《概率论与数理统计》第五章 数理统计的基本概念n
概率论与数理统计的基本概念和原理简介
概率论与数理统计的基本概念和原理简介概率论和数理统计是数学中重要的分支学科,它们在现代科学和生活中扮演着重要角色。
本文将对概率论和数理统计的基本概念和原理进行简要介绍。
一、概率论的基本概念和原理1. 随机试验随机试验是指具有以下特点的试验:在相同条件下可以重复进行,每次试验的结果不确定,但所有可能结果都是事先确定的且互不相容。
2. 随机事件与样本空间试验的每个可能结果称为基本事件,基本事件的集合称为样本空间。
样本空间中的子集称为随机事件。
3. 概率的定义一般来说,事件发生的概率是指该事件发生的可能性大小。
概率的定义可以通过频率的概念来解释:事件A发生的概率等于在多次重复试验中,事件A发生的频率趋近于一个常数。
4. 概率的性质概率具有以下性质:- 0 ≤ P(A) ≤ 1,概率值的取值范围在0到1之间。
- P(Ω) = 1,样本空间发生的概率为1。
- 对于任意的事件序列 {Ai},若相互不相容,则有 P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An)。
5. 概率的计算方法计算概率的常用方法有古典概型法、几何概率法、频率概率法和叠加原理等。
二、数理统计的基本概念和原理1. 总体与样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
通过对样本的统计分析,可以推断总体的性质。
2. 统计量统计量是样本的函数,用于刻画样本的某种性质。
常见的统计量有样本均值、样本方差等。
3. 参数估计参数估计是通过样本统计量推断总体参数的值。
常用的参数估计方法有点估计和区间估计。
4. 假设检验假设检验是指对于总体参数提出一个假设,并通过对样本进行统计推断来判断是否拒绝假设。
假设检验分为单侧检验和双侧检验。
5. 相关与回归分析相关分析用于刻画两个变量之间的线性关系,回归分析用于建立一个变量与其他变量之间的函数关系。
三、概率论与数理统计的应用领域概率论和数理统计广泛应用于各个领域:1. 金融风险管理概率论和数理统计对金融领域的风险管理起着关键作用,可以通过建立数学模型对金融市场进行预测和评估。
第五章《概率论与数理统计教程》课件
试决定常数 3.
X ,Y
C
使得随机变量 cY 服从分布
2
分布。
相互独立,都与 N ( 0 , 9 ) 有相同分布, X 分别是来自总体
X ,Y
1
, X 2 , , X 9和
Y1 ,Y 2 , ,Y 9
的样本,
Z
9
X
i
i1
6 - 23
Y
i1
9
则Z 服从—— ,自由度为——。
2 i
4.
X1, X 2, X 3, X 4
是来自总体
X ~ N ( , )
2
的样本,则随机变
量 Y
X3 X4
服从——分布,其自由度为———。
2
(X i )
i1
2
5.
