数学:三角函数模型的简单应用(1课时)(课标版必修4)(1)
必修四三角函数模型的简单应用(附答案)
三角函数模型的简单应用[学习目标] 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.知识点一 利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化,而三角函数模型是刻画周期性问题的最优秀的数学模型.利用三角函数模型解决实际问题的具体步骤如下: (1)收集数据,画出“散点图”;(2)观察“散点图”,进行函数拟合,当散点图具有波浪形的特征时,便可考虑应用正弦函数和余弦函数模型来解决;(3)注意由第二步建立的数学模型得到的解都是近似的,需要具体情况具体分析. 思考1 三角函数的周期性y =A sin(ωx +φ) (ω≠0)的周期是T =2π|ω|;y =A cos(ωx +φ) (ω≠0)的周期是T =2π|ω|;y =A tan(ωx +φ) (ω≠0)的周期是T =π|ω|.思考2 如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .根据图象可知,一天中的温差是 ;这段曲线的函数解析式是y = 答案 20℃ 10sin(π8x +3π4)+20,x ∈[6,14]知识点二 三角函数模型在物理学中的应用在物理学中,当物体做简谐运动时,可以用正弦型函数y =A sin(ωx +φ)来表示运动的位移y 随时间x 的变化规律,其中:(1)A 称为简谐运动的振幅,它表示物体运动时离开平衡位置的最大位移; (2)T =2πω称为简谐运动的周期,它表示物体往复运动一次所需的时间;(3)f =1T =ω2π称为简谐运动的频率,它表示单位时间内物体往复运动的次数.题型一 三角函数模型在物理中的应用例1 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解 (1)由图知A =300,设t 1=-1900,t 2=1180,则周期T =2(t 2-t 1)=2⎝⎛⎭⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝⎛⎭⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝⎛⎭⎫150πt +π6. (2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.跟踪训练1 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是:S =6sin(2πt +π6).(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t =0),离开平衡位置是多少? ②小球摆动时,离开平衡位置的最大距离是多少?③小球来回摆动一次需要多少时间? 解 (1)周期T =2π2π=1(s).列表:(2)①小球开始摆动(t =0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期). 题型二 三角函数模型在生活中的应用例2 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13, ∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎡⎦⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.跟踪训练2 如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h . (1)求h 与θ之间的函数关系式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数解析式,并求缆车第一次到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2.故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2),θ∈[0,+∞).(2)点A 在圆上转动的角速度是π30,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m.由sin(π30t -π2)=1.得π30t -π2=π2,∴t =30. ∴缆车到达最高点时,用的时间最少为30秒.利用三角函数线证明三角不等式例3 心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin(160πt ),其中P (t )为血压(mmHg),t 为时间(min),试回答下列问题: (1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较分析 (1)利用周期公式可以求出函数P (t )的周期;(2)每分钟心跳的次数即频率;(3)用“五点法”作出函数的简图;(4)此人的收缩压、舒张分别是函数P (t )的最大值和最小值,故可求出此人的血压在血压计上的计数.解 (1)由于ω=160π,代入周期公式T =2πω,可得T =2π160π=180(min),所以函数P (t )的周期为180min.(2)函数P (t )的频率f =1T =80(次/分),即此人每分钟心跳的次数为80.(3)列表:(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.1.函数y =|sin 12x +13|的最小正周期为( )A .2πB .πC .4π D.π22.