内蒙古包钢第一中学2016-2017学年高二下学期期中考试数学(文)试题
内蒙古包头一中2016-2017学年高二下学期3月月考数学(文)试题 Word版含答案
包一中2016—2017学年度第二学期月考试题高二文科数学一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四小选项中,只有一项是符合题目要求的).1.“a =0”是“复数z =a +b i(a ,b ∈R )为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.将曲线C 按伸缩变换公式y ′=3y x ′=2x ,变换得到曲线方程为x ′2+y ′2=1,则曲线方程为( )A.4x2+9y2=1B.9x2+4y2=1C .4x 2+9y 2=36D .4x 2+9y 2=13.复数z =1-i 1+i +(1-i)2的虚部等于( )A .1B .0C .-1D .i 4.圆ρ=(cos θ+sin θ)的圆心的极坐标是( )A.4πB.4πC.4πD.4π5.已知复数z 1=3+4i ,z 2=t +i ,且z 1·是实数,则实数t 等于( )A.43B.34 C .-34D .-436.曲线θ=32π与ρ=6sin θ的两个交点之间的距离为( )A .1 B. C .3 D .67.若圆C 的参数方程为y =3+2sin θx =-1+2cos θ,(θ为参数),直线的参数方程为y =6t -1x =2t -1,(t 为参数),则直线与圆C 的位置关系是( )A .过圆心B .相交而不过圆心C .相切D .相离8.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S<8B .S<9C .S<10D .S<119.下图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1(n ∈N *)B .a n =3n (n ∈N *)C .a n =3n -2n (n ∈N *)D .a n =3n -1+2n -3(n ∈N *)10.在复平面上,一个正方形的三个顶点对应的复数分别是1+2i ,-2+i,0,那么这个正方形的第四个顶点对应的复数为( )A .3+iB .3-iC .1-3iD .-1+3i11.已知曲线y =5sin θx =3cos θ,(θ为参数且0≤θ≤2π)上一点P 与原点O 的距离为,则P 点坐标为( )A.3B.25C. 25D.51212.已知直线l :y =2-t 3t ,(t 为参数),抛物线C 的方程y 2=2x ,l 与C 交于P 1,P 2,则点A (0,2)到P 1,P 2两点距离之和是( )A .4(2+)B .2(2+)C .4+D .8+ 二、填空题(每小题5分,共20分.把正确答案填在答题卡上)13.执行下图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是 .14.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =__________.15.在极坐标系中,若过点A (4,0)的直线与曲线ρ2=4ρcos θ-3有公共点,则直线的斜率的取值范围为__________.16.点M (x ,y )在椭圆12x2+4y2=1上,则点M 到直线x +y -4=0的距离的最大值为________,此时点M 的坐标是________.三、解答题(本大题共4小题,满分40分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的非负半轴,建立平面直角坐标系,直线的参数方程是2(t 是参数).(1)将曲线C 的极坐标方程和直线的参数方程转化为普通方程; (2)若直线与曲线C 相交于A 、B 两点,且|AB |=,试求实数m 的值.18.(本小题满分10分)在极坐标系中,直线的极坐标方程为θ=3π(ρ∈R),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为y =1+cos 2αx =2cos α,(α为参数),求直线与曲线C 的交点P 的直角坐标.19.(本小题满分10分)在平面直角坐标系xOy 中,曲线C 1的参数方程为y =sin φx =cos φ,(φ为参数),曲线C 2的参数方程为y =bsin φx =acos φ,(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值;(2)设当α=4π时,与C 1,C 2的交点分别为A 1,B 1,当α=-4π时,与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.20. (本小题满分10分)已知曲线,直线(为参数)(1)写出曲线的参数方程,直线的普通方程; (2)过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.2016-2017月考答案(文数)1—5 BDCAD 6—10 CBBAD 11-12 CA13. 68 14. 15.16.4, (-3,-1)17. 析: (1)曲线C 的直角坐标方程为x 2+y 2-4x =0, 直线l 的直角坐标方程为y =x -m (2)m =1或m =318解:因为直线l 的极坐标方程为θ=3π(ρ∈R),所以直线l 的直角坐标方程为y =x ,①因为曲线C 的参数方程为y =1+cos 2αx =2cos α,(α为参数), 所以曲线C 的普通方程为y =21x 2(x ∈[-2,2]),② 联立①②可解得y =0x =0,或y =6,3,根据x 的取值范围应舍去y =6,3,故P 点的直角坐标为(0,0).19.解:(1)C 1,C 2的普通方程分别为x 2+y 2=1和9x2+y 2=1.因此C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a =3.当α=2π时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(6分)(2)C 1,C 2的普通方程分别为x 2+y 2=1和9x2+y 2=1.当α=4π时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=1010. 当α=-4π时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形,故四边形A 1A 2B 2B 1的面积为2(2x ′+2x(x ′-x =52.(12分) 20解:(I ) 曲线C 的参数方程为(为参数)直线的普通方程为 ……5分(II ) 曲线C 上任意一点到的距离为则,其中为锐角,且当时,取得最大值,最大值为当时,取得最小值,最小值为。
内蒙古包头市2016-2017学年高二数学下学期期中试题 文
投稿兼职请联系:2355394692 内蒙古包头市2016-2017学年高二数学下学期期中试题 文一、选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案) 1.{0,1,2,3,4,5}{0,1,3}{1,2,5}U A B ===,,,则()U C A B =∩( ) A.{2,4,5} B.{1,2,4,5} C.{2,5} D.{0,2,3,4,5}2.若复数12a ii++是纯虚数,则实数a 的值为( ) A. 2 B. 12- C. 2- D. 1-3. 已知命题p:函数f(x)=sin x·cos x 的最小正周期为π;命题q:函数g(x)=sin (x+2π)的图象关于原点对称,则下列命题中为真命题的是( ) A.¬pB.(¬p)∨qC.p∧qD.p∨q4.根据如下样本数据:得到的回归直线方程为^y =bx+a.若a=7.9,则x 每增加1个单位,^y 就( )A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位 5. 若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1B .3x +3C .2x +1D .x +16. 已知函数m x x x f +-=3)(3只有一个零点,则实数m 的取值范围是( ) A .