【成才之路】2014-2015学年高中数学(人教A版)选修1-2练习:2.1 第2课时 演绎推理]

合集下载

【成才之路】2014-2015学年高中数学 2.1 第2课时 演绎推理课件 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 2.1 第2课时 演绎推理课件 新人教A版选修1-2

a 已知函数 f(x)=x+bx,其中 a>0,b>0,x∈(0,+∞),确 定 f(x)的单调区间,并证明在每个单调区间上的增减性. [解析] 设 0<x1<x2,则 a a f(x1)-f(x2)=x +bx1-x +bx2 1 2 a =(x2-x1)x x -b, 1 2
• 因为两组对边分别平行的四边形是平行四边 形,大前提 • DE∥BA,且FD∥AE,小前提 • 所以四边形AFDE为平行四边形.结论 • 因为平行四边形的对边相等,大前提 • ED和AF为平行四边形AFDE的对边,小前提 • 所以ED=AF.结论
• 演绎推理在代数问题中的应用
1 证明 f(x)=x2在(0,+∞)上为减函数.
• [解析] 上述推理过程应用了三次三段论.第 一次省略大前提和小前提的部分内容;第二 次省略大前提并承前省了其中一组对边平行 的条件;第三次省略了大前提并承前省略了 小前提,其完整演绎推理过程如下: • 因为同位角相等,两条直线平行,大前提 • ∠BFD与∠A是同位角,且∠BFD=∠A,小 前提 • 所以FD∥AE.结论
• 演绎推理的基本形式——三段 论

(1)一次函数是单调函数, 函数 y=2x-1 是一次函数, 所以 y=2x-1 是单调函数; (2)∵∠AOD 与∠BOC 是对顶角,∴∠AOD=∠BOC; (3)711 能被 3 整除.
• [分析] 在使用三段论推理的过程中,有时为 了简便,略去大前提或小前提,分析推理过 程时,要明确其大前提、小前提是什么.
• (1)若已知f(x)为“友谊函数”,求f(0)的值. • (2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函 数”?并给出理由. • (3)已知f(x)为“友谊函数”,且0≤x1<x2≤1,求证: f(x1)≤f(x2). • [解题思路探究] 第一步,审题. • 审条件,挖掘解题信息. • ①定义域[0,1],在研究函数过程中不能超出这个范 围; • ②“友谊函数”新定义包含三个条件,尤其条件③ 需严格证明后才能确定.

【成才之路】2014-2015学年高中数学 1.2 第1课时 充分条件与必要条件课件 新人教A版选修1-1

【成才之路】2014-2015学年高中数学 1.2 第1课时 充分条件与必要条件课件 新人教A版选修1-1
成才之路 · 数学
人教A版 · 选修1-1 1-2
路漫漫其修远兮 吾将上下而求索
第一章
常用逻辑用语
第一章
1.2 充分条件与必要条件
第1课时 充分条件与必要条件
1
自主预习学案
2
典例探究学案
3
巩固提高学案
自主预习学案
1.理解充分条件、必要条件的概念.
2.会具体判断所给条件是哪一种条件.
重点:充分条件、必要条件的判定. 难点:充分性与必要性的区分.
C.②④ D.①④ [分析] 根据必要条件的定义进行判断.
[解析] x>4⇒x>3,故①是真命题;x=1⇒x2=1,x2=1⇒ / x=1,故②是假命题;a=0⇒ab=0,ab=0⇒ / a=0,故③是假 命题;函数 f(x)的定义域关于坐标原点对称⇒ / 函数 f(x)为奇函 数,函数 f(x)为奇函数⇒函数 f(x)的定义域关于坐标原点对称, 故④是真命题,∴选 D.
系:
条件 p 与结论 q 关系 p⇒q,但 q⇒ / p q⇒p,但 p⇒ / q p⇒q,q⇒p,即 p⇔q p⇒ / q,q⇒ / p 结论 p 是 q 成立的充分不必要条件 p 是 q 成立的必要不充分条件 p 是 q 成立的充要条件 p 是 q 成立的既不充分也不必要条件
在平面直角坐标系 xOy中,直线 x +(m+1)y =2 -m与直线 mx+2y=-8互相垂直的充要条件是m=________.
充分条件、必要条件新知导学 p⇒q 1.如果命题“若p,则q”为真,则记为_________ ,“若 p⇒ / q p则q”为假,记为__________. 充分条件 , q 是 p 的 2 . 如 果 已 知 p⇒q , 则 称 p 是 q 的 __________ 必要条件 . __________

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:2.2.1 椭圆及其标准方程]

第二章 2.2 第1课时一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段[答案] D[解析] ∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .20[答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故选C.3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( ) A .(±a -b ,0) B .(±b -a ,0) C .(0,±a -b ) D .(0,±b -a )[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).4.(2014·长春市高二期末调研)中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1 B .x 281+y 29=1C.x 281+y 272=1 D .x 281+y 236=1[答案] C[解析] 由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .95B .3C .977D .94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.且b =3>7=c . ∴F 1或F 2为直角三角形的直角顶点, ∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.6.(2014·洛阳市期末)已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1C.x 220+y 25=1 D .x 25+y 220=1[答案] C[解析] 由椭圆过点(2,2),排除A 、B 、D ,选C. 二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.8.如图所示,F1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |, ∴动点P 的轨迹是以A 、F 为焦点的椭圆, ∴a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.一、选择题11.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <2D .m <-1或1<m <32[答案] D[解析] 由题意得⎩⎪⎨⎪⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.[点评] 解答本题应注意,方程表示椭圆,分母应取正值,焦点在y 轴上,含y 2项的分母较大,二者缺一不可.12.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B .y 225+x 29=1(y ≠0)C.x 216+y 29=1(y ≠0) D .x 225+y 29=1(y ≠0)[答案] D[解析] ∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.13.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线[答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a , ∴|PQ |+|PF 1|=2a , 又∵F 1、P 、Q 三点共线, ∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a . 即Q 在以F 1为圆心,以2a 为半径的圆上.14.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B的值是( )A. 3 B .2 C .2 3 D .4[答案] A[解析] 由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.二、填空题15.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.[答案] x 24+y 23=1[解析] 由题意得2|F 1F 2|=|PF 1|+|PF 2|, ∴4c =2a ,∵c =1,∴a =2. ∴b 2=a 2-c 2=3, 故椭圆方程为x 24+y 23=1.16.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.[点评] 对椭圆的定义要正确理解、熟练运用,解决与焦点有关的问题时,要结合图形看能否运用定义.三、解答题17.(2013·四川省绵阳中学月考)求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)a c =,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13,又a c =135,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.[点评] 用待定系数法求椭圆的标准方程时,要首先进行“定位”,即确定焦点的位置;其次是进行“定量”,即求a 、b 的大小,a 、b 、c 满足的关系有:①a 2=b 2+c 2;②a >b >0;③a >c >0.若不能确定焦点的位置,可进行分类讨论或设为mx 2+ny 2=1(m >0,n >0)的形式. 18.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.。

【成才之路】2014-2015学年高中数学 4.1 流程图课件 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 4.1 流程图课件 新人教A版选修1-2

• 3.统筹原理 • 工序流程图又称统筹图,它用于描述工作的 流程.统筹方法的基本原理是:从需要管理 的任务的总进度着手,以任务中各工作或各 工序所需要的工时为时间因素,按照工作或 先后顺序 相互关系 作出工序 工序的__________ 和__________ 流程图,以反映任务全貌,实现管理过程模 型化,然后进行分析改进安排,得到最优方 案并付诸实施.
• [方法规律总结] 识读流程图时,首先要把握 其先后衔接关系,抓住主要步骤,然后在每 一个步骤中理清其并列、平行关系,最后找 出其穿插进行的部分.
• 下图是山东省各类成人高等学校招生网上报 名流程图,试叙述一名考生网上报名时所要 做的工作.
• [解析] 要完成报名,需依次做好以下工作: • (1)网上登记,阅读报名须知: • (2)填写考生报名身份证号码,并查看该身体 证号码是否已登记.(若未登记,则不允许报 名,需重新填写身份证号码) • (3)填写《山东省网上报名登记表》,并检查 信息是否有效(若无效需重新填写登记表). • (4)确定报名成功.
• 根据此流程图回答下列问题: • (1)一件屏幕成品可能经过几次加工和检验程 序? • (2)哪些环节可能导致废品的产生,二次加工 产品的来源是什么? • (3)该流程图的终点是什么?
• [解析] (1)一件屏幕成品经过一次加工、二 次加工两道加工程序和检验、最后检验两道 检验程序;也可能经过一次加工、返修加工、 二次加工三道加工程序和检验、返修检验、 最后检验三道检验程序. • (2)返修加工和二次加工可能导致屏幕废品的 产生,二次加工产品的来源是一次加工的合 格品和返修加工的合格品. • (3)流程图的终点是“屏幕成品”和“屏幕废 品”.
复杂问题简单化原则 画出求满足 12+22+32+„+n2>106 的最小正整 数 n 的程序框图.

