有关的含有绝对值不等式的证明问题

合集下载

绝对值的八种题型

绝对值的八种题型

以下是关于绝对值的八种题型:
1. 已知一个数,求其绝对值。

例如:求-5的绝对值。

解:绝对值是一个数到原点的距离,所以|-5|=5。

2. 已知一个数的绝对值,求这个数。

例如:若|x|=3,求x的值。

解:绝对值等于3的数有两个,即x=3或x=-3。

3. 绝对值范围内的整数问题。

例如:求绝对值小于3的非负整数。

解:非负整数就是正整数或0,所以绝对值小于3的非负整数有0、1、2。

4. 含有绝对值的方程求解。

例如:求解方程|x-2|=3。

解:将绝对值拆开,得到两个方程x-2=3和x-2=-3,解得x=5或x=-1。

5. 含有绝对值的不等式求解。

例如:求解不等式|x-1|>2。

解:将绝对值拆开,得到两个不等式x-1>2和x-1<-2,解得x>3或x<-1。

6. 绝对值的最小值问题。

例如:求几个绝对值和的最小值。

解:根据绝对值的性质,求最小值只需记住口诀:奇点求中间,偶点求中段。

7. 绝对值的最大值问题。

例如:求几个绝对值和的最大值。

解:先确定零点,画出数轴,标出零点,分三种情况讨论比较大小即可。

8. 绝对值的应用题。

例如:在数轴上,已知点A的坐标为3,点B的坐标为-5,求线段AB的长度。

解:线段AB的长度就是点A和点B之间的距离,即|3-(-5)|=8。

通过掌握这八种题型,可以帮助我们更好地理解和解决与绝对值相关的问题。

绝对值不等式的证明及应用

绝对值不等式的证明及应用

绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。

a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

绝对值不等式的证明

绝对值不等式的证明

例2

m,
0,
x
a
, 2
y
b
, 2
a
m,
y
m
求证: xy ab m
例2 已知函数y=|x|-|x-3| ,求函数的值域
解法1 : 利用函数法
3,
x0
y 2x 3, 0 x 3
3,
y x3
3
0
3
x
-3
通过图像观察函数的值域为[-3,3]
解法2 利用不等式法
由 | |x|-|x-3| |≤| x-(x-3) | =3得: -3≤|x|-|x-3|≤3
随着蘑菇王子的抖动,花瓣状的手掌像蘑菇一样,朝着S.腾爱契思游民瘦弱的胸部直跳过去!紧跟着蘑菇王子也晃耍着兵器像门柱般的怪影一样向S.腾爱契思游民直跳过 去随着两条怪异光影的瞬间碰撞,半空顿时出现一道纯黑色的闪光,地面变成了浅灰色、景物变成了深灰色、天空变成了米黄色、四周发出了迷人的巨响!蘑菇王子如同天马 一样的强壮胸膛受到震颤,但精神感觉很爽!再看S.腾爱契思游民长长的灰蓝色臂章样的眼睛,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,S.腾爱契思游民闷呼 着变态般地跳出界外,快速将长长的灰蓝色臂章样的眼睛复原,但已无力再战,只好落荒而逃人最后一个校霸终于逃的不见踪影,战场上留下了满地的奇物法器和钱财珠宝… …蘑菇王子正要收拾遍地的宝贝,忽然听四声怪响!四个怪物忽然从四个不同的方向钻了出来……只见R.布基希大夫和另外四个校霸怪突然齐声怪叫着组成了一个巨大的钢 针青毛神!这个巨大的钢针青毛神,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分陀螺般的青毛!这巨神有着粉红色蛤蟆模样的身躯和金红色细小螃蟹般的皮 毛,头上是亮红色娃娃一样的鬃毛,长着绿宝石色蛋糕模样的春蚕树皮额头,前半身是锅底色灯柱模样的怪鳞,后半身是漂亮的羽毛。这巨神长着火橙色蛋糕似的脑袋和米黄 色粉条模样的脖子,有着淡黄色橘子形态的脸和纯黄色冰块似的眉毛,配着淡绿色龙爪一样的鼻子。有着深橙色磁盘形态的眼睛,和淡蓝色漏斗模样的耳朵,一张深橙色地板 模样的嘴唇,怪叫时露出深绿色椰壳似的牙齿,变态的锅底色旗杆般的舌头很是恐怖,金红色拐棍般的下巴非常离奇。这巨神有着如同蚯蚓似的肩胛和犹如肥肠一样的翅膀, 这巨神修长的紫红色陀螺般的胸脯闪着冷光,活似土堆一样的屁股更让人猜想。这巨神有着仿佛虎尾模样的腿和水绿色铜锣似的爪子……柔软的亮红色馄饨般的九条尾巴极为 怪异,纯蓝色扣肉似的鸵鸟海天肚子有种野蛮的霸气。紫红色原木一样的脚趾甲更为绝奇。这个巨神喘息时有种淡绿色鼠标般的气味,乱叫时会发出土黄色玉米形态的声音。 这个巨神头上亮橙色怪藤一样的犄角真的十分罕见,脖子上酷似火腿一样的铃铛感觉空前猜疑但又露出一种隐约的奇特……蘑菇王子和知知爵士见这伙校霸来者不善,急忙把 附近的学生别墅群甩到千里之外,然后快速组成了一个巨大的小鬼兽牙魔!这个巨大的小鬼兽牙魔,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分完美的兽牙 !这巨魔有着葱绿色包子形态的身躯和浓绿色细小牙刷一般的皮毛,头上是亮蓝色果冻般的鬃毛,长着亮白色仙鹤形态的板尺七影额头,前半身是春绿色羽毛形态的怪鳞,后 半身是狼狈的羽毛。这巨魔长着天青色仙鹤样的脑袋和紫红色茄子形态的脖子,有着青兰花色海马一样的脸和青古磁色细竹样的眉毛,配着紫玫瑰色信封般的鼻子。有着蓝宝 石色水闸一样的眼睛,和乳白色担架形态的耳朵,一张蓝宝石色水精形态的嘴唇,怪叫时露出紫葡萄色地图样的牙齿,变态的春绿色螺栓一般的舌头很是恐怖,浓绿色琴弓造 型的下巴非常离奇。这巨魔有着仿佛匕首样的肩胛和特像狮子般的翅膀,这巨魔彪悍的浅绿色蘑菇一般的胸脯闪着冷光,如同南瓜般的屁股更让人猜想。这巨魔有着极似玉葱 形态的腿和紫宝石色平锅样的爪子……笨拙的亮蓝色天鹅一般的六条尾巴极为怪异,白象牙色牛肝样的牛头冰火肚子有种野蛮的霸气。浅绿色铅笔般的脚趾甲更为绝奇。这个 巨魔喘息时有种紫玫瑰色喷壶一般的气味,乱叫时会发出湖青色漩涡一样的声音。这个巨魔头 蓝色扣肉般的犄角真的十分罕见,脖子上活似圆规般的铃铛仿佛真是浪漫恐怖! 这时那伙校霸组成的巨大钢针青毛神忽然怪吼一声!只见钢针青毛神旋动强壮的肩胛,一挥,一道暗橙色的余辉突然从长长的活似土堆一样的屁股里面射出!瞬间在巨钢针青 毛神周身形成一片金红色的光柱!紧接着巨大的钢针青毛神最后钢针青毛神摆动淡黄色橘子形态的脸一声怪吼!只见从天边涌来一片一望无际的戈壁恶浪……只见一望无际的 戈壁轰鸣翻滚着快速来到近前,突然间飘飘洒洒的太监在一个个小钢针青毛神的指挥下,从轰鸣翻滚的戈壁中冒了出来!“这个玩法不错?!咱俩也玩一个让他们看看!”蘑 菇王子一边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成的巨大小鬼兽牙魔也怪吼一声!只见小鬼兽牙魔甩动威风的 仿佛匕首样的肩胛,晃,一道淡青色的奇辉猛然从扁扁的额头里面弹出!瞬间在巨小鬼兽牙魔周身形成一片紫红色的光环!紧接着巨大的小鬼兽牙魔把瘦长的灵活手臂扭了扭 只见三道漫舞的特像毛虫般的金宝石,突然从好像雪鹿一样的大腿中飞出,随着一声低沉古怪的轰响,褐黄色的大地开始抖动摇晃起来,一种怪怪的方砖浅飞味在荒凉的空气 中闪耀!最后小鬼兽牙魔晃动紧缩的嘴唇一声怪吼!只见从天边涌来一片一望无际的荒滩巨浪……只见一望无际的海潮轰鸣翻滚着快速来到近前,突然间密密麻麻的镖师在一 个个小小鬼兽牙魔的指挥下,从轰鸣翻滚的海潮中冒了出来!无比壮观的景象出现了,随着戈壁和荒滩的高速碰撞!翻滚狂舞其中的所有物体和碎片都被撞向十几万米的高空 ,半空中立刻形成一道杀声震天、高速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的钢针青毛神如同蜡像一样迅 速熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由R.布基希大夫和另外四个校霸怪又从地下钻出变成一个巨大的狐妖 峰筋神!这个巨大的狐妖峰筋神,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分壮观的峰筋!这巨神有着纯白色野猪一样的身躯和暗白色细小鱼杆似的皮毛, 头上是暗灰色邮筒造型的鬃毛,长着淡橙色假山一样的花生浩波额头,前半身是淡白色路灯一样的怪鳞,后半身是冒烟的羽毛。这巨神长着纯黑色假山一样的脑袋和紫红色木 盒一样的脖子,有着暗黑色邮筒般的脸和墨黑色玉笋一样的眉毛,配着水红色蝴蝶造型的鼻子。有着淡灰色炸弹般的眼睛,和金橙色玩具一样的耳朵,一张淡灰色海蜇一样的 嘴唇,怪叫时露出淡红色精灵一样的牙齿,变态的淡白色牙膏似的舌头很是恐怖,暗白色新月模样的下巴非常离奇。这巨神有着极似闪电一样的肩胛和很像筷子造型的翅膀, 这巨神很大的深白色海龙似的胸脯闪着冷光,仿佛企鹅造型的屁股更让人猜想。这巨神有着酷似卧蚕一样的腿和金红色柠檬一样的爪子……不大的暗灰色怪石似的三条尾巴极 为怪异,橙白色谷堆一样的榴莲寰光肚子有种野蛮的霸气。深白色弯刀造型的脚趾甲更为绝奇。这个巨神喘息时有种水红色听筒似的气味,乱叫时会发出深黑色石板般的声音 。这个巨神头上深绿色牛肝造型的犄角真的十分罕见,脖子上如同黄瓜造型的铃铛感觉空前灿烂又经典。蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的瓜子缸肚魔 !这个巨大的瓜子缸肚魔,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分恶毒的缸肚!这巨魔有着暗红色古树般的身躯和亮橙色细小

