014年辽宁抚顺3分)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB =2,AN =x ,BM =y ,则能反映y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A .【考点】1.动点问题的函数图象;2. 等腰直角三角形的判定和性质;3.相似三角形的判定和性质;4. 反比例函数图象..【分析】如答图,作PH ⊥AB 于H ,∵△PAB 为等腰直角三角形,∴∠A =∠B =45°,AH =BH =AB =1, ∴△PAH 和△PBH 都是等腰直角三角形. ∴PA =PB =2AH =2,∠HPB =45°.∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,而∠CPD =45°,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM.而∠A=∠B,∴△ANP∽△BPM,∴AP ANBM BP=,即2xy2=,∴2yx=.∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选A.二、填空题三、解答题7.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A 出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)4;(2)163;(3)2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得==,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当163<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.【解析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=42,所以x=422=4.故答案为:4.(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,∵AP=2x,∴EF=PE=x,∴y=S△PEF=12•PE•EF=212x.②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=822x,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ﹣S△MEG=22 11(822)(163) 22x x---=2732642x x-+-.③当163<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ=212PQ=21(822)2x-=21664x x-+.综上所述2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.考点:三角形综合题;分类讨论;分段函数;动点型;压轴题.8.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF3;(2)t=83;(3)22823 (0)353824332 3 (4)23t tSt t⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)t=4;t=3.【分析】(1)由题意知:A E =2t ,由锐角三角函数即可得出EF =3t ;(2)当H 与D 重合时,FH =GH =8﹣t ,由菱形的性质和EG ∥AD 可知,AE =EG ,解得t =83; (3)矩形EFHG 与菱形ABCD 重叠部分图形需要分以下两种情况讨论:①当H 在线段AD 上,此时重合的部分为矩形EFHG ;②当H 在线段AD 的延长线上时,重合的部分为五边形;(4)当OO ′∥AD 时,此时点E 与B 重合;当OO ′⊥AD 时,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,然后分别求出O ′M 、O ′F 、FM ,利用勾股定理列出方程即可求得t 的值.【解析】(1)由题意知:A E =2t ,0≤t ≤4,∵∠BAD =60°,∠AFE =90°,∴sin ∠BAD =EFAB,∴EF 3; (2)∵AE =2t ,∠AEF =30°,∴AF =t ,当H 与D 重合时,此时FH =8﹣t ,∴GE =8﹣t ,∵EG ∥AD ,∴∠EGA =30°,∵四边形ABCD 是菱形,∴∠BAC =30°,∴∠BAC =∠EGA =30°,∴AE =EG ,∴2t =8﹣t ,∴t =83; (3)当0≤t ≤83时,此时矩形EFHG 与菱形ABCD 重叠部分图形为矩形EFHG ,∴由(2)可知:A E =EG =2t ,∴S =EF •EG 3•2t =223t ; 当83<t ≤4时,如图1,设CD 与HG 交于点I ,此时矩形EFHG 与菱形ABCD 重叠部分图形为五边形FEGID ,∵AE =2t ,∴AF =t ,EF 3,∴DF =8﹣t ,∵AE =EG =FH =2t ,∴DH =2t ﹣(8﹣t )=3t ﹣8,∵∠HDI =∠BAD =60°,∴tan ∠HDI =HI DH ,∴HI 3,∴S =EF •EG ﹣12DH •HI =223238)t t -=253243323t +- 综上所述:22823 (0)353824332 3 (4)23t t S t t ⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)当OO ′∥AD 时,如图2,此时点E 与B 重合,∴t =4;当OO ′⊥AD 时,如图3,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,由(2)可知:A F =t ,AE =EG =2t ,∴FN =33t ,FM =t ,∵O ′O ⊥AD ,O ′是FG 的中点,∴O ′O 是△FNG 的中位线,∴O ′O =12FN =36t ,∵AB =8,∴由勾股定理可求得:OA =43OM =23O ′M =323,∵FE 3,EG =2t ,∴由勾股定理可求得:227FG t =,∴由矩形的性质可知:221'4O F FG =,∵由勾股定理可知:222''O F O M FM =+,∴22273(23)46t t t =-+,∴t =3或t =﹣6(舍去). 故答案为:t =4;t =3.考点:四边形综合题;动点型;分类讨论;分段函数;压轴题.9.(2016四川省乐山市)在直角坐标系xOy 中,A (0,2)、B (﹣1,0),将△ABO 经过旋转、平移变化后得到如图1所示的△BCD .(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将△ABC 的面积分成1:3两部分,求此时点P 的坐标;(3)现将△ABO 、△BCD 分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO 与△BCD 重叠部分面积的最大值.【答案】(1)231222y x x =-++;(2)P (25-,3925)或P (67-,2349);(3)2552. 【分析】(1)由旋转,平移得到C (1,1),用待定系数法求出抛物线解析式; (2)先判断出△BEF ∽△BAO ,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0).C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +),再分两种情况进行计算即可.(2)如图1所示,设直线PC 与AB 交于点E .∵直线PC 将△ABC 的面积分成1:3两部分,∴13AE BE =或3AEBE=,过E 作EF ⊥OB 于点F ,则EF ∥OA ,∴△BEF ∽△BAO ,∴EF BE BF AO BA BO ==,∴当13AE BE =时,3241EF BF==,∴EF =32,BF =34,∴E (14-,32),∴直线PC 解析式为2755y x =-+,∴2312722255x x x -++=-+,∴125x =-,21x =(舍去),∴P (25-,3925);当3AE BE =时,同理可得,P (67-,2349).(3)设△ABO 平移的距离为t ,△A 1B 1O 1与△B 2C 1D 1重叠部分的面积为S .由平移得,A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0). C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +).①如图2所示,当305t <<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为四边形.设A 1B 1与x 轴交于点M ,C 1B 2与y 轴交于点N ,A 1B 1与C 1B 2交于点Q ,连结OQ .由由221122y x t y x t =+-⎧⎪⎨=++⎪⎩,得43353t x t y -⎧=⎪⎪⎨⎪=⎪⎩,∴Q (433t -,53t ),∴1251134()223223QMO QNO t t t S S S t ∆∆--=+=⨯⨯+⨯+⨯=2131124t t -++,∴S 的最大值为2552.②如图3所示,当3455t ≤<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为直角三角形. 设A 1B 1与x 轴交于点H ,A 1B 1与C 1D 1交于点G ,∴G (1﹣2t ,4﹣5t ),∴D 1H =2451222t tt --+-=,D 1G =4﹣5t ,∴S =12D 1H ×D 1G =21451(45)(54)224t t t --=-,∴当3455t ≤<时,S 的最大值为14.综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552. 考点:二次函数综合题;几何变换综合题;动点型;最值问题;二次函数的最值;分类讨论;压轴题. 10.(2016浙江省衢州市)如图1,在直角坐标系xoy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴、y 轴的垂线,垂足为A 、C ,点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 或轴对称的△BC ′D . (1)当∠CBD =15°时,求点C ′的坐标.(2)当图1中的直线l 经过点A ,且33k =-时(如图2),求点D 由C 到O 的运动过程中,线段BC ′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C ′时(如图3),以DE 为对称轴,作于△DOE 或轴对称的△DO ′E ,连结O ′C ,O ′O ,问是否存在点D ,使得△DO ′E 与△CO ′O 相似?若存在,求出k 、b 的值;若不存在,请说明理由.【答案】(1)C ′(23-,1);(2)233π-;(3)存在,k =34-,b =1. 【分析】(1)利用翻折变换的性质得出∠CBD =∠C ′BD =15°,C ′B =CB =2,进而得出CH 的长,进而得出答案;(2)首先求出直线AF 的解析式,进而得出当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,求出即可;(3)根据题意得出△DO ′E 与△COO ′相似,则△COO ′必是Rt △,进而得出Rt △BAE ≌Rt △BC ′E (HL ),再利用勾股定理求出EO 的长进而得出答案.【解析】(1)∵△CBD ≌△C ′BD ,∴∠CBD =∠C ′BD =15°,C ′B =CB =2,∴∠CBC ′=30°,如图1,作C ′H ⊥BC 于H ,则C ′H =1,HB 3CH =23,∴点C ′的坐标为:(23,1);(2)如图2,∵A (2,0),3k =,∴代入直线AF 的解析式为:3y x b =+,∴b 23AF 的解析式为:32333y x =-+,∴∠OAF =30°,∠BAF =60°,∵在点D 由C 到O 的运动过程中,BC ′扫过的图形是扇形,∴当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,当C ′在直线32333y x =-+上时,BC ′=BC =AB ,∴△ABC ′是等边三角形,这时∠ABC ′=60°,∴重叠部分的面积是:22602323604π⨯-⨯=233π-;考点:相似形综合题;动点型;存在型;压轴题.(1)求二次函数2y x bx c =-++的表达式; (2)连接 B C ,当t =56时,求△BCP 的面积; (3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O →A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 D Q 、 PQ ,将△DPQ 沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB 重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.【答案】(1)2543y x x =-++;(2)4;(3)22241215 (0)2551714414436155 ()2755511172t t t S t t t ⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.【分析】(1)直接将A 、B 两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP 的面积,必须求对应的底和高,即PC 和BD ;先求OD ,再求BD ,PC 是利用点P 和点C 的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE 完全在△OAB 中时,即当15017t ≤≤时,如图2所示,重合部分的面积为S 就是△DPE 的面积;②△DPE 有一部分在△OAB 中时,当155172t ≤≤时,如图4所示,△PDN 就是重合部分的面积S .