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.3.1且与或

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.3.1且与或

第一章 1.3第1课时一、选择题1.下列语句:①3是无限循环小数;②x2>x;③△ABC的两角之和;④毕业班的学生.其中不是命题的是()A.①②③B.①②④C.①③④D.②③④[答案] D[解析]对于①能判断真假,对于②、③、④均不能判断真假.故①是命题,②、③、④均不是命题.2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下列判断正确的是() A.p假q假B.“p或q”为真C.“p且q”为真D.p假q真[答案] B[解析]∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.3.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对[答案] B[解析]命题p为真命题,命题q为假命题,故“p∨q”为真命题.4.已知p:α为第二象限角,q:sinα>cosα,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]当α为第二象限角时,sinα>0,cosα<0,∴sinα>cosα,但sinα>cosα不能推出α为第二象限角.5.以下四个命题正确的有()①“矩形既是平行四边形又是圆的内接四边形”是“p且q”的形式,该命题是真命题;②“菱形既是平行四边形又是圆的外切四边形”是“p且q”的形式,该命题是真命题;③“矩形是圆的外切四边形或是圆的内接四边形”是“p或q”的形式,该命题是真命题;④“菱形是圆的内接四边形或是圆的外切四边形”是“p或q”的形式,该命题是真命题.A.1个B.2个C.3个D.4个[答案] D[解析]∵矩形是平行四边形,也是圆的内接四边形,菱形是平行四边形,也是圆的外切四边形,但矩形不是圆的外切四边形,菱形不是圆的内接四边形,由p∨q,p∧q的定义知,①②③④都正确.6.已知命题p,q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析]p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/ p∧q为真.二、填空题7.p:ax+b>0的解为x>-b a,q:(x-a)(x-b)<0的解为a<x<b.则p∧q是________命题(填“真”或“假”).[答案]假[解析]命题p与q都是假命题.8.设命题p:3≥2,q:32∉[23,+∞),则复合命题“p∨q”“p∧q”中真命题的是________.[答案]p∨q[解析]3≥2成立,∴p真,32∈[23,+∞),∴q假,故“p∨q”为真命题,“p ∧q”为假命题.9.已知命题p:∅⊆∅,q:{1}∈{1,2}.由它们构成的“p或q”、“p且q”形式的命题中真命题有________个.[答案] 1[解析]命题p为真,命题q为假,故“p或q”为真,“p且q”为假.三、解答题10.分别指出下列各组命题构成的“p∧q”、“p∨q”形式的命题的真假.(1)p:6<6,q:6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分; (3)p :函数y =x 2+x +2的图象与x 轴没有公共点, q :不等式x 2+x +2<0无解;(4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. [解析] (1)∵p 为假命题,q 为真命题, ∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题, ∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题, ∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题, ∴p ∧q 为假命题,p ∨q 为真命题.一、选择题11.下列命题:①5>4或4>5;②9≥3;③“若a >b ,则a +c >b +c ”;④“菱形的两条对角线互相垂直”.其中假命题的个数为( )A .0B .1C .2D .3[答案] A[解析] ①②都是“p 或q ”形式的命题,都是真命题,③为真命题,④为真命题,故选A.12.下列命题:①方程x 2-3x -4=0的判别式大于或等于0;②周长相等的两个三角形全等或面积相等的两个三角形全等; ③集合A ∩B 是集合A 的子集,且是A ∪B 的子集. 其中真命题的个数是( ) A .0 B .1 C .2 D .3 [答案] C[解析] ①中,判别式Δ=9+16=25>0,故①中命题为真命题;②中,周长相等或面积相等的两个三角形不一定全等,故②中命题为假命题;③中,(A ∩B )⊆A ,(A ∩B )⊆(A ∪B ),故③中命题为真命题.故选C.13.在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 如图,在△ABC 中,过C 作CD ⊥AB ,则|AD →|=|AC →|·cos ∠CAB ,|BD →|=|BC →|·cos ∠CBA ,AB →·AC →=BA →·BC →⇔|AB →|·|AC →|·cos ∠CAB =|BA →|·|BC →|·cos ∠CBA ⇔|AC →|·cos ∠CAB =|BC →|·cos ∠CBA ⇔|AD →|=|BD →|⇔|AC →|=|BC →|,故选C.二、填空题14.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是________形式. (2)命题“5小于或等于7”是________形式.(3)命题“正数或0的平方根是实数”是________形式. [答案] (1)p ∧q (2)p ∨q (3)p ∨q15.(2014·营口三中期中)设命题P :a 2<a ,命题Q :对任何x ∈R ,都有x 2+4ax +1>0,命题P ∧Q 为假,P ∨Q 为真,则实数a 的取值范围是________.[答案] -12<a ≤0或12≤a <1[解析] 由a 2<a 得0<a <1,∴P :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴Q :-12<a <12,∵P ∧Q 为假,P ∨Q 为真,∴P 与Q 一真一假,P 假Q 真时,-12<a ≤0,P 真Q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1. 三、解答题16.已知命题p :方程2x 2-26x +3=0的两根都是实数;q :方程2x 2-26x +3=0的两根不相等,试写出由这组命题构成的“p 或q ”、“p 且q ”形式的复合命题,并指出其真假.[解析] “p 或q ”的形式:方程2x 2-26x +3=0的两根都是实数或不相等. “p 且q ”的形式:方程2x 2-26x +3=0的两根都是实数且不相等. ∵Δ=24-24=0,∴方程有两个相等的实根,故p 真,q 假. ∴p 或q 真,p 且q 假.17.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.[解析] 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0.所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎪⎨⎪⎧-2<a <2a ≥2,此不等式组无解.(2)若p 为假命题,q 为真命题,则⎩⎪⎨⎪⎧a ≤-2或a ≥2a <2,解得a ≤-2.综上,实数a 的取值范围是(-∞,-2].。

