鲁教版最新初一数学下知识点
鲁教版数学七年级下册概念
第八章图形的平移和旋转1.平面图形的平移在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
3.平面图形的旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小。
经过选抓,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所称的角都是旋转角,对应点到旋转中心的距离相等。
第九章四边形性质探索两组对边分别平行的四边形叫做平行四边形。
连接平行四边形不相邻的两个顶点的线段叫做这个平行四边形的对角线。
平行四边形的对边相等。
平行四边形的对角相等。
平行四边形的对角线互相平分。
2.平行四边形的判定两条对角线互相平分的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两组对边对边分别相等的四边形是平行四边形。
平行四边形的判定方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
5.菱形一组邻边相等的四边形叫做菱形。
菱形的四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形的判定方法:一组邻边相等的平行四边形是菱形。
两条对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
4.矩形正方形有一个内角是直角的平行四边形叫做矩形。
矩形的两条对角线相等,四个角都是直角。
矩形的判定方法:有一个角是直角的平行四边形是矩形。
两条对角线相等的平行四边形是矩形。
有三个角是直角的四边形是矩形。
一组邻边相等的矩形叫做正方形。
正方形的四条边都相等,四个角都是直角。
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
正方形的判定方法:有一组邻边相等的矩形是正方形。
初一数学知识点鲁教版
初一数学知识点鲁教版学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。
制定好的学习计划,是提高工作效率的重要手段。
下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学知识点【生活中的轴对称】1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:①两个底角相等。
②两个条边相等。
③“三线合一”。
④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∵∠B=∠C∴AB=AC②“等边对等角”∵AB=AC∴∠B=∠C10、角平分线性质:角平分线上的点到角两边的距离相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
∵OC垂直平分AB∴AC=BC12、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
鲁教版初一下册数学第十章知识点集锦~
鲁教版初一下册数学第十章知识点集锦~
10.1 平均数
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
10.2 中位数
指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。
当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。
10.3 众数
定义:是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
用M表示。
10.4 利用计算器求平均数
计算器:
这一小小的程序机器实际上是从计算机中割裂出来的衍生品,但因其方便快捷的操作模式,已经被广泛应用于工程、学习、商业等日常生活中,极大的方便了人们对于数
字的整合运算。
初一下册数学第十章知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!。
初一数学知识点鲁教版
初一数学知识点鲁教版七年级数学知识点【生活中的轴对称】1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:①两个底角相等。
②两个条边相等。
③“三线合一”。
④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∵∠B=∠C∴AB=AC②“等边对等角”∵AB=AC∴∠B=∠C10、角平分线性质:角平分线上的点到角两边的距离相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
∵OC垂直平分AB∴AC=BC12、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
七年级下册数学课本鲁教版
七年级下册数学课本鲁教版
一、数的基本概念
1. 数是用来表示物体数量的符号。
2. 数的分类:自然数、整数、分数、小数、百分数和分数。
3. 数的基本操作:加、减、乘、除。
4. 数的应用:用数表示物体的数量、用数表示物体的大小、用数表示物体的位置。
二、数的性质
1. 集合的性质:交集、并集、补集。
2. 数的性质:绝对值、奇偶性、偶数和奇数、有理数和无理数、有限数和无限数。
3. 数的运算:加法、减法、乘法、除法、乘方、开方、指数运算。
三、数的应用
1. 数的应用:用数表示物体的数量、用数表示物体的大小、用数表示物体的位置。
2. 数的应用:用数表示物体的变化、用数表示物体的变化规律、用数表示物体的变化趋势。
3. 数的应用:用数表示物体的变化关系、用数表示物体的变化规律、用数表示物体的变化趋势。
鲁教版七年级下册数学知识点
鲁教版七年级下册数学知识点
一、数与式
1.1 有理数
研究有理数,应掌握正数、负数的概念,并能正确读、写各种数,掌握数轴的基本用法。
1.2 整式
研究整式,应掌握单项式、多项式的概念,应学会合并同类项,会用分配律解决式子的问题。
二、代数式的基本操作
2.1 代数式的加减
研究代数式的加减,应掌握代数式加减法的基本技能,应注意
识别正确运算符。
2.2 代数式的乘法
研究代数式的乘法,应掌握代数式乘法的基本技能,应会用分配律和交换律解决问题。
2.3 代数式的除法
研究代数式的除法,应掌握代数式除法的基本技能,应能将多项式除以一个单项式。
三、图形的认识和初步应用
3.1 角和角的度量
研究角和角的度量,应掌握角的概念,应学会角的度量,能用角度表示角。
3.2 三角形的认识
研究三角形的认识,应掌握三角形的概念和性质,应能够区分类别各种三角形。
四、方程与方程式
4.1 一元一次方程
研究一元一次方程,应掌握解方程的方法,应掌握利用等式的性质解方程的方法。
4.2 一元一次方程组
研究一元一次方程组,应掌握解方程组的方法。
4.3 带有绝对值的方程与不等式
研究带有绝对值的方程与不等式,应掌握带有绝对值的方程与不等式的解法,应能够解决简单的绝对值方程和不等式。
以上就是鲁教版七年级下册数学知识点,希望同学们认真学习,掌握好这些知识点。
鲁教版七年级数学下册_8.3 基本事实与定理
感悟新知
证明:∵∠1与∠2互补(已知) ∴∠1+ ∠2=180°(互补的定义) ∴∠1=180°-∠2(等式的性质) ∵∠3+ ∠2=180°(1平角=180°) ∴∠3=180-∠2(等式的性质) ∴∠1= ∠3(等量代换) ∴a//b(同位角相等,两直线平行)
知2-导
感悟新知
知2-导
感悟新知
知1-讲
1. 熟记上边这些公理,这是以后我们证明的基础. 还有其他公理: ◆等式的有关性质和不等式的有关性质都可以看作公理. ◆“在等式或不等式中,一个量可以用它的等量来代 替”.这一性质也看作公理,简称为“等量代换”.