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式为s =3cos ⎝⎛⎭⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l = cm.3.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间ts 的函数关系式为s =6sin(100πt +π6),那么单摆来回摆一次所需的时间为( )A.150 sB.1100s C .50 s D .100 s 2.电流强度I (A)随时间t (s)变化的关系式是I =5sin(100πt +π3),则当t =1200 s 时,电流强度I 为( )A .5 AB .2.5 AC .2 AD .-5 A3.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .5 3 安D .10安5.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )二、填空题6.函数y =2sin ⎝⎛⎭⎫m 3x +π3的最小正周期在⎝⎛⎭⎫23,34内,则正整数m 的值是 .7.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .8.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d = ,其中t ∈[0,60].9.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω= . 三、解答题10.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b (0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.11.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?12.已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:(1)根据以上数据,求函数y=A cos ωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?当堂检测答案1.答案 A 2.答案g 4π2解析 T =2πg l=1,∴ g l =2π,∴l =g 4π2. 3.答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 4.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15 t ,故在t s 时,此人相对于地面的高度为h =10sinπ15t +12(t ≥0). (2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.课时精练答案一、选择题1.答案 A2.答案 B解析 当t =1200时,I =5sin(π2+π3)=5cos π3=2.5. 3.答案 C解析 d =f (l )=2sin l 2. 4.答案 A解析 由图象知A =10,T 2=4300-1300=1100, ∴ω=2πT=100π,∴I =10sin(100πt +φ). (1300,10)为五点中的第二个点, ∴100π×1300+φ=π2. ∴φ=π6,∴I =10sin(100πt +π6), 当t =1100秒时,I =-5安. 5.答案 C解析 ∵P 0(2,-2),∴∠P 0Ox =π4, 按逆时针转时间t 后得∠POP 0=t ,∠POx =t -π4, 此时P 点纵坐标为2sin(t -π4), ∴d =2|sin(t -π4)|.当t =0时,d =2,排除A 、D ; 当t =π4时,d =0,排除B. 二、填空题6.答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34, ∴8π<m <9π,且m ∈Z ,∴m =26,27,28.7.答案 34解析 取K ,L 中点N ,则MN =12, 因此A =12.由T =2得ω=π. ∵函数为偶函数,0<φ<π,∴φ=π2, ∴f (x )=12cos πx ,∴f (16)=12cos π6=34. 8.答案 10sin πt 60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,所以d =10sin πt 60. 9.答案 143解析 依题意,x =π6+π32=π4时,y 有最小值, ∴sin(π4·ω+π3)=-1, ∴π4ω+π3=2k π+3π2(k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间(π6,π3)上有最小值,无最大值,所以π3-π4<πω, 即ω<12,令k =0,得ω=143. 三、解答题10.解 (1)最大用电量为50万kW·h ,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40. ∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝⎛⎭⎫π6x +φ+40. 将x =8,y =30代入上式,又∵0<φ<π2,∴解得φ=π6. ∴所求解析式为y =10sin ⎝⎛⎭⎫π6x +π6+40,x ∈[8,14].11.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎫π6t +φ+2.当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝⎛⎭⎫π6t -π6+2.(2)令z =4sin ⎝⎛⎭⎫π6t -π6+2=6,得sin ⎝⎛⎭⎫π6t -π6=1,令π6t -π6=π2,得t =4,故点P 第一次到达最高点大约需要4 s.12.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题意知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z , 即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