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习3章反馈练习

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习3章反馈练习

反馈练习一、选择题1.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( )A .2B .-2C .-2或255D .2或-255[答案] C[解析] cos 〈a ,b 〉=a ·b|a ||b |=2-λ+4λ2+5×9=89,所以λ=-2或255. 2.若a 、b 、c 是非零空间向量,则下列命题中的真命题是( ) A .(a·b )c =(b·c )a B .若a·b =-|a |·|b |,则a ∥b C .若a·c =b·c ,则a ∥b D .若a·a =b·b ,则a =b[答案] B[解析] (a ·b )c 是与c 共线的向量,(b ·c )a 是与a 共线的向量,a 与c 不一定共线,故A 假;若a ·b =-|a |·|b |,则a 与b 方向相反, ∴a ∥b ,故B 真;若a ·c =b ·c ,则(a -b )·c =0,即(a -b )⊥c ,不能得出a ∥b ,故C 假; 若a ·a =b ·b ,则|a |=|b |,方向不确定, 故得不出a =b ,∴D 假.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,2[答案] A[解析] ∵a ∥b ,∴存在实数k ,使b =k a ,即(6,2μ-1,2λ)=(kλ+k,0,2k ),∴⎩⎪⎨⎪⎧ kλ+k =6,2μ-1=0,2λ=2k ,∴⎩⎪⎨⎪⎧ μ=12,λ=2,k =2,或⎩⎪⎨⎪⎧μ=12,λ=-3,k =-3.故选A .4.同时垂直于a =(2,2,1),b =(4,5,3)的单位向量是( ) A .⎝⎛⎭⎫13,-23,23 B .⎝⎛⎭⎫-13,23,-23 C .⎝⎛⎭⎫13,-13,23 D .⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 [答案] D[解析] 设所求向量为c =(x ,y ,z ), 则⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0,x 2+y 2+z 2=1,检验知选D .[点评] 检验时,先检验A(或B),若A 不满足,则排除A 、D ;再检验B ,若A 满足,则排除B ,C ,只要看D 是否成立.5.已知矩形ABCD ,P A ⊥平面ABCD ,则以下等式中可能不成立的是( ) A .DA →·PB →=0 B .PC →·BD →=0 C .PD →·AB →=0 D .P A →·CD →=0[答案] B[解析] ①⎭⎪⎬⎪⎫DA ⊥AB DA ⊥P A ⇒DA ⊥平面P AB ⇒DA ⊥PB ⇒DA →·PB →=0;②同①知AB →·PD →=0;③P A ⊥平面ABCD ⇒P A ⊥CD ⇒P A →·CD →=0; ④若BD →·PC →=0,则BD ⊥PC ,又BD ⊥P A ,∴BD ⊥平面P AC ,故BD ⊥AC , 但在矩形ABCD 中不一定有BD ⊥AC ,故选B .6.已知ABCD 是四面体,O 是△BCD 内一点,则AO →=13(AB →+AC →+AD →)是O 为△BCD重心的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 [答案] C[解析] 设E 为CD 中点,AO →=13(AB →+AC →+AD →)=13AB →+13(BC →-BA →+BD →-BA →)=13AB →+13(BC →+BD →)-23BA →=AB →+23BE →, ∴BO →=23BE →.即O 为△BCD 的重心.反之也成立.7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)[答案] B[解析] 设平面AEF 的法向量n =(x ,y ,z ),正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0),E (1,1,12),F (12,0,1).故AE →=(0,1,12),AF →=(-12,0,1).由⎩⎪⎨⎪⎧AE →·n =0,AF →·n =0,即⎩⎨⎧y +12z =0,-12x +z =0,所以⎩⎪⎨⎪⎧y =-12z ,x =2z .当z =-2时,n =(-4,1,-2),故选B .8.a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( ) A .55B .555C .355D .115[答案] C[解析] b -a =(1+t,2t -1,0), ∵|b -a |2=(1+t )2+(2t -1)2=5t 2-2t +2 =5⎝⎛⎭⎫t -152+95≥95,∴|b -a |min =355. 9.如图ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1所成的角为60°[答案] D[解析] 正方体中,BD ∥B 1D 1,且BD ⊄面CB 1D 1,知BD ∥平面CB 1D 1,A 正确;AC 1在面ABCD 内的射影为AC ,又AC ⊥BD ,由三垂线定理知AC 1⊥BD .故B 正确;同理可得AC 1⊥B 1D 1,AC 1⊥CD 1,且B 1D 1∩CD 1=D 1,∴AC 1⊥平面CB 1D 1,故C 正确;由AD ∥BC 知,∠B 1CB 为AD 与CB 1所成的角,应为45°,故D 错误.10.已知△ABC 的顶点A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 的长等于( )A .3B .4C .5D .6 [答案] C[解析] 解法一:设D (x ,y ,z ),则AD →=(x -1,y +1,z -2),BD →=(x -5,y +6,z -2),AC →=(0,4,-3),∵AD →∥AC →,且BD →⊥AC →,∴⎩⎪⎨⎪⎧ x -1=0,4y +1=-3z -2,4(y +6)-3(z -2)=0,∴⎩⎨⎧x =1,y =-215,z =225.∴|BD →|=5.解法二:设AD →=λAC →,D (x ,y ,z ),则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ. ∴BD →=(-4,4λ+5,-3λ), 又AC →=(0,4,-3),AC →⊥BD →,∴4(4λ+5)-3(-3λ)=0, ∴λ=-45,∴BD →=⎝⎛⎭⎫-4,95,125, ∴|BD →|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5.11.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF →=AD →+xAB →+yAA ′→,则x -y 等于( )A .0B .1C .12D .-12[答案] A[解析] 如图所示,AF →=AD →+DF →, ∴DF →=xAB →+yAA ′→, ∴12DC ′→=xAB →+yAA ′→, ∵12AB ′→=12AB →+12AA ′→ AB ′→=DC ′→, ∴x =y =12,x -y =0.12.(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A .π6B .π4C .π3D .π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF ,∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6. 二、填空题13.|a |=|b |=|c |=1,a +b +c =0,则a ·c +b·c +a·b =__________. [答案] -32[解析] 设a ·c +b ·c +a ·b =x , 则2x =(a +b )·c +(b +c )·a +(c +a )·b =-|c |2-|a |2-|b |2=-3,∴x =-32.14.给出命题:①在▱ABCD 中,AB →+AD →=AC →;②在△ABC 中,若AB →·AC →>0,则△ABC 是锐角三角形;③在梯形ABCD 中,E 、F 分别是两腰BC 、DA 的中点,则FE →=12(AB →+DC →);④在空间四边形ABCD 中,E 、F 分别是边BC 、DA 的中点,则FE →=12(AB →+DC →).以上命题中,正确命题的序号是______________.[答案] ①③④[解析] 本题考查向量的有关运算.①满足向量运算的平行四边形法则,①正确;AB →·AC →=|AB →|·|AC →|·cos A >0⇒∠A <90°,但∠B 、∠C 无法确定,△ABC 是否是锐角三角形无法确定,②错误;③符合梯形中位线,正确;④如图:DC →=DA →+AC →;DC →+AB →=DA →+AB →+AC →=DA →+2AE →=2(F A →+AE →)=2FE →,则FE →=12(AB →+DC →).15.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成角的余弦值是__________.[答案]105[解析] 如图,建立空间直角坐标系,则A (4,0,0),C (0,4,0),D 1(0,0,4),E (0,4,2),AC →=(-4,4,0),D 1E →=(0,4,-2).cos 〈AC →,D 1E →〉=1632×20=105.∴异面直线D 1E 与AC 所成角的余弦值为105. 16.若△ABC 中,∠ACB =90°,∠BAC =60°,AB =8,PC ⊥平面ABC ,PC =4,M 是AB 上一点,则PM 的最小值为__________.[答案] 27[解析] 由条件知PC 、AC 、BC 两两垂直,设CA →=a ,CB →=b ,CP →=c ,则a ·b =b ·c =c ·a=0,∵∠BAC =60°,AB =8,∴|a |=CA =8cos60°=4,|b |=CB =8sin60°=43.|c |=PC =4, 设AM →=xAB →=x (b -a ),则PM →=PC →+CA →+AM →=-c +a +x (b -a )=(1-x )a +x b -c ,|PM →|2=(1-x )2|a |2+x 2|b |2+|c |2+2(1-x )x a ·b -2x b ·c -2(1-x )a ·c =16(1-x )2+48x 2+16=32(2x 2-x +1)=64⎝⎛⎭⎫x -142+28, ∴当x =14时,|PM →|2取最小值28,∴|PM →|min =27.三、解答题17.如图,正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,用DA →,DC →,DD ′→表示向量BD ′→,AE →.[解析] (1)BD ′→=DD ′→-DB →=-DA →-DC →+DD ′→. (2)AE →=AA ′→+A ′E →=DD ′→+12A ′C ′→=DD ′→+12AC →=DD ′→+12(DC →-DA →)=-12DA →+12DC →+DD ′→.18.如图所示,已知空间四边形ABCD ,P 、Q 分别是△ABC 和△BCD 的重心.求证:PQ ∥平面ACD .[证明] ∵P 、Q 分别是△ABC 和△BCD 的重心. ∴PQ →=EQ →-EP →=13ED →-13EA →=13(ED →-EA →)=13AD →. ∴PQ →∥AD →,即PQ ∥AD ,又PQ ⊄平面ACD ,AD ⊂平面ACD ,∴PQ ∥平面ACD .19.在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1; (3)求AC 1与CB 1所成角的余弦值.[解析] ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直.如图所示,以C 为坐标原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0).(1)∵AC →=(-3,0,0),BC 1→=(0,-4,4). ∴AC →·BC 1→=0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2). ∵DE →=(-32,0,2),AC 1→=(-3,0,4).∴DE →=12AC 1→,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)∵AC 1→=(-3,0,4),CB 1→=(0,4,4), ∴cos 〈AC 1→·CB 1→〉=AC 1→·CB 1→|AC 1→|·|CB 1→|=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.20.长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =6,AA 1=4,M 是A 1C 1的中点,P 在线段BC 上,且CP =2,Q 是DD 1的中点,求:(1)M 到直线PQ 的距离; (2)M 到平面AB 1P 的距离.[解析] 如图,建立空间直角坐标系B -xyz ,则A (4,0,0),M (2,3,4),P (0,4,0),Q (4,6,2).(1)∵QM →=(-2,-3,2),QP →=(-4,-2,-2), ∴QM →在QP →上的射影为QM →·QP →|QP →|=(-2)×(-4)+(-3)×(-2)+2×(-2)(-4)2+(-2)2+(-2)2=566,故M 到PQ 的距离为 |QM →|2-⎝⎛⎭⎫5662=17-256=4626.(2)设n =(x ,y ,z )是平面AB 1P 的法向量,则n ⊥AB 1→,n ⊥AP →, ∵AB 1→=(-4,0,4),AP →=(-4,4,0),∴⎩⎪⎨⎪⎧-4x +4z =0,-4x +4y =0.因此可取n =(1,1,1),由于MA →=(2,-3,-4), 那么点M 到平面AB 1P 的距离为d =|MA →·n ||n |=|2×1+(-3)×1+(-4)×1|3=533, 故M 到平面AB 1P 的距离为533. [点评] 求点P 到直线l 的距离时,在直线l 上任取一点Q ,则QP →在l 上射影的长度为m =|QP →|·|cos 〈QP →,n 〉|(n 为直线l 的一个方向向量),即m =|QP →·n ||n |, 于是P 到l 的距离d =|QP ―→|2-m 2.21.(2014·浙江理,20)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.[解析] (1)在直角梯形BCDE 中,∵DE =BE =1,CD =2,∴BD =BC =2,在三角形ABC 中,AB =2,BC =2,AC =2,∴AC ⊥BC .∵平面ABC ⊥平面BCOE ,而平面ABC ∩平面BCDE =BCAC ⊥BC ,∴AC ⊥平面BCDE ,∴AC ⊥DE ,又∵DE ⊥DC ,∴DE ⊥平面ACD .(2)由(1)知分别以CD →、CA →为x 轴、z 轴正方向.过C 作CM ∥DE ,以CM 为y 轴建立空间直角坐标系.则B (1,1,0),A (0,0,2),D (2,0,0),E (2,1,0)∴AB →=(1,1,-2),AD →=(2,0,-2),DE →=(0,1,0)设平面ABD 的法向量n 1=(x 1,y 1,z 1),由n 1·AB →=n 1·AD →=0,解得n 1=(1,1,2).设平面ADE 的法向量n 2=(x 2,y 2,z 2),则n 2·AE →=n 2·AD →=0,解得:n 2=(1,0,2)设二面角B -AD -E 的大小为θ,易知θ为锐角,cos θ=|cos 〈n 1,n 2〉|=1+0+26×3=32, ∴二面角B -AD -E 的平面角为π6. 22.(2014·浙北名校联盟联考)已知在长方体ABCD -A ′B ′C ′D ′中,点E 为棱CC ′上任意一点,AB =BC =2,CC ′=1.(1)求证:平面ACC ′A ′⊥平面BDE ;(2)若点P 为棱C ′D ′的中点,点E 为棱CC ′的中点,求二面角P -BD -E 的余弦值.[解析] (1)∵ABCD 为正方形,∴AC ⊥BD ,∵CC ′⊥平面ABCD ,∴BD ⊥CC ′,又CC ′∩AC =C ,∴BD ⊥平面ACC ′A ′,∵BD ⊂平面BDE ,∴平面BDE ⊥平面ACC ′A ′.(2)以DA 为x 轴,以DC 为y 轴,以DD ′为z 轴建立空间直角坐标系,则D (0,0,0),B (2,2,0),E (0,2,12),P (0,1,1),设平面BDE 的法向量为m =(x ,y ,z ),∵DB →=(2,2,0),DE →=(0,2,12), ∴⎩⎨⎧ m ·DB →=2x +2y =0,m ·DE →=2y +12z =0,令x =1,则y =-1,z =4,∴m =(1,-1,4), 设平面PBD 的法向量为n =(x ,y ,z ),∵DP →=(0,1,1),∴⎩⎪⎨⎪⎧ n ·DB →=2x +2y =0,n ·DP →=y +z =0, 令x =1,则y =-1,z =1,∴n =(1,-1,1),∴cos 〈m ,n 〉=m ·n |m |·|n |=63, ∴二面角P -BD -E 的余弦值为63.。