【解析】(1)把A (3,0),B (0,4)代入2y x bx c =-++中得:4930c b c =⎧⎨-++=⎩,解得:534b c ⎧=⎪⎨⎪=⎩,∴解析式为:2543y x x =-++; (2)如图1,当56t =时,AP =2t ,∵PC ∥x 轴,∴OB AB OD AP =,∴452OD t =,∴OD =85t =8556⨯=43,当y =43时,43=2543x x -++,23580x x --=,解得:11x =-,283x =,∴C (﹣1,43),由BD PD OB OA =,得44343PD -=,则PD =2,∴S △BCP =12×PC ×BD =18323⨯⨯=4;(3)分两种情况讨论:①如图3,当点E 在AB 上时,由(2)得OD =QM =ME =85t ,∴EQ =165t ,由折叠得:EQ ⊥PD ,则EQ ∥y 轴,∴EQ AQ OB OA =,∴163543tt-=,∴t =1517,同理得:PD =635t -,∴当15017t ≤≤时,S=S△PDQ=12×PD×MQ=168(3)255t t-⋅,22412255S t t=-+;②当155172t≤≤时,如图4,P′D′=635t-,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,165t),∵AB的解析式为:443y x=-+,D′E的解析式为:8855y x t=+,则交点N(15611t-,82411t+),∴S=S△P′D′N=12×P′D′×FN=168248(3)()25115tt t+-⋅-,∴2144144362755511S t t=-+.综上所述:22241215(0)2551714414436155()2755511172t t tSt t t⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.考点:二次函数综合题;动点型;分段函数;分类讨论;压轴题.12.(2016辽宁省大连市)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x 的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同).(1)填空:B C的长是;(2)求S关于x的函数关系式,并写出x的取值范围.【答案】(1)3;(2)222544(01) 39336133 (1)136613(3) (3)56x x xS x xx x⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S四边形ECAG即可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC﹣S△BDF ﹣S四边形ECAG即可解决.③如图3中,根据S=12CD•CM,求出CM即可解决问题.②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵222AN CN AC=+,∴2222(3)x x=+-,∴x=136,∴当1316x<≤时,S=S△ABC﹣S△BDF=26313x-;③如图3中,当1336x<≤时,∵DM∥AN,∴CD CMCN CA=,∴313236x CM-=-,∴CM=12(3)5x-,∴S=12CD•CM=26(3)5x-.综上所述:222544 (01)39336133 (1)136613(3) (3)56x x x S x x x x ⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.考点:四边形综合题;分段函数;分类讨论;动点型;压轴题. 13.(2016辽宁省抚顺市)如图,抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),作CD ∥x 轴交抛物线于点D ,作DE ⊥x 轴,垂足为E ,动点M 从点E 出发在线段EA 上以每秒2个单位长度的速度向点A 运动,同时动点N 从点A 出发在线段AC 上以每秒1个单位长度的速度向点C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t 秒. (1)求抛物线的解析式;(2)设△DMN 的面积为S ,求S 与t 的函数关系式; (3)①当MN ∥DE 时,直接写出t 的值;②在点M 和点N 运动过程中,是否存在某一时刻,使MN ⊥AD ?若存在,直接写出此时t 的值;若不存在,请说明理由.【答案】(1)222493y x x =-++;(2)S =20.8 5.212t t -+(0<t ≤3);(3)①t =3013;②t =9047. 【分析】(1)根据抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),可以求得b 、c 的值,从而可以求得抛物线的解析式;(2)要求△DMN 的面积,根据题目中的信息可以得到梯形AEDC 的面积、△ANM 的面积、△MDE 的面积、△CND 的面积,从而可以解答本题;(3)①根据MN ∥DE ,可以得到△AMN 和△AOC 相似,从而可以求得t 的值;②根据题目中的条件可以求得点N 、点M 、点A 、点D 的坐标,由AD ⊥MN 可以求得相应的t 的值.【解析】(1)∵抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),∴22(3)(3)094b c c ⎧-⨯-+⨯-+=⎪⎨⎪=⎩,解得:234b c ⎧=⎪⎨⎪=⎩,即抛物线的解析式为:222493y x x =-++; =12(3+6)×4-12×(6-2t )×0.8t -12×2t ×4-12×3×(4-0.8t ) =20.8 5.212t t -+,即S 与t 的函数关系式是S =20.8 5.212t t -+(0<t ≤3); (3)①当MN ∥DE 时,t 的值是3013,理由:如右图2所示 ∵MN ∥DE ,AE =6,AC =5,AO =3,∴AM =6﹣2t ,AN =t ,△AMN ∽△AOC ,∴AM AN AO AC =,即6235t t-=,解得,t =3013; ②存在某一时刻,使MN ⊥AD ,此时t 的值是9047,理由:如右图3所示,设过点A (﹣3,0),C (0,4)的直线的解析式为y=kx+b,则:304k bb-+=⎧⎨=⎩,得:434kb⎧=⎪⎨⎪=⎩,即直线AC的解析式为443y x=+,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入443y x=+,得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t ﹣3,0.8t),AD⊥MN,∴400.8013(3)(0.63)(32)tt t--⋅=------,解得:t=9047.考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.14.(2016辽宁省沈阳市)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线23320y x x m=-+与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【答案】(1)①10,0,8,10;②F (4,8);③233520y x x =-+;(2)不变.S 1S 2=189. 【分析】(1)①根据四边形OCKB 是矩形以及对称轴公式即可解决问题. ②在RT △BKF 中利用勾股定理即可解决问题.③设OA =AF =x ,在RT △ACF 中,AC =8﹣x ,AF =x ,CF =4,利用勾股定理即可解决问题. (2)不变.S 1S 2=189.由△GHN ∽△MHG ,得GH HN MH GH=,得到2GH =HN •HM ,求出2GH ,根据S 1S 2=12•OG •HN •12•OG •HM 即可解决问题. 【解析】(1)如图1中,①∵抛物线23320y x x m =-+的对称轴x =2ba-=10,∴点B 坐标(10,0),∵四边形OBKC 是矩形,∴CK =OB =10,KB =OC =8,故答案分别为10,0,8,10.②在RT △FBK 中,∵∠FKB =90°,BF =OB =10,BK =OC =8,∴FK 22BF BK -,∴CF =CK ﹣FK =4,∴点F 坐标(4,8).③设OA =AF =x ,在RT △ACF 中,∵222AC CF AF +=,∴222(8)4x x -+=,∴x =5,∴点A 坐标(0,5),代入抛物线23320y x x m =-+得m =5,∴抛物线为233520y x x =-+. (2)不变.S 1S 2=189.理由:如图2中,在RT △EDG 中,∵GE =EO =17,ED =8,∴DG 22GE DE -22178-,∴CG =CD ﹣DG =2,∴OG 22OC CG +2282+217,∵CP ⊥OM ,MH ⊥OG ,∴∠NPN =∠NHG =90°,∵∠HNG +∠HGN =90°,∠PNM +∠PMN =90°,∠HNG =∠PNM ,∴∠HGN =∠NMP ,∵∠NMP =∠HMG ,∠GHN =∠GHM ,∴△GHN ∽△MHG ,∴GH HN MH GH=,∴2GH =HN •HM ,∵GH =OH 17,∴HN •HM =17,∵S 1S 2=12•OG •HN •12•OG •HM =21(217)172⨯⨯=289.考点:二次函数综合题;翻折变换(折叠问题);相似三角形的判定与性质;定值问题;动点型;压轴题.15.(2015重庆市)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C 重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣12t,∴DN=DH﹣NH=3﹣(2﹣12t)=12t+1.在Rt△DMN中,DM2=DN2+MN2=(12t+1)2+ t 2=54t2+t+1.(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即54t2+t+1=(14t2﹣2t+8)+(t2﹣4t+13),解得:t=207.(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(14t2﹣2t+8)+(54t2+t+1),解得:t1=﹣17,t2=﹣317.∴t=﹣17(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即14t2﹣2t+8=(t2﹣4t+13)+(54t2+t+1),此方程无解.综上所述,当t=207或﹣17B′DM是直角三角形;(3)22214 t0t43 124t t t2833S3510t2t2t8331510t t4223⎧⎛⎫≤≤⎪⎪⎝⎭⎪⎪⎛⎫-+-≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-+-≤⎪⎪⎝⎭⎪⎛⎫⎪-+≤⎪⎪⎝⎭⎩<<<.【考点】相似三角形的判定和性质,勾股定理和逆定理,正方形的性质,直角梯形的性质,平移的性质.③如图⑤,当G在CD上时,B′C:C H=B′G:D H,即B′C:4=2:3,解得:B′C=83,∴EC=4﹣t=B′C﹣2=23.∴t=103.∵B′N=12B′C=12(6﹣t)=3﹣12t,∴GN=GB′﹣B′N=12t﹣1.16.(2015江苏苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s 的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求出y =3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.【考点】正方形的性质,一元二次方程的应用,等腰直角三角形的性质,矩形的性质,解直角三角形,锐角三角函数定义,特殊角的三角函数值.∠∠可解出x的值.【分析】(1)根据题意表示出AG、GD的长度,再由tan CGD=tan PAG(2)利用(1)得出的y与x的关系式表示出S1、S2,然后作差即可.(3)延长PD交AC于点Q,然后判断△DGP是等腰直角三角形,从而结合x的范围得出x的值,在Rt△DGP 中,解直角三角形可得出PD的长度.17.(2015攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.【答案】(1)D(﹣4,3),P(﹣12,8);(2)424 (06)318 (614)t tSt t-+≤≤⎧=⎨-<≤⎩;(3)6.(2)当点P在边AB上时,BP=6﹣t,由三角形的面积公式得出S=12BP•AD;②当点P在边BC上时,BP=t﹣6,同理得出S=12BP•AB;即可得出结果;(3)设点D(45t-,35t);分两种情况:①当点P在边AB上时,P(485t--,85t),由PE CDOE CB=和PE CBOE CD=时;分别求出t的值;②当点P在边BC上时,P(1145t-+,365t+);由PE CDOE CB=和PE CBOE CD=时,分别求出t的值即可.试题解析:(1)延长CD交x轴于M,延长BA交x轴于N,如图1所示:则CM⊥x轴,BN⊥x轴,AD∥x轴,BN∥DM,∵四边形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴BD=2268+=10,当t=5时,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴23AB AD BDBN NO BO===,即6823BN NO==,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);②当点P在边BC上时,P(1145t-+,365t+),若PE CDOE CB=时,366518145tt+=-,解得:t=6;若PE CBOE CD=时,368516145tt+=-,解得:19013t=(不合题意,舍去);综上所述:当t=6时,△PEO与△BCD相似.