高中数学必修4《三角函数模型的简单应用》教案及教案说明
《三角函数模型的简单应用》(第1课时)教案教材:人教A版·普通高中课程标准实验教科书·数学·必修4知识与技能:深刻体会三角函数模型应用的三个层次,灵活运用三角函数图像与性质求解实际问题的方法;学会分析问题并创造性地解决问题。
过程与方法:在自主探究的活动中,明白考虑问题要细致,说理要明确;渗透数形结合、化归的数学思想,对学生进行辩证唯物主义的教育。
情感、态度、价值观:理性描述生活中的周期现象;培养喜学数学、乐学数学、爱学数学的数学情感。
教学重点:用三角函数模型解决一些具有周期变化规律的实际问题。
教学难点:将某些实际问题抽象为三角函数模型,并调动相关学科的知识来解决问题。
教法:创设情景法、引导发现法。
学法:自主探索、尝试总结。
教学手段:借助多媒体教学,增大课堂容量、提高联系效率。
特点一:问题生活化一、创设情景,呈现问题二、描画图像,寻找规律三、分析数据,塑造模型据课前调查,我校地理老师均表示已清晰地向学生介绍了正午太阳高度角的定义和公式,学生也较好地理解和掌握了该定义和公式。
1、整个教学过程,以问题为教学的出发点,充分发挥学生的主体作用。
设计情景激发学生的学习兴趣;深入探究问题,提高学生解决同类题型的能力;突出三角函数模型的实际应用,注重与实际生活相结合;分层布置作业,重视巩固基础知识,训练发散思维。
整个教学设计中,既体现了问题生活化、探究深入化、分析渐进化三大特点,又渗透了数形结合、化归的数学思想。
2、学生参与了知识的形成过程,动手、动口、动脑相结合,教师努力做到使学生“听”有所思、“学”有所获。
师生之间、同学之间形成良好的互动关系。
但学生对正午太阳高度角的概念早已模糊。
如能借助多媒体课件,直接明了地复习正午太阳高度角的定义(例如几何画板制作的反映正午太阳高度角变化的课件),这将为本课教学取得更佳的效果。
《三角函数模型的简单应用》(第1课时)教案说明一、教学内容的本质分析“数学来源于生活,数学教学的最终目的是让学生在生活中用数学。
高中数学必修4 《三角函数模型的简单应用》教案
课题:从哥本哈根气候峰会谈起……《三角函数模型的简单应用》(教案)教材:高中数学人教A版必修4 第一章1.教学目标●知识与技能(1)能根据三角函数的局部图像求出三角函数的解析式;(2)能根据已知三角函数解析式画出函数图像,并根据图像研究函数性质;(3)能够将实际问题抽象为与三角函数有关的简单函数模型,解决一些简单的实际问题。
●思想与方法(1)让学生体验周期性问题的数学“建模”思想;(2)解决问题的过程中,再次深刻体会“数形结合”的方法和思想。
●情感和态度(1)让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用;(2)培养学生的环保意识。
2.教学重点、难点●教学重点:不同层次地用三角函数模型解决一些具有周期变化的实际问题。
●教学难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.3.教学方法与手段本课积极将数学课程与信息技术进行整合,采用多种技术手段,主要特点如下:(1)教学过程中要创造让学生亲历实践建模过程的机会,在学习过程中不断给予鼓励,帮助学生建立信心,消除畏难情绪。
(2)通过图片,flash和几何画板动画等直观形象的手段,介绍实际问题涉及的知识背景,消除学生对问题的陌生感,帮助建立数学模型。
4.教学流程设计5.教学过程【引言】哥本哈根联合国气候变化大会●设计时间:2分钟●设计意图:以哥本哈根联合国气候变化大会为背景,引入正题。
●教学活动:[师] 2009年12月7日,联合国气候变化大会在丹麦首都哥本哈根举行,“气候变暖”,“节能减排”,“低碳”等环保关键词再次吸引了全地球人的关注。
“今天,你绿色了吗?”成为了网络上一句最有号召力的口号。
但你可有想过,这个全球最大的课题其实蕴藏着许多周期变化的现象,而这些现象可以用我们数学领域中,大家所熟悉的三角函数模型来诠释。
今天,就让我们举几个简单的例子,来体会一下三角函数的价值和应用。
高中数学 第一章 三角函数 1.6 三角函数模型的简单应用教案 新人教A版必修4(1)
1.6 三角函数模型的简单应用
1.知识与技能
(1)能根据图象建立解析式.
(2)能根据解析式作出图象.
(3)能将实际问题抽象为与三角函数有关的简单函数模型.
(4)能利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
2.过程与方法
通过学习三角函数模型的实际应用,使学生学会把实际问题抽象为数学问题,即建立数学模型的思想方法.
3.情感、态度与价值观
本节引导学生通过解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科知识解决问题的能力;培养他们的探索精神和应用意识.
重点:用三角函数模型解决一些具有周期变化规律的实际问题.
难点:将某些实际问题抽象为三角函数模型.
1.如图为弹簧振子的振动图象.
(1)振动的振幅是 cm,频率是;
(2)如果从A点计算起,那么到点止,质点做了一次全振动.