[]2,2- B .()2,-∞-∪()∞+,2 C .()2,2- D .(]2,-∞-∪[)∞+,2 7.已知抛物线y 2=8x 的焦点为F,直线y=k(x-2)与此抛物线相交于P,Q 两点,则11PF QF+=()A. 12B.1C.2D.4 8.观察下列各式:55=3 125,56=15 625,57=78 125,……,则52 013的末四位数字为( ) A. 8125 B.5625 C.0625 D. 31259. 一条直线的参数方程是112()5x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数,另一条直线的方程是0x y --=,则两条直线的交点与点(1,-5)之间的距离是( )投稿兼职请联系:2355394692 2A.10. 已知函数y=21(0)2(0)x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( ) A.-2B.2或52-C.2或-2D.2或-2或52- 11.若存在x 0∈R ,使a x 20+2x 0+a <0成立,则实数a 的取值范围是( )A.a<1B.a≤1C.-1<a<1D.-1<a≤112. 某工厂要建造一个长方体状的无盖箱子,其容积为48 m 3,高为3 m,如果箱底每1 m 2的造价为15元,箱壁每1 m 2的造价为12元,那么箱子的最低总造价为( ) A.900元 B.840元C.818元D.816元二、填空题(本大题共4小题,每小题5分,共20分)13.在直角坐标系xOy 中,已知点C (-3,-3),若以O 为极点,x 轴的 正半轴为极轴,则点C 的极坐标(ρ,θ)(ρ>0,-π<θ<0)可写为_______. 14.若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 ____.15. 如果不等式|x-m|≤1成立的充分不必要条件是1<x≤2,则实数m 的取值范围是 . 16.函数21()(1)36x f x x x x +=>-++的值域是 三、简答题(共70分),写出必要的解题过程.17.(本题满分10分) 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数),l 与C 交于A 、B 两点,|AB|=10,求l的斜率.18.(本题满分12分)已知函数31()(2)3f x ax a x c =+-+的图像如图所示 (1)求函数)(x f y =的解析式(2)若()()2ln kf x g x x x'=-在其定义域内为增函数,求实数k 的取值范围19.(本题满分12分)某大学高等数学老师这学期分别用A,B 两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学时的数学平均分数和优秀率都相同,勤奋程度和自觉3性都一样).现随机抽取甲、乙两班各20名同学的高等数学期末考试成绩(单位:分),得到如下茎叶图:(1)依茎叶图判断哪个班的平均分高;(2)现从甲班高等数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(3)学校规定:成绩不低于85分为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025参考公式:K 2=,其中n=a+b+c+d.20. (本题满分12分)已知抛物线顶点在原点,焦点在x 轴上.又知此抛物线上一点A(1,m)到焦点的距离为3. (1)求此抛物线的方程;(2)若此抛物线与直线y=kx-2交于不同的两点A 、B,且AB 中点的横坐标为2,求k 的值及|AB|21. (本题满分12分)已知函数21()(21)2ln 2f x ax a x x =-++ (1)若曲线()y f x =在13x x ==和处的切线互相平行,求a 的值; (2)求()f x 的单调区间。
2016-2017年内蒙古包头市北重三中高二(下)期中数学试卷(文科)和答案
2016-2017学年内蒙古包头市北重三中高二(下)期中数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分)1.(5分)复数的共轭复数是()A.B.C.3+4i D.3﹣4i2.(5分)若a,b是实数,且a>b,则下列结论成立的是()A.()a<()b B.<1C.lg(a﹣b)>0D.a2>b23.(5分)函数f(x)=x3﹣3x2+1的单调递减区间是()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)4.(5分)观察式子:1+,1+,…,则可归纳出式子为()A.(n≥2)B.1+(n≥2)C.1+(n≥2)D.1+(n≥2)5.(5分)与参数方程为(t为参数)等价的普通方程为()A.x2+=1B.x2+=1(0≤x≤1)C.x2+=1(0≤y≤2)D.x2+=1(0≤x≤1,0≤y≤2)6.(5分)关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1]C.(3,+∞)D.(﹣∞,3] 7.(5分)表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()A.3B.3.15C.3.5D.4.58.(5分)曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为()A.(1,0)B.(2,8)C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)9.(5分)已知定义在R上的函数既有极大值又有极小值,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)10.(5分)对于在R上可导的任意函数f(x),若其导函数为f′(x),且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)≤2f(1)B.f(0)+f(2)<2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)11.(5分)设曲线C的参数方程为(θ为参数),直线l的方程为x ﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1B.2C.3D.412.(5分)f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0,f′(x)g(x)﹣f(x)g′(x)<0且的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)求曲线y=在点(3,2)处的切线的斜率.14.(5分)已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线(t为参数)的距离的最小值为.15.(5分)已知x与y之间的一组数据:则y与x的线性回归方程.16.(5分)已知函数y=x3﹣ax2+x﹣5若函数在[2,+∞)上是增函数,则a的取值范围是.三、解答题(本大题共6小题,17题10分,18~22题每小题10分,共70分)17.(10分)已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.18.(12分)已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程.(2)设l与圆x2+y2=4相交于点A、B,求点P到A、B两点的距离之积.19.(12分)甲乙两班进行数学考试,按照大于85分为优秀,85分以下为非优秀统计成绩后,得到下列联表.已知在100人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?参考公式:k2=.20.(12分)已知函数f(x)=﹣x+xlnx(1)求函数f(x)的单调区间;(2)若y=f(x)﹣m﹣1在定义域内有两个不同的零点,求实数m的取值范围.21.(12分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.22.