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2015桂林)如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动. (1)直接写出抛物线的解析式:;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.【答案】(1)21382y x x =-++;(2)2152S t t =-+,当t =5时,S 最大=252;(3)存在,P (343,2009-)或P (8,0)或P (43,1009).(3)由(2)知:当t =5时,S 最大=252,进而可知:当t =5时,OC =5,OD =3,进而可得CD =34,从而确定C ,D 的坐标,即可求出直线CD 的解析式,然后过E 点作EF ∥CD ,交抛物线与点P ,然后求出直线EF 的解析式,与抛物线联立方程组解得即可得到其中的一个点P 的坐标,然后利用面积法求出点E 到CD 的距离,过点D 作DN ⊥CD ,垂足为N ,且使DN 等于点E 到CD 的距离,然后求出N 的坐标,再过点N 作NH ∥CD ,与抛物线交与点P ,然后求出直线NH 的解析式,与抛物线联立方程组求解即可得到其中的另两个点P 的坐标.(3)由(2)知:当t =5时,S 最大=252,∴当t =5时,OC =5,OD =3,∴C (0,5),D (3,0),由勾股定理得:C D =34,设直线CD 的解析式为:y kx b =+,将C (0,5),D (3,0),代入上式得:k =53-,b =5,∴直线CD 的解析式为:553y x =-+,过E 点作EF ∥CD ,交抛物线与点P ,如图1,过点E作EG⊥CD,垂足为G,∵当t=5时,S△ECD=12CD•EG=252,∴EG=253434,过点D作DN⊥CD,垂足为N,且使DN=253434,过点N作NM⊥x轴,垂足为M,如图2,综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(343,2009)或P(8,0)或P(43,1009).考点:1.二次函数综合题;2.二次函数的最值;3.动点型;4.存在型;5.最值问题;6.分类讨论;7.压轴题.19.(2014年甘肃天水12分)如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE =90°,CD =4,DE =43,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数. (2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.(3)在Rt △CDE 的运动过程中,设AC =h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.【答案】解:(1)如图2,∵在平面直角坐标系中,点A (0,﹣6),点B (6,0),∴OA =OB ,∴∠OAB =45°. ∵∠CDE =90°,CD =4,DE =43,∴DEtan OCE 3CD∠==.∴∠OCE =60°. ∴∠CMA =∠OCE ﹣∠OAB =60°﹣45°=15°.∴∠BME =∠CMA =15°. (2)如图3,∵∠CDE =90°,CD =4,DE =43,∴CD 3tan DEC DE ∠==.∴∠DEC =30°. ∵DE ∥x 轴,∴∠OBC =∠DEC =30°. ∵OB =6,∴BC =43.(3)①当h ≤2时,如答图1,作MN ⊥y 轴交y 轴于点N ,作MF ⊥DE 交DE 于点F , ∵CD =4,DE =43,AC =h ,AN =NM , ∴CN =4﹣FM ,AN =MN =4+h ﹣FM , ∵△CMN ∽△CED ,∴CN MNCD DE =,即4FM 443-=. 解得31FM 4h +=-. ∴S =S △EDC ﹣S △EFM =()2113131443434h4h h 4h 822⎛⎫++⋅⋅-⋅--⋅-=-++ ⎪ ⎪⎝⎭, 此时,S 最大=153-.②当2<h 623≤-时,如答图2,由(2)可知,在Rt △CDE 的运动过程中,当CE 经过点B 时,BC =43,此时OC =23,h 623=-,S =S △ABC ﹣S △ACM =211313366h h h 18h 2224⎛⎫++⋅⋅-⋅⋅+=- ⎪ ⎪⎝⎭, 此时,S 最大不超过153-. ③当623<h 6-≤时,如答图3,S =S △OCF =()()()2113OC OF 6h 36h 6h 222⋅⋅=⋅-⋅-=-,此时,S 最大不超过63.∵153********>0--=-, ∴面积S 的最大值为153-. 综上所述,S 与h 之间的函数关系式为()()()()22231h 4h 8h 2433S 18h 2<h 623436h 623<h 62⎧+-++≤⎪⎪⎪+⎪=-≤-⎨⎪⎪--≤⎪⎪⎩,面积S 的最大值为153-.【考点】1.面动平移问题;2.点的坐标;3. 锐角三角函数定义;4.特殊角的三角函数值;5.相似三角形的判定和性质;6.由实际问题列函数关系式;7.二次函数的性质;8.分类思想、数形结合思想和转换思想的应用.【分析】(1)如图2,由对顶角的定义知,∠BME =∠CMA ,所以欲求∠BME 的度数,需求∠CMA 的度数.根据三角形外角定理进行解答即可.(2)如图3,通过解直角△BOC 来求BC 的长度.(3)需要分类讨论:①h ≤2时,②当2<h 623≤-时,③当623<h 6-≤时.20.(2014年辽宁营口14分)已知:抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0),B (3,0),C (0,﹣3). (1)求抛物线的表达式及顶点D 的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC 与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.【答案】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3),∴9a3b c0a b c0c3++=⎧⎪++=⎨⎪=-⎩,解得a1b4c3=-⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为y=﹣x2+4x﹣3.∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点D的坐标为(2,1).(2)存在.设直线BC的解析式为:y=kx+m,则3k m0m3+=⎧⎨=-⎩,解得k1m3=⎧⎨=-⎩.设P(x,﹣x2+4x﹣3),则F(x,x﹣3),∴PF=(﹣x2+4x﹣3)﹣(x﹣3)=﹣x2+3x=239x24⎛⎫--+⎪⎝⎭.∴当x=32时,PF有最大值为94.∴存在一点P,使线段PE的长最大,最大值为94.(3)∵A(1,0)、B(3,0)、D(2,1)、C(0,﹣3),∴可求得直线AD的解析式为:y=x﹣1;直线BC的解析式为:y=x﹣3.∴AD ∥BC ,且与x 轴正半轴夹角均为45°. ∵AF ∥y 轴,∴F (1,﹣2),∴AF =2.①当0≤t ≤2时,如答图1所示.此时四边形AFF ′A ′为平行四边形. 设A ′F ′与x 轴交于点K ,则AK =2AA ′=2t .∴S =S ▱AFF ′A ′=AF •AK =2×2t =2t . ②当2<t ≤22时,如答图2所示.设O ′C ′与AD 交于点P ,A ′F ′与BD 交于点Q , 则四边形PC ′F ′A ′为平行四边形,△A ′DQ 为等腰直角三角形. ∴S =S ▱PC ′F ′A ′﹣S △A ′DQ =()221121t 2t 2t 122⋅--=-++.③当22<t ≤32时,如答图3所示.设O ′C ′与BD 交于点Q ,则△BC ′Q 为等腰直角三角形. ∵BC =32,CC ′=t ,∴BC ′=32﹣t .∴S =S △BC ′Q =()221132t t 32t 922-=-+. 综上所述,S 与t 的函数关系式为:()()()222t 0t 21S t 2t 12<t 2221t 32t 922<t 322⎧≤≤⎪⎪⎪=-++≤⎨⎪⎪-+≤⎪⎩ .【考点】1.二次函数综合题;2.单动点和面动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二函数的性质;6.由实际问题列函数关系式;7.分类思想和转换思想的应用. 【分析】(1)应用待定系数法即可求得抛物线的解析式,然后化为顶点式即可求得顶点的坐标. (2)先求得直线BC 的解析式,设P (x ,﹣x 2+4x ﹣3),则F (x ,x ﹣3),根据PF 等于P 点的纵坐标﹣F 点的纵坐标即可求得PF 关于x 的函数关系式,从而求得P 的坐标和PF 的最大值. (3)在运动过程中,分三种情形,需要分类讨论,避免漏解.21.(2014年四川资阳12分)如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x =1.。
2023年九年级中考数学频考点突破--反比例函数动态几何问题
2023年中考数学频考点突破--反比例函数动态几何问题1.如图,在第一象限内有一点A(4,1),过点A作AB⊥x轴于B点,作AC⊥y轴于C点,点N为线段AB上的一动点,过点N的反比例函数y=nx交线段AC于M点,连接OM,ON,MN.(1)若点N为AB的中点,则n的值为;(2)求线段AN的长(用含n的代数式表示);(3)求⊥AMN的面积等于14时n的值.2.如图,一次函数y=2x−2的图与y轴分别交于点A,且反比例函数y=4x的图象在第一象限内的交点为M.(1)求点M的坐标.(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由。
3.如图,在矩形ABCD中,已知点A(2,1),且AB=4,AD=3,把矩形ABCD的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=kx(x>0)的图象为曲线L.(1)若曲线L过AB的中点.①求k的值.②求该曲线L下方(包括边界)的靓点坐标.(2)若分布在曲线L上方与下方的靓点个数相同,求k的取值范围.4.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=kx(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=k x(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.5.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=k x(k≠0)的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(− 2,n).(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(√3,1)在反比例函数y=k x 的图象上.(1)求反比例函数y=kx的表达式;(2)在x轴上是否存在一点P,使得S⊥AOP=12S⊥AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.7.如图,Rt△ABC中,∠ACB=90∘,顶点A,B都在反比例函数y=k x(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45∘,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.8.如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(1,m),与x轴交于点B.平行于x轴的直线y=n(0<n<8)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)当n为何值时,△BMN的面积最大?9.如图,在平面直角坐标系xOy中,双曲线y1=k x与直线y2=mx+n交于点A,E,AE交x轴于点C,交y轴于点D,AB⊥x轴于点B,C为OB中点.若D点坐标为(0,﹣2),且S⊥AOD=4(1)求双曲线与直线AE的解析式;(2)写出E点的坐标;(3)观察图象,直接写出y1≥y2时x的取值范围.10.如图,将一张Rt△ABC纸板的直角顶点放在C(2,1)处,两直角边BC,AC分别与x,y轴平行( BC>AC),纸板的另两个定点A,B恰好是直线y1=kx+5与双曲线y2=m x(m> 0)的交点.(1)求m和k的值;(2)将此Rt△ABC纸板向下平移,当双曲线y2=mx(m>0)与Rt△ABC纸板的斜边所在直线只有一个公共点时,求Rt△ABC纸板向下平移的距离.11.如图,在平面直角坐标系中,正六边ABCDEF的对称中心P在反比例函数y=k x(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上.已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q.求点Q的横坐标.12.如图1,在平面直角坐标系中,直线AB与反比例函数y=k x(x>0)的图象交于点A (1,3)和点B (3,n),与x轴交于点C,与y轴交于点D.(1)求反比例函数的表达式及n的值;(2)将⊥OCD沿直线AB翻折,点O落在第一象限内的点E处,EC与反比例函数的图象交于点F.①请求出点F的坐标;②在x轴上是否存在点P,使得⊥DPF是以DF为斜边的直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.13.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.14.已知正比例函数y1=ax的图象与反比例函数y2=6−ax的图象交于A,B两点,且A点的横坐标为﹣1.(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,当x取何值时,反比例函数的值大于正比例函数的值.