设
X 1 , X 2 , , X 10
是来自总体 X
~ N ( ,4 )
2
的样本, ( S 2 P
a ) 0 .1
一. 单个正态总体的统计量的分布
X 1 , X 2 , X n是来自正态总体 ~ N ( , 2 )的样本, X
X , S 分别是样本均值和样本 方差
2
定理1
X
n
1
n
X i ~ N ( ,
n
2
);
i1
定理2 U
1
X
/
~ N ( 0 ,1 );
n
定理3
6 - 18
定理7
当 1
2
2 2
2 2 时, 令 S w
( n1 1) S 1 ( n 2 1) S 2
2
《概率论与数理统计》习题第五章数理统计的基本概念
第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本,则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nn X D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本,求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-。
概率论与数理统计第五章数理统计的基础知识
习题5-17、设总体X 的分布函数为()F x ,密度函数为()f x ,12,,,n X X X 为来自总体X 的样本,记(1)1min()i i nX X ≤≤=,()1max()n i i nX X ≤≤=,求(1)(),n X X 各自的分布函数与密度函数。
解:记(1)X 的分布函数和密度函数分别为(1)(1)(),()F x f x ,()n X 的分布函数和密度函数分别为()()(),()n n F x f x ,则(1)12(){min()}1{min()}1{,,...}i i n F x P X x P X x P X x X x X x =≤=->=->>>1[1()]n F x =--,所以1(1)(1)()[()][1()]()n f x F x n F x f x -'==-。
()12(){max()}{,,...}[()]n n i n F x P X x P X x X x X x F x =≤=≤≤≤=,所以1()()()[()][()]()n n n f x F x n F x f x -'==。
8、设总体X 服从指数分布()E λ,12,X X 是容量为2的样本,求(1)X ,(2)X 的概率密度。
解:由于总体X 服从指数分布()E λ,故X 的概率密度函数与分布函数分别为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,1,0()0,0x e x F x x λ-⎧->=⎨≤⎩ 所以,(1)X 的概率密度为2121(1)2[1(1)],02,0()[1()]()0,00,0x x x n e e x e x f x n F x f x x x λλλλλ-----⎧⎧-->>=-==⎨⎨≤≤⎩⎩, (2)X 的概率密度为211(2)2(1),02(1),0()[()]()0,00,0x x x x n e e x e e x f x n F x f x x x λλλλλλ------⎧⎧->->===⎨⎨≤≤⎩⎩。
第五章数理统计的基础知识
第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。
知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。
在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。
但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。
例如:1、某种电子元件的寿命服从什么分布是完全不知道的。
2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0—1)分布,但其中的参数p 未知。
对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数.数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数.数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。
数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料.二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。
第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。
总体中所包含的个体的个数称为总体的容量. 容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系。
在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X .例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体.但在实际问题中,我们仅仅关心灯泡的使用寿命(记X 表示该批灯泡的寿命)。
概率论数理统计基础知识第五章
C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}
Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1
第五章数理统计的基本概念和抽样分布精品PPT课件
n
pn(x1,x2, ,xn)
p(xi)
n
xi
en
i1
,
xi 0
i1
0,
其它
Байду номын сангаас
例2 设总 X服 体从两B(点 1,p)分 其 , 0 布 中 p1, (X1,X2, ,Xn)是来自总 ,求 体样 的 (X1本 ,X 样 2, 本 ,Xn)的分.布律
解 总体X的分布律为 P {X i} p i(1 p )1 i (i0,1)
设 x1,x2, ,xn是 相 应X于 1,X2,样 ,Xn 本 的 样,则 本称 f值 (x1,x2, ,xn)是f(X1,X2, ,Xn) 的 观.察 值
例1 设X1,X2,X3是来自N 总 (体 ,2)的一个 样本 ,其中 为已,知 2为未,判 知断下列各式
些是统,计 哪量 些不 ? 是
T1X1,
函数F(x)称为一个总体.
定义5.2
设X是 具 有 分F布 (x)函 的数 随 机,若 变X量 , X,, Xn是 具 有 同 一 F 分(x)布 、函 相数 互 独 立 的 随 机 变 ,则量称 X, X,, Xn为 从 总 X(或 体总 体
F(x))中 抽 取 的n容 的量 简为 单 随,机 简样 称 样本本 .
其 x 1 ,x 中 2 , ,x n 在{ 0 集 ,1 }中 合 .取值
三、统计量
由样本推断总体特征,需要对样本进行 “加工”,“提炼”.这就需要构造一些样本的 函 数1,它. 统把计样量本的中定所义含5的.3 信息集中起来.
设X1,X2,,Xn是来自X 总的体一个,样本 f(X1,X2,,Xn)是X1,X2,,Xn的函,若 数f中 不含未知, 则 参称 数 f(X1,X2,,Xn)是一个统 计量 .