(12分)已知f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g (x),f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),(1)若a=3,b=2,求h(x)的极值点;(2)若b=2且h(x)存在单调递减区间,求a的取值范围.2016-2017学年内蒙古包头市北重三中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分)1.(5分)复数的共轭复数是()A.B.C.3+4i D.3﹣4i【解答】解:复数===﹣i,∴复数的共轭复数是+i,故选:A.2.(5分)若a,b是实数,且a>b,则下列结论成立的是()A.()a<()b B.<1C.lg(a﹣b)>0D.a2>b2【解答】解:∵a>b,∴,与1的大小关系不确定,lg(a﹣b)与0的大小关系不确定,a2与b2的大小关系不确定.因此只有A正确.故选:A.3.(5分)函数f(x)=x3﹣3x2+1的单调递减区间是()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)【解答】解:f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故函数的递减区间是(0,2),故选:D.4.(5分)观察式子:1+,1+,…,则可归纳出式子为()A.(n≥2)B.1+(n≥2)C.1+(n≥2)D.1+(n≥2)【解答】解:根据题意,由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母可知,C正确;故选:C.5.(5分)与参数方程为(t为参数)等价的普通方程为()A.x2+=1B.x2+=1(0≤x≤1)C.x2+=1(0≤y≤2)D.x2+=1(0≤x≤1,0≤y≤2)【解答】解:由参数方程为,∴,解得0≤t≤1,从而得0≤x≤1,0≤y≤2;将参数方程中参数消去得x2+=1.因此与参数方程为等价的普通方程为.故选:D.6.(5分)关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1]C.(3,+∞)D.(﹣∞,3]【解答】解:∵关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,故|x﹣1|+|x+2|的最小值大于或等于m.而由|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,可得|x﹣1|+|x+2|的最小值为3,故有m≤3,故选:D.7.(5分)表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()A.3B.3.15C.3.5D.4.5【解答】解:∵由回归方程知=,解得t=3,故选:A.8.(5分)曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为()A.(1,0)B.(2,8)C.(1,0)或(﹣1,﹣4)D.(2,8)或(﹣1,﹣4)【解答】解:因为直线y=4x﹣1的斜率为4,且切线平行于直线y=4x﹣1,所以函数在p0处的切线斜率k=4,即f'(x)=4.因为函数的导数为f'(x)=3x2+1,由f'(x)=3x2+1=4,解得x=1或﹣1.当x=1时,f(1)=0,当x=﹣1时,f(﹣1)=﹣4.所以p0的坐标为(1,0)或(﹣1,﹣4).故选:C.9.(5分)已知定义在R上的函数既有极大值又有极小值,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)【解答】解:f′(x)=ax2+2x+a,由题意得,解得:a∈(﹣1,0)∪(0,1),故选:D.10.(5分)对于在R上可导的任意函数f(x),若其导函数为f′(x),且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)≤2f(1)B.f(0)+f(2)<2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)【解答】解:函数f(x)满足(x﹣1)f′(x)≥0,当f(x)=C,f(0)=f (2)=f(1),∴f(0)+f(2)=2f(1),当f(x)≠C时,x>1时,f′(x)>0,此时函数f(x)单调递增;x<1时,f′(x)<0,此时函数f(x)单调递减,因此x=1函数f(x)取得极小值.∴f(0)>f(1),f(2)>f(1),∴f(0)+f(2)>2 f(1),综上f(0)+f(2)≥2f(1),故选:C.11.(5分)设曲线C的参数方程为(θ为参数),直线l的方程为x ﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1B.2C.3D.4【解答】解:曲线C的参数方程为(θ为参数),化为普通方程为圆C:(x﹣2)2+(y﹣1)2=9,圆心为(2,1),半径为3.则圆心到直线的距离d==.则直线与圆相交,则由3﹣>,故在直线x﹣3y+2=0的上方和下方各有两个,共4个.故选:D.12.(5分)f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0,f′(x)g(x)﹣f(x)g′(x)<0且的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)【解答】解:∵f(x)和g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数∴f(﹣x)=﹣f(x)g(﹣x)=g(x)∵当x<0时,f′(x)g(x)﹣f(x)g′(x)<0当x<0时,,令h(x)=,则h(x)在(﹣∞,0)上单调递减∵h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x)∴h(x)为奇函数,根据奇函数的性质可得函数h(x)在(0,+∞)单调递减,且h(0)=0∵f(﹣2)=﹣f(2)=0,∴h(﹣2)=﹣h(2)=0h(x)<0的解集为(﹣2,0)∪(2,+∞)故选:A.二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)求曲线y=在点(3,2)处的切线的斜率.【解答】解:y==1+,∴y′=﹣,∴k=y′|x=﹣=﹣,=3故答案为:﹣14.(5分)已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线(t为参数)的距离的最小值为﹣1.【解答】解:曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.配方为(x﹣1)2+y2=1.可得圆心C(1,0),r=1.由曲线C上的点到直线(t为参数),消去参数t可得普通方程:2x﹣y+2=0,∴圆心C到直线的距离d==.∴曲线C上的点到直线(t为参数)的距离的最小值为﹣1.故答案为:﹣1.15.(5分)已知x与y之间的一组数据:则y与x的线性回归方程y=2x+1.【解答】解:∵=1.5,=4,x i y i=34,4•=24,x i2=14,42=9,∴b==2,a=4﹣2×1.5=1,则y与x的线性回归方程为y=2x+1,故答案为:y=2x+1.16.(5分)已知函数y=x3﹣ax2+x﹣5若函数在[2,+∞)上是增函数,则a的取值范围是a≤.【解答】解:∵y=f(x)=x3﹣ax2+x﹣5,∴f′(x)=x2﹣2ax+1;∵f(x)在[2,+∞)上是增函数;∴f′(x)≥0在x∈[2,+∞)上恒成立;∴△=4a2﹣4≤0,或;解得﹣1≤a≤1,或a≤;∴a≤;故答案为:a≤.三、解答题(本大题共6小题,17题10分,18~22题每小题10分,共70分)17.(10分)已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.【解答】证明:法一:(分析法)要证a3+b3≥a2b+ab2成立,只需证(a+b)(a2﹣ab+b2)≥ab(a+b)成立又因为a>0,只需证a2﹣ab+b2≥ab成立,(a﹣b)2≥0显然成立,由此命题得证.法二:(综合法)a2﹣2ab+b2≥0∴a2﹣ab+b2≥ab(*)而a,b均为正数,∴a+b>0,∴(a+b)(a2﹣ab+b2)≥ab(a+b)∴a3+b3≥a2b+ab2.