(3)点M(m,n)是反比例函数图象上一动点,其中0<n<3,过点M作MD⊥y轴交x轴于点D,过点B作BC⊥x轴交y轴于点C,交直线MD于点E,当四边形OMEB面积为3时,请判断DM 与EM大小关系并给予证明.15.如图,在平面直角坐标系中,一次函数y1=−x+2与反比例函数y2=k x(x<0)相交于点B,与x轴相交于点A,点B的横坐标为-2.(1)求k的值;(2)直接写出当x<0且y1<y2时,x的取值范围;=k x(x<0)的(3)设点M是直线AB上的一点,过点M作MN//x轴,交反比例函数y2图象于点N.若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.16.如图,一次函数y=﹣x+4的图象与反比例y=k x(k为常数,且k≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.答案解析部分1.【答案】(1)2(2)解:由(1)可知:x A=x B=x N=4,∵点N在y=nx上,∴y N=nx N=n4,∴AN=AB-BN= 1−n 4,故线段AN的长为1−n 4(3)解:由(2)可知:AN= 1−n 4,∵点A(4,1),AC⊥y轴,交y=nx于点M,∴y A=y M=1,AC=x N=4,则x M=ny M=n,即CM=x M=n,∴AM=AC-CM=4-n,∵AC⊥y轴,AB⊥x轴,∴四边形OBAC为矩形,∴⊥A=90°,∴S⊥AMN= 12×AN×AM = 12(1−n4)×(4−n)= 18n2−n+2,又⊥AMN的面积等于1 4,∴18n2−n+2=14,解得:n=4±√2,又AN= 1−n4>0,∴n<4,∴n=4−√2,故n的值为4−√2【知识点】反比例函数图象上点的坐标特征;反比例函数-动态几何问题【解析】【解答】解:(1)∵A(4,1),AB⊥x轴于点B,交y=nx于点N,∴x A=x B=x N=4,AB=1,又∵点N为AB中点,∴BN= 12AB=12,即y N=12,∴n=x N×y N=4× 12=2,故n=2;【分析】(1)根据题意求出x A=x B=x N=4,AB=1,再求出y N= 12,最后计算求解即可;(2)根据题意求出y N=nx N=n4,再求出AN=AB-BN= 1−n4,即可作答;(3)根据题意求出y A=y M=1,AC=x N=4,再求出四边形OBAC为矩形,最后利用三角形的面积公式计算求解即可。
2023年中考数学高频考点专题训练-- 二次函数与动态几何问题
2023年中考数学高频考点专题训练--二次函数与动态几何问题一、综合题1.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E,连接AE.求⊥PAE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.2.如图(1),在平面直角坐标系中,点A、C分别在y轴和x轴上,AB⊥x轴,cosB= 35.点P从B点出发,以1cm/s的速度沿边BA匀速运动,点Q从点A出发,沿线段AO−OC−CB匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t (s),⊥BPQ的面积为S(cm2),已知S与t之间的函数关系如图(2)中的曲线段OE、线段EF与曲线段FG.(1)点Q的运动速度为cm/s,点B的坐标为;(2)求曲线FG段的函数解析式;(3)当t为何值时,⊥BPQ的面积是四边形OABC的面积的1 10?3.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣83),与x轴交于A、B两点.(1)求抛物线的解析式;(2)连接AC,E为直线AC上一点,当⊥AOC⊥⊥AEB时,求点E的坐标和AEAB的值.(3)点F(0,y)是y轴上一动点,当y为何值时,√55FC+BF的值最小.并求出这个最小值.4.如图,在矩形ABCD中,AB=8cm,BC=6cm,动点E从点A出发.以2cm/s的速度沿射线AD 方向运动,以AE为底边,在AD的右侧作等腰直角角形AEF,当点F落在射线BC上时,点E停止运动,设⊥AEF与矩形ABCD重叠部分的面积为S,运动的时间为t(s).(1)当t为何值时,点F落在射线BC上;(2)当线段CD将⊥AEF的面积二等分时,求t的值;(3)求S与t的函数关系式;(4)当S=17时,求t的值.5.如图,直线l:y=﹣12x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD⊥x轴交l于点D,PE⊥y轴交l于点E,求PD+PE的最大值;(3)设F为直线l上的点,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.6.已知函数y= {x2+nx+n,(x≥n)−12x2+n2x+n2,(x<n)(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值②求此函数的最大值(2)已知线段AB的两个端点坐标分别为4(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4时,求n的取值范围.7.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在抛物线A、C两点之间有一点F,使⊥FAC的面积最大,求F点坐标;(3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.8.已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒√5个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将⊥AEF沿EF翻折,使点A落在点D处,得到⊥DEF.①是否存在某一时刻t,使得⊥DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设⊥DEF与⊥ABC重叠部分的面积为S,求S关于t的函数关系式;9.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣45x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出⊥EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=﹣x2+bx+c的图象经过A(1,0),B(0,﹣3)两点.(1)求这个抛物线的解析式及顶点坐标;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求⊥ABC的面积.(3)在抛物线的对称轴上是否存在一点P,使得O、B、C、P四点为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与⊥COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出⊥BDA的度数.12.抛物线y=ax2+bx+2交x轴于A(1,0)、B(3,0)两点,交y轴于点C,点P为线段BC下方抛物线上一动点,连接BP,CP.(1)求抛物线解析式;(2)在点P移动过程中,ΔBPC的面积是否存在最大值?若存在,求出最大面积及点P的坐标,若不存在,请说明理由;(3)设点D为CB上不与端点重合的一动点,过点D作线段BC的垂线,交抛物线于点E,若ΔDCE与ΔBOC相似,请直接写出点E的坐标.13.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+ 32与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.(1)如图1,求抛物线的顶点坐标;(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ 于F、G两点,当点F是PG中点时,求点P的坐标.14.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得⊥BDM的周长为最小,并求⊥BDM 周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得⊥PAD的面积最大?若存在,请求出⊥PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.15.如图,抛物线L:y=12x2−54x−3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D,求PD+BD的最大值,并求出此时点P的坐标;(3)如图2,将抛物线L:y=12x2−54x−3向右平移得到抛物线L′,直线AB与抛物线L′交于M,N两点,若点A是线段MN的中点,求抛物线L′的解析式.16.如图,抛物线y=﹣13x2﹣13x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)解:∵抛物线y =ax 2+bx+3经过A (﹣3,0)、B (1,0)两点,∴{9a −3b +3=0a +b +3=0 ,得{a =−1b =−2,∴抛物线解析式为y =﹣x 2﹣2x+3=﹣(x+1)2+4, ∴抛物线的顶点坐标为(﹣1,4),即该抛物线的解析式为y =﹣x 2﹣2x+3,顶点D 的坐标为(﹣1,4) (2)解:设直线AD 的函数解析式为y =kx+m , {−3k +m =0−k +m =4,得{k =2m =6, ∴直线AD 的函数解析式为y =2x+6,∵点P 是线段AD 上一个动点(不与A 、D 重合), ∴设点P 的坐标为(p ,2p+6), ∴S ⊥PAE =−p⋅(2p+6)2=﹣(p+32)2+94,∵﹣3<p <﹣1,∴当p =﹣32时,S ⊥PAE 取得最大值,此时S ⊥PAE =94,即⊥PAE 面积S 的最大值是94;(3)解:抛物线上存在一点Q ,使得四边形OAPQ 为平行四边形, ∵四边形OAPQ 为平行四边形,点Q 在抛物线上, ∴OA =PQ , ∵点A (﹣3,0), ∴OA =3, ∴PQ =3,∵直线AD 为y =2x+6,点P 在线段AD 上,点Q 在抛物线y =﹣x 2﹣2x+3上, ∴设点P 的坐标为(p ,2p+6),点Q (q ,﹣q 2﹣2q+3), ∴{q −p =32p +6=−q 2−2q +3, 解得,{p =−5+√7q =−2+√7或{p =−5−√7q =−2−√7(舍去),当q =﹣2+√7时,﹣q 2﹣2q+3=2√7﹣4, 即点Q 的坐标为(﹣2+√7,2√7﹣4).2.【答案】(1)4;(18,8)(2)解: 如图过点Q 作QM⊥AB 于点M ,过点B 作BG⊥x 轴于点G∴四边形AOGB 是矩形 ∴AO=BG=8,AB=OG=18 CG=18-12=6 ∴BC=√82+62=10 ∴AO+CO+BC=30 BP=t ,BQ=30-4t∴QM=45(30-4t )=24-165t∴S ⊥PBQ =12t (24−165t )=−85t 2+12t∴ 曲线FG 段的函数解析式 S=−85t 2+12t (5≤t≤7.5);(3)解: ∵S 梯形ABCO =(12+18)×82=120∵ ⊥BPQ 的面积是四边形OABC 的面积的 110∴⊥BPQ 的面积等于120÷=12 当t >2时,点F (5,20)∴直线EF 的函数解析式为:S=4t , 当S=12时,4t=12 解之:t=3,当S=12时, −85t 2+12t =12解之:t 1=15+√1054,t 2=15−√1054∵5≤t≤7.5 ∴t =15+√1054综上所述,当t=3或t =15+√1054时, ⊥BPQ 的面积是四边形OABC 的面积的 110。
动态几何中的函数问题--学生版
在现实世界中,处处都有运动,我们常说“运动是绝对的,静止是相对的”。
在数学学习中我们也研究动态的几何问题。
运动的对象有点、线、角等几何图形;运动形式有平移、旋转、折叠等。
由于动态的几何问题有较强的综合性,近几年成为了中考试卷压轴题的热门。
例1、如图,在△ABC中,AB=AC=5,BC=6。
点D是边AB上的点,DE//BC交AC于点E。
(1)求△ABC的面积;(2)若点D在AB上移动(D不与A、B重合),以DE为边,在点A的下方作正方形DEFG。
设AD=x,△ABC与正方形DEFG重叠部分的面积为S,试求S关于x的函数关系式,并写出定义域;(3)在(2)中,连结BG。
当△BDG是等腰三角形时,请直接写出AD的长。
小结:例1是一个典型的几何动态问题,我们来梳理动态几何问题的基本题型结构以及相应解决问题的策略和方法。
(1)问题结构这类问题的突出特点是给出一个几何图形,使图形中某些元素的相对位置变化,但某种位置关系(如平行、垂直、保持某种角度等)不变,或者保持某种数量关系不变,探求某两个元素间的函数关系。
这是用函数思想研究动态图形的典型问题。
从问题的层次来看,一般有三个层次:→问题起点:静止的定态,即针对背景图形,解决常规问题;→一般化:按某一规则运动的动态,求变量之间的关系,通常建立函数模型;→特殊化:求特殊位置关系和特殊值的静态,常常寻找等量关系,建立方程模型求解。
(2)方法策略静→充分观察研究静止的背景图形,挖掘隐含条件,为后面解决动态问题减少障碍;动→用运动与变化的眼光去观察和研究图形,以“不变”应“万变”,寻找动态元素的变化规律,从而建立函数关系;静→通过进一步几何推理,进行变化过程中特殊状态下几何元素间关系的挖掘和使用,寻找特殊状态下的等量关系建立方程;而由于运动过程中出现特殊状态的瞬间不止一个,因此通常要进行分类讨论,找到恰当的分类标准进行分类讨论,分析相应的静止图形,以静制动,各个击破。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
中考数学《二次函数-动态几何问题》专项练习及答案