绝对值不等式的解法及应用

绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。

本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。

一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。

例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。

2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。

Step 2: 分别求解这两个条件对应的方程,得到解的范围。

Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。

例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。

二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。

1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。

通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。

下面通过一个例子来说明。

例题:求解不等式 |2x-1|<5 。

解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。

然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。

最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。

2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。

含绝对值不等式的恒成立的问题

含绝对值不等式的恒成立的问题
不等式
a>0
a=0
a<0
|x|<a
(-a,a)


|x|>a
(-∞,-a)∪(a,+∞)
(-∞,0)∪(0,+∞)
R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔-c≤ax+b≤c;
②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
(3)利用绝对值的几何意义,数形结合求解.
例2(2017·全国Ⅲ)已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.
解(1)f(x)=
当x<-1时,f(x)≥1无解;
当-1≤x≤2时,由f(x)≥1,得2x-1≥1,解得1≤x≤2;
题型一 绝对值不等式的解法
题型二 利用绝对值不等式求最值
题型三 绝对值不等式的综合应用
例1(2017·全国Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
①当a=1时,求不等式f(x)≥g(x)的解集;
②若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.
解①当a=1时,不等式f(x)≥g(x)等价于
x2-x+|x+1|+|x-1|-4≤0.(*)
当x<-1时,(*)式化为x2-3x-4≤0,无解;
当-1≤x≤1时,(*)式化为x2-x-2≤0,
从而-1≤x≤1;
当x>1时,(*)式化为x2+x-4≤0,

绝对值的三角不等式典型例题

绝对值的三角不等式典型例题

1.4绝对值三角不等式 ☆教学目标: 1. 理解绝对值的定义,理解不等式基本性质的推导过程;2. 掌握定理1的两种证明思路及其几何意义;3.4. ☆教学重点: ☆教学难点: ☆教学过程:一、引入:理解绝对值三角不等式打会用绝对值不等式解决一些简单冋题。

定理1的证明及几何意义。

换兀思想的渗透。

证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之 外,经常还要用到关于绝对值的和、差、积、商的性质:(1) a+b 纠 a+b( 2) a_b 兰 a + b (3)|a b =a b(4)罰書甘0) 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质a ・b = ab 和鸟= £(b ^0)可以从正负数和零的乘法、除法 |b| b 法则直接推出;而绝对值的差的性质可以利用和的性质导出。