法三:比较法(作差)(a3+b3)﹣(a2b+ab2)=(a3﹣a2b)+(b3﹣ab2)…(4分)又∵a>0,b>0,∴a+b>0,而(a﹣b)2≥0.∴(a+b)(a﹣b)2≥0.…(6分)故(a3+b3)﹣(a2b+ab2)≥0即a3+b3≥a2b+ab2…(8分)18.(12分)已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程.(2)设l与圆x2+y2=4相交于点A、B,求点P到A、B两点的距离之积.(1)因为过点(x0,y0),且倾斜角为α的直线的参数方程,【解答】解:由题意,将x0=1,y0=1,α=代入上式得直线l的参数方程为(t 为参数).(2)因为A,B都在直线l上,故可设它们对应的参数分别为t1,t2,则点A,B的坐标分别为A,B,将直线l的参数方程代入圆的方程x2+y2=4中,整理得,则t1,t2是此方程的两根,由韦达定理得t1t2=﹣2,所以|P A|•|PB|=|t1t2|=2.即点P到A、B两点的距离之积为2.19.(12分)甲乙两班进行数学考试,按照大于85分为优秀,85分以下为非优秀统计成绩后,得到下列联表.已知在100人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?参考公式:k2=.【解答】解:(1)(2),按95%的可能性要求,能认为“成绩与班级有关系”20.(12分)已知函数f(x)=﹣x+xlnx(1)求函数f(x)的单调区间;(2)若y=f(x)﹣m﹣1在定义域内有两个不同的零点,求实数m的取值范围.【解答】解:(1)f'(x)=lnx,令f'(x)>0,解得x>1;令f'(x)<0,解得0<x<1;∴f(x)的增区间为(1,+∞),减区间为(0,1)(2)y=f(x)﹣m﹣1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1图象上有两个不同的交点,由(Ⅰ)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=﹣1,由题意得,m+1>﹣1即m>﹣2①,由图象可知,m+1<0,即m<﹣1②,由①②可得﹣2<m<﹣1.21.(12分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.22.(12分)已知f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g (x),f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),(1)若a=3,b=2,求h(x)的极值点;(2)若b=2且h(x)存在单调递减区间,求a的取值范围.【解答】解:(1)∵a=3,b=2,∴,∴,令h′(x)=0,则3x2+2x﹣1=0,x1=﹣1,x,则当0时,h′(x)>0,则h(x)在(0,)上为增函数,当x时,h′(x)<0,则h(x)在(上为减函数,则h(x)的极大值点为;(2)∵b=2,∴,∴,∵函数h(x))存在单调递减区间,∴h′(x)<0有解.即当x>0时,则ax2+2x﹣1>0在(0,+∞)上有解.(1)当a>0时,y=ax2+2x﹣1为开口向上的抛物线,y=ax2+2x﹣1>0在(0,+∞)总有解.故a>0符合题意;(2)当a<0时,y=ax2+2x﹣1为开口向下的抛物线,要y=ax2+2x﹣1>0在(0,+∞)总有解,则△=4+4a>0,且方程ax2+2x﹣1=0至少有一个正根,此时,﹣1<a<0'综上所述,a的取值范围为(﹣1,0)∪(0,+∞).。
《解析》内蒙古包头市北重三中2016-2017学年高二下学期期中数学试卷(文科)Word版含解析
2016-2017学年内蒙古包头市北重三中高二(下)期中数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分)1.复数的共轭复数是()A.3﹣4i B.C.3+4i D.2.若a,b是实数,且a>b,则下列结论成立的是()A.()a<()b B.<1 C.lg(a﹣b)>0 D.a2>b23.函数f(x)=x3﹣3x2+1的单调递减区间是()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)4.观察式子:1+,1+,…,则可归纳出式子为()A.(n≥2)B.1+(n≥2)C.1+(n≥2)D.1+(n≥2)5.与参数方程为(t为参数)等价的普通方程为()A.x2+=1 B.x2+=1(0≤x≤1)C.x2+=1(0≤y≤2)D.x2+=1(0≤x≤1,0≤y≤2)6.关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1]C.(3,+∞)D.(﹣∞,3]7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()A.3 B.3.15 C.3.5 D.4.58.曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为()A.(1,0) B.(2,8) C.(1,0)或(﹣1,﹣4) D.(2,8)或(﹣1,﹣4)9.已知定义在R上的函数既有极大值又有极小值,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)10.对于在R上可导的任意函数f(x),若其导函数为f′(x),且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)≤2f(1) B.f(0)+f(2)<2f(1) C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)11.设曲线C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1 B.2 C.3 D.412.f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0,f′(x)g(x)﹣f(x)g′(x)<0且的解集为()A.(﹣2,0)∪(2,+∞) B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)二.填空题(本大题共4小题,每小题5分,共20分)13.求曲线y=在点(3,2)处的切线的斜率.14.已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线(t为参数)的距离的最小值为.15.已知x与y 之间的一组数据:则y与x的线性回归方程.16.已知函数y=x3﹣ax2+x﹣5若函数在[2,+∞)上是增函数,则a的取值范围是.三、解答题(本大题共6小题,17题10分,18~22题每小题10分,共70分)17.已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.18.已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程;(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.19.甲乙两班进行数学考试,按照大于85分为优秀,85分以下为非优秀统计成绩后,得到下列联表.已知在100人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?参考公式:k2=.20.已知函数f(x)=﹣x+xlnx(1)求函数f(x)的单调区间;(2)若y=f(x)﹣m﹣1在定义域内有两个不同的零点,求实数m的取值范围.21.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.22.已知f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),(1)若a=3,b=2,求h(x)的极值点;(2)若b=2且h(x)存在单调递减区间,求a的取值范围.2016-2017学年内蒙古包头市北重三中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分)1.