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.2.2充要条件习题课

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习1.2.2充要条件习题课

第一章 1.2 第2课时一、选择题1.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] 当a =1时,直线x -ay =0化为直线x -y =0,∴直线x +y =0与直线x -y =0垂直;当直线x +y =0和直线x -ay =0互相垂直时,有1-a =0,∴a =1,故选C. 2.m =3是直线3x -y +m =0与圆x 2+y 2-2x -2=0相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A[解析] 由圆心(1,0)到直线3x -y +m =0距离d =|3+m |2=3得,m =3或-33,故选A.3.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] 因为A ∪B =C ,故“x ∈A ∪B ”是“x ∈C ”的充要条件. 4.“a +c >b +d ”是“a >b 且c >d ”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 [答案] A[解析] 如a =1,c =3,b =2,d =1时,a +c >b +d , 但a <b ,故由“a +c >b +d ”⇒/ “a >b 且c >d ”, 由不等式的性质可知,若a >b 且c >d ,则a +c >b +d , ∴“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.5.设命题甲为:0<x <5,命题乙为:|x -2|<3,那么甲是乙的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解不等式|x -2|<3得-1<x <5, ∵0<x <5⇒-1<x <5但-1<x <5⇒/ 0<x <5, ∴甲是乙的充分不必要条件,故选A.6.(2014·南昌市高二期中)设l ,m ,n 均为直线,其中m ,n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.二、填空题7.平面向量a 、b 都是非零向量,a ·b <0是a 与b 夹角为钝角的________条件. [答案] 必要不充分[解析] 若a 与b 夹角为钝角,则a ·b <0,反之a ·b <0时,如果a 与b 方向相反,则a 与b 夹角不是钝角.8.已知三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0,则l 1、l 2、l 3构不成三角形的充要条件是k ∈集合________.[答案] {-5,5,-10}[解析] ①l 1∥l 3时,k =5;②l 2∥l 3时,k =-5; ③l 1、l 2、l 3相交于同一点时,k =-10. 三、解答题9.方程mx 2+(2m +3)x +1-m =0有一个正根和一个负根的充要条件是什么? [解析] 由题意知⎩⎪⎨⎪⎧(2m +3)2-4m (1-m )>0,1-m m <0.∴m >1或m <0,即所求充要条件是m >1或m <0.10.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.[证明] 充分性:当q =-1时,a 1=p -1,当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. 于是a n +1a n =p n (p -1)p n -1(p -1)=p ,即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q . 当n ≥2时,a n =S n -S n -1=p n -1(p -1), ∵p ≠0且p ≠1,∴a n +1a n =p n (p -1)p n -1(p -1)=p ,∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q =p , ∴p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.一、选择题11.设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] 若a 1<a 2<a 3,则a 1<a 1q <a 1q 2,若a 1>0,则q >1,此时为递增数列,若a 1<0,则0<q <1,同样为递增数列,故充分性成立,必要性显然成立.12.(2013·安徽理)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] C[解析] 本题考查了函数单调性与充分必要条件的判断.若a =0,则f (x )=|x |在(0,+∞)内单调递增,若“a <0”,则f (x )=|(ax -1)x |=|ax 2-x |其图象如图所示,在(0,+∞)内递增;反之,若f (x )=|(ax -1)x |在(0,+∞)内递增,从图中可知a ≤0,故选C. 13.下列命题中的真命题有( )①两直线平行的充要条件是两直线的斜率相等;②△ABC 中,AB →·BC →<0是△ABC 为钝角三角形的充要条件; ③2b =a +c 是数列a 、b 、c 为等差数列的充要条件;④△ABC 中,tan A tan B >1是△ABC 为锐角三角形的充要条件. A .1个 B .2个 C .3个D .4个[解析] 两直线平行不一定有斜率,①假.由AB →·BC →<0只能说明∠ABC 为锐角,当△ABC 为钝角三角形时,AB →·BC →的符号也不能确定,因为A 、B 、C 哪一个为钝角未告诉,∴②假;③显然为真.由tan A tan B >1,知A 、B 为锐角,∴sin A sin B >cos A cos B , ∴cos(A +B )<0,即cos C >0.∴角C 为锐角, ∴△ABC 为锐角三角形.反之若△ABC 为锐角三角形,则A +B >π2,∴cos(A +B )<0,∴cos A cos B <sin A sin B , ∵cos A >0,cos B >0,∴tan A tan B >1,故④真.14.设a 、b 是两条直线,α、β是两个平面,则a ⊥b 的一个充分条件是( ) A .a ⊥α,b ∥β,α⊥β B .a ⊥α,b ⊥β,α∥β C .a ⊂α,b ⊥β,α∥β D .a ⊂α,b ∥β,α⊥β[答案] C[解析] 对选项A 如图①所示,由图可知a ∥b ,故排除A ;对选项B 如图②所示,由图可知a ∥b ,故排除B ;对选项D 如图③所示,其中a ∥l ,b ∥l ,由图可知a ∥b ,故排除D.二、填空题15.函数f (x )的定义域为I ,p :“对任意x ∈I ,都有f (x )≤M ”.q :“M 为函数f (x )的最大值”,则p 是q 的________条件.[答案] 必要不充分[解析] 只有当(1)对于任意x ∈I ,都有f (x )≤M ,(2)存在x 0∈I ,使f (x 0)=M ,同时成立时,M 才是f (x )的最大值,故p ⇒/ q ,q ⇒p ,∴p 是q 的必要不充分条件.16.f (x )=|x |·(x -b )在[0,2]上是减函数的充要条件是______________________. [答案] b ≥4[解析] f (x )=⎩⎪⎨⎪⎧x (x -b ) x ≥0,-x (x -b ) x <0.若b ≤0,则f (x )在[0,2]上为增函数,∴b >0, ∵f (x )在[0,2]上为减函数,∴b2≥2,∴b ≥4.17.求关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件. [解析] ①a =0时适合.②当a ≠0时,显然方程没有零根,若方程有两异号的实根,则a <0;若方程有两个负的实根,则必须满足⎩⎪⎨⎪⎧1a >0-2a <0Δ=4-4a ≥0,解得0<a ≤1.综上可知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.[点评] ①a =0的情况不要忽视;②若令f (x )=ax 2+2x +1,由于f (0)=1≠0,从而排除了方程有一个负根,另一个根为零的情况.18.已知p :x +210-x ≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要条件,求实数m的取值范围.[解析] 由x +210-x ≥0,解得-2≤x <10,令A ={x |-2≤x <10}.由x 2-2x +1-m 2≤0可得[x -(1-m )].[x -(1+m )]≤0,而m <0,∴1+m ≤x ≤1-m ,令B ={x |1+m ≤x ≤1-m }.∵p 是q 的必要条件,∴q ⇒p 成立,即B ⊆A .则⎩⎪⎨⎪⎧1+m ≥-21-m <10m <0,解得-3≤m <0.。