中考数学《二次函数-动态几何问题》专项练习及答案一、单选题1.如图1,在△ABC中,△B=90°,△C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2 √3D.4 √32.如图,在四边形DEFG中,△E=△F=90°,△DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2,将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是()A.B.C.D.3.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大4.下列函数属于二次函数的是()A.y=5x+3B.y=1x2C.y=2x2+x+1D.y=√x2+15.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣26.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.7.如图,菱形ABCD的边长为2,△A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH△BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.8.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣29.如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F 是线段AB上的动点,设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是()A.B.C.D.10.如图,在△ABC中,△ACB=90°,AC=4,BC=2.P是AB边上一动点,PD△AC于点D,点E 在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小11.将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为()A.y=-2(x+1)2+3 B.y=-2(x+1)2-3C.y=-2(x-1)2+3 D.y=-2(x-1)2-312.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且△APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题13.如图,在Rt△ABC中,△C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE△AB 交边BC于点E,过点B作BF△BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE 和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF 的长度为.14.已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
2023年中考数学高频考点专题训练--二次函数与动态几何综合题
2023年中考数学高频考点专题训练--二次函数与动态几何综合题1.如图,已知抛物线y=−43x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.2.如图,抛物线y= 12x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求∥PCE面积最大时P点的坐标;(3)在(2)的条件下,若点D为OA的中点,点M是线段AC上一点,当∥OMD为等腰三角形时,连接MP、ME,把∥MPE沿着PE翻折,点M的对应点为点N,直接写出点N的坐标.3.已知抛物线y=−12x2+mx+m+12与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,−52),点P为抛物线在直线AC上方图象上一动点.(1)求抛物线的解析式;(2)求∥PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个交点,求图象M的顶点横坐标n的取值范围.4.如图,抛物线y= −14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52).直线y=kx−32过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y= −14x2+bx+c与直线y=kx −32的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE∥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN∥AD于点N,设∥PMN的周长为l,点P的横坐标为x,求l与x 的函数关系式,并求出l的最大值.5.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P是直线BC下方的抛物线上一点,且S∥PBC=2S∥ABC时,求点P的坐标;(3)点P(﹣2,﹣3),点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使∥MNO为等腰直角三角形,且∥MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∥AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∥APO=∥CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得∥MAD∥∥AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C 在x轴的下方,且OA=OC=5.(1)求抛物线对应的函数解析式;(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F 为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.10.综合与探究如图,已知抛物线y=ax2+2x+c(a≠0)与x轴负半轴交于点A(−1,0),与y轴交于点C(0,3),抛物线的顶点为D,直线y=x+b与抛物线交于A,F两点,过点D作DE∥y轴交直线AF于点E.(1)求抛物线和直线AF的解析式;(2)在直线AF上方的抛物线上有一点P,使S△PAE=3S△PDE,求点P的坐标;(3)若点M为抛物线上一动点,试探究在直线AF上是否存在一点N,使得以D,E,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的对称轴为x=2,与y轴交于点A与x轴交于点E、B,且点A(0,5),B(5,0),过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的点,且在AC的上方,作PD平行于y轴交AB于点D.(1)求二次函数的解析式;(2)当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)在抛物线上是否存在点Q,使得以点A、C、D、Q为顶点的四边形为平行四边形,如果存在,请写出点Q,D的坐标,如果不存在,请说明理由.12.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.13.已知抛物线y=−12x2+32x+2,与x轴交于两点A,B(点A在点B的左侧),与y轴交于点C.(1)求点A,B和点C的坐标;(2)已知P是线段BC上的一个动点.①若PQ⊥x轴,交抛物线于点Q,当BP+PQ取最大值时,求点P的坐标;②求√2AP+PB的最小值.14.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE ⊥x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.15.如图,抛物线y=12x2+32x+2与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标.(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN∥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt∥COB 相似时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM∥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN∥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:将A(0,4),B(3,0)代入抛物线的解析式得:{c=4−12+3b+c=0,解得:b=83,c=4.∴抛物线的解析式为:y=−43x2+83x+4.(2)解:①如图1所示:∵令y=0,−43x2+83x+4=0解得:x1=−1,x2=3,∴C(−1,0).∴BC=4,AB=√32+42=5.∵D、E分别为AC、AB的中点,∴DE//BC.∴ADDC=AFFO=1.∴PQ=FO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当PQQN=ABCB或POQN=CBAB时,△PQN与△ABC相似.∵当PQQN=ABCB时,2QN=54,解得:QN=8 5.∵QNQB=OAAB=45,∴QB=54QN=54×85=2.∴OQ=3−2=1.∴点P的坐标为(1,2).当PQQN=CBAB时,2QN=45,解得:QN=2.5.∵QNQB=OAAB=45,∴QB=54QN=54×52=258.∴OB−BQ=−1 8,∴点P的坐标为(−18,2).综上所述点P的坐标为:(1,2)或(−18,2).②如图2所示:∵PQ=QN,PQ=2,∴QN=2.∵QN⊥AB,∴∠QNB=90°,∵由(2)可知OA=4,AB=5,∴sin∠ABO=4 5.∴QNQB=45,即2QB=45,解得:QB=52.∴OQ =OB −QB =3−52=12. ∴P(12,2) .2.【答案】(1)解:根据题意得:{c =−42+2b +c =0 , 解得: {b =1c =−4,所以该抛物线的解析式为:y= 12x 2+x ﹣4;(2)解:令y=0,即 12 x 2+x ﹣4=0,解得x 1=﹣4,x 2=2,∴A (﹣4,0),S ∥ABC = 12 AB•OC=12设P 点坐标为(x ,0),则PB=2﹣x . ∵PE∥BC ,∴∥BPE=∥BAC ,∥BEP=∥BCA , ∴∥PBE∥∥BAC ,∴S △PBE S △ABC=( PB AB )2,即 S△PBE 12 =( 2−x 6 )2,化简得:S ∥PBE = 13(2﹣x )2. S ∥PCE =S ∥PCB ﹣S ∥PBE = 12 PB•OC ﹣S ∥PBE = 12 ×(2﹣x )×4﹣ 13 (2﹣x )2=﹣ 13 x 2﹣ 23 x+ 83 =﹣ 13 (x+1)2+3∴当x=﹣1时,S ∥PCE 的最大值为3. (3)解:由(2)已知A (﹣4,0), ∵点D 为0A 中点, ∴D (﹣2,0),设直线AC 的解析式为y=mx+n ,把A (﹣4,0)、C (0,﹣4)分别代入得: {−4m +n =0n =−4 ,解得 {m =−1n =−4 ,∴直线AC 的解析式为y=﹣x ﹣4.∵PE∥AC ,所以可设直线PE 的解析式为y=﹣x+a , 将P (﹣1,0)代入y=﹣x ﹣a 得a=﹣1,所以直线PE 的解析式为y=﹣x ﹣1. 设直线BC 的解析式为y=kx+a′,将B (2,0)、C (0,﹣4)代入y=kx+a′得 {2k +a′=0a′=−4 ,解得k=2,a′=﹣4.所以直线BC 的解析式为y=2x ﹣4.由2x ﹣4=﹣x ﹣1得x=1,将x=1代入y=2x ﹣4得y=﹣2, ∴E 点坐标为(1,﹣2). ①当MD=OD 时,如图1:∵AD=MD=AD ,OA=OC ,∥DAM=∥OAC , ∴∥ADM∥∥AOC ,∴∥ADM=∥AOC=90°,即DM∥x 轴,∴M 的横坐标为﹣2,将x=﹣2代入y=﹣x ﹣4,得y=﹣2. 所以此时M 的坐标为(﹣2,﹣2); ∵M 和E 点纵坐标相等, ∴ME∥x 轴, ∴∥PEM=45°.由翻折得∥ENM=2∥PEM=90°,即NE∥y 轴, ∴EN=ME=3, ∵E (1,﹣2), ∴N (1,1).②当DM=OM 时,过点M 作MG∥x 轴交于点,如图2:易知DG=OG=1,即G点与P点重合,M的横坐标为﹣1,将x=﹣1代入y=﹣x﹣4,得y=﹣3.∴M(﹣1,﹣3).∵ME= √(−1−1)2+(−3+2)2= √5,EB= √(1−2)2+22= √5,∴ME=EB,∵PB=3,PM=3,即PB=PM,又∵PE=PE,∴∥BPE∥∥MPE,∴∥BEP=∥MEP,∴点N与点B重合,∴N(2,0);③当OD=OM时,设点O到AC的最短距离为h,则OA•OC=h•AC∵AC= √OA2+OC2= √42+42=4 √2,∴h= 4×44√2=2 √2,∵h>OD,∴OD≠OM.此时等腰∥OMD不存在.综上所述,N点的坐标分别为(1,1)或(2,0).3.【答案】(1)解:将点C(0,−52)代入抛物线解析式得:m+12=−52,解得:m=−3,∴抛物线解析式为:y=−12x2−3x−52;(2)解:∵抛物线与x轴交于A、B两点,∴令0=−12x2−3x−52,解得:x1=−5,x2=−1,∴A、B坐标分别为:A(−5,0),B(−1,0),设直线AC的解析式为:y=kx+b(k≠0),将A(−5,0)和C(0,−52)代入得:{−5k+b=0b=−52,解得:{k=−12b=−52,∴直线AC的解析式为:y=−12x−52,如图所示,过P点作PQ∥x轴,交AC于Q点,∵P点在位于直线AC上方的抛物线上,∴设P(a,−12a2−3a−52),则Q(a,−12a−52),其中−5<a<0,∴PQ=y P−y Q=−12a2−3a−52−(−12a−52)=−12a2−52a,∵S△PAC=12PQ(x C−x A),∴S△PAC=12(−12a2−52a)×[0−(−5)]=−54(a+52)2+12516,∵−54<0,∴抛物线开口向下,当a=−52时,S△PAC取得的最大值,最大值为12516,此时,将a=−52代入抛物线解析式得:y=158,∴当P(−52,158)时,S△PAC取得的最大值,最大值为12516;(3)解:如图所示,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G .