《概率论与数理统计》笔记
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第五章
复制过来让大家都能下载哈第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表求样本容量n,样本均值X¯,样本方差S2.解答:对于抽到的每个居民户调查均收入,可见n=200.这里,没有给出原始数据,而是给出了整理过的资料(频率分布),我们首先计算各组的“组中值”,然后计算X¯和S2的近似值:分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.5.3 抽样分布(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
《概率论与数理统计》课件第五章大数定律及中心极限定理
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
概率论与数理统计第五章知识点
概率论与数理统计第五章知识点第五章的概率论与数理统计的知识点主要涉及到概率函数、统计推断、分布函数和多元正态分布等内容,这其中包括了多项式概率分布、超几何分布、二项分布、线性回归、假设检验、多重切线回归、卡方检验、小抽样检验、检验均值和协方差等内容。
首先,多项式概率分布是一种特殊的概率分布,它建立了在有限次试验中某个事件出现次数的概率,它由定义性的概率空间和一组完备的事件集合组成,并可以使用不同的统计技术来计算它们。
其次,超几何分布是一种分布,用于计算取样观测中某种特征发生次数的概率,它与多项式分布有着很大的不同,它建立了一个独立的取样模型,它是一种独立取样模型,它利用概率论中的概率空间来分析一个独立取样实验中观测到一个特征发生次数的概率。
再次,二项分布也是一种概率分布,它用来计算一系列试验中出现某种特征的次数的概率。
它是一种特殊的多项式分布,可以使用概率论的工具来应用二项式分布,以确定两个不同事件之间的概率。
此外,线性回归也是第五章概率论与数理统计中一个重要的概念,它是一种统计方法,用来预测一个变量的变化可能会导致另一个变量的变化。
线性回归的基本原理是拟合两个变量的关系,使回归线能够最佳地拟合所有数据,以找到其中的趋势。
另外,假设检验是一种重要的统计技术,在假设检验中,需要使用概率空间,以便计算假设检验中备择假设的概率,并判断假设是否成立。
另外,多重切线回归也是一种重要的统计方法,它是以多元关系作为因变量和因变量之间的关系来拟合数据,以确定多元回归线的最佳拟合方式,让其效果最好。
此外,卡方检验、小抽样检验和检验均值和协方差等也是第五章概率论与数理统计的重要内容。
其中,卡方检验是一种特殊的假设检验,用来判断一组数据的差异是否大于预期,以确定数据的分布情况。
而小抽样检验是一种统计方法,用于给出总体参数的精确估计,以帮助确定相关的总体统计量,用来估计总体参数。
最后,检验均值和协方差也是一种重要的统计方法,它可以帮助分析两个变量之间的关系,以确定两个变量之间的相关程度。
概率论与数理统计-第五章
【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.
概率论与数理统计第五章
第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。
本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。
然而,实际情况往往并非如此。
一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。
例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。
再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。
那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。
为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。
由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。
数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。
这种伴有一定概率的推断称为统计推断。
二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。
为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。
总体中所包含的个体的个数称为总体的容量。
容量有限的总体称为有限总体,容量无限的总体称为无限总体。
例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。
所有5000只灯泡的寿命是一个有限总体。
概率论与数理统计:数理统计基本概念
数理统计基本概念教学目标:1.理解总体、样本和统计量的概念2.掌握样本均值、样本方差及样本矩的计算教学内容:一、引例例如,考察某厂生产的日光灯管的质量,灯管的平均寿命是一个重要的质量指标。
由于生产中各种随机因素的影响,各个灯管的寿命是不完全不同的,但受到人力、物力等限制,特别是灯管寿命测试这类试验带有破坏性,所以不可能对生产的全部灯管一一进行测试,一般只是从整批中取出一部分灯管来测试,然后根据这些得到的灯管寿命数据来推断整批灯管的平均寿命。
二、总体与个体概念在一个统计问题中,我们把研究对象的全体称为总体,构成总体的每个成员称为个体。
对多数实际问题。
总体中的个体是一些实在的人或物。
比如,我们要研究某大学的学生身高情况,则该大学的全体学生构成问题的总体,而每一个学生即是一个个体。
事实上,每个学生有许多特征:性别、年龄、身高、体重、民族、籍贯等。
而在该问题中,我们关心的只是该校学生的身高如何,对其他的特征暂不予以考虑。
这样,每个学生(个体)所具有的数量指标值——身高就是个体,而将所有身高全体看成总体。
这样一来,若抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的机会多,有的出现的机会少,因此用一个概率分布去描述和归纳总体是恰当的。
从这个意义上看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量。
以后说“从总体中抽样”与“从某分布中抽样”是同一个意思。
例1.考察某厂的产品质量,将其产品只分为合格品与不合格品,并以0记合格品,以1记不合格品,则总体={该厂生产的全部合格品与不合格品}={由0或1组成的一堆数}。
若以p表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:不同的p反映了总体间的差异。
例如,两个生产同类产品的工厂的产品总体分布为:我们可以看到,第一个工厂的产品质量优于第二个工厂。
实际中,分布中的不合格品率是未知的,如何对之进行估计是统计学要研究的问题。
三、样本为了了解总体的分布,我们从总体中随机地抽取n个个体,记其指标值为x1,x2,…,x n,则x1,x2,…,x n称为总体的一个样本,n称为样本容量,或简称样本量,样本中的个体称为样品。
概率论-数理统计的基本概念
个随机变量,而样本是n维随机向量。
一旦取定一组样本 X1,… ,Xn ,得到 n 个具体 的数 (x1, x2, …, xn),称为样本的一次观测值,简 称样本值 .