【成才之路】2014-2015学年高中数学 4.2 结构图课件 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 4.2 结构图课件 新人教A版选修1-2

• 4.下面结构是________形结构,“基本运 算”相对于“集合”是下位要素,相对于 “并集”是________要素.
• [答案] 树 上位
• 5.北京某期货商组织结构设置如下: • (1)会员代表大会下设监事会、会长办公会, 而会员代表大会与会长办公会共辖理事会; • (2)会长办公会下设会长,会长管理秘书长; • (3)秘书长分管:秘书处,规范自律委员会、 服务推广委员会、发展创新委员会. • 根据以上资料绘制其组织结构图. • [分析] 理清各部门的隶属关系,然后再画出 其组织结构图.
• 结构图
• 思维导航 • 我们在必修2中学过解析几何初步,在选修1 -1中又学过圆锥曲线与方程,你能把我们学 过的解析几何知识结构用一个图来描述吗? 你能用一个图把你们学校的团组织结构介绍 给你的朋友吗?
• 新知导学 • 1.结构图 • 结构图是一种描述__________ 的图示,一般由构 系统结构 成系统的若干要素和表达各要素之间关系的连线(或 方向箭头)构成,连线(或方向箭头)可以表示要素的 逻辑的先后 从属 关系或____________ ______ 关系.
• 画出《数列》这一章的知识结构图 • [解析]
• 组织结构图
为了进一步加强温州商人的凝聚力和核心价值 观,温州商人组建了温州期货商会组织.温州期货商会组织结 构如下:(1)会员代表大会下设监事会、会长办公会,而会员代 表大会与会长办公会共同管辖理事会;(2)会长办公会下设会长 和秘书长;(3)秘书长分管秘书处、自律委员会、推广委员会, 根据以上信息绘制出其组织结构图.
第四章
统计案例
第四章
4. 2 结 构 图
1
自主预习学案
2
典例探究学案
3

【成才之路】2014-2015学年高中数学 第1章 统计案例章末归纳总结课件 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 第1章 统计案例章末归纳总结课件 新人教A版选修1-2
• [答案] 0.254
[解析] 由回归直线方程为^y=0.254x+0.321 知收入每增 加 1 万元,饮食支出平均增加 0.254 万元.
4.对不同的麦堆测得如下表 6 组数据:
堆号

12 3 456
重量 y(斤) 2 813 2 705 11 103 2 590 2 131 5 181
跨度 x(m) 3.25 3.20 5.07 3.14 2.90 4.02
典例探究学案
• 回归分析
已知对两个变量 x、y 的观测数据如下表: x 35 40 42 39 45 46 42 50 58 48 y 5.90 6.20 6.30 6.55 6.53 9.52 6.99 8.72 9.49 7.50 (1)画出 x、y 的散点图; (2)求出回归直线方程.
• [解析] (1)散点图如下图所示.
2.建立回归模型的一般步骤 (1)确定研究对象,明确哪个变量是解释变量,哪个变量是 预报变量. (2)画出确定好的解释变量和预报变量的散点图,观察它们 之间的关系(如是否存在线性关系). (3)由经验确定回归方程的类型(如我们观察到数据呈线性 关系.则选用线性回归方程^y=b^ x+a^).
• (4)按一定规则估计回归方程中的参数.
想象一下一个人从出生到死亡,在每个生日都测
量身高,并作出这些数据散点图,这些点将不会落在一条直线
上,但在一段时间内的增长数据有时可以用线性回归来分析.下
表是一位母亲给儿子作的成长记录.
年龄/周岁 3 4 5 6 7 8 9
身高/cm
90.8
97.6
104. 2
110. 9
115. 6
122. 0
128. 5
• 独立性检验