由(1)可知,原抛物线顶点坐标为(−3,2),∴沿x 轴向下翻折后,图象G 的顶点坐标为(−3,−2),图象G 的解析式为:y =12x 2+3x +52;∵图象G 沿着直线AC 平移,∴作直线BS∥AC ,交PC 于S 点,则随着平移过程,点B 在直线BS 上运动, 分如下情况讨论:①当图象G 沿直线AC 平移至B 点恰好经过S 点时,如图中M 1所示, 此时,平移后的图象M 恰好与线段PC 有一个交点,即为S 点,由(2)知,P(−52,158),以及直线AC 的解析式为y =−12x −52,∴设直线BS 的解析式为:y =−12x +b ,将B(−1,0)代入得:b =−12,∴直线BS 的解析式为:y =−12x −12;设直线PC 的解析式为:y =kx +b(k ≠0),将P(−52,158),C(0,−52)代入得:{−52k +b =158b =−52,解得:{k =−74b =−52,∴直线PC 的解析式为:y =−74x −52;联立{y =−12x −12y =−74x −52,解得:{x =−85y =310,即:S 点的坐标为S(−85,310),∴此时点B(−1,0)平移至S(−85,310),等同于向左平移35个单位,向上平移310个单位,即:当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向左平移35个单位,向上平移310个单位, ∵原图像G 的顶点坐标为:(−3,−2), ∴平移后图象M 1的顶点的横坐标n =−3−35=−185; ②当图象G 沿直线AC 平移至恰好经过C 点时,如图中M 2所示,设图象G 与直线AC 的交点为R ,联立{y =12x 2+3x +52y =−12x −52,解得:{x =−5y =0或{x =−2y =−32, ∴点R 的坐标为:R(−2,−32),由R(−2,−32)平移至C(0,−52),等同于向右平移2个单位,向下平移1个单位,∴当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向右平移2个单位,向下平移1各单位,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 2的顶点的横坐标n =−3+2=−1;∴当图象G 在M 1和M 2之间平移时,均能满足与线段PC 有且仅有一个交点, 此时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1; ③当图象G 沿直线AC 平移至A 点恰好经过C 点时,如图中M 3所示,此时,由A(−5,0)平移至C(0,−52),等同于向右平移5个单位,向下平移52个单位,即:原图像G 向右平移5个单位,向下平移52个单位,得到图象M 3,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 3的顶点的横坐标n =−3+5=2;综上所述,当新的图象M 与线段PC 只有一个交点时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1或n =2. 4.【答案】(1)解:∵y= −14x 2+bx+c 经过点A (2,0)和B (0, 52 ),∴由此得 {−1+2b +c =0c =52, 解得 {b =−34c =52. ∴抛物线的解析式是y= −14x 2﹣ 34 x+ 52 ,∵直线y=kx ﹣ 32 经过点A (2,0)∴2k ﹣ 32 =0,解得:k= 34,∴直线的解析式是y= 34 x ﹣ 32(2)解:设P 的坐标是(x , −14 x 2﹣ 34 x+ 52 ),则M 的坐标是(x , 34 x ﹣ 32 )∴PM=( −14 x 2﹣ 34 x+ 52 )﹣( 34 x ﹣ 32 )=﹣ 14 x 2﹣ 32 x+4,解方程 {y =−14x 2−34x +52y =34x −32得: {x =−8y =−712, {x =2y =0 , ∵点D 在第三象限,则点D 的坐标是(﹣8,﹣7 12 ),由y= 34 x ﹣ 32得点C 的坐标是(0,﹣32), ∴CE=﹣ 32 ﹣(﹣7 12)=6,由于PM∥y 轴,要使四边形PMEC 是平行四边形,必有PM=CE ,即﹣ 14 x 2﹣ 32 x+4=6解这个方程得:x 1=﹣2,x 2=﹣4, 符合﹣8<x <2,当x=﹣2时,y=﹣ 14 ×(﹣2)2﹣ 34 ×(﹣2)+ 52=3,当x=﹣4时,y=﹣ 14 ×(﹣4)2﹣ 34 ×(﹣4)+ 52= 32 ,因此,直线AD 上方的抛物线上存在这样的点P ,使四边形PMEC 是平行四边形,点P 的坐标是(﹣2,3)和(﹣4, 32) (3)解:在Rt∥CDE 中,DE=8,CE=6 由勾股定理得:DC= √82+62 ∴∥CDE 的周长是24, ∵PM∥y 轴, ∵∥PMN=∥DCE , ∵∥PNM=∥DEC , ∴∥PMN∥∥CDE ,∴△PMN 的周长△CDE 的周长 = PM DC ,即 l 24 = −14x 2−32x+410, 化简整理得:l 与x 的函数关系式是:l=﹣ 35 x 2﹣ 185 x+ 485,l=﹣ 35 x 2﹣ 185 x+ 485 =﹣ 35(x+3)2+15,∵﹣ 35<0,∴l 有最大值,当x=﹣3时,l 的最大值是15.5.【答案】(1)解:∵y =ax 2+bx+2(a≠0)与x 轴交于A (﹣1,0)、B (4,0), ∴{a −b +2=016a +4b +2=0 ,解得 {a =−12b =32 , ∴抛物线的解析式为:y =−12 x 2+32x+2.(2)解:∵A (﹣1,0)、B (4,0), ∴AB =5,由抛物线的解析式可得,C (0,2),∴OC =2,l BC :y =−12x+2.∴S ∥PBC =2S ∥ABC =2 ×12•AB•OC =5×2=10.在x 轴上取点M (﹣6,0),则MB =10,∴S ∥MBC =12 •MB•OC =12×2×10= 10.过点M 作BC 的平行线MN ,交抛物线于点P 1,P 2,∴l MN :y =−12 x ﹣3.联立 {y =−12x 2+32x +2y =−12x −3, 解得 {x =2+√14y =−4−√142 ,或 {x =2−√14y =−4+√142,∴P 1(2 +√14 ,﹣4 −√142 ),P 2(2 −√14 ,﹣4 +√142).(3)解:由抛物线解析式可得,抛物线对称轴为直线x =32.∵点F 是抛物线对称轴上一点, ∴设点F 的坐标为( 32,t ).若以点B 、P 、E 、F 为顶点的四边形是平行四边形,需要分以下两种情况: ①当BP 为边时,如图,由平行四边形的性质可知,E1(32+6,t+3),E2(32−6,t﹣3),∵点E在抛物线y =−12x2+32x+2上,∴t+3 =−12×(32+6)2+32×(32+6)+2,解得t =−1438,t﹣3 =−12×(32−6)2+32×(32−6)+2,解得t =−1378,∴F的坐标为(32,−1438)或(32,−1378).②当BP为对角线时,BP的中点为(1,−3 2),∵F(32,t),∴E(−12,﹣t﹣3),∴﹣t﹣3 =−12×(−12)2+32×(−12)+2,解得t =−338,∴F(32,−338).综上,点F的坐标为(32,−1438)或(32,−1378)或(32,−338).6.【答案】(1)解:抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=- 2 3,故抛物线的表达式为:y=- 23x2- 43x+2,则点C(0,2),函数的对称轴为:x=1(2)解:连接OP,设点P(x,- 23x2- 43x+2),则S=S四边形ADCP=S∥APO+S∥CPO-S∥ODC= 12×AO×y P+ 12×OC×|x P|- 12×CO×OD = 12×3×(- 23x2- 43x+2) +12×2×(-x)- 12×2×1=-x2-3x+2,∵-1<0,故S有最大值,当x=- 32时,S的最大值为174(3)解:存在,理由:∥MNO为等腰直角三角形,且∥MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(∥M1N1O):设点N1的坐标为(x,- 23x2- 43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∥FN1O+∥M1N1E=90°,∥M1N1E+∥EM1N1=90°,∴∥EM1N1=∥FN1O,∥M1N1E=∥N1OF=90°,ON1=M1N1,∴∥M1N1E∥∥N1OF(AAS),∴M1E=N1F,即:x+1=- 23x2- 43x+2,解得:x=−7±√734(舍去负值),则点N1( −7+√734,−3+√734);N2的情况(∥M2N2O):同理可得:点N 2( −1−√734 , −3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4,同理可得:点N 3、N 4的坐标分别为:( −7−√734 , −3−√734 )、( −1+√734 , −3−√734); 综上,点N 的坐标为:( −7+√734 , −3+√734 )或( −1−√734 , −3+√734 )或( −7−√734, −3−√734 )或( −1+√734 , −3−√734). 7.【答案】(1)解:令 4x −12=2x 2−8x +6 ,解得 x 1=x 2=3 ,当 x =3 时, 4x −12=2x 2−8x +6=0 ,∴y =ax 2+bx +c 必过 (3,0) ,又∵y =ax 2+bx +c 必过 (−1,0) ,∴{a −b +c =09a +3b +c =0,⇒,{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,即 4x −12≤ax 2−2ax −3a ,即可看成二次函数 y =ax 2−2ax −3a 与一次函数 y =4x −12 仅有一个交点,且整体位于 y =4x −12 的上方∴a >0 ,∴ 4x −12=ax 2−2ax −3a 有两个相等的实数根∴ Δ=0∴(2a +4)2−4a(12−3a)=0 ,∴(a −1)2=0 ,∴a =1 ,∴b =−2 , c =−3 ,∴y =x 2−2x −3 .(2)解:由(1)可知: A(3,0) , C(0,−3) ,设 M(m ,m 2−2m −3),N(n ,0) ,①当 AC 为对角线时, {x A +x C =x M +x N y A +y C =y n +y N∴{3+0=m +n 0+(−3)=m 2−2m −3+0,解得 m 1=0 (舍), m 2=2 , ∴n =1 ,即 N 1(1,0) .②当AM为对角线时,{x A+x M=x C+x Ny A +yM=yC+yN∴{3+m=0+n0+m2−2m−3=−3+0,解得m1=0(舍)m2=2,∴n=5,即N2(5,0).③当AN为对角线时,{x A+x N=x C+x My A +yN=yC+yM∴{3+n=0+m0+0=−3+m2−2m−3,解得m1=1+√7,m2=1−√7,∴n=√7−2或n=−2−√7,∴N3(√7−2,0),N4(−2−√7,0).综上所述:N点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).8.【答案】(1)解:过点A作AD∥OB于点D,过点C作CE∥OB于点E,∵AO=AB,∴AD是∥AOB的中线,∴OD= 12OB=2,∵tan∥AOB=2,∴ADOD=2,∴AD=4,∵CE∥AD,点C是AO的中点,∴CE是∥AOD的中位线,∴CE= 12AD=2,OE=12OD=1,∴C的坐标为(1,2);(2)解:由(1)可知:CE=2,BE=3,A的坐标为(2,4),∴tan∥CBE= CEBE=23,∵∥APO=∥CBO,∴tan∥APO=tan∥CBO= 23, ∴AD PD = 23, ∴PD=6,设P 的坐标为(x ,0),∵D (2,0),∴PD=|x ﹣2|,∴|x ﹣2|=6,∴x=8或x=﹣4,∴P (8,0)或(﹣4,0);当P 的坐标为(8,0)时,把A (2,4)和(8,0)代入y=ax 2+bx ,∴{4=4a +b 0=64a +8b, 解得: {a =−13b =83, ∴抛物线的解析式为:y=﹣ 13 x 2+ 83x , 当P 的坐标为(﹣4,0)时,把A (2,4)和P (﹣4,0)代入y=ax 2+bx ,∴{4=4a +2b 0=16a −4b ,解得: {a =13b =43, ∴抛物线的解析式为:y= 13 x 2+ 43x , 综上所述,抛物线的解析式为:y=﹣ 13 x 2+ 83 x 或y= 13 x 2+ 43x ; (3)解:∵M 为圆心,N 为切点,∴MN∥OA ,∵D 点是A 点关于MN 的对称点,∴∥MAD 是等腰三角形,MA=MD当∥MAD∥∥AOB 时,∵∥AOB 是等腰三角形,∴∥MAD=∥AOB ,当抛物线的解析式为y=﹣ 13 x 2+ 83x 时,如图2,①若点N在A的上方时,此时∥MAN=∥AOB,∴AM∥x轴,∴M的纵坐标为4,∴把y=4代入y=﹣13x2+ 83x,解得:x=2(舍去)或x=6,∴M的坐标为(6,4),②当点N在点A的下方时,此时∥MDA=∥AOB,∴DM∥x轴,过点A作AE∥DM于点E,交于x轴于点F,设D点横坐标为a,∴DE=2-a,∵tan∥MDA=tan∥AOB=2,∴AE=2DE=4-2a,∴点M的纵坐标为2a,∴由勾股定理可知:AD= √5(2-a),OA=2 √5,∴OADM=OBAD,解2√5DM=4√5(2−a),∴DM= 5(2−a)2,设M的横坐标为x,∴x-a= 5(2−a)2∴x= 10−3a2,∴M(10−3a2,2a)把M(10−3a2,2a)代入y=﹣13x2+ 83x,得:2a=- 13×(10−3a2)2+ 83×(10−3a2)解得:a=2或a=- 10 3,∴当a=2时,M(2,4)舍去当a=- 103时,M(10,-203)当抛物线的解析式为y= 13x2+ 43x时,如图4,若点N在点A的上方时,此时∥MAN=∥AOB,延长MA交x轴于点F,∵∥MAN=∥OAF,∴∥AOB=∥OAF,∴FA=FO,过点F作FG∥OA于点G,∵A(2,4),∴由勾股定理可求得:AO=2 √5,∴OG= 12AO= √5 , ∵tan∥AOB= CF OG∴GF=2 √5 ,∴由勾股定理可求得:OF=5,∴F 的坐标为(5,0),设直线MA 的解析式为:y=mx+n ,把A (2,4)和F (5,0)代入y=mx+n ,∴{4=2m +n 0=5m +n, 解得: {m =−43n =203, ∴直线MA 的解析式为:y=﹣ 43 + 203, 联立 {y =13x 2+43x y =−43x +203, ∴解得:x=2(舍去)或x=﹣10,把x=﹣10代入y=﹣ 43 + 203, ∴y=20,∴M (﹣10,20),若点N 在点A 的下方时,此时∥MAN=∥AOB ,∴AM∥x 轴,∴M 的纵坐标为4,把y=4代入y= 13 x 2+ 43x , ∴x=﹣6或x=2(舍去),∴M (﹣6,4),综上所述,存在这样的点M (6,4)或(10,- 203)或(﹣10,20)或(﹣6,4),使得∥MAD∥∥AOB9.