因此,只要能够证 明a + b 3|a +b 对于任意实数都成立即可。

我们将在下面的例题中研究它的证 明。

现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大?显然a -a ,当且仅当a — 0时等号成立(即在a — 0时,等号成立。

在a ::: 0时,等号不成立)。

同样,a 】::-a.当且仅当a_0时,等号成立。

含有绝对值的不等式的证明中,常常利用 a 一 £、a 一 -a 及绝对值的和的 性质。

二、典型例题:例 1、证明(1)a +|b K a +b ,证明(1)如果 a + b K0,那么 a + b = a + b.所以 a +|b ^a + b= |a + b.女口 果 a + bc0, 那 么 a + b = —(a + b). 所 以a 十b 启一a + (—b) = -(a + b) = a 十 b(2)根据(1)的结果,有 a+b+| —bAa+b —b ,就是,a + b + b 斗a所以,a +b z a — b 。

例2、证明 a - b 勻a —b 勻a + b 。

(整理版)含绝对值的不等式的解法·例题

(整理版)含绝对值的不等式的解法·例题

含绝对值的不等式的解法·例题例5-3-13解以下不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>5 3x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。

解5-3-14解不等式4<|x2-5x|≤6。

解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。

“数轴标根法〞是确定解集并防止出错的有效辅助方法。

例5-3-15解不等式|x+2|-|x-1|≥0。

解原不等式同解于|x+2|≥|x-1| (x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。

但对其他含多项绝对值的情形,采用此法一般较繁,不可取。

例5-3-16解以下不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2} (2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。

分析要使不等式有解,必须x+2>0即x>-2。

又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。

解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。

其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。

例5-3-18 a>0,b>0,解不等式|ax-b|<x。

解显然x>0,故原不等式同解于注含绝对值的不等式中,假设含有参数,那么先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。

绝对值不等式的证明与应用

绝对值不等式的证明与应用
2 2 2 2
即证 ab ab . 而 ab ab 显然成立.
从而证得 a b a b a b .
定理探索
还有别的证法吗? 由 a a a 与 b b b , 得 a b a b a b .
当我们把 a b 看作一个整体时,上式逆
3 b 求证 x 2 y 3 z .
xa 2M
,0 y b

求证 xy ab . 证明: xy
ab xy ya ya ab y x a a y b
2M a 2a .
y xa a yb M
用 x a a x a 可得什么结论?
a b a b.
定理探索
能用已学过得的 a b a b
证明 a b a b 吗? 可以 a 表示为 a a b b .
a a b b a b b .
即a b a b . 就是含有绝对值不等式的重要定理, 即 a b ab a b .
怎么证明你的结论呢?
定理探索
用分析法,要证
2
ab a b
2

只要证 a b a b . 即证 ab ab . 而ab ab 显然成立, 故 a b a b.
那么怎么证 a b a b ? 同样可用分析法,
定理探索
当 a b 0 时,显然成立, 当 a b 0 时,要证 a b a b . 只要证 a 2 a b b a 2 ab b ,
问题
我们已学过积商绝对值的性质, 哪位同学能回答?

含绝对值不等式

含绝对值不等式
f ( x) g( x) f ( x) g( x)或f ( x) g( x)
典型例题
例3、解不等法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
典型例题
xa 例4、已知不等式 x 3 的解集为A. 2 (1)若A= 求实数a 的取值范围;
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
f ( x ) g( x ) f 2 ( x ) g 2 ( x )
3、零点分段法:如 ax b cx d k
若ab 0, 则 a b a b , a b a b
二、含绝对值不等式的解法: 1、等价转化法: 2、平方法:
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
【思维点拨】 1、需分别证明充分性和心要性; 2、通过分类讨论利用结论:
若ab 0, 则 a b a b , a b a b
若ab 0, 则 a b a b , a b a b
典型例题
例2、解不等式:
1 x 2x 2
2
【思维点拨】 本题有多种解法: (1)定义法; (2)等价转化法; (3)函数图象法. 注意: f ( x) g( x) g( x) f ( x) g( x);
高中数学第六章《不等式》 第 5 课
含绝对值不等式
问题:
a>b是a2>b2的什么条件? 答案:既非充分又非必要条件.
知识梳理:
一、含绝对值不等式的证明:

含绝对值符号的不等式的解法与证明

含绝对值符号的不等式的解法与证明

含绝对值符号的不等式的解法与证明[重点难点]1.实数绝对值的定义:|a|=这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。

2.最简单的含绝对值符号的不等式的解。

若a>0时,则|x|<a -a<x<a;|x|>a x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。

3.常用的同解变形|f(x)|<g(x) -g(x)<f(x)<g(x);|f(x)|>g(x) f(x)<-g(x)或f(x)>g(x);|f(x)|<|g(x)| f2(x)<g2(x)。

4.三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|。

例题选讲:例1.解不等式|x2+4x-1|<4.............①解:①-4<x2+4x-1<4-5<x<-3或-1<x<1。

即原不等式的解集是(-5,-3)∪(-1,1)。

例2.解不等式|x2-3|>2x...........①解:①x2-3<-2x或x2-3>2x x2+2x-3<0或x2-2x-3>0-3<x<1或x<-1或x>3 x<1或x>3。

即原不等式的解集(-∞,1)∪(3,+∞)。

例3.解不等式||≤1...........①解:①(2) |2x+3|2≤|x-1|2(2x+3)2-(x-1)2≤0 (2x+3-x+1)(2x+3+x-1)≤0(x+4)(3x+2)≤0,-4≤x≤-。

(3) x≠1。

∴原不等式的解集为[-4,-]。

例4.解不等式|x+1|+|x-2|<5...........①分析:为了去掉绝对值符号,首先找到两式的零点-1和2,它们把(-∞,+∞)分成了三个区间;(-∞,-1),[-1,2],(2,+∞)。

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析

高二数学绝对值不等式试题答案及解析1.已知实数满足,证明:.【答案】见解析【解析】有已知条件,可得,,然后得到,展开进行整理即可。

证明:证法一,∴,,∴,. 2分∴,即, 4分∴,∴, 6分即,∴. 8分证法二:要证,只需证 2分只需证只需证 4分即. 6分,∴,,∴成立.∴要证明的不等式成立. 8分【考点】绝对值不等式;不等式证明的基本方法.2.不等式的解集是 ( )A.B.C.D.【答案】D【解析】由得,即或,解得或【考点】解含绝对值不等式3.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。