感悟新知
知1-讲
2. 公理是不需推理论证的真命题. 3. 公理可以作为推理论证定理及其他命题真假的依据.
定理的概念
有些命题的正确性是 通过推理的方法证实 的,这样的真命题叫 做定理.
定理是经过推理论证 的真命题,但真命题 不一定都是定理.
课堂小结
基本事实与定理
概念
小结
注意
证明 的
步骤
证明一个命题的正确性,要按“已知”
“求证”“证明”的顺序和格式写出,其 中“已知”是命题的条件,“求证”是命 题的结论,而“证明”则是由条件(已知) 出发,根据已给出的定义、基本事实、已 经证明的定理,经过一步一步的推理,最 后证实结论(求证)的过程.
答案:B
感悟新知
知1-讲
总结:掌握公理、定理、命题之 间的区别,明确 其含义是解决本题的关键.
感悟新知
1-1. “两点之间线段最短”这一语句是( B )
A.定理
B.公理
C.定义
D.假命题
知1-练
感悟新知
新鲁教版7年级下册数学知识点
新鲁教版七年级下册数学知识点第七章二元一次方程组二元一次方程的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.二元一次方程组的应用列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.二元一次方程和一次函数的图像的关系:(1)以二元一次方程的解为坐标的点都在相应的函数图像上;(2)一次函数图像上的点的坐标都适合相应的二元一次方程.方程组和对应的两条直线的关系(1)方程组的解是对应的两条直线的交点坐标;(2)两条直线的交点坐标是对应的方程组的解;第八章平行线的有关证明1.定义与命题;2.证明的必要性;3.基本事实与定理;4.平行线的判定定理;(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
七年级下册教材梳理 鲁教版
第七章平面图形的认识(二)7.1探索直线平行的条件1、同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6像这样的一对角叫做内错角。
同旁内角:∠4与∠5像这样的一对角叫做同旁内角。
2、平行线的判定☆同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
3、平行公理:过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
7.2 探索平行线的性质☆两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
7.3 图形的平移1、在一个平面内,将一个图形沿着某个方向移动到一定的距离,这样的图形运动叫做图形的平移。
2、平移的性质☆:(1)平移不改变图形的形状,大小。
(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
(3)图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离。
7.4 认识三角形1、由不在同一条直线上的三条线段首位顺次连接而成的图形叫做三角形。
2、在三角形中,连接一个顶点和它对边中点的线段,叫做三角形的中线。
在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高线,简称三角形的高。
三角形的任意两边之和大于第三边,任意两边之差小于第三边。
3、三角形的内角和定理☆:三角形的三个内角和为180°。
4、三角形的外角:三角形的一边与另一边的反向延长线所组成的角叫做三角形的外角。
三角形外角的性质:一个外角等于与他不相邻的两个内交和;一个外角大于与他不相邻的任何一个内角。
5、三角形的外角和定理:三角形的外角和为360.7.5 多边形的内角和与外角和三角形的内角和是180°2、N 边形内角和定理:☆N 边形的内角和等于(N-2)*180°A C 1 32 B3、多边形的外角和等于360°4、多变形对角线的条数:从n 边形的一个顶点,可以引出(n-3条)对角线,n 变形共有23-n n )(条对角线。
鲁教版最新初一数学下知识点教学提纲
基本平面图形一、知识点总结1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。
线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。
直线没有端点。
一条直线上有n个点,则在这条直线上一共有2)1(-⨯nn条线段,一共有2n条射线。