解析:∵振动距离最大为2 cm,
∴振幅为2 cm,周期T=0.8 s.∴频率为.
∵点A到E点为一个周期.
∴A到E,质点做了一次全振动.
答案:(1)2(2)E
2.如图所示,设单摆小球偏离铅锤方向的角为α(rad),并规定小球在铅锤方向右侧时α为正角,左侧时α为负角.α作为时间t(s)的函数,近似满足关系α=A sin,其中ω>0.
已知小球在初始位置(即t=0)时,α=,且每经过π s小球回到初始位置,那么A=;α作为时间t的函数解析式是.
解析:∵t=0时,α=,
∴=A sin ,∴A=.
又∵周期T=π,∴=π,解得ω=2.
∴函数解析式是α=sin(t∈[0,+∞)).
答案:α=sin,t∈[0,+∞)。
1.6 三角函数模型的简单应用(必修4 共1讲)
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
高中数学必修4三角函数常考题型:三角函数模型的简单应用
三角函数模型的简单应用【知识梳理】1.三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意→建立三角函数式→根据题意求出某点的三角函数值→解决实际问题.这里的关键是建立数学模型,一般先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数解析式.2.三角函数模型的拟合应用我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.【常考题型】题型一、函数解析式与图像对应问题【例1】函数y=x+sin|x|,x∈[-π,π]的大致图像是()[解析]由奇偶性的定义可知函数y=x+sin|x|,x∈[-π,π]既不是奇函数也不是偶函数.选项A,D中图像表示的函数为奇函数,B中图像表示的函数为偶函数,C中图像表示的函数既不是奇函数也不是偶函数.[答案] C【类题通法】解决函数图像与解析式对应问题的策略(1)解决此类问题的一般方法是根据图像所反映出的函数性质来解决,如函数的奇偶性、周期性、图像的对称性、单调性、值域,此外零点也可以作为判断的依据.(2)利用图像确定函数y =A sin(ωx +φ)的解析式,实质就是确定其中的参数A ,ω,φ.其中A 由最值确定;ω由周期确定,而周期由特殊点求得;φ由点在图像上求得,确定φ时,注意它的不唯一性,一般是求|φ|中最小的φ.【对点训练】函数f (x )=cos x ·|tan x |在区间⎝⎛⎭⎫π2,3π2上的大致图像为( )解析:选C f (x )=cos x ·|tan x |⎝⎛⎭⎫π2<x <3π2= ⎩⎨⎧-sin x ,π2<x <π,sin x ,π≤x <3π2.题型二、三角函数在物理中的应用【例2】 单摆从某点开始来回摆动,离开平衡位置的距离s (单位:cm)和时间t (单位:s)的函数关系式为s =6sin ⎝⎛⎭⎫2πt +π6. (1)作出函数的图像;(2)当单摆开始摆动(t =0)时,离开平衡位置的距离是多少? (3)当单摆摆动到最右边时,离开平衡位置的距离是多少? (4)单摆来回摆动一次需多长时间? [解] (1)利用“五点法”可作出其图像.(2)因为当t =0时, s =6sin π6=3,所以此时离开平衡位置3 cm. (3)离开平衡位置6 cm.(4)因为T =2π2π=1,所以单摆来回摆动一次所需的时间为1 s. 【类题通法】三角函数在物理中的应用三角函数模型在物理中的应用主要体现在简谐运动中,其中对弹簧振子和单摆的运动等有关问题考查最多,尤其要弄清振幅、频率、周期、平衡位置等物理概念的意义和表示方法.【对点训练】交流电的电压E (单位:V)与时间t (单位:s)的关系可用E =2203sin ⎝⎛⎭⎫100πt +π6来表示,求: (1)开始时电压;(2)电压值重复出现一次的时间间隔; (3)电压的最大值和第一次获得最大值的时间. 解:(1)当t =0时,E =1103(V), 即开始时的电压为110 3 V .(2)T =2π100π=150(s),即时间间隔为0.02 s.(3)电压的最大值为220 3 V ,当100πt +π6=π2,即t =1300s 时第一次取得最大值.题型三、三角函数在实际生活中的应用【例3】 心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg 为标准值.