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习3章综合素质检测

《成才之路》2014-2015学年高中数学(人教A版)选修2-1练习3章综合素质检测

第三章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列说法中不正确的是( )A .平面α的法向量垂直于与平面α共面的所有向量B .一个平面的所有法向量互相平行C .如果两个平面的法向量垂直,那么这两个平面也垂直D .如果a 、b 与平面α共面且n ⊥a ,n ⊥b ,那么n 就是平面α的一个法向量 [答案] D[解析] 只有当a 、b 不共线且a ∥α,b ∥α时,D 才正确.2.已知a =(cos α,1,sin α),b =(sin α,1,cos α) ,且a ∥ b 则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°[答案] A[解析] ∵|a |2=2,|b |2=2, (a +b )·(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).3.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14 [答案] D[解析] AB →=(-2,-6,-2),AC →=(-1,6,λ-3), ∵AB →⊥AC →,∴AB →·AC →=2×1-6×6-2(λ-3)=0, 解得λ=-14,故选D .4.(2013·北师大附中月考)若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a -b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +b[答案] C[解析] 因为a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D ;故选C .5.若直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)[答案] D[解析] ∵l ∥α,∴a ·n =0,经检验知选D .6.(2013·清华附中月考)已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,则AB →=AC →+CD →+DB →, ∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B .7.(2013·安徽省合肥一中期末)已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12[答案] A[解析] 由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故选A .8.已知A (-1,1,2),B (1,0,-1),设D 在直线AB 上,且AD →=2DB →,设C (λ,13+λ,1+λ),若CD ⊥AB ,则λ的值为( )A .116B .-116C .12D .13[答案] B[解析] 设D (x ,y ,z ),则AD →=(x +1,y -1,z -2),AB →=(2,-1,-3),DB →=(1-x ,-y ,-1-z ),∵AD →=2DB →,∴⎩⎪⎨⎪⎧x +1=2(1-x ),y -1=-2y ,z -2=-2-2z .∴⎩⎨⎧x =13,y =13,z =0.∴D (13,13,0),CD →=(13-λ,-λ,-1-λ),∵CD →⊥AB →,∴CD →·AB →=2(13-λ)+λ-3(-1-λ)=0,∴λ=-116.9.(2013·河南省开封月考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E 、F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E 、F 两点间的距离为()A .1B .52C .62D .32[答案] C[解析] 以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F (2,1,22),所以|EF |=(1-2)2+(1-1)2+(2-22)2=62,故选C .10. (2013·陕西省高新一中期末)如图,在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为()A .27B .2357C .357D .1[答案] B[解析] 过点B 作BE 垂直A 1C ,垂足为E ,设点E 的坐标为(x ,y ,z ),则A 1(0,0,3),B (1,0,0),C (1,2,0),A 1C →=(1,2,-3),A 1E →=(x ,y ,z -3),BE →=(x -1,y ,z ).因为⎩⎪⎨⎪⎧A 1E →∥A 1C →BE →·A 1C →=0,所以⎩⎪⎨⎪⎧x 1=y 2=z -3-3x -1+2y -3z =0,解得⎩⎪⎨⎪⎧x =57y =107z =67,所以BE →=(-27,107,67),所以点B 到直线A 1C 的距离|BE →|=2357,故选B .11.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .16[答案] C[解析] 如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0).从而D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1), 设平面ACD 1的法向量为n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-a +2b =0,-a +c =0,得⎩⎪⎨⎪⎧a =2b ,a =c .令a =2,则n =(2,1,2). 所以点E 到平面ACD 1的距离为 h =|D 1E →·n ||n |=2+1-23=13.12.如图所示,正方体ABCD -A1B 1C 1D 1中,E ,F 分别是正方形ADD 1A 1和ABCD 的中心,G 是CC 1的中点,设GF ,C 1E 与AB 所成的角分别为α,β,则α+β等于( )A .120°B .60°C .75°D .90°[答案] D[解析] 建立坐标系如图,设正方体的棱长为2,则B (2,0,0),A (2,2,0),G (0,0,1),F (1,1,0),C 1(0,0,2),E (1,2,1).则BA →=(0,2,0),GF →=(1,1,-1),C 1E →=(1,2,-1),∴cos 〈BA →,GF →〉=|BA →·GF →||BA →|·|GF →|=13,cos 〈BA →,C 1E →〉=|BA →·C 1E →||BA →|·|C 1E →|=23,∴cos α=13,sin α=23,cos β=23,sin β=13,cos(α+β)=0,∴α+β=90°. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当AP →·BP →取最小值时,点P 的坐标为__________.[答案] (12,0,0)[解析] 设P (x,0,0),则AP →=(x -1,-2,0),BP →=(x ,-1,1), AP →·BP →=x (x -1)+2=(x -12)2+74,∴当x =12时,AP →·BP →取最小值74,此时点P 的坐标为(12,0,0).14.已知正四棱台ABCD -A 1B 1C 1D 1中,上底面A 1B 1C 1D 1边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线AD 1与B 1C 所成角的余弦值为__________.[答案] 14[解析] 设上、下底面中心分别为O 1、O ,则OO 1⊥平面ABCD ,以O 为原点,直线BD 、AC 、OO 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵AB =2,A 1B 1=1,∴AC =BD =22,A 1C 1=B 1D 1=2,∵平面BDD 1B 1⊥平面ABCD ,∴∠B 1BO 为侧棱与底面所成的角,∴∠B 1BO =60°, 设棱台高为h ,则tan60°=h 2-22,∴h =62, ∴A (0,-2,0),D 1(-22,0,62),B 1(22,0,62),C (0,2,0),∴AD 1→=(-22,2,62),B 1C →=(-22,2,-62),∴cos 〈AD 1→,B 1C →〉=AD 1→·B 1C →|AD 1→|·|B 1C →|=14,故异面直线AD 1与B 1C 所成角的余弦值为14.15.三棱锥P -ABC 中,P A =PB =PC =AB =AC =1,∠BAC =90°,则直线P A 与底面ABC 所成角的大小为________________.[答案] 45°[解析] 由条件知,AB =AC =1,∠BAC =90°,∴BC =2,∵PB =PC =1,∴∠BPC =90°, 取BC 边中点E ,则 PE =22,AE =22, 又P A =1,∴∠PEA =90°,故∠P AE =45°, ∵E 为BC 中点,∴PE ⊥BC ,AE ⊥BC , ∴BC ⊥平面P AE , ∴平面P AE ⊥平面ABC ,∴∠P AE 为直线P A 与平面ABC 所成角.16.已知矩形ABCD 中,AB =1,BC =3,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________.[答案]102[解析] 过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =12,BM =32,CN =12,DN =32,MN =1.由于BD →=BM →+MN →+ND →,∴|BD →|2=(BM →+MN →+ND →)2=|BM →|2+|MN →|2+|ND →|2+2(BM →·MN →+MN →·ND →+BM →·ND →)=(32)2+12+(32)2+2(0+0+0)=52,∴|BD →|=102.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)若e 1、e 2、e 3是三个不共面向量,则向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面?请说明理由.[解析] 设c =λ1a +λ2b ,则 ⎩⎪⎨⎪⎧3λ1-λ2=22λ1+λ2=-1λ1+3λ2=-4⇒λ1=15,λ2=-75.即c =15a -75b .∴a 、b 、c 共面.18.(本小题满分12分)在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG→.[解析] ∵BG =2GD , ∴BG →=23BD →.又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , ∴PG →=PB →+BG →=b +23(a +c -2b )=23a -13b +23c . 19.(本小题满分12分)如图所示,在四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且BC =CD=1.(1)求证:平面ACD ⊥平面ABC ;(2)求二面角C -AB -D 的大小;(3)若直线BD 与平面ACD 所成的角为30°,求线段AB 的长度. [解析] 解法一:(1)∵CD ⊥AB ,CD ⊥BC , ∴CD ⊥平面ABC . 又∵CD ⊂平面ACD , ∴平面ACD ⊥平面ABC .(2)∵AB ⊥BC ,AB ⊥CD ,∴AB ⊥平面BCD , ∴AB ⊥BD .∴∠CBD 是二面角C -AB -D 的平面角. ∵在Rt △BCD 中,BC =CD ,∴∠CBD =45°. ∴二面角C -AB -D 的大小为45°.(3)过点B 作BH ⊥AC ,垂足为H ,连接DH .∵平面ACD ⊥平面ABC , ∴BH ⊥平面ACD ,∴∠BDH 为BD 与平面ACD 所成的角.∴∠BDH =30°. 在Rt △BHD 中,BD =2, ∴BH =22. 又∵在Rt △BHC 中,BC =1, ∴∠BCH =45°,∴在Rt △ABC 中,AB =1. 解法二:(1)同解法一.(2)设AB =a ,建立如图所示的空间直角坐标系B -xyz ,则B (0,0,0),A (0,0,a ),C (0,1,0),D (1,1,0),BD →=(1,1,0),BA →=(0,0,a ).平面ABC 的法向量CD →=(1,0,0),设平面ABD 的一个法向量为n =(x ,y ,z ),则有BD →·n =x +y =0,BA →·n =az =0,∴z =0,取y =1,则x =-1, ∴n =(-1,1,0).∴cos 〈CD →,n 〉=CD →·n |CD →||n |=-22,由图可知二面角C -AB -D 为锐角,∴二面角C -AB -D 的大小为45°.(3)AC →=(0,1,-a ),CD →=(1,0,0),BD →=(1,1,0).设平面ACD 的一个法向量是m =(x ′,y ′,z ′),则AC →·m =y ′-az ′=0,CD →·m =x ′=0,令z ′=1,∴y ′=a ,则m =(0,a,1). ∵直线BD 与平面ACD 所成角为30°, ∴cos 〈BD →,m 〉=BD →·m |BD →||m |=a a 2+1·2=cos60°,解得a =1,∴AB =1.20.(本小题满分12分)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,已知AB =2,AA 1=5,E 、F 分别为D 1D 、B 1B 上的点,且DE =B 1F =1.(1)求证:BE ⊥平面ACF ; (2)求点E 到平面ACF 的距离.[解析] (1)证明:以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如图所示空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),D 1(0,0,5),E (0,0,1),F (2,2,4).∴AC →=(-2,2,0),AF →=(0,2,4),BE →=(-2,-2,1),AE →=(-2,0,1). ∵BE →·AC →=0,BE →·AF →=0,∴BE ⊥AC ,BE ⊥AF ,且AC ∩AF =A .∴BE ⊥平面ACF .(2)解:由(1)知,BE →为平面ACF 的一个法向量,∴点E 到平面ACF 的距离d =|AE →·BE →||BE →|=53. 故点E 到平面ACF 的距离为53. 21.(本小题满分12分)(2014·浙江文,20)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC =2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.[解析] (1)取CD 中点G ,连结BG .∵∠CDE =∠BED =90°,∴BE ∥CD .又CD =2,BE =1,∵BE 綊DG ,∴四边形DEBG 为矩形,∴BG =DE =1,∠BGC =90°又GC =12CD =1,∴BC =2. 又AC =2,AB =2,∴AB 2=AC 2+BC 2,即AC ⊥BC .又∵平面ABC ⊥平面BCDE 且交线为BC ,AC ⊂平面ABC ,∴AC ⊥平面BCDE .(2)解法1:过点E 作EF ⊥BC 交BC 延长线于F ,由(1)知EF ⊥AC ,AC ∩BC =C ,∴EF ⊥平面ABC ,连结AF ,则∠EAF 即为AE 与平面ABC 所成的角.由已知得∠GBC =45°,∴∠EBF =45°∴BF =EF ,又BE =1∴BF =EF =22, 在Rt △AFC 中,AC =2,CF =BC +BF =2+22=322, ∴AF =2+184=262, ∴tan ∠EAF =EF AF =22262=1313, ∴直线AE 与平面ABC 所成角的正切值为1313. 解法2:过C 作DE 的平行线CG ,以C 为原点,CD 、CG、CA 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图.则C (0,0,0),A (0,0,2),B (1,1,0),E (2,1,0),∴AE →=(2,1,-2),AB →=(1,1,-2),CA →=(0,0,2),设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·CA →=0,∴⎩⎪⎨⎪⎧x +y -2z =0,2z =0, 令x =1得n =(1,-1,0).设AE 与平面ABC 所成的角为α,则sin α=cos 〈n ,AE →〉=|n ·AE →||n |·|AE →|=114,∴tan α=1313. 22.(本小题满分14分) (2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)如图,四边形ABCD 与BDEF 均为菱形,设AC 与BD 相交于点O ,若∠DAB =∠DBF =60°,且F A =FC .(1)求证:FC ∥平面EAD ;(2)求二面角A -FC -B 的余弦值.[解析] (1)证明:∵四边形ABCD 与BDEF 均为菱形,∴AD ∥BC ,DE ∥BF .∵AD ⊄平面FBC ,DE ⊄平面FBC ,∴AD ∥平面FBC ,DE ∥平面FBC ,又AD ∩DE =D ,AD ⊂平面EAD ,DE ⊂平面EAD ,∴平面FBC ∥平面EAD ,又FC ⊂平面FBC ,∴FC ∥平面EAD .(2)连接FO 、FD ,∵四边形BDEF 为菱形,且∠DBF =60°,∴△DBF 为等边三角形, ∵O 为BD 中点.所以FO ⊥BD ,O 为AC 中点,且F A =FC ,∴AC ⊥FO ,又AC ∩BD =O ,∴FO ⊥平面ABCD ,∴OA 、OB 、OF 两两垂直,建立如图所示的空间直角坐标系O -xyz ,设AB =2,因为四边形ABCD 为菱形,∠DAB =60°,则BD =2,OB =1,OA =OF =3,∴O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),F (0,0,3),∴CF →=(3,0,3),CB →=(3,1,0),设平面BFC 的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧ n ·CF →=0,n ·CB →=0,∴⎩⎪⎨⎪⎧3x +3z =0,3x +y =0, 令x =1,则n =(1,-3,-1),∵BD ⊥平面AFC ,∴平面AFC 的一个法向量为OB →=(0,1,0).∵二面角A -FC -B 为锐二面角,设二面角的平面角为θ,∴cos θ=|cos 〈n ,OB →〉|=|n ·OB →||n |·|OB →|=⎪⎪⎪⎪⎪⎪-35=155, ∴二面角A -FC -B 的余弦值为155.。