复数的共轭复数是()A.3﹣4i B.C.3+4i D.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法运算把给出的复数化简为a+bi(a,b∈R)的形式,则其共轭复数可求.【解答】解:=.所以,数的共轭复数是.故选:B.2.若a,b是实数,且a>b,则下列结论成立的是()A.()a<()b B.<1 C.lg(a﹣b)>0 D.a2>b2【考点】71:不等关系与不等式.【分析】利用函数的单调性、不等式的基本性质即可判断出结论.【解答】解:∵a>b,∴,与1的大小关系不确定,lg(a﹣b)与0的大小关系不确定,a2与b2的大小关系不确定.因此只有A正确.故选:A.3.函数f(x)=x3﹣3x2+1的单调递减区间是()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,令f′(x)<0,解出即可.【解答】解:f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故函数的递减区间是(0,2),故选:D.4.观察式子:1+,1+,…,则可归纳出式子为()A.(n≥2)B.1+(n≥2)C.1+(n≥2)D.1+(n≥2)【考点】F1:归纳推理.【分析】根据题意,由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母分析可得答案.【解答】解:根据题意,由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母可知,C正确;故选C.5.与参数方程为(t为参数)等价的普通方程为()A.x2+=1 B.x2+=1(0≤x≤1)C.x2+=1(0≤y≤2)D.x2+=1(0≤x≤1,0≤y≤2)【考点】QH:参数方程化成普通方程.【分析】先由参数方程求出参数t得取值范围,进而求出x、y的取值范围,再通过变形平方即可消去参数t.【解答】解:由参数方程为,∴,解得0≤t≤1,从而得0≤x≤1,0≤y≤2;将参数方程中参数消去得x2+=1.因此与参数方程为等价的普通方程为.故选D.6.关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,则实数m的取值范围为()A.(1,+∞)B.(﹣∞,1]C.(3,+∞)D.(﹣∞,3]【考点】R5:绝对值不等式的解法.【分析】由题意可得|x﹣1|+|x+2|的最小值大于或等于m,而由绝对值三角不等式求得|x﹣1|+|x+2|的最小值为3,从而求得m的范围.【解答】解:∵关于x的不等式|x﹣1|+|x+2|≥m在R上恒成立,故|x﹣1|+|x+2|的最小值大于或等于m.而由|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,可得|x﹣1|+|x+2|的最小值为3,故有m ≤3,故选:D7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()A.3 B.3.15 C.3.5 D.4.5【考点】BQ:回归分析的初步应用.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.8.曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为()A.(1,0) B.(2,8) C.(1,0)或(﹣1,﹣4) D.(2,8)或(﹣1,﹣4)【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用直线平行的性质,结合导数的几何意义求出切线的斜率,即可求出切点的坐标.【解答】解:因为直线y=4x﹣1的斜率为4,且切线平行于直线y=4x﹣1,所以函数在p0处的切线斜率k=4,即f'(x)=4.因为函数的导数为f'(x)=3x2+1,由f'(x)=3x2+1=4,解得x=1或﹣1.当x=1时,f(1)=0,当x=﹣1时,f(﹣1)=﹣4.所以p0的坐标为(1,0)或(﹣1,﹣4).故选C.9.已知定义在R上的函数既有极大值又有极小值,则实数a的取值范围是()A.(﹣∞,﹣1)∪(1,+∞)B.[﹣1,0)∪(0,1]C.(﹣1,1)D.(﹣1,0)∪(0,1)【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,根据函数极值的意义得到关于a的不等式组,解出即可.【解答】解:f′(x)=ax2+2x+a,由题意得,解得:a∈(﹣1,0)∪(0,1),故选:D.10.对于在R上可导的任意函数f(x),若其导函数为f′(x),且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)≤2f(1) B.f(0)+f(2)<2f(1) C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)【考点】6A:函数的单调性与导数的关系.【分析】函数f(x)满足(x﹣1)f′(x)≥0,对x与1的大小关系分类讨论即可得出函数f(x)的单调性.【解答】解:∵函数f(x)满足(x﹣1)f′(x)≥0,∴x>1时,f′(x)≥0,此时函数f(x)单调递增;x<1时,f′(x)≤0,此时函数f(x)单调递减,因此x=1函数f(x)取得极小值.∴f(0)≥f(1),f(2)≥f(1),∴f(0)+f(2)≥2 f(1),故选:C.11.设曲线C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1 B.2 C.3 D.4【考点】QH:参数方程化成普通方程.【分析】将参数方程化为普通方程,求出圆心和半径,再求圆心到直线的距离,判断直线与圆的位置关系,观察即可得到点的个数.【解答】解:曲线C的参数方程为(θ为参数),化为普通方程为圆C:(x﹣2)2+(y﹣1)2=9,圆心为(2,1),半径为3.则圆心到直线的距离d==.则直线与圆相交,则由3﹣>,故在直线x﹣3y+2=0的上方和下方各有两个,共4个.故选D.12.f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0,f′(x)g(x)﹣f(x)g′(x)<0且的解集为()A.(﹣2,0)∪(2,+∞) B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)【考点】6A:函数的单调性与导数的关系;3N:奇偶性与单调性的综合.【分析】构造函数h(x)=,由已知可得x<0时,h′(x)<0,从而可得函数h (x)在(﹣∞,0)单调递减,又由已知可得函数h(x)为奇函数,故可得h(0)=g (﹣2)=g(2)=0,且在(0,+∞)单调递减,可求得答案.【解答】解:∵f(x)和g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数∴f(﹣x)=﹣f(x)g(﹣x)=g(x)∵当x<0时,f′(x)g(x)﹣f(x)g′(x)<0当x<0时,,令h(x)=,则h(x)在(﹣∞,0)上单调递减∵h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x)∴h(x)为奇函数,根据奇函数的性质可得函数h(x)在(0,+∞)单调递减,且h(0)=0∵f(﹣2)=﹣f(2)=0,∴h(﹣2)=﹣h(2)=0h(x)<0的解集为(﹣2,0)∪(2,+∞)故选A.二.填空题(本大题共4小题,每小题5分,共20分)13.求曲线y=在点(3,2)处的切线的斜率.【考点】62:导数的几何意义.【分析】求出函数的导数,求出切点的导函数值即可【解答】解:y==1+,∴y′=﹣,∴k=y′|x=3=﹣=﹣,故答案为:﹣14.已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线(t为参数)的距离的最小值为﹣1.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.配方可得圆心C,r.由曲线C上的点到直线(t为参数),消去参数t可得普通方程:2x﹣y+2=0,利用点到直线的距离可得圆心C到直线的距离d.即可得出曲线C上的点到直线(t为参数)的距离的最小值为d﹣r.