平面内的n条直线相交,最多也只有2)1(-⨯nn个交点。
4、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质(1)直线公理:经过两个点有且只有一条直线。
(或者说两点确定一条直线。
)(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、角的表示角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。
鲁教版初中数学知识梳理
鲁教版初中数学知识梳理初中数学知识——代数部分目录:一、数及运算。
二、代数式。
三、方程。
四、不等式。
五、函数。
一、数及运算1-1 数的范围扩充在初中阶段,数的范围从零和正数(正整数和正分数)扩充到有理数,再引入无理数的概念,最后引入虚数的概念,数的范围由实数扩充的复数。
虚数的概念是高中研究的内容。
1-2 实数的运算实数有六则运算:加、减、乘、除、乘方、开方。
其中减法运算的法则是减去一个数等于加上这个数的相反数,这样加、减法看做同一种运算。
它们满足结合律和交换律。
除法的法则是除以一个数等于乘以这个数的倒数,这样把乘、除看做同一种运算。
它们满足结合律、交换律和分配律。
对于乘方运算,要理解和掌握乘方、幂、底数、指数的概念。
乘方的结果叫做幂,an叫幂,a叫底数,n叫指数。
开方的概念是如果xnα(n>1是正整数),已知α和指数n,求底数x的运算叫开方。
开方运算的结果叫方根,X叫做a的n次方根。
开方的性质有奇次方根、偶次方根和算术根。
一个整数a有两个平方根,记作±a,其中+a叫做算数平方根。
负数没有平方根。
开立方,正数的立方根是正数,负数的立方根是负数。
1-3 数轴和绝对值数轴是有原点、长度单位、方向的直线,任何实数都可以用数轴上的点来表示。
在数轴上比较两个实数的大小,右边的点表示的数比左边的点表示的数大。
绝对值是一个数到原点的距离,绝对值是非负数。
每个实数都可以用数轴上的点来表示,反之亦然。
因此,实数和数轴上的点是一一对应的关系。
绝对值在几何上表示一个数对应的点到原点的距离。
在代数式中,包括整式、分式和根式。
整式由单项式和多项式组成,需要了解单项式的次数和多项式的次数。
整式的加减运算满足结合律和交换律,先去括号再合并同类项是整式加减运算的核心。
幂的运算包括同底数幂相乘、幂的乘方、积的乘方、同底数幂相除、负指数、零指数和分数指数。
整数的乘除运算包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式、单项式除以单项式和多项式除以单项式,需要记住它们的运算法则,满足结合律、交换律和分配律。
七年级数学知识点鲁教版
七年级数学知识点平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果a,那么x叫做a的平方根.?x2(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
3?3的平方等于9,9的平方根是?(3)平方与开平方互为逆运算:(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.a?2(6)x <—> ??xa是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根a,那么这个正数?(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.。
?a (x≥0)中,规定x?也就是,在等式x2(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小a (x≥0)?(5)x2 <—> ?xa是x的平方 x的平方是ax是a的算术平方根 a的算术平方根是x数学知识点七年级一元一次方程知识网络:概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
(鲁教版)七年级下册数学第十二章知识点汇总
(鲁教版)七年级下册数学第十二章知
识点汇总
多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。
在此xx初中xx为您提供七年级下册数学第十二章知识点,希望给您学习带来帮助,使您学习更上一层楼!
12.1分解因式
一.定义
1.整式乘法
(1).am·an=am+n[m,n都是正整数]
同底数幂相乘,底数不变,指数相加.