【答案】(1)解:由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y=x 2+bx+c 过点A ,点C ,∴{25−5b +c =0c =−5,∴抛物线对应的函数解析式为y=x 2+4x ﹣5;(2)解:∵y=x 2+4x ﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x 2+4x ﹣5与x 轴交于点A ,B ,∴点A ,B 关于直线x=﹣2对称.连结AC ,交对称轴于点P ,此时PB+PC 的值最小.设直线AC 的解析式为y=mx+n ,则 {−5m +n =0n =−5,解得 {m =−1n =−5 , ∴直线AC 的解析式为y=﹣x ﹣5,当x=﹣2时,y=﹣3,∴点P 的坐标为(﹣2,﹣3)(3)解:在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),∵四边形PEFM 为正方形,∴E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM=PE ,∴|x+2|=|x 2+4x ﹣5+3|,∴x 2+4x ﹣2=x+2,或x 2+4x ﹣2=﹣x ﹣2,整理得x 2+3x ﹣4=0,或x 2+5x=0,解得x 1=﹣4,x 2=1,x 3=0,x 4=﹣5,∴M (﹣4,﹣3)或M (1,﹣3)或M (0,﹣3)或M (﹣5,﹣3)10.【答案】(1)解:将A(−1,0)和C(0,3)代入y =ax 2+2x +c(a ≠0),得{a −2+c =0c =3,∴抛物线解析式为y=−x2+2x+3,将A(−1,0)代入y=x+b,得:-1+b=0,解得b=1,∴直线AF的解析式为y=x+1(2)解:y=−x2+2x+3=−(x−1)2+4,∴D(1,4),对于直线y=x+1,令x=1,则y=2,故E(1,2),∴DE=4-2=2.过点P作x轴的垂线,交AF于点H,过点P作PG∥AF于点G,过点P作PK∥DE于点K,连接PA和PD,如图所示:设P(m,−m2+2m+3),则H(m,m+1),∴PH=(−m2+2m+3)−(m+1)=−m2+m+2,对于直线y=x+1,令x=0,则y=1,由交点得出∥FAB=45°,∴∥PHG=45°,即∥PHG为等腰直角三角形,故有PG=√22PH=√22(−m2+m+2),延长DE交x轴于点Q,则Q(1,0),∴AQ=2,即AE=√2AQ=2√2,∴S△PAE=12AE⋅PG=12×2√2×√22(−m2+m+2)=−m2+m+2,∵P(m,−m2+m+3),K(1,−m2+m+3),∴PK=|1−m|,∴S△PDE=12DE⋅PK=12×2×|1−m|=|1−m|,由S△PAE=3S△PDE,得−m2+m+2=3|1−m|,解得m1=2−√3,m2=2+√3(不合题意,舍去),m3=−1+√6,m4=−1−√6(不合题意,舍去),将m1=2−√3代入−m2+2m+3,得−m2+2m+3=2√3,则得点P的坐标为P(2−√3,2√3);将m3=−1+√6代入−m2+2m+3,得−m2+2m+3=4√6−6,则得点P的坐标为P(−1+√6,4√6−6);综上所述,点P的坐标为P(2−√3,2√3)或P(−1+√6,4√6−6)(3)解:存在,N1(0,1),N2(2,3),N3(1+√172,3+√172),N4(1−√172,3−√172)11.【答案】(1)解:∵抛物线y=ax2+bx+c的对称轴为x=2,∴−b2a=2,∴b=−4a,∴抛物线解析式为y=ax2−4ax+c,∵点A(0,5),B(5,0),∴{c=525a−5b+c=0,∴{a=−1c=5,∴二次函数的解析式为y=−x2+4x+5;(2)解:∵AC//x轴,点A(0,5),当y=5时,−x2+4x+5=5,∴x1=0,x2=4,∴C(4,5),∴AC=4,设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),由点A、B的坐标得,直线AB的解析式为y=−x+5;设P(m,−m2+4m+5),∴D(m,−m+5),∴PD=−m2+4m+5+m−5=−m2+5m,∵AC=4,∴S四边形APCD =12AC⋅PD=2(−m2+5m)=−2(m−52)2+252∴当m=52时,四边形APCD的面积最大,∴即点P(52,354)时,四边形APCD的面积最大为252;(3)解:(3)设P(n,−n2+4n+5)则D(n,−n+5)①当AC为平行四边形的边,如图,∴AC∥DQ,AC=DQ,∴点Q的纵坐标为−n+5,又∵点Q在抛物线上,∴−x2+4x+5=−n+5,解得x=2±√4+n,∴点Q的坐标为(2+√4+n,−n+5)或(2−√4+n,−n+5),当Q点坐标为(2+√4+n,−n+5)时,∵AC =4,∴DQ =2+√4+n −n =4, ∴4+n =(n +2)2, 解得n =0或n =−3,∵点P 在第一象限,且在AC 的上方, ∴0<n <4, ∴此时不符合题意;当Q 点坐标为(2−√4+n ,−n +5)时, ∵AC =4,∴DQ =n −2+√4+n =4,∴4+n =(6−n)2,即n 2−13n +32=0解得n =13+√412或n =13−√412,∵点P 在第一象限,且在AC 的上方, ∴0<n <4,∴n =13−√412∴D 点坐标为(13−√412,√41−32),Q 点坐标为(2−√42−2√412,√41−32)②AC 为平行四边形的对角线时,如图,连接DQ 交AC 于点M , ∴AM =CM ,DM =QM , ∵A(0,5),C(4,5), ∴M 的坐标为(2,5),设点Q 的坐标为(t ,−t 2+4t +5),∴{t+n2=2−t 2+4t+5−n+52=5,解得{t =1n =3或{t =4n =0,同理可得0<n <4, ∴{t =1n =3, ∴点D 的坐标为(3,2),点Q 的坐标为(1,8);综上所述,存在Q 使得以A 、C 、D 、Q 为顶点的四边形为平行四边形,此时D 、Q 的坐标分别为(13−√412,√41−32),(2−√42−2√412,√41−32)或(3,2),(1,8). 12.【答案】(1)解:由题意得 {a −b −4a =0−4a =4 ,解得 {a =−1b =3.∴抛物线的解析式:y =﹣x 2+3x+4.(2)解:由B (4,0)、C (0,4)可知,直线BC :y =﹣x+4;如图1,过点P 作PQ//y 轴,交直线BC 于Q ,设P (x ,﹣x 2+3x+4),则Q (x ,﹣x+4);∴PQ =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;S ∥PCB = 12 PQ•OB = 12 ×(﹣x 2+4x )×4=﹣2(x ﹣2)2+8;∴当P (2,6)时,∥PCB 的面积最大; (3)解:存在.抛物线y =﹣x 2+3x+4的顶点坐标E (32,254) ,直线BC :y =﹣x+4;当 x =32 时,F (32,52) ,∴.EF =154.如图2,过点M 作MN∥EF ,交直线BC 于M ,设N (x ,﹣x 2+3x+4),则M (x ,﹣x+4);由题意点N 在第一象限,∴MN =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;当EF 与NM 平行且相等时,四边形EFMN 是平行四边形, 由﹣x 2+4x =154时,解得 x 1=52,x 2=32 (不合题意,舍去).当 x =52 时, y =−(52)2+3×52+4=214,∴N ( 52, 214 ).∴点N 坐标为( 52, 214 ).13.【答案】(1)令 y =0 ,则 −12x 2+32x +2=0 ,解得 x 1=−1 , x 2=4 .∴A 点坐标为 (−1,0) ,B 点坐标为 (4,0) . 令 x =0 ,则 y =2 . ∴C 点坐标为 (0,2) .(2)①设: l BC :y =mx +n ,将 B(4,0) , C(0,2) 分别代入得, {0=4m +n 2=n ,解得 {m =−12n =2,故 l BC :y =−12x +2 .可设 P(t,−12t +2) , 0≤t ≤4 ,则 Q(t,−12t 2+32t +2) ,且Q 在P 上方.所以 PQ =−12t 2+32t +2−(−12t +2)=−12t 2+2t .又 BP =√(4−t)2+(−12t +2)2=√52(4−t) .故 BP +PQ =√52(4−t)+(−12t 2+2t)=−12t 2+(2−√52)t +2√5 .当 t =2−√52 时取得最大值,此时 P(2−√52,1+√54) .②如图,延长AC至点D,使得CD=CB,连接BD,作DE⊥y轴于点E,过点P作PH⊥BD于点H.由AC2=12+22=5,BC2=22+42=20,AB2=(−1−4)2=25,所以AC2+BC2=AB2,∠ACB=90°.则△BDC是等腰直角三角形,∠CBD=45°.√2AP+PB=√2(AP+PBsin45°)=√2(AP+PH),由垂线段最短可知,当A,P,H共线时(AP+PH)取得最小值.∵∠BCD=∠DEC=∠COB=90°,∵∠DCE+∠BCO=∠BCO+∠CBO=90°,∴∠DCE=∠CBO.∴△CDE≌△BCO.∴DE=CO=2,CE=BO=4.可得点D的坐标为(2,6).∴BD=√(2−4)2+(6−0)2=2√10,=12BD⋅AH,代入可得12×5×6=12×2√10⋅AH,S△ABD=12AB⋅yD,故有√2AP+PB=√2(AP+PH)≥√2AH=3√5.解得AH=3√102所以√2AP+PB的最小值为3√5.14.【答案】(1)解:当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)解:∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x 2+2x+3,且C(0,3), 当x=0时,-x 2+2x+3=0, 解得x=-1,或x=3, ∴B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中,得: {3k +b =0b =3 ,解得 {k =−1b =3,∴直线AB 的解析式为y=-x+3;(3)解:点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,∴DF=-x 2+2x+3-(-x+3)=-x 2+3x= −(x −32)2+94,∴当 x =32 时,DF 最大,为 94 ,此时D 的坐标为( 32,154 ).15.【答案】(1)解:∵点A 、B 、C 在二次函数图象上 ∴把x=0代入 y =12x 2+32x +2 ,得y=2把y=0代入 y =12x 2+32x +2 ,得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),C (0,2);(2)解:设直线BC 的解析式为y=kx+b (k≠0),把B (4,0),C (0,2)代入,得 {4k +b =0b =2 , {k =−12b =2 ∴直线BC 的解析式为 y =12x +2∵OP=t∴P (t ,0),M (t ,﹣ 12 t+2),N (t ,﹣ 12 t 2+ 32 t+2),如图,∴S 1=N 1P 1﹣M 1P 1=﹣ 12 t 2+ 32 t+2﹣(﹣ 12 t+2)=﹣ 12t 2+2t (0<t <4),S2=M2P2﹣N2P2=﹣12t+2﹣(﹣12t2+ 32t+2)= 12t2﹣2t(﹣1<t<0),(3)解:如图,①若∥OPN∥∥OCB,当OP与OC是对应边时,则OPOC=NPBO,即t2=−12t2+32t+24化简得:t2+t﹣4=0,解得:t1=−1+√172,t2=−1−√172(不合题意,舍去)②若∥OPN∥∥OBC,当OP与OB是对应边时,则OPOB=PNCO,即t4=−12t2+32t+24化简得:t2﹣2t﹣4=0解得:t3=1+ √5,t4=1﹣√5(不合题意,舍去)∴符合题意的点P的坐标为(−1+√172,0)和(1+ √5,0).16.【答案】(1)解:由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax ﹣12a,即:﹣12a=4,解得:a=﹣1 3,则抛物线的表达式为y=−13x2+13x+4,(2)设点P(m,﹣13m2+ 13m+4),则点Q(m,﹣m+4),∵OB=OC,∴∥ABC=∥OCB=45°=∥PQN,PN=PQsin∥PQN=√22(﹣13m2+ 13m+4+m﹣4)=﹣√26(m﹣2)2+ 2√23,∵﹣√26<0,∴PN有最大值,当m=2时,PN的最大值为2√23.(3)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4 √2 ,∥OBC =∥OCB =45°, 将点B (4,0)、C (0,4)的坐标代入一次函数表达式:y =kx+b 得 {0=4k +b b =4 解得 {k =−1b =4∴直线BC 的解析式为y =﹣x+4…①, 设直线AC 的解析式为y=mx+n把点A (﹣3,0)、C (0,4)代入得 {0=−3m +n n =4解得 {m =43n =4∴直线AC 的表达式为:y = 43x+4,设直线AC 的中点为K (﹣ 32 ,2),过点M 与CA 垂直直线的表达式中的k 值为﹣ 34 ,设过点K 与直线AC 垂直直线的表达式为y =﹣ 34 x+q把K (﹣ 32 ,2)代入得2=﹣ 34 ×(﹣ 32 )+q解得q= 78∴y =﹣ 34 x+ 78 …②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3),②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4 √2﹣5,则QM=MB=8−5√22,故点Q(5√22,8−5√22).③当CQ=AQ时,联立①②,{y=−x+4y=−34x+78,解得,x=252(舍去),综上所述点Q的坐标为:Q(1,3)或Q(5√22,8−5√22).。