【解答】解:曲线C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.配方为(x﹣1)2+y2=1.可得圆心C(1,0),r=1.由曲线C上的点到直线(t为参数),消去参数t可得普通方程:2x﹣y+2=0,∴圆心C到直线的距离d==.∴曲线C上的点到直线(t为参数)的距离的最小值为﹣1.故答案为:﹣1.15.已知x与y 之间的一组数据:则y 与x 的线性回归方程 y=2x +1 .【考点】BK :线性回归方程.【分析】根据表格中的数据确定出,, x i y i ,4•, x i 2,42的值,进而求出a 与b 的值,即可确定出y 与x 的线性回归方程.【解答】解:∵ =1.5, =4,x i y i =34,4•=24, x i 2=14,42=9,∴b==2,a=4﹣2×1.5=1, 则y 与x 的线性回归方程为y=2x +1,故答案为:y=2x +1.16.已知函数y=x 3﹣ax 2+x ﹣5若函数在[2,+∞)上是增函数,则a 的取值范围是 a≤ . 【考点】6B :利用导数研究函数的单调性.【分析】求导数得到f′(x )=x 2﹣2ax +1,根据条件可得到f′(x )≥0在x ∈[2,+∞)上恒成立,得到关于a 的不等式组,这样即可解出a 的范围,即得出实数a 的取值范围.【解答】解:∵y=f (x )=x 3﹣ax 2+x ﹣5,∴f′(x )=x 2﹣2ax +1;∵f (x )在[2,+∞)上是增函数;∴f′(x )≥0在x ∈[2,+∞)上恒成立;∴△=4a 2﹣4≤0,或;解得﹣1≤a ≤1,或a ≤;∴a ≤;故答案为:a ≤.三、解答题(本大题共6小题,17题10分,18~22题每小题10分,共70分)17.已知a>0,b>0,判断a3+b3与a2b+ab2的大小,并证明你的结论.【考点】R6:不等式的证明.【分析】法一,分析法:证明使a3+b3>a2b+ab2成立的充分条件成立,即要证a3+b3≥a2b+ab2成立,只需证(a+b)(a2﹣ab+b2)≥ab(a+b)成立,只需证a2﹣ab+b2≥ab成立,(a﹣b)2≥0显然成立,从而得到证明;法二,综合法:a2﹣2ab+b2≥0,通过变形,应用不等式的性质可证出结论.法三,比较法:将两个式子作差变形,通过提取公因式化为完全平方与一个常数的积的形式,判断符号,得出大小关系.【解答】证明:法一:(分析法)要证a3+b3≥a2b+ab2成立,只需证(a+b)(a2﹣ab+b2)≥ab(a+b)成立又因为a>0,只需证a2﹣ab+b2≥ab成立,(a﹣b)2≥0显然成立,由此命题得证.法二:(综合法)a2﹣2ab+b2≥0∴a2﹣ab+b2≥ab(*)而a,b均为正数,∴a+b>0,∴(a+b)(a2﹣ab+b2)≥ab(a+b)∴a3+b3≥a2b+ab2.法三:比较法(作差)(a3+b3)﹣(a2b+ab2)=(a3﹣a2b)+(b3﹣ab2)…又∵a>0,b>0,∴a+b>0,而(a﹣b)2≥0.∴(a+b)(a﹣b)2≥0.…故(a3+b3)﹣(a2b+ab2)≥0即a3+b3≥a2b+ab2…18.已知直线l 经过点P (1,1),倾斜角α=,(1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.【考点】QJ :直线的参数方程;J9:直线与圆的位置关系;QK :圆的参数方程.【分析】(1)利用公式和已知条件直线l 经过点P (1,1),倾斜角,写出其极坐标再化为一般参数方程;(2)由题意将直线代入x 2+y 2=4,从而求解.【解答】解:(1)直线的参数方程为,即.(2)把直线代入x 2+y 2=4,得,t 1t 2=﹣2,则点P 到A ,B 两点的距离之积为2.19.甲乙两班进行数学考试,按照大于85分为优秀,85分以下为非优秀统计成绩后,得到下列联表.已知在100人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?参考公式:k 2=.【考点】BO:独立性检验的应用.【分析】(1)由100人中随机抽取1人为优秀的概率为,我们可以计算出优秀人数为30,我们易得到表中各项数据的值.(2)我们可以根据列联表中的数据,代入公式K2,计算出K2值,然后代入离散系数表,比较即可得到答案.【解答】解:(1)(2),按95%的可能性要求,能认为“成绩与班级有关系”20.已知函数f(x)=﹣x+xlnx(1)求函数f(x)的单调区间;(2)若y=f(x)﹣m﹣1在定义域内有两个不同的零点,求实数m的取值范围.【考点】6B:利用导数研究函数的单调性;54:根的存在性及根的个数判断.【分析】(1)求出导函数,利用导函数的符号,求解函数的单调区间.(2)y=f(x)﹣m﹣1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,可转化为y=f(x)与y=m+1图象上有两个不同的交点,画出函数的图图象,判断求解即可.【解答】解:(1)f'(x)=lnx,令f'(x)>0,解得x>1;令f'(x)<0,解得0<x<1;∴f(x)的增区间为(1,+∞),减区间为(0,1)(2)y=f(x)﹣m﹣1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1图象上有两个不同的交点,由(Ⅰ)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=﹣1,由题意得,m+1>﹣1即m>﹣2①,由图象可知,m+1<0,即m<﹣1②,由①②可得﹣2<m<﹣1.21.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.22.已知f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),f(x)=lnx,g(x)=ax2+bx(a≠0),h(x)=f(x)﹣g(x),(1)若a=3,b=2,求h(x)的极值点;(2)若b=2且h(x)存在单调递减区间,求a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)利用导数求单调性,在确定极值(2),,函数h(x))存在单调递减区间,只需h′(x)<0有解,即当x>0时,则ax2+2x﹣1>0在(0,+∞)上有解,分以下:(1)当a>0,(2)当a <0情况讨论即可【解答】解:(1)∵a=3,b=2,∴,∴,令h′(x)=0,则3x2+2x﹣1=0,x1=﹣1,x,则当0时,h′(x)>0,则h(x)在(0,)上为增函数,当x时,h′(x)<0,则h(x)在(上为减函数,则h(x)的极大值点为;(2)∵b=2,∴,∴,∵函数h(x))存在单调递减区间,∴h′(x)<0有解.即当x>0时,则ax2+2x﹣1>0在(0,+∞)上有解.(1)当a>0时,y=ax2+2x﹣1为开口向上的抛物线,y=ax2+2x﹣1>0在(0,+∞)总有解.故a>0符合题意;(2)当a<0时,y=ax2+2x﹣1为开口向下的抛物线,要y=ax2+2x﹣1>0在(0,+∞)总有解,则△=4+4a>0,且方程ax2+2x﹣1=0至少有一个正根,此时,﹣1<a<0'综上所述,a的取值范围为(﹣1,0)∪(0,+∞).。
数学---内蒙古包头一中2016-2017学年高二下学期期中考试(文)