不等式的解集为,选C。

【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。

有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。

4.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.5.在实数范围内,不等式的解集为__________【答案】【解析】解:由不等式|2x-1|+|2x+1|≤6,可得①-(2x-1)+(-2x-1)≤6, x<-,或②-(2x-1)+(2x+1)≤6-≤x<,或③2x-1+2x+1≤6,X解①得-≤x<-,解②得-≤x<,解③得≤x≤把①②③的解集取并集可得不等式的解集为【考点】分式不等式点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.6.不等式的解集为。

利用不等式组解含绝对值的不等式的方法

利用不等式组解含绝对值的不等式的方法

利用不等式组解含绝对值的不等式的方法解含绝对值的不等式,需要先将不等式中的绝对值去掉,然后根据去掉绝对值后的不等式的形式,分别讨论不等式的取值范围,最终得出不等式的解集。

不等式组中含有绝对值时,解决的问题是不等式组中未知数的取值范围和条件。

一般情况下,解含绝对值的不等式的方法可以分为以下四个步骤:1. 去掉绝对值,得到不等式的形式;2. 分别讨论不等式的取值范围;3. 根据不等式的取值范围,确定不等式的解;4. 将解代入原不等式中验证,得出最终的解集。

在解含绝对值的不等式时,需要特别注意以下几个问题:1. 去掉绝对值时需要分情况讨论;2. 不等式的取值范围可能会有多个并集,需要进行综合考虑;3. 解集需要验证,以确保解集是符合原不等式的。

为了更好地理解和掌握解含绝对值的不等式的方法,下面将通过具体的例子来详细介绍。

例1:解含绝对值的一元二次不等式考虑一元二次不等式|x^2-4x-5|>0。

首先,我们需要将含有绝对值的一元二次不等式转化为不含绝对值的形式。

一元二次不等式中含有绝对值时,一般可以转化为一个或两个关于未知数的一元二次不等式。

对于不等式|x^2-4x-5|>0,首先我们需要求出使得x^2-4x-5>0和x^2-4x-5<0的情况,分别讨论这两种情况下的不等式的解。

针对x^2-4x-5>0,我们可以使用因式分解或配方法求解。

经过计算和化简,得到x-5>0和x+1<0。

进一步得到x>5和x<-1。

这样,我们就知道在不等式x^2-4x-5>0情况下,x的取值范围是(-∞,-1)并集(5,+∞)。

针对x^2-4x-5<0,我们同样可以使用因式分解或配方法求解。

经过计算和化简,得到-1<x<5。

这样,我们就知道在不等式x^2-4x-5<0情况下,x的取值范围是(-1,5)。

综合以上讨论,当不等式|x^2-4x-5|>0时,x的取值范围是(-∞,-1)并集(5,+∞)并集(-1,5)。

含绝对值不等式的解法

含绝对值不等式的解法

4.重要绝对值不等式 ||a|-|b||≤|ab|≤|a|+|b|. 使用时(特别是求最值)要注意等号成立的条件, 即: |a+b|=|a|+|b|ab≥0; |a-b|=|a|+|b|ab≤0; |a|-|b|=|a+b|b(a+b)≤0; |a|-|b|=|a-b|b(a-b)≥0. 注: |a|-|b|=|a+b||a|=|a+b|+|b| |(a+b)-b|=|a+b|+|b| b(a+b)≤0. 同理可得 |a|-|b|=|a-b|b(a-b)≥0.
典型例题 2 解不等式 ||x+3|-|x-3||>3.
解法一 零点分区间讨论 原不等式等价于: x<-3, -3≤x≤3, x>3, |-x-3+x-3|>3, 或 |x+3+x-3|>3, 或 |x+3-x+3|>3. 3 <x≤3 或 x>3. 即 x<-3 或 -3≤x<- 3 或 2 2 3 3 ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞). 解法二 两边平方 原不等式等价于 (|x+3|-|x-3|)2>9. 即 2x2+9>2|x2-9|( 2x2+9)2>(2|x2-9|)2. 3 3 2 即 4x -9>0. ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞).
备选题 4 已知函数 f(x)=x3+ax+b 定义在区间 [-1, 1] 上, 且 f(0)=f(1), 又 P(x1, y1), Q(x2, y2) 是其图象上任意两点(x1x2). (1)设直线 PQ 的斜率为k, 求证: |k|<2; (2)若 0≤x1<x2≤1, 求证: |y1-y2|<1. 解: (1)∵f(0)=f(1), ∴b=1+a+b. ∴a=-1. ∴f(x)=x3-x+b. y 2- y 1 1 则 k= x -x = x -x [(x23-x2+b)-(x13-x1+b)] 2 1 2 1 1 = x -x [(x23-x13)-(x2-x1)] =x22+x1x2+x12-1. 2 1 ∵x1, x2[-1, 1] 且 x1x2, ∴0<x22+x1x2+x12<3. ∴-1<x22+x1x2+x12-1<2. ∴|x22+x1x2+x12-1|<2. 即 |k|<2. (2)∵0≤x1<x2≤1, ∴由(1)知 |y2-y1|<2|x2-x1|=2(x2-x1). ① 又 |y2-y1|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)| ≤|f(x1)-f(0)|+|f(1)-f(x2)|<2|x1-0|+2|1-x2|=2(x1-x2)+2