2014《成才之路》高二数学(人教A版)选修1-2课件:2-1-1合情推理

2014《成才之路》高二数学(人教A版)选修1-2课件:2-1-1合情推理

成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
(4)了解直接证明的两种基本方法:分析法和综合法;了解 分析法和综合法的思考过程与特点.
(5)了解间接证明的一种基本方法——反证法;了解反证法 的思考过程、特点.
第二章 推理与证明
成才之路 ·高中新课程 ·学习指导 ·人Leabharlann A版 ·数学 ·选修1-1、1-2合订
第二章 推理与证明
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
(3)通过本章的学习,发展数学思维能力,提高学生的数学 素养.
(4)通过本章的学习,发展创新意识和创新能力.
第二章 推理与证明
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
●重点难点 本章重点是合情推理、演绎推理以及证明方法——直接证 明和间接证明.合情推理是数学发现的分析过程中常用到的思 维方法,具有猜测和发现结论,探索和提供思路的作用,有助 于学生理解力的提高.演绎推理是证明数学结论,构建数学体 系的重要形式,培养和提高学生的演绎推理或逻辑推理是高中 数学的重要目标,数学结论的重要性必须通过逻辑证明来保 证.证明包括直接证明和间接证明.
第二章 2.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订
2.归纳推理的一般步骤 (1)观察:通过观察个别事物发现某些相同性质. (2)概括、归纳:从已知的相同性质中概括、归纳出一个明 确表述的一般性命题. (3)猜测一般性结论
第二章 2.1 第1课时
第二章 推理与证明
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修1-1、1-2合订

【成才之路】高中数学 第1章 统计案例综合素质检测 新人教A版选修1-2

【成才之路】高中数学 第1章 统计案例综合素质检测 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 第1章 统计案例综合素质检测 新人教A 版选修1-2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·湖南益阳市箴言中学模拟)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ② y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④[答案] D[解析] y 与x 正(或负)相关时,线性回归直线方程y =b ^x +a ^中,x 的系数b ^>0(或b ^<0),故①④错.2.如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )[答案] A[解析] 题图A 中的点不成线性排列,故两个变量不适合线性回归模型.故选A. 3.在建立两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合得最好的模型为( )A .模型1的相关指数R 2为0.75 B .模型2的相关指数R 2为0.90 C .模型3的相关指数R 2为0.25D .模型4的相关指数R 2为0.55 [答案] B[解析] 相关指数R 2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B.4.预报变量的值与下列的哪些因素有关( ) A .受解释变量的影响,与随机误差无关 B .受随机误差的影响,与解释变量无关 C .与总偏差平方和有关,与残差无关 D .与解释变量和随机误差的总效应有关 [答案] D[解析] 预报变量既受解释变量的影响,又受随机误差的影响. 5.(2014·安徽示范高中联考)给出下列五个命题: ①将A 、B 、C 三种个体按的比例分层抽样调查,如果抽取的A 个体为9个,则样本容量为30;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲; ④已知具有相关关系的两个变量满足的回归直线方程为y =1-2x ,则x 每增加1个单位,y 平均减少2个单位;⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为0.4.其中真命题为( ) A .①②④ B .②④⑤ C .②③④ D .③④⑤[答案] B[解析] ①样本容量为9÷36=18,①是假命题;②数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③x -乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=15×(4+1+4+9+4)=4.4,∵s 2甲>s 2乙,∴乙稳定,③是假命题;④是真命题;⑤数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求概率为410=0.4,⑤是真命题.6.已知x 与y 之间的一组数据:则y 与x 的线性回归方程y =b x +a 必过( ) A .(2,2)点 B .(1.5,0)点 C .(1,2)点 D .(1.5,4)点[答案] D[解析] 计算得x =1.5,y =4,由于回归直线一定过(x ,y )点,所以必过(1.5,4)点.7.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )A.25% C .2.5% D .97.5%[答案] D[解析] 查表可得K 2>5.024.因此有97.5%的把握认为“x 和y 有关系”. 8.下列说法正确的有( )①最小二乘法指的是把各个离差加起来作为总离差,并使之达到最小值的方法; ②最小二乘法是指把各离差的平方和作为总离差,并使之达到最小值的方法; ③线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法;④因为由任何一组观测值都可以求得一个回归直线方程,所以没有必要进行相关性检验.A .1个B .2个C .3个D .4个[答案] B[解析] 最小二乘法是指把各离差的平方和作为总离差,并使之达到最小值的方法,(2)是正确的;线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法,这是线性回归的本质,(3)也是正确的.9.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均收入的百分比约为( )A .83%B .72%C .67%D .66%[答案] A[解析] 当y ^=7.675时,x =7.675-1.5620.66≈9.262,所以7.6759.262≈0.829,故选A.10.下面是调查某地区男女中学生是否喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从下图可以看出( )A .性别与是否喜欢理科无关B .女生中喜欢理科的比为80%C .男生比女生喜欢理科的可能性大些D .男生中喜欢理科的比为60% [答案] C[解析] 从图中可以看出,男生喜欢理科的比例为60%,而女生比例为仅为20%,这两个比例差别较大,说明性别与是否喜欢理科是有关系的,男生比女生喜欢理科的可能性更大一些.11.(2014·云南景洪市一中期末)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n a +bc +d a +cb +d,得K 2=-260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C12.以下关于线性回归的判断,正确的个数是( )①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点;③已知直线方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69; ④回归直线方程的意义是它反映了样本整体的变化趋势.A .0B .1C .2D .3[答案] D[解析] 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a ^,b ^得到的直线y ^=bx +a ^才是回归直线,∴①不对;②正确;将x =25代入y ^=0.50x -0.81,得y ^=11.69, ∴③正确;④正确,故选D.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.某镇居民2009~2013年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭平均收入的中位数是________,家庭年平均收入与年平均支出有________线性相关关系.(填“正”或“负”)[答案] 13 正[解析] 找中位数时,将样本数据按大小顺序排列后奇数个时中间一个是中位数,而偶数个时须取中间两数的平均数,由统计资料可以看出,年平均收入增多时,年平均支出也增多,因此两者正相关.14.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:[答案] 0.001[解析] 可计算K 2的观测值k =11.377>10.828.15.在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示:通过分析,y 对商品的价格x 的回归直线方程为________.[答案] y ^=-3.2x +40[解析] ∑i =15x i y i =392,x -=10,y -=8,∑i =15(x i -x -)2=2.5,代入公式,得b ^=-3.2,所以,a ^=y --b ^x -=40,故回归直线方程为y ^=-3.2x +40.16.某小卖部为了了解热茶销售量y (杯)与气温x (℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:由表中数据算得线性回归方程y =bx +a 中的b ≈-2,预测当气温为-5℃时,热茶销售量为________杯.(已知回归系数b =∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a =y --b x -) [答案] 70[解析] 根据表格中的数据可求得x -=14×(18+13+10-1)=10,y -=14×(24+34+38+64)=40.∴a =y --b x -=40-(-2)×10=60,∴y ^=-2x +60,当x =-5时,y ^=-2×(-5)+60=70.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)考察黄烟经过培养液处理与是否跟发生青花病的关系.调查了457株黄烟,得到下表中数据,请根据数据作统计分析.附:K 2=a +bc +d a +c b +d[解析] K 2=-2235×222×105×352≈41.61,由于41.61>10.828,说明有99.9%的把握认为黄烟经过培养液处理与是否跟发生青花病是有关系的. 18.(本题满分12分)某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从该部门内随机抽选了10个企业为样本,有如下资料:(1)计算x 与y (2)对这两个变量之间是否线性相关进行检验;(3)设回归方程为y ^=b ^x +a ^,求回归系数. [解析] (1)根据数据可得:x =77.7,y =165.7,∑10i =1x 2i=70 903,∑10i =1y 2i =277 119, ∑10i =1x i y i =132 938,所以r =0.808, 即x 与y 之间的相关系数r ≈0.808;(2)因为r >0.75,所以可认为x 与y 之间具有线性相关关系; (3)b ^=0.398,a ^=134.8.19.(本题满分12分)(2014·安徽文,17)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K 2=n ad -bc 2a +bc +d a +c b +d[解析] (1)300×15000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表综合列联表可算得K 2=75×225×210×90=21≈4.762>3.841. 所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关.” 20.(本题满分12分)在一段时间内,某种商品的价格x 元和需求量y 件之间的一组数据为求出y 对x [解析] x =15(14+16+18+20+22)=18,y =15×(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1 660, ∑5i =1y 2i =122+102+72+52+32=327, ∑5i =1x i y i =14×12+16×10+18×7+20×5+22×3=620, ∴b ^=∑5i =1x i y i -5x ·y ∑5 i =1x 2i -5x 2=620-5×18×7.41 660-5×182=-4640=-1.15. ∴a ^=7.4+1.15×18=28.1. ∴回归直线方程为y ^=-1.15x +28.1. 列出残差表为:∴∑5i =1 (y i -y i )2=0.3,∑ i =1 (y i -y )2=53.2,R 2=1-∑5i =1y i -y ^i 2∑5i =1y i -y2≈0.994.∴R 2=0.994,因而拟合效果较好.21.(本题满分12分)(2014·安徽程集中学期中)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:K 2=n ad -bc 2a +bc +d a +cb +d[解析] (1)25人,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得K2=n ad-bc2a +b c+d a+c b+d=-275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的集合为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b j表示女性,j=1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示“任选2人中,至少有1人是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成,因而P(A)=710.[点评] 本题考查了频率分布直方图,独立性检验,古典概型,解决这类题目的关键是对题意准确理解.22.(本题满分14分)(2014·济南模拟) 为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:族”.(1)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?已知:K2=a+b+c+d ad-bc2a +b c+d a+c b+d,当K2<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;当K2>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;当K2>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;当K2>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关.(2)限购令的概率.[解析] (1)K2=40×10×22×28≈3.43,故有90%的把握认为楼市限购令与收入高低有关;(2)设月收入在[55,65)的5人的编号为a,b,c,d,e,其中a,b为赞成楼市限购令的人,从5人中抽取两人的方法数有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种,其中ab,ac,ad,ae,bc,bd,be为有利事件数,因此所求概率P=710.。