内蒙古包头一中2016-2017学年高二下学期期中考试(文)一.选择题:(本题共12个小题,每小题5分,共60分)1.已知集合{N |26}x A x =∈<,集合2{R |430}B x x x =∈-+<,则()R A CB ⋂=( )A. {}0B. {}2C. {}0,2D. {}0,12.已知集合{}{}2,1,,0A a B a ==,那么“1a =-”是“A B ⋂≠∅”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 3.已知复数34343iz i-=++,则z = ( ) A .3i - B .23i - C .3i + D .23i +5.设13log2a =, 121log 3b =, 0.312c ⎛⎫= ⎪⎝⎭,则 ( )A. a b c <<B. a c b <<C. b c a <<D. b a c << 6.函数y 164x =-的值域是 ( ) A. [0 , )4 B. ()4-∞, C. ()4∞+, D. ()04,7. 若函数在(﹣∞,+∞)上单调递增,则实数a的取值范围是 ( ) A .(1,2)B .C .D .(0,1)8.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( ) A.53 B.52 C.101 D.959. 已知()()()()10210012101111x a a x a x L a x +=+-+-++-,则8a 等于( ) A .5- B .5 C .90 D .18010、若)(x ϕ,g (x )都是奇函数,2)()()(++=x bg x a x f ϕ在(0,+∞)上有最大值5 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-311. 若 ,均有 ,则实数a 的取值范围是 ( )A. B. C. D.12.两位同学约定下午5:30-6:00在图书馆见面,且他们在5:30-6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是( ) A.1136B. 14C. 12D. 34二. 填空题(每小题5分,共20分)13.命题“ ∀ x ∈[-2,3],-1<x<3”的否定是 .14.某校高三有5名同学报名参加甲、乙、丙三所高校的自主招生考试,每人限报一所高校,则这三所高校中每个学校都至少有1名同学报考的概率为_______ 15已知偶函数的图象关于直线对称,且时,,则=___________.16.在极坐标系中,直线被曲线所截得的线段长为 .三.解答题(共70分) 17. (本题满分10分)计算:(1)()()1223029279.6 1.548--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)2log 3423log 9log 232-+18.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为2{4x cos y sin αα=+=+,以坐标原点O 为极点,x 轴正半轴为极轴的坐标系中,曲线2C 的方程为()cos sin 10m ρθθ-+=(m 为常数). (1)求曲线12,C C 的直角坐标方程;(2)设P 点是1C 上到x 轴距离最小的点,当2C 过P 点时,求m .19.(本小题满分12分)设定义在R 上的函数()f x 满足()()221f x f x =+,且()12f =. ⑴求()()()0 2 4f f f ,,的值;⑵若()f x 为一次函数,且()()()g x x m f x =-在()3 +∞,上为增函数,求m 的取值范围.20.(本题满分12分)已知函数()()2log 1f x x =-的定义域为集合A ,函数()()1102xg x x ⎛⎫=-≤≤ ⎪⎝⎭的值域为集合B .(1)求A B ; (2)若集合[],21C a a =-,且C B B = ,求实数a 的取值范围.21.(本题满分12分)已知曲线C 的极坐标方程是1ρ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程12()322t x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数. (1)写出直线l 的普通方程与曲线C 的直角坐标方程; (2)设曲线C 经过伸缩变换3x xy y'=⎧⎨'=⎩得到曲线C ',设曲线C '上任一点为(,)M x y , 求23x y +的最小值.22.(本题满分12分)已知函数2()3f x x ax a =++-,其中[]2,2x ∈-。
内蒙古包头市高二数学下学期期中试卷理(含解析)
2016-2017学年内蒙古包头市高二(下)期中数学试卷(理科)一.选择题(本题共12小题,每题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.i是虚数单位,复数等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°3.由直线x=,x=2,曲线y=及x轴所围成的图形的面积是()A.B.C.D.2ln24.下列求导运算正确的是()A.B.C.(3x)'=3x log3e D.(x2cosx)’=﹣2xsinx5.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=()A.0.477 B.0。
625 C.0.954 D.0。
9776.函数f(x)=(x﹣2)•e x的单调递增区间是()A.(﹣∞,1)B.(0,2)C.(1,+∞)D.(2,+∞)7.随机变量X~B(6,),则P(X=3)=()A.B.C.D.8.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48 C.60 D.729.二项式(﹣)10展开式中的常数项是()A.360 B.180 C.90 D.4510.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是图中的()A. B.C.D.11.若f(x)=﹣x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是()A.D.(﹣∞,﹣1)12.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=,且f(1)=1,则函数f(x)的最大值为()A.0 B.C.D.2e二.填空题(每小题5分,共20分)13.已知i为虚数单位,复数z满足1+i=z(﹣1+i),则复数z2017= .14.已知,,则P(AB)= .15.求曲线在点M(π,0)处的切线方程.16.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有种.三.解答题(17题10分,其余每题12分,共70分)17.已知函数f(x)=ln(2x+a)+x2,且f′(0)=(1)求f(x)的解析式;(2)求曲线f(x)在x=﹣1处的切线方程.18.现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问(1)所有可能的坐法有多少种?(2)此4人中甲、乙两人相邻的坐法有多少种?(结果均用数字作答)19.已知函数f(x)=x3+ax2﹣a2x+2.(1)若a=1,求y=f(x)的极值;(2)讨论f(x)的单调区间.20.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.21.已知某公司生产一种仪器元件,年固定成本为20万元,每生产1万件仪器元件需另外投入8.1万元,设该公司一年内共生产此种仪器元件x万件并全部销售完,每万件的销售收入为f(x)万元,且f(x)=(Ⅰ)写出年利润y(万元)关于年产品x(万件)的函数解析式;(Ⅱ)当年产量为多少万件时,该公司生产此种仪器元件所获年利润最大?(注:年利润=年销售收入﹣年总成本)22.已知函数f(x)=axlnx(a≠0,a∈R)(1)求f(x)的单调区间;(2)当x∈(1,e)时,不等式<lnx恒成立,求实数a的取值范围.2016-2017学年内蒙古包头市北重三中高二(下)期中数学试卷(理科)参考答案与试题解析一.选择题(本题共12小题,每题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.i是虚数单位,复数等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i【考点】A5:复数代数形式的乘除运算.【分析】根据两个复数代数形式的乘除法法则,以及虚数单位i的幂运算性质,把要求的式子化简求得结果.【解答】解:复数===i﹣i2=1+i,故选D.2.曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【考点】62:导数的几何意义.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.3.由直线x=,x=2,曲线y=及x轴所围成的图形的面积是()A.B.C.D.2ln2【考点】6G:定积分在求面积中的应用.【分析】由题意画出图形,再利用定积分即可求得.【解答】解:如图,面积.故选D.4.下列求导运算正确的是()A.B.C.(3x)’=3x log3e D.(x2cosx)'=﹣2xsinx【考点】63:导数的运算.【分析】根据题意,依次计算选项中函数的导数,分析可得答案.【解答】解:根据题意,依次分析选项:对于A、,正确;对于B、,错误;对于C、(3x)’=3x log e3,错误;对于D、(x2cosx)’=2xcosx﹣x2sinx,错误;故选:A.5.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=( )A.0.477 B.0。