绝对值不等式证明

绝对值不等式证明

绝对值不等式证明
要证明一个绝对值不等式,我们需要根据绝对值的定义逐个考虑不同的情况,并进行推导。

假设我们要证明的绝对值不等式为:|x| ≤a,其中a为一个正数。

情况1:x ≥0
在这种情况下,绝对值|x|就等于x本身。

因此我们可以将不等式简化为x ≤a。

由题设知x ≥0,因此可以得出结论x ≤a。

情况2:x < 0
在这种情况下,绝对值|x|就等于-x。

因此我们可以将不等式简化为-x ≤a。

由题设知x < 0,因此可以得出结论-x ≤a。

两边同时乘以-1,得到x ≥-a。

综合上述两种情况,我们可以得出结论:当x ≥0时,x ≤a;当x < 0时,x ≥-a。

将两种情况综合起来,即可得到整个不等式的证明:-a ≤x ≤a。

这就证明了绝对值不等式|x| ≤a。

含有绝对值不等式的解法-典型例题

含有绝对值不等式的解法-典型例题

含绝对值不等式的解法例1? 解绝对值不等式|x+3|>|x-5|.解:由不等式|x+3|>|x-5|两边平方得|x+3|2>|x-5|2,即(x+3)2>(x-5)2,x>1.∴? 原不等式的解集为{x|x>1}.评析? 对于两边都含“单项”绝对值的不等式依据|x|2=x2,可在两边平方脱去绝对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.例2? 对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则实数k的取值范围是(??? )A.k<3????? ???? B.k<-3????? ??????? C.k≤3????? ??????? D.k≤-3分析? 要使|x+1|-|x-2|>k对任意实数x恒成立,只要|x+1|-|x-2|的最小值大于k.因|x+1|的几何意义为数轴上点x到-1的距离,|x-2|的几何意义为点x到2的距离,|x+1|-|x-2|的几何意义为数轴上点x到-1与2的距离的差,其最小值为-3,∴? k<-3,∴? 选B.评析? 此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗长.例3? 解不等式|3x-1|>x+3.分析? 解此类不等式,要分x+3≥0和x+3<0两种情况讨论.解:当x+3≥0,即x≥-3时,原不等式又要分-3≤x< 和x≥ 两种情况求解:当-3≤x< 时,-3x+1>x+3,即x<- ,此时不等式的解为-3≤x<- ;①当x≥ 时,3x-1>x+3,即x>2,此时不等式的解为x>2.②又当x+3<0,即x<-3时,不等式是绝对不等式.③取①、②、③并集知不等式的解集为{x|x<- ,或x>2}.例4? 解不等式? |x-5|-|2x+3|<1解:x=5和x=- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段:于是,原不等式变为(Ⅰ)?或(Ⅱ)或(Ⅲ)解(Ⅰ)得? x<-7,解(Ⅱ)得<x≤5,解(Ⅲ)得? x>5;(Ⅰ)(Ⅱ)(Ⅲ)的并集{x|x<-7或x> }即为原不等式的解集.说明? 解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.例5? 解不等式1≤|2x-1|<5.解法一:原不等式等价于① 或②解①得? 1≤x<3;解②得? -2<x≤0.∴? 原不等式的解集为{x|-2<x≤0或1≤x<3}.解法二:原不等式等价于1≤2x-1<5,? 或? -5<2x-1≤-1,即? 2≤2x<6,? 或? -4<2x≤0,解得? 1≤x<3,? 或? -2<x≤0.∴? 原不等式的解集为{x|-2<x≤0,或1≤x<3}.评析? 比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a≤|x|≤b a≤x≤b,或-b≤x≤-a(a≥0).这一规律对我们今后解题很有作用,要在理解的基础上加以记忆.本例亦可用图像法求解,不妨一试.例6 解不等式|x+3|+|x-3|>8.分析? 这是一个含有两个绝对值符号的不等式,为了使其转化为解不含绝对值符号的不等式,要进行分类讨论.解法一:由代数式|x+3|、|x-3|知,-3和3把实数集分为三个区间:x<-3,-3≤x<3,x≥3.当x<-3时,-x-3-x+3>8,即x<-4,此时不等式的解为x<-4;①当-3≤x<3时,x+3-x+3>8,此时无解;②当x≥3时,x+3+x-3>8,即x>4,此时不等式的解为x>4.③取①、②、③的并集得原不等式的解集为{x|x<-4,或x>4}.点评? 解这类绝对值符号里是一次式的不等式,其一般步骤是:(1)令每个绝对值符号里的一次式为零,并求出相应的根;(2)把这些根由小到大排序并把实数集分为若干个区间;(3)由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)取这些不等式的解集的并集就是原不等式的解集.模仿例1,我们还有解法二:不等式|x+3|+|x-3|>8表示数轴上与A(-3),B(3)两点距离之和大于8的点,而A,B两点距离为6.因此线段AB上每一点到A、B的距离之和都等于6.如下图,要找到A,B距离之和为8的点,只须由点B向右移1个单位(这时距离之和增加2个单位),即移到点B1(4),或由点A向左移1个单位,即移到点A1(-4).可以看出,数轴上点B1(4)向右的点或者点A1(-4)向左的点到A、B两点的距离之和均大于8.∴? 原不等式的解集为{x|x<-4,或x>4}.解法三:分别画出函数y1=|x+3|+|x-3|和y2=8的图像,如下图.y1=不难看出,要使y1>y2,只须x<-4,或x>4.∴? 原不等式的解集为{x|x<-4,或x>4}.点评? 对于形如|x-a|+|x-b|>c,或|x-a|-|x-b|<c的不等式,利用不等式的几何意义或者画出左、右两边函数的图像去解不等式,更为直观、简捷.这又一次体现了数形结合思想方法的优越性!。

专题 解含绝对值符号的不等式(解析版)

专题 解含绝对值符号的不等式(解析版)