中考数学《二次函数-动态几何问题》专项练习题(带答案)
中考数学《二次函数-动态几何问题》专项练习题(带答案)一、单选题1.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤122.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)3.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣34.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.5.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3 B.1C.5D.86.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17.如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a 和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t 的函数图象大致为()A.B.C.D.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC = DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A .B .C .D .10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .11.如图,抛物线 y =−12x 2+32x +2 与x 轴交于A 、B 两点与y 轴交于点C .若点P 是线段BC 上方的抛物线上一动点,当 △BCP 的面积取得最大值时,点P 的坐标是( )A .(2,3)B .(32,258)C .(1,3)D .(3,2)12.已知点A (0,2),B (2,0),点C 在y=x 2的图象上,若△ABC 的面积为2,则这样的C 点有( ) A .1 个B .2个C .3个D .4个二、填空题13.如图,抛物线与轴交于点C,点D(0,1),点P是抛物线上在第一象限的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.14.如图,已知直线y=﹣34 x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12 x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34 x+3于点Q,则当PQ=BQ时,a的值是.15.已知抛德物线y=14x2 +1有下性质:该抛物线上任意一点到定点F(0,2)的距离与到轴的距离始终相等,如图,点M的坐标为(√2,3),P是抛物线y=14x2 +1上一个动点,则△PMF周长的最小值是.16.把抛物线y=2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是。
动态几何与函数问题(含答案)
动态几何与函数问题【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.(2)当24<<时,求S关于t的函数解析式.t【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。
很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。
其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。
脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。
第二问建立函数式则需要看出当24<<时,阴t影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。
动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。
【解】(1)由图(2)知,M点的坐标是(2,8)∴由此判断:24,;==A B O A∵N点的横坐标是4,N Q是平行于x轴的射线,∴4C O=∴直角梯形O A B C 的面积为:()()112441222A BO C O A +⋅=+⨯=..... (3分)(2)当24t <<时,阴影部分的面积=直角梯形O A B C 的面积-O D E∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S O D O E=-⋅ ∵142O D O D tO E==-,∴()24O E t =- .∴()()()21122441242St t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形A O B C 中,4O B =,3O A =.分别以O B O A ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边B C 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x=>的图象与A C 边交于点E .(1)求证:A O E △与B O F △的面积相等;(2)记O E F E C F S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将C E F △沿E F 对折后,C 点恰好落在O B 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学动态几何与函数问题【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。
很多考生看到图二的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。
其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。
脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。
第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。
动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。
【解】(1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO =∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
所以直接设点即可轻松证出结果。
第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。
于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。
第三问的思路就是假设这个点存在,看看能不能证明出来。
因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就OK.【解析】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S , 由题意得11k y x =,22k y x =.1111122S x y k ∴==,2221122S x y k ==. 12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫⎪⎝⎭,, (想不到这样设点也可以直接用X 去代入,麻烦一点而已)1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECFAOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.(将已知和所求的量放在这一对有关联的三角形当中) EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=. 222MB BF MF +=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==. ∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.【例3】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形(3)是否存在时刻t ,使得PQ ⊥BD 若存在,求出t 的值;若不存在,请说明理由。
AD图1【思路分析】 本题是一道和一元二次方程结合较为紧密的代几综合题,大量时间都在计算上。
第三讲的时候我们已经探讨过解决动点问题的思路就是看运动过程中哪些量发生了变化,哪些量没有变化。
对于该题来说,当P,Q 运动时,△BPQ 的高的长度始终不变,即为CD 长,所以只需关注变化的底边BQ 即可,于是列出函数式。
第二问则要分类讨论,牢牢把握住高不变这个条件,通过勾股定理建立方程去求解。
第三问很多同学画出图形以后就不知如何下手,此时不要忘记这个题目中贯穿始终的不动量—高,过Q 做出垂线以后就发现利用角度互余关系就可以证明△PEQ 和△BCD 是相似的,于是建立两个直角三角形直角边的比例关系,而这之中只有PE 是未知的,于是得解。
这道题放在这里是想让各位体会一下那个不动量高的作用,每一小问都和它休戚相关,利用这个不变的高区建立函数,建立方程组乃至比例关系才能拿到全分。
【解析】解: (1)如图1,过点P 作PM ⊥BC ,垂足为M ,则四边形PDCM 为矩形。
∴PM =DC =12∵QB =16-t ,∴S =12×12×(16-t)=96-t(2)由图可知:CM =PD =2t ,CQ =t 。
热以B 、P 、Q 三点 为顶点的三角形是等腰三角形,可以分三种情况。
①若PQ =BQ 。
在Rt △PMQ 中,22212PQ t =+,由PQ2=BQ2 得 22212(16)t t +=-,解得t =72; ②若BP =BQ 。
在Rt △PMB 中,222(162)12BP t =-+。
由BP2=BQ2 得:222(162)12(16)t t -+=- 即23321440t t -+=。
由于Δ=-704<0∴23321440t t -+=无解,∴PB ≠BQ …③若PB =PQ 。
由PB2=PQ2,得222212(162)12t t +=-+整理,得23642560t t -+=。
解得1216163t t ==,(舍)(想想看为什么要舍函数自变量的取值范围是多少)综合上面的讨论可知:当t =71623t =秒或秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形。
(3)设存在时刻t ,使得PQ ⊥BD 。
如图2,过点Q 作QE ⊥ADS ,垂足为E 。
由Rt △BDC ∽Rt △QPE ,得DC PE BC EQ =,即121612t =。
解得t =9 所以,当t =9秒时,PQ ⊥BD 。
【例4】在Rt△ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【思路分析】依然是一道放在几何图形当中的函数题。
但是本题略有不同的是动点有一个折返的动作,所以加大了思考的难度,但是这个条件基本不影响做题,不需要太专注于其上。
首先应当注意到的是在运动过程中DE 保持垂直平分PQ 这一条件,然后判断t 可能的范围.因为给出了AC 和CB 的长度,据此估计出运动可能呈现的状态.第一问简单不用多说,第二问做出垂线利用三角形内的比例关系做出函数.第三问尤其注意直角梯形在本题中有两种呈现方式.DE 后一问则可以直接利用勾股定理或者AQ,BQ 的等量关系去求解.解:(1)1,85;(2)作QF⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-. 由△AQF∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,图2AP 图3AP即22655S t t =-+. (3)能.①当DE∥QB 时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ∥BC 时,DE⊥BC,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC,得 AQ APAB AC=, 即353t t -=. 解得158t =. (4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =.②点P 由A 向C 运动,DE 经过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =【例5】如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.AP 图5AA(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【思路分析】本题也是一道较为典型的题。