设某人的血压满足函数式p (t )=115+25sin 160πt ,其中p (t )为血压(mmHg),t 为时间(min),试回答下列问题:(1)求函数p (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数p (t )的草图;(4)求出此人的血压在血压计上的读数.[解] (1)由于ω=160π,代入周期公式T =2π|ω|,可得T =2π160π=180(min),所以函数p (t )的周期为180min.(2)每分钟心跳的次数即为函数的频率f=1T=80(次).(3)列表:描点、连线并向左右扩展得到函数p(t)的简图如图所示:(4)由图可知此人的收缩压为140 mmHg,舒张压为90 mmHg.【类题通法】解三角函数应用问题的基本步骤【对点训练】如图所示,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟,其中心O距离地面40.5米,半径为40米,如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请回答下列问题:(1)求出你与地面的距离y (米)与时间t (分钟)的函数关系式; (2)当你第4次距离地面60.5米时,用了多长时间?解:(1)可以用余弦函数来表示该函数的关系式,由已知可设y =40.5-40cos ωt ,t ≥0,由周期为12分钟可知当t =6时,摩天轮第1次到达最高点,即此函数第1次取得最大值,所以6ω=π,即ω=π6,所以y =40.5-40cos π6t (t ≥0).(2)设转第1圈时,第t 0分钟时距地面60.5米, 由60.5=40.5-40cos π6t 0,得cos π6t 0=-12,所以π6t 0=2π3或π6t 0=4π3,解得t 0=4或8,所以t =8(分钟)时,第2次距地面60.5米,故第4次距离地面60.5米时,用了12+8=20(分钟).【练习反馈】1.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙的位置将移至( )A .x 轴上B .最低点C .最高点D .不确定解析:选C 相邻的最大值与最小值之间间隔半个周期,故乙移至最高点. 2.如图所示为一简谐运动的图像,则下列判断正确的是( )A .该质点的振动周期为0.7 sB .该质点的振幅为-5 cmC .该质点在0.1 s 和0.5 s 时的振动速度最大D .该质点在0.3 s 和0.7 s 时的加速度为零解析:选D 该质点的振动周期为T =2×(0.7-0.3)=0.8 s ,故A 是错误的;该质点的振幅为5 cm ,故B 是错误的;该质点在0.1 s 和0.5 s 时的振动速度是零,所以C 是错误的,D 正确.3.某人的血压满足函数关系式f (t )=24sin 160πt +110,其中,f (t )为血压,t 为时间,则此人每分钟心跳的次数是________.解析:∵T =2π160π=180,∴f =1T =80.答案:804.如图,电流强度I (单位:安)随时间t (单位:秒)变化的函数I =A sin ⎝⎛⎭⎫ ωt +π6(A >0,ω≠0)的图像,则当t =150秒时,电流强度是________安.解析:由图像可知,A =10,周期T =2×⎝⎛⎭⎫4300-1300=150,所以ω=2πT=100π,所以I =10sin ⎝⎛⎭⎫100πt +π6. 当t =150秒时,I =10sin ⎝⎛⎭⎫2π+π6=5(安). 答案:55.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.(1)求出种群数量y 关于时间t 的函数表达式;(其中t 以年初以来的月为计量单位)(2)估计当年3月1日动物种群数量. 解:(1)设种群数量y 关于t 的解析式为 y =A sin(ωt +φ)+b (A >0,ω>0),则⎩⎪⎨⎪⎧-A +b =700,A +b =900,解得A =100,b =800. 又周期T =2×(6-0)=12,∴ω=2πT =π6,∴y =100sin ⎝⎛⎭⎫π6t +φ+800.又当t =6时,y =900, ∴900=100sin ⎝⎛⎭⎫π6×6+φ+800, ∴sin(π+φ)=1,∴sin φ=-1,∴取φ=-π2,∴y =100sin ⎝⎛⎭⎫π6t -π2+800.(2)当t =2时,y =100sin ⎝⎛⎭⎫π6×2-π2+800=750, 即当年3月1日种群数量约是750.。
高中数学必修四1:1.6 三角函数模型的简单应用
(1) 本题的解题关键是建立三角函数的模型,选择适当的角作为变量.方法比 较灵活,突出了对能力的考查.