专题解含绝对值符号的不等式1.阅读:我们知道,00a a a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥. 【答案】(1)-3≤x≤1;(2)x≥3或x≤1.【分析】(1)分①x+1≥0,即x≥-1,②x+1<0,即x <-1,两种情况分别求解可得;(2)分①x -2≥0,即x≥2,②x -2<0,即x <2,两种情况分别求解可得.【详解】解:(1)|x+1|≤2,①当x+1≥0,即x≥-1时:x+1≤2,解这个不等式,得:x≤1由条件x≥-1,有:-1≤x≤1;②当x+1<0,即 x <-1时:-(x+1)≤2解这个不等式,得:x≥-3由条件x <-1,有:-3≤x <-1∴综合①、②,原不等式的解为:-3≤x≤1.(2)|x-2|≥1①当x-2≥0,即x≥2时:x-2≥1解这个不等式,得:x≥3由条件x≥2,有:x≥3;②当x-2<0,即 x <2时:-(x-2)≥1,解这个不等式,得:x≤1,对于含绝对值的不等式3x <,从图1的数轴上看:大于-3而小于3的数的绝对值小于3,所以3x <的解集为33x -<<;对于含绝对值的不等式3x >,从图2的数轴上看:小于-3或大于3的数的绝对值大于3,所以3x >的解集为3x <-或3x >.(1)含绝对值的不等式2x 的解集为______;(2)已知含绝对值的不等式1x a -<的解集为3b x <<,求实数a ,b 的值;(3)已知关于x ,y 的二元一次方程1x y m +=--的解满足2x y +≤,其中m 是正数,求m 的取值范围.【答案】11x -<<##11x >>-【答案】3x >或3x <-【分析】首先算出|x |=3的解,然后根据“大于取两边”的口诀得解 .【详解】解:由绝对值的意义可得:x =3或x =-3时,|x |=3,∴根据“大于取两边”即可得到|x |>3的解集为:x >3或 x <−3(如图),故答案为:x >3或 x <−3.【点睛】本题考查绝对值的意义及不等式的求解,熟练掌握有关不等式的求解方法是解题关键.5.若|2a﹣6|>6﹣2a,则实数a的取值范围是_____.__________.8.不等式组25x ⎧⎨-≤⎩的解集是( ) A .52x >- B .37x -≤≤ C .572x -<≤ D .572x -≤≤ 【答案】x <0或x >4【详解】试题分析:此题是一个带绝对值的复合不等式,应分为x≤1,1<x≤3,x >3,三种情况,再根据绝对值的性质化简原式,解不等式即可.试题解析:当x≤1时,原式可变形为1-x +3-x =4-2x >4,解得x <0.注意最后要合并解集.11.解不等式:(1)||2x <(2)|21|3x -≥ 【答案】(1)22x -<<;(2)2x ≥或1x ≤-.【分析】(1)根据绝对值的意义,即可求出不等式的解集;(2)根据绝对值的意义,即可求出不等式的解集.【详解】解:(1)∵||2x <,∴22x -<<.(2)∵|21|3x -≥,原不等式变形为:213x -≥或213x -≤-,解得:2x ≥或1x ≤-.【点睛】本题考查了解不等式,解题的关键是掌握绝对值的意义进行解题.12.解下列不等式:(1)|2|30x +->(2)35572x -+<问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离.⑴. 发现问题:代数式12x x ++-的最小值是多少?⑵. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.∵12x x ++-的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ∴12x x ++-的最小值是3.⑶.解决问题:①.-++x 4x 2的最小值是 ;②.利用上述思想方法解不等式:314x x ++->③.当a 为何值时,代数式++-x a x 3的最小值是2. 【答案】①6;②3x <-或1x >;③1a =-或5a =-【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.【详解】解:(3)①设A 表示的数为4,B 表示的数为-2,P 表示的数为x ,∴|4|x -表示数轴上的点P 到4的距离,用线段PA 表示,|2||(2)|+=--x x 表示数轴上的点P 到-2的距离,用线段PB 表示,∴|4||2|x x -++的几何意义表示为PA+PB ,当P 在线段AB 上时取得最小值为AB , 且线段AB 的长度为6,∴|4||2|x x -++的最小值为6.故答案为:6.②设A 表示-3,B 表示1,P 表示x ,小明在数学课外小组活动时遇到这样一个问题:如果一个不等式(含有不等号的式子)中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式.求绝对值不等式3x >的解集(满足不等式的所有解).小明同学的思路如下:先根据绝对值的定义,求出x 恰好是3时x 的值,并在数轴上表示为点A ,B ,如图所示.观察数轴发现,以点A ,B 为分界点把数轴分为三部分:点A 左边的点表示的数的绝对值大于3;点A ,B 之间的点表示的数的绝对值小于3;点B 右边的点表示的数的绝对值大于3.因此,小明得出结论,绝对值不等式3x >的解集为:3x <-或3x >.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①1x >的解集是;x<的解集是.② 2.5x-+>的解集. (2)求绝对值不等式359(3)直接写出不等式24x>的解集是.∴|x|>1的解集是x>1或x<-1;∴|x|<2.5的解集是-2.5<x<2.5;x-+>的解集为:x>7或x<-1;可知:359可知:不等式x2>4的解集是x>2或x<-2.对于绝对值不等式||3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以||3x <的解集为33x -<<;对于绝对值不等式||3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以||3x >的解集为3x <-或3x >.(1)求绝对值不等式|3|2x ->的解集;(2)已知绝对值不等式|21|x a -<的解集为3b x <<,求2a b -的值;|21|x -<2a x ∴-<解得12a -解集为1a -⎧我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离:0x x =-,也就是说,x 表示在数轴上数x 与数0对应点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 和数2x 对应的点之间的距离;例1解方程2x =,容易看出,在数轴上与原点距离为2的点对应的数为2±,即该方程的解为2x =±.例2解不等式12x ->,如图,在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为1x <-或3x >.例3解方程125x x -++=由绝对值的几何意义知,该方程表示求在数轴上与1和2-的距离之和为5的对应的x 的值.在数轴上,1和2-的距离为3,满足方程的x 对应的点在1的右边或2-的左边,若x 对应的点在1的右边,由下图可以看出2x =;同理,若x 对应的点在2-的左边,可得3x =-,故原方程的解是2x =或3x =-.回答问题:(只需直接写出答案)①解方程34x +=②解不等式34x -≥③解方程328x x -++=③328x x -++=,。

绝对值不等式的证明

绝对值不等式的证明

绝对值不等式的证明稿子一:嗨呀,亲爱的小伙伴们,今天咱们来聊聊绝对值不等式的证明!你说这绝对值不等式,有时候还真挺让人头疼的呢。

不过别怕,咱们一起来把它拿下。

比如说,对于 |a| |b| = |a b| 这个不等式。

咱们可以这样想呀,绝对值就是表示距离嘛。

那 |a b| 呢,就是 a 和 b 之间的距离。

而 |a| 可以看成是 a 到原点的距离,|b| 是 b 到原点的距离。

咱们假设 a、b 在数轴上的位置。

如果 a 和 b 离原点都挺近,那它们之间的距离不就小于等于它们分别到原点距离的差嘛。

再举个例子,|a + b| = |a| + |b| 。

你想想,a + b 的绝对值,是不是就相当于把 a 和 b 加起来,然后看这个和到原点的距离。

而 |a| + |b| 呢,是 a 到原点的距离加上 b 到原点的距离。

这就好比你走路,从 A 点到 B 点,不管你怎么走,直接走或者绕点路,总的路程肯定不会比 A 点到原点再从原点到 B 点的距离短呀。

怎么样,是不是有点感觉啦?其实绝对值不等式证明没那么可怕,多想想,多琢磨琢磨,就能搞明白啦!稿子二:嘿,朋友们!今天咱们要攻克绝对值不等式的证明这座小山丘哟!先来说说 |x| >= x 这个简单的。