随机抽样方法的基本要求
代表性——样本( X1 , X 2 ,, X n )的每个分量 X i
与总体 X 具有相同的分布。
独立性——每次抽样的结果既不影响其余各次抽 样的结果,也不受其它各次抽样结果的影响。
概率论和数理统计尽管两者有密切的联系,但本质 上是两门不同的课程。 1. 概率论是理论基础课,解决理论问题;数理统计是
应用专业课,解决实际问题。
2. 概率论更注重逻辑和体系的严密,是一门真正的数
学课。数理统计则对同一个具体问题也没有一个最 佳的答案,我们往往需要凭经验选择“较优”的方 法,不是纯粹的数学。 3. 学习方法也不同。概率论注重逻辑推导,而数理统 计则是以解决问题为导向,黑猫白猫,捉住老鼠就 是好猫;以案例为中心。
卡方分布的应用
定理 设(X1,X2,„,Xn)为来自正态总体 X~N( , 2)
的样本,则
2 X ~ N , n
(1)
(2) (3)
2 n
n nS 2 2 1 2 (X i X ) ~ (n 1) i 1
2 n 2
样本均值 X 和样本方差 S 独立
只证明(1): X 为X1,X2,„,Xn的线性组合,故仍然
n 2 1 2 Xi X 样本方差: Sn n i 1 n 1 2 Xi X 修正样本方差: Sn n 1 i 1 n 1 2 2 Sn Sn n
2
样本k阶原点矩: 样本k阶中心矩:
概率论与数理统计知识点总结(详细)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率的稳定值
统计推断与概率论的区别
• 在概率论中,我们研究的随机变量的分布都是假设已 知的,在这一前题下去研究它的性质、特点和规律性。 例如求出它的数字特征,讨论随机变量函数的分布, 介绍常用的各种分布等。
• 统计推断以概率论为理论基础,根据试验或观察得到 的数据,来研究随机现象,对研究对象的客观规律性 作出种种合理的估计和判断。
(1)若总体X的分布函数为F(x),则样本( X1X 2,L , X n )
n
的分布函数为 F(xi ) i 1
(2)若X为离散型随机变量,概率分布律为P( X xk )
n
pk ,则样本( X1X 2,L , X n )的联合分布律为 pki i 1
(3)若X为连续型随机变量,概率分布律为f (x),则
于总体 X 的未知参数; 3º 统计量是样本的函数,它是一个随机变
量,统计量的分布称为抽样分布.
2020/4/7
P135 例5.4 31
•几个常用统计量的定义 (1) 样本矩
设 X1, X2, , Xn 是来自总体的一个样本, x1, x2, , xn 是这一样本的观察值.
试验设计
数理统计
统计推断
参数估计 假设检验
统计推研断究:如何加工、处理数据,从而
对所考察对象的性质做出尽可能精确和可靠的 推断.