内蒙古包头市2016-2017学年高二第二学期期中数学试卷文
内蒙古包头市2016-2017学年高二数学下学期期中试题文一、选择题(本大题共12小题,共60.0分)1.命题“若x2≤1,则-1≤x≤1”的逆否命题是()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x≥1或x≤-1,则x2≥1D.若x>1或x<-1,则x2>12.若命题p:∀x>3,x3-27>0,则¬p是()A.∀x≤3,x3-27≤0B.∃x>3,x3-27≤0C.∀x>3,x3-27≤0D.∃x≤3,x3-27≤03.设命题p:2x<1,命题q:x2<1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.椭圆2x2+y2=8的焦点坐标是()A.(±2,0)B.(0,±2)C.(±2,0)D.(0,±2)5.已知点(1,-2)在抛物线y=ax2的准线上,则a的值为()A. B.- C.8 D.-86.已知双曲线(m>0)渐近线方程为y=±x,则m的值为()A.1B.2C.3D.47.函数y=xcosx的导数为()A.y′=cosx-xsinxB.y′=cosx+xsinxC.y′=xcosx-sinxD.y′=xcosx+sinx8.如果方程-=1表示双曲线,那么实数m的取值范围是()A.m>2B.m<1或m>2C.-1<m<2D.m<19.如果质点A按规律s=3t2运动,则在t=2时的瞬时速度是()A.4B.6C.12D.2410. 已知函数y=f(x)的图象与直线y=-x+8相切于点(5,f(5)),则f(5)+f'(5)等于()A.1B.2C.0D.11.已知函数f(x)的导函数f′(x)的图象如图所示,那么下面说法正确的是()A.y=f(x)在(-∞,-0.7)上单调递增B.y=f(x)在(-2,2)上单调递增C.在x=1时,函数y=f(x)取得极值D.y=f(x)在x=0处切线的斜率小于零.12.已知F1,F2为椭圆C:+=1的左、右焦点,点E是椭圆C上的动点,1•2的最大值、最小值分别为()A.9,7B.8,7C.9,8D.17,8二、填空题(本大题共4小题,共20.0分)13.已知抛物线y2=2px的准线方程是x=-2,则p= ______ .14.已知函数f(x)=x2+e x,则f'(1)= ______ .15.求函数f(x)=x3-4x2+5x-4在x=2处的切线方程为 ______ .16.已知p:|x-a|<4,q:-x2+5x-6>0,且q是p的充分而不必要条件,则a的取值范围为______ .三、解答题(本大题共6小题,共70分)17. 求下列函数的导数(1)y=x4-2x2+3x-1;(2)f(x)=2lnx(3)f(x)=; (4)y=.。
2016-2017学年内蒙古包头市第一中学高二下学期期中考试数学(理)试题(解析版)
内蒙古包头市第一中学2016-2017学年高二下学期期中考试数学(理)试题一、选择题 1.某校选修乒乓球课程的学生中,高一年级有30 名,高二年级有40 名,从这70人中用分层抽样的方法抽取容量为14 的样本,则在高二年级学生中应该抽取的人数为( )A. 6B. 8C. 10D. 12 【答案】B【解析】设高二年级抽取学生x 名,根据分层抽样的定义有141413040705x x -===,解得8x =,所以选8人,故选B.2.如右图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( )A. 2,6B. 2,7C. 3,6D. 3,7 【答案】D【解析】试题分析:由甲组数据的平均数为17可知9122427101735x x+++++=∴=,由乙组数据的中位数为17可得7y = 【考点】茎叶图与平均数中位数3.已知x 与y 之间的一组数据:若y 关于x 的线性回归方程为 2.1 1.5ˆ2y x =-,则m 的值为( ).A. 1B. 0.85C. 0.7D. 0.5【答案】D【解析】由表格可知 2.5x =, 15.54my +=,由线性回归方程必过样本中心点可得:4y =,则0.5m =,故选D.4.在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80-100分的学生人数是( )A. 15B. 18C. 20D. 25 【答案】A 【解析】第二组的频率是,所有参赛的学生人数为 ,那么80-100分的频率是 ,所以人数为,选故A.5.设(3nx +的展开式的各项系数之和为M ,二项式系数之和为N ,若17480M N -=,则展开式中含3x 项的系数为( )A. 40B. 30C. 20D. 15 【答案】D 【解析】由,得。
内蒙古包头市2016-2017学年高二数学下学期期中试题 理
高考资源网( ),您身边的高考专家投稿兼职请联系:2355394692 内蒙古包头市2016-2017学年高二数学下学期期中试题 理一、选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案) 1.已知向量a =(8,12x ,x ),b =(x,1,2),其中x >0.若a ∥b ,则x 的值为( )A .8B .4C .2D .32.设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分不必要条件是( )A .a ⊥c ,b ⊥cB .α⊥β,a ⊂α,b ⊂βC .a ⊥α,b ∥αD .a ⊥α,b ⊥α3.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .34.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A.13n +2 B.13n +13n +1 C.13n +1+13n +2 D.13n +13n +1+13n +25.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE所成角的余弦值为( ) A.1010 B.3010 C.21510D.310106.若一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A.13 B. 3 C .1 D.337.函数y =x2e x的图像大致( )投稿兼职请联系:2355394692 28.已知点F 1、F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,在此椭圆上存在点P ,使∠F 1PF 2=60°,且|PF 1|=2|PF 2|,则此椭圆的离心率为( ) A.13 B.22 C.33D.669.已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .9410.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)11. 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52C .3D .212.已知函数y =f (x )对任意的x ∈(-π2,π2)满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式成立的是( ) A.2f (-π3)<f (-π4) B.2f (π3)<f (π4) C .f (0)>2f (π3)D .f (0)>2f (π4) 二、填空题(本大题共4小题,每小题5分,共20分)13.动圆与定圆A :()2221x y ++=外切,且和直线x =1相切,则动圆圆心的轨迹是 。