你看哈,绝对值就是非负的,那肯定得大于等于本身呀,这不是明摆着的嘛。

再看看 |x| >= x 。

这个也好懂呀,x 要是正的,|x| 就是它本身,肯定大于 x ;x 要是负的,|x| 就是它的相反数,还是大于x 。

还有 |a b| >= |a| |b| 。

咱们可以分情况讨论哦。

当 a、b 同号的时候,就很好比较啦。

要是异号,也能通过分析得出这个不等式成立。

证明绝对值不等式呀,就像解谜一样,得细心,得找规律。

有时候觉得难,别着急,多画画数轴,多想想距离的概念。

比如说 |a + b| = |a| + |b| ,想象成两个人走路,一个从 A 出发,一个从 B 出发,一起走到终点,这路程能超过他俩分别从各自起点走到终点的路程之和吗?一般不能吧,所以这个不等式就成立啦!小伙伴们,加油哦,相信咱们都能把绝对值不等式证明给拿下!。

含有绝对值的不等式

含有绝对值的不等式

含有绝对值的不等式讲解新课:定理:||||||||||b a b a b a +≤+≤-证明:∵|||||)||(|||||||||b a b a b a b b b a a a +≤+≤+-⇒⎭⎬⎫≤≤-≤≤-||||||b a b a +≤+⇒① 又∵a =a +b -b |-b |=|b |由①|a |=|a +b -b |≤|a +b |+|-b | 即|a |-|b |≤|a +b | ② 综合①②: ||||||||||b a b a b a +≤+≤-注意:1︒ 左边可以“加强”同样成立,即||||||||||b a b a b a +≤+≤-2︒ 这个不等式俗称“三角不等式”—三角形中两边之和大于第三边,两边之差小于第三边 3︒a ,b 同号时右边取“=”,a ,b 异号时左边取“=”推论1:||21n a a a +++ ≤||||||21n a a a +++推论2:||||||||||b a b a b a +≤-≤-证明:在定理中以-b 代b 得:|||||)(|||||b a b a b a -+≤-+≤--即 ||||||||||b a b a b a +≤-≤-讲解范例:例1 已知:|x -1|≤1,求证: |2x +3|≤7证明:∵|2x +3|=|2(x -1)+5|≤2|x -1|+5≤2+5=7例2 已知|x |<3ε,|y |<6ε,|z |<9ε, 求证|x +2y -3z |<ε 证明:|x +2y -3z |≤|x |+|2y |+|-3z |=|x |+2|y |+3|z |∵|x |<3ε,|y |<6ε,|z |<9ε, ∴|x |+2|y |+3|z |<εεεε=++93623 ∴|x +2y -3z |<ε说明:此例题主要应用了推论1,其中出现的字母ε,其目的是为学生以后学习微积分作点准备课后作业: 1求证:|x +x1|≥2(x ≠0) 分析:x 与x 1同号,因此有|x +x 1|=|x |+|x 1| 证法一:∵x 与x 1同号,∴|x +x1|=|x |+x 1∴|x +x 1|=|x |+x 1≥2xx 1⋅=2,即|x +x 1|≥2 证法二:当x >0时,x +x1≥2x x 1⋅=2 当x <0时,-x >0,有-x +2121)(21-≤+⇒=-⋅-≥-xx x x x ∴x ∈R 且x ≠0时有x +x 1≤-2,或x +x 1≥2 即|x +x1|≥2 2已知:|A-a |<2ε,|B-b |<2ε,求证: (1)|(A +B )-(a +b )|<ε;(2)|(A -B )-(a -b )|<ε分析:证明本题的关键是把结论的左边凑出条件的左边,创造利用条件的机会 证明:因为|A -a |<2ε,|B -b 2所以(1)|(A +B )-(a +b )|=|(A -a )+(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A +B )-(a +b )|<ε(2)|(A -B )-(a -b )|=|(A -a )-(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε 即|(A -B )-(a -b )|<ε3、求证:(1)|x +1|+|x -1|≥2;(2)|x +2|+|x +1|+|x -1|+|x -2|≥6;(3)2|x +2|+|x +1|≥1(当且仅当x =-2时,“=”号成立)证明:(1)|x +1|+|x -1|≥|(x +1)-(x -1)|=2(2)|x +1|+|x -1|≥|(x +1)-(x -1)|=2当且仅当(x +1)(x -1)≤0,即-1≤x ≤1时“=”成立;又|x +2|+|x -2|≥|(x +2)-(x -2)|=4,当且仅当(x +2)(x -2)≤0,即-2≤x ≤2时“=”号成立∴|x +2|+|x +1|+|x -1|+|x -2|≥6,当且仅当⎩⎨⎧≤≤-≤≤-2211x x 即-1≤x ≤1时“=”号成立(3)|x +2|+|x +1|≥|(x +2)-(x +1)|=1,当且仅当(x +2)(x +1)≤0,即-2≤x ≤-1时“=”号成立;又|x +2|≥0,当且仅当x =-2时,“=”号成立,∴2|x +2|+|x +1|≥1,当x =-2时,“=”号成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
"年第*期
例说与二次函数有关的含有绝对值 不等式的证明问题
安徽省贵池中学 吴成强 (邮编: ) ! " # $ % %
点评 本题首先分析了二次函数在闭区间 [ (! , ] 上的最值情况, 然后用 ( ) 、 ( ) 、 ( ) 表示系数 ! $ !% !$ !( 最后利用绝对值不等式进行放缩, 从而使问题 #、 $、 %, 得证, 这是解决这类问题的常用方法。 求证它 ! 已知二次函数在某几个点的取值范围, 在某个区间上的取值范围
-; ) ( ) (") 。 ( !) " " # ( "" # ! ! &"" " 证明 (!) 由题设条件, 类似例$ , 可得: ( ) (( ) ( ) $ ’ $ ( ! % ! ! , #&! ! ( ) (( ) $ ( $ ! , ( ) 。 $&! %& % ! ! (") 的解析式得 代入!
仿例% , 将 $$ % [ ( ) (" ) % # % " % % ! % ( ) ( ( ) ] , ) ] , ( ) , ) #$ [ % !$ ) ! % %% " %" % ! 代入! 整理得 $ "# # 中, ("# % ) ・ ( ) ("" % ) ・ ( "% ) ! $ "# #$ % # " % % ! ! ・ ( ) , ! " ) % [" , ] 时, 都有 (") , 则 - 当 "# % % " " ! % % ( ) , ( ) , ( ) , 于是有 " ! %" %" ! %" ! % % %" %" % )" 证法一 % % , " ! $ "# # " ! " "# " # " "" " # " ! " " ! ! % 时, [" , ("# % ) 当 "# % " ] " ! $ "# # " !" " ! ! ("" % ) ; " ! "$" , "! , ! 当 "# (" % , ] 时, ; ) " ! $ "# # " ! % " ! "$ ! ! %] ( , 时, ; 当 "# ) " ! $ "# # " ! % # ! "! ! ! 当 "# (%, ] 时, 。 % " ! $ "# # " ! , "! , ! 综上可知, 对于 "# [" , ] 时, 都有 % % 。 " ! $ "# # " ! , 证法二 因为! $ "# # 是线性关系, 所以要证明 "# [" , ] 时总有" , 只 % % ! $ "## " !, 时, , 需证明 "$. % " ! $ "# # " ! ,