2020/4/7
8
统计学的研究内容
• 研究如何用有效的方法收集和整理数据的抽样调查、试 验设计和描述性统计;
• 研究如何用有效的方法对所得的数据进行分析、研究, 从而对所研究的对象的性质 、特点作出推断的统计推 断(“样本”推断“总体”)。
2020/4/7
12
• 统计学中组成总体的个体不仅可以是人、物、 组织单位等实体,也可以是现象、事件、活动 过程等非实体。但在个体是非实体时,总体通 常不是有形的,而是概念性的。
• 例如,要判断一枚硬币是否均匀,先对这枚硬 币进行100次投掷试验,然后根据这100次投掷 试验的结果做出这枚硬币是否均匀的结论。这 个统计问题的个体是对这枚硬币的每次投掷试 验,这种个体显然是个活动过程。这个统计问 题的总体是所有可能的对这枚硬币的投掷试验, 这个总体显然是概念性的。
• 随机样本与样本值
样本的定义: 从总体X中,随机地抽取n个个体:X1, X2, , Xn
称为总体X的一个样本,记为 ( X1, X2 ,L , Xn ) 样本中所包含个体的总数n称为样本容量.
样本值: 每一次抽取所得到的n个具体数值:( x1 , x2 ,L , xn )
称为一个样本值(观察值)。
样本与抽样分布
• 统计推断就是通过从总体中抽取一部分个体, 根据获取的数据来对总体分布得出推断的。
• 被抽出的部分个体叫做总体的一个样本。
• 显然,样本就是总体的一个有限子集。
• 若将总体定义为随机变量 X ,总体分布就是 随机变量 X的概率分布,总体数量特征就是随 机变量 X 的数字特征。
• 这时,从总体中抽取一个个体,就是对总体X 进行一次观察并记录其结果。
• 依据推断形式不同,统计推断可分为估计和假设检验两 种,它们构成了统计学的基础 。
• 依据不同的理论模型,统计推断可分为许多不同的分支 学科。比如,参数和非参数、线性和非线性、方差分析、 回归分析、时间序列分析、多元统计分析等等。
• 依据对概率的不同解释,统计推断可分为频率统计和贝
叶斯统计。对某件事情发
• 通过上面的例子大家对统计问题应该有了初步的了解。 下面我们将介绍上面例子中涉及到的几个统计学的基 本概念,这些概念是对统计学的本质和特征的概括和 反映,是统计思维网络上的结点。掌握了这些基本概 念后,大家对统计问题会有更深刻的认识和理解。
2020/4/7
7
概括地讲,数理统计研究以有效的方式 采集、 整理和分析受到随机因素影响的数据,并对所考 察的问题做出推断和预测,直至提供依据和建议.
2020员搜集一个消费者的样本,
要求样本中每个人回答对某商品的观点。 从得到的这些样本数据中,市场分析人员 必须做出这种商品有无足够需求量的决定。 若存在足够需求,分析人员还要选择包括 设计、价格及市场范围。所有这些问题都 可以从调查的样本数据所提供的信息中得 到回答。
2020/4/7
30
设( x1, x2 , , xn )是样本( X1, X 2 , , X n ) 的观察值 则称f ( x1, x2 , , xn )是 f ( X1, X2, , Xn ) 的观察值
注 1统计量 f ( X1, X2, , Xn )是随机变量; 2°统计量用于统计推断,故不应含任何关
11
§5.1 总体与样本
• 总体与个体
总体: 在数理统计中研究对象的全体 个体: 组成总体的每个单元
例如在研究某批灯泡的平均寿命时,该批灯泡的全 体就组成了总体,而其中每个灯泡就是个体。但是在 统计里,由于我们关心的不是每个个体的种种具体特 性,而仅仅是它的某一项或某几项数量指标X和该数 量指标X在总体中的分布情况。在上述例子中X是表 示灯泡的寿命,就此数量指标X而言,每个个体所取 的值是不同的。
总体、样本、样本观察值的关系
总体
理论分布
样本
样本观察值
统计是从已有的资料——样本的观察值,去推断 总体的情况——总体分布。
样本是联系两者的桥梁。
总体分布决定了样本取值的概率规律,可以用样
本观察值去推断总体
2020/4/7
19
简单随机样本
若来自总体 X的样本( X1, X2, , Xn )具有下列 两个特征:
x 355
2020/4/7
27
注 1° k为样本中不超过x的样本的最大个数,
即在n次重复独立试验中,事件 { X x}
发生的次数.