12.2提公因式法
◆因式分解------把一个多项式变成几个整式的积的形式;(化和为积)
注意:
1、因式分解对象是多项式;
2、因式分解必须进行到每一个多项式因式不能再分解为止;
12.3运用公式法
七年级下册数学第十二章知识点就到这儿了,体会每篇文章的不
同,摘取自己想要的,友情提醒,理解最重要哦!!!。
七年级鲁教版数学知识点
七年级鲁教版数学知识点作为七年级学生,学好数学是十分重要的。
数学是一门非常实用的学科,它的应用范围广泛,包括各行各业,如金融、工程、医学等领域。
本文将为大家介绍鲁教版七年级数学的重点知识点。
整数与小数整数和小数是数学中最基础的概念之一。
要学好整数和小数的基本运算规则,包括四则运算、取反和绝对值运算。
其中,小数的比较大小和化分都是需要掌握的技巧。
在解决实际问题时,我们也需要学会用整数和小数做运算。
分数分数是一个有分子、分母的数,它是整数、小数的一个重要补充。
在应用中,分数可以用来表示部分的数量,也可以用于比较大小。
在计算中,我们需要掌握分数的基本运算规则,如分数的加减乘除、简化分数和通分等基本技能。
代数式代数式是由数字、字母和运算符组合而成的式子,它可以表示数的关系及各种数量的变化。
代数式是解决实际问题中常用的数学工具,因此掌握如何将代数式转化为实际问题是至关重要的。
除此之外,我们还需要掌握代数式的基本运算规则及数字字母的运算方法。
一次方程与一元一次方程组一次方程是由二元一次方程变形而来的。
我们需要掌握一次方程的解法,包括基本的移项、消元法等。
此外,掌握一元一次方程组的解法也是必要的,学会几何解法或代数解法,将会更容易的解决问题。
图形及其测量学好数学不仅需要靠记忆,还需要注重实际应用。
在图形及其测量这一部分中,我们需要学会如何绘制并测量图形,如:矩形、正方形、三角形、梯形等几何图形的面积、周长以及角度等相关知识。
概率概率是一门十分重要的数学分支。
掌握概率的基本概念及公式可以帮助我们更好地理解世界。
在学习概率时,我们需要掌握基本概率思想、概率公式、概率树以及概率图等基本知识。
统计统计是一门十分实用的数学分支,它可以帮助我们理解人民的生活和社会的变化。
在这一部分中,我们需要掌握如何收集、整理和分析数据,如何描述数据的中心位置、数据的离散程度以及数据之间的比较等。
总结数学是一门非常重要的学科,它不仅可以帮助我们更好地理解世界,也可以帮助我们更好地解决生活中的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本平面图形一、知识点总结1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。
线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。
直线没有端点。
一条直线上有n个点,则在这条直线上一共有2)1(-⨯nn条线段,一共有2n条射线。
平面内的n条直线相交,最多也只有2)1(-⨯nn个交点。
4、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质(1)直线公理:经过两个点有且只有一条直线。
(或者说两点确定一条直线。
)(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、角的表示角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
12、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”13、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较(3)角可以参与运算。
14、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
相交线与平行线专题总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质对顶角的性质:对顶角相等。
17.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
用尺规作角作法1)作射线O’A’(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB 于点D;(3)以点O’为圆心,以OC长为半径画弧,交O’A’于点C’(4)以点C’为圆心,以CD长为半径画弧,交前面的弧于点D’(5)过点D’作射线O'B’。
∠A'O'B' 就是所求作的角数据的收集整理与描述[基础知识梳理]一、统计调查(一)全面调查1.数据处理的基本过程收集数据、整理数据、描述数据、分析数据、得出结论2、统计调查的方式及其优点(1)全面调查:我们把对全体对象的调查称为全面调查.(2)百分比:每个对象出现的次数与总次数的比值。
注意:①调查方式有两种:一种是全面调查,另一种是抽样调查。
②百分比之和为1。
全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。
3.表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.4.常见统计图1)条形统计图:能清楚地表示出每个项目的具体数目;2)扇形统计图: 能清楚地表示出各部分与总量间的比重;3)折线统计图: 能反映事物变化的规律.5.扇形统计图(1)扇形统计图:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图。
(2)制作扇形统计图的三个步骤:1°计算各部分在总体中所占的百分比;2°计算各个扇形的圆心角的度数=360°×该部分占总体的百分比;3°在圆中依次作出上面的扇形,并标出百分比。
(3)扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大。
扇形的面积越小,圆心角的度数越小。
(二)抽样调查1.从总体中抽取部分对象进行的调查叫抽样调查.特点:抽样调查只考察总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。
2.在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。
3.抽样的必要性:总体中的个体数目较多,工作量较(太)大,无法一一考查;受客观条件的限制,无法对个体一一考查;考查具有破坏性,不允许对个体一一考查.3、抽样调查的要求为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。
小结:只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征。
4、总体和样本总体:要考察的对象的全体叫做总体。
个体:组成总体的每一个考察对象称为个体。
样本:从总体当中抽出的所有实际被调查的对象组成一个样本。
样本容量:样本中个体的数量叫样本容量(不带单位)。
二、直方图1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。
小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。
2、频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。
:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确定组限;④列频数分布表;⑤画频数分布直方图。
其中组距和组数的确定没有固定标准,要凭借经验和研究的具体问题决定。
一般来说,组数越多越好,但实际操作比较麻烦,当数据在100个以内时,根据数据的特征通常分成5~~12组。
规律总结:统计表问题要抓住各部分的频数之和等于总体,各部分的频率之和等于1;而扇形统计图中,各部分的百分比之和为100%。
变量之间的关系一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。
二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计;2、关系式(1)能根据题意列简单的关系式;(2)能利用关系式进行简单的计算;3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。