! ) ) ,年第+期
中学数学教学
+ %
即只需证明 ," 。 " ! $# # " ! , " ! $# # " ! , ・% [ ( ) ( "% ) ( ) ] " ! $## "$" ! % #% "! ) # % % !
! ! " ! " " ! " # " !# # "# $ " !) ・ ( $ " ! " % "" # " !# # "# $ " , ! " # " !# # "# $ " ! " (") 在 [ "% , ] 端点处取到 由于 ! $ " !## "#$ " % 最大值, 故! (") { ( ) , (" ) } $& ’ ( % % ! ! { , } $& ’ ( " $# ## ! " " $" ## ! " { ( ) , ( ) } , $& ’ ( " % " " " % " ! % % % ( ) , 又 " ! " $ " ) " ! % % ( ) 。 * " ! " ! " # % ! % # % $ ! &"" (主要不同点是 " 的 点评 % ’ 例! 与例 % 类似 取值范围) , 例!若用例%的方法很难求证。例 ! 的两 问都是先用% ( ) 、 (" ) 、 ( ) 表示 $、 然后根据 % % ) #、 !, % % ( ) 、 ( ) 、 ( ) 合并同类项, 最后根据绝对值的意 % " % ) % % % 义及绝对值不等式进行适当放缩, 从而巧妙地将问题 证明了。反之, 例%若用例!的方法也很难证明。 (!) 问的证法二则用了 “添零法” 技 ! ’ 例!第 巧, 并根据一次型函数在闭区间上最值情况将问题巧 妙地证明了。 求证 + 已知二次函数在某个区间上的取值范围, 某个二次函数在此区间上的范围 ! 例+ 设函数% (") $ $ " # # "# ! 对于一切"# [" , ] 都有 (") , 求证: 对一切 " ["% , ] 都有 % % " " ! % % % 。 " ! $ "# # " ! ,
! 例$ 设! (") (#!% ) , 当" & # " ’$ "’ % " "#$
时, 总有 (") , 求证: 当 (") 。 " " # $ " " " # !时, " " # # ! ! 证明 ! (") 是二次函数, (") [ (! , ] 上的 " "在 ! ! 最大值只能是 ( ) , (( ) 或 (( $ ) 。 " ! " " ! " " " ! ! ! ! # ( ) ; ( (! ) ; 当"( $" 故只需证明 " ! " ## " "## ! ! ! # $ 有 (( ) 。 # !时, " " # # ! ! # 由题意, 有 ( ) , (( ) , ( ) , " % " # $ " $ " # $ " $ " # $ ! ! ! ( ) % & %, ! % 由 ( ) #’ $’ %, 得 $ !$ & (( ) & $ & #( $’ %, ! $ % ( ) (( ) ( ) ] , #& [ $ ’ $ ( ! % ! ! !! $ $ ) ) ] , $& [ ( $ ( (( $
! 例! 已知二次函数 ! (") (") &# " ’$ "’ %, & (( ) , ( ) , ( ) 。 & % "’ $ "’ #, " $ " # $ " % " # $ " $ " # $ ! ! ! 求证当( 总有: $ #"# $时, !
二次函数是最简单的非线性函数之一, 它有着丰 富的内容, 对近代数学乃至现代数学影响深远, 与二次 函数有关的含有绝对值不等式的证明问题有一定的综 合性与灵活性, 学生解决此类问题往往感到有一定的 困难。本文通过几个例子, 归纳解决这类问题的一些 常见题型与基本方法。 求证它 $ 已知二次函数值在一个区间上的范围, 在另一个区间上的范围
! " ’" 有" (") ・ ( ) )当( $ #"#$ 时, "#" $ " ! ! ! ! " (" !) ・ (( ) ( ・ ( ) ’ " $ " ’ " $ (" % " ! ! ! ! ! " ’" " (" ! # " " ’ " " ’ " $ (" " ! ! ( ( " " " $ ’") " " " $ (") ( !) & (" ’ ’$ ! ! $ ! - -。 ! ( & " " " ’ $ (" &( " " " ( ) ’ # ! " " (") 法一: 类似于 ( !) , (") & &
% [ ( ) (" ) ] % " % " % % ! +( ) %( ) ( ) $ " % %# % " % " ! ) " % ! ! + ( ) % ( ) ( ) % " # ! " ) " ! " % % # !" %" % ! + % ; ! # # ! $ , ! ! 同理, " " ! $# # " $… %( ) +( ) ( ) $ " " % %" % " % # ! ) " % ! ! % ( ) + ( ) ( ) ! " # " % " # ! " ) " % %" %" % ! ! % + 。 ! $ , ! # # ! ! 综上, 当 "# [" , ] 时, 总有 。 % % " ! $ "# # " ! , ( ) 、 ( "% ) 、 ( ) 表示 点评 % ’ 此例也是用 % % ) % % 然后根据绝对值不等式进行放缩证明 。 $、 #、 !, ! 设函数 % (") ! ’ 此例可推广为: $$ " ## "# !, 对一切 "# [ "% , ] 都有 ( ) , 求证: 对一切 % " " % " "!% [" , ] , 都有 ((#!# ) 。 # % % " ( $ "# # " ! ! ( (变 , 已知二次函数绝对值在某个区间上的最值 量) , 求这个最值的范围 ! (") ($、 的定义 例, 已知% $" #$ "## ##") 域为 [" , ] , %% % ( ") 记 (") 的最大值为 ) , 求证: " " )% ; % ! % ( ") 中的 ) $ 时, (") 的表达式。 (!) 求出 % ! (") 证明 [ ( ) ] [ ( ) ] [ (" ) ] , )% ! ) # % # % % % % $ ! " # " # " % # $# # " # " % " $# # " , % # $# ## % " $# #" ! # " $ ! % " % * )% 。 ! % (!)当 ) $ % 时, ( ) " ) " $ " # " ! , % ! ! % % *" ! #! ! ! % ( ) " $ " % # $# # " ! , % %" ! % % *" ! % # $# #! ! ! % (" ) " % " $ " % " $# # " ! , % ! % % *" ! % " $# #! ! ! , $#%得 " % ! ! # ! #! % *"
相关文档
最新文档