( x(1) x(2) x(k) x,有k个样品的取值 x)
2 Fn( x)为事件{X x}的频率.
n
事实上,令 n( x) Ii,其中
i 1
Ii
分析:这是一个容量为5的样本,经排序可得有序样本:
x(1)= 344, x(2)= 347, x(3)= 351, x(4)= 351, x(5)= 355 经验分布函数
Fn(x) =
0,
0.2, 0.4, 0.8, 1,
x < 344 344 x < 347 347 x < 351 351 x < 355
1, 0,
{Xi {Xi
xx}}不 发发 生生, 则
Fn( x)
n( x).
n
2020/4/7
28
2020/4/7
29
§5.2 统计量
由样本推断总体情况,需要对样本值进行 “加工”,这就需要构造一些样本的函数,它把样 本中所含的信息集中起来. • 统计量
来自总体X的样本X1,X2, …,Xn的函数g (X1,X2, …,Xn) ,若是连续的且不含任何未知 参数,则称为一个统计量。
1
π3 (1 x12 )(1 x22 )(1 x32 ) , x1 , x2 , x3 R
2020/4/7
P133 例5.2 23
• 直方图与经验分布函数
2020/4/7
24
2020/4/7
25
2020/4/7
26
例 某食品厂生产听装饮料,现从生产线上随机抽取5听 饮料,称得其净重(克)为: 351 347 355 344 351
例2 • 某百货公司对购买的一批电灯泡进行抽样
检验。在检验的基础上决定是否接受这批 灯泡。这种检验可能从这批灯泡中抽取15 只作为样本,检验样本的废品数和平均使 用寿命。是否接受的决定建立在观察到的 废品数和平均使用寿命上。
• 在以上两个例子中,都需要在不确定情况下对总体状 态进行预测或决策,之所以产生不确定性,是因为我 们无法拥有进行预测或决策所需的全部信息(总体数 据)。在使用不完全信息(样本数据)进行预测和决策 时,必须借助于一种叫做统计推断的统计方法。
( X1, X2 , X3 )的联合概率密度.
解 因为Xi自于柯西分布,所以Xi 的密度函数是
pXi
(
xi
)
1 π
1
1 xi2
,
xi (i 1,2,3)
所以
(
X1
,
X
2
,
X
3
)
的联合概率密度是:
3
p( X1,X2,X3 )( x1, x2 , x3 ) pXi ( xi )
i 1
1
数理统计研究内容十分广泛,其中一类重要的问题便 是统计推断.统计推断是利用试验数据对研究对象的性质 作出推断,其中有两个重要方面:参数估计和假设检验。
2020/4/7
1
• 例如,要了解全班同学的身高情况,先 要测量并记录班上每个同学的身高,然 后用记录下来的身高数据计算全班同学 的平均身高。这里的第一步就是搜集数 据,第二步就是从搜集到的数据集中获 取信息。平均身高正是反映全班同学身 高状况的重要信息。
n
样本( X1X 2,L , X n )的联合密度函数为 f (xi )
2020/4/7
i 1
21
例:设Xk来自于参数为k的指数分布,k 1, 2,L , n,
且相互独立,求(X1, X 2,L
,
X
)的联合分布函数
n
解 由于Xk来自于参数为k的指数分布,
所以 FXk ( xk ) 1 ek xk , xk 0
为什么要学数理统计
数理统计是运用概率论的基础知识,更侧重于应用随 机现象本身的规律性来考虑资料的收集整理和分析,建 立有效的数学方法,从而找出相应的随机变量的分布律 或它的数字特征,对所关心的问题作出估计与检验。
概率论中的一个最基本的假设就是:研究对象的分布 已知。而在实际中,我们往往不知道随机变量,的确切 分布,这就是数理统计所讨论问题的应用背景,它需要 用已有的部分信息去推断整体情况。