(2)第(2)问是探索性问题,考生找不到问题的突破口是造成失分的主要原 因.另外计算错误也是常见失分原因.
课堂练习
如果某地夏天从8~14时用电量变化曲线近似满足函数y=Asin(ωx+φ)+b,如图 所示. (1)求这一天的最大用电量和最小用电量; (2)写出这段曲线的函数解析式.
新课引入
. 简单应用——学以致用,解决生活中的 实际问题 ②数学模型——具体的数学函数关系 ③三角函数模型——三角函数关系
探究点1
• 正弦型函数
y Asin(x ),( A 0, 0)
• 1、物理情景—— • 2、地理情景—— • 3、心理、生理现象—— • 4、日常生活现象——
探究点2
根据图象建立解析式 根据解析式作出图象 将实际问题抽象为与三角函数有关的简单函数模型 利用收集到的数据作出散点图,并根据散点图进行函数
拟合,从而得到函数模型
探究点3
解三角函数应用题的一般步骤: (1)阅读理解材料:将文字语言转化为符号语言; (2)建立变量关系:抽象成数学问题,建立变量关系; (3)讨论变量性质:根据函数性质讨论变量性质; (4)作出结论.
第一章 三角函数 §1.6 三角函数模型的简单应用
高中数学必修4·精品课件
学习目标
1、知识目标:a通过对三角函数模型的简单应用的学习,使学生初步 学会由图象求解析式的方法;b体验实际问题抽象为三角函数模型问题 的过程;c体会三角函数是描述周期变化现象的重要函数模型.
2、能力目标:让学生体验一些具有周期性变化规律的实际问题的数学 “建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括 等能力.
高中数学必修4《三角函数模型的简单应用》教案
三角函数模型的简单应用(第一课时)教材:人教A版·普通高中课程标准试验教科书·数学必修4教学目标:知识目标—学生能够从实际问题中发现周期性变化的规律,把发现的规律抽象为恰当的三角模型,并解决相关的实际问题.能力目标—让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力。
情感目标—让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用.教学重点、难点:教学重点—用三角函数模型解决一些具有周期性变化规律的实际问题.教学难点—从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科知识来解决问题.教学方法:教学方法—启发式、讲练相结合式学习方法—小组自主探究、合作交流式教学手段—为使教法和学法更完美地融为一体,我借助多媒体辅助教学,提高课堂效率。
教学过程:教学评价:1.关注学生在探究学习过程中的表现:包括学生的投入程度和思维水平的发展.2.通过练习检测学生对知识的掌握情况可能出现问题:不会构造恰当的三角函数模型,根据已知条件不会求解解析式等.3.根据学生在课堂小结中的表现和课后作业情况,查缺补漏.三角函数模型的简单应用(第1课时)教案说明一、教学内容的分析《普通高中数学课程标准》明确提出了提高学生的知识和技能、重视学生的学习过程和方法,培养学生的情感、态度、价值观的三维目标。
为此,结合本节课的教学内容和本校学生的实际情况,教学过程中注重过程、方法,引导学生不断提出问题、研究问题,并解决问题。
重视互动交流,在教学活动中渗透情感态度与价值观。
“数学来源于生活,并运用于生活。
”三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究生活中的很多实际问题,本课通过2个例题和2个探究题循序渐进地介绍三角函数模型在实际生活中的应用,目的在于加强三角函数图像与性质的学习,要求学生在例题中体会三角函数模型刻画周期现象的基础上,掌握三角函数模型实际应用,并在教学过程中渗透数学化归和数形结合的思想。