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:1章综合素质检测]

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习:1章综合素质检测]

第一章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设原命题:若a+b≥2,则a、b中至少有一个不小于1,则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题[答案] A[解析]因为原命题“若a+b≥2,则a、b中至少有一个不小于1”的逆否命题为“若a、b都小于1,则a+b<2”,显然为真,所以原命题为真;原命题“若a+b≥2,则a、b 中至少有一个不小于1”的逆命题为“若a、b中至少有一个不小于1,则a+b≥2”,是假命题,反例为a=1.2,b=0.3.2.(2014·重庆万州市分水中学高二期中)已知命题p:∀x∈R,a x>0(a>0且a≠1),则() A.¬p:∀x∈R,a x≤0 B.¬p:∀x∈R,a x>0C.¬p:∃x0∈R,ax0>0 D.¬p:∃x0∈R,ax0≤0[答案] D[解析]∵命题p为全称命题,∴¬p为特称命题,由命题的否定只否定结论知a x>0的否定为a x≤0,∴选D.3.(2013·琼海市模拟)命题“tan x=0”是命题“cos x=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析]x=π时,tan x=0,但cos x=-1;cos x=1时,sin x=0,故tan x=0.所以“tan x =0”是“cos x=1”的必要不充分条件.4.(2014·南昌市高二期中)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m⊥α,n∥α,则m⊥n;④若α⊥γ,β⊥γ,则α∥β.其中真命题的序号是()A.①②B.②③C.③④D.①④[答案] B[解析]由平行于同一平面的两条直线可能平行、相交,也可能异面知①为假命题;⎭⎬⎫⎭⎪⎬⎪⎫α∥ββ∥γ⇒α∥γ n ⊥α⇒m ⊥γ,∴②为真命题;③过n 作平面β交α于l ,∵n ∥α,∴n ∥l ,又m ⊥α,∴m ⊥l ,∴m ⊥n ,故③为真命题;由长方体交于同一顶点的三个面知,④为假命题,故选B.5.设x ,y ,z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 由题意得,“lg y 为lg x ,lg z 的等差中项”,则2lg y =lg x +lg z ⇒y 2=xz ,则“y 是x ,z 的等比中项”;而当y 2=xz 时,如x =z =1,y =-1时,“lg y 为lg x ,lg z 的等差中项”不成立,所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件,故选A.6.(2014·重庆理,6)已知命题 p :对任意x ∈R ,总有2x >0; q :“x >1”是“x >2”的充分不必要条件, 则下列命题为真命题的是( ) A .p ∧q B .¬p ∧¬q C .¬p ∧q D .p ∧¬q[答案] D[解析] 命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( )A .0个B .1个C .2个D .3个 [答案] C[解析] 依题意得,命题“a ∥b ,且a ⊥γ⇒b ⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a ∥β,且a ⊥c ⇒β⊥c ”是假命题(直线c 可能位于平面β内,此时结论不成立);命题“α∥b ,且α⊥c ⇒b ⊥c ”是真命题(因为α∥b ,因此在平面α内必存在直线b 1∥b ;又α⊥c ,因此c ⊥b 1,∴c ⊥b ).综上所述,其中真命题有2个,选C.8.在△ABC 中,设命题p :a sin B =b sin C =csin A,命题q :△ABC 是等边三角形,那么p是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件[答案] C[解析] 由已知a =b sin B sin C =b 2c⇒b 2=ac .同理a 2=bc ,c 2=ab ,故有(a +c )(a -c )=b (c -a ).若a ≠c ,则a +c =-b 与a 、b 、c 是△ABC 的三边矛盾,故a =c ,同理得到b =c , 于是a =b =c ,于是充分性得证,必要性显然成立.9.已知命题p :“对∀x ∈R ,∃m ∈R ,使4x +2x m +1=0”.若命题¬p 是假命题,则实数m 的取值范围是( )A .-2≤m ≤2B .m ≥2C .m ≤-2D .m ≤-2或m ≥2[答案] C[解析] 由题意可知命题p 为真,即方程4x+2xm +1=0有解,∴m =-4x +12x =-(2x +12x)≤-2. 10.下列命题中,错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .已知x ,y ∈R ,则x =y 是xy ≥(x +y 2)2成立的充要条件C .命题p :∃x ∈R ,使得x 2+x +1<0,则¬p :∀x ∈R ,则x 2+x +1≥0D .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 [答案] D[解析] 由逆否命题的定义知A 正确;当x =y 时,xy ≥(x +y 2)2成立;xy ≥(x +y 2)2成立时,有xy ≥|x +y |2,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p ∨q 为假,∴p 假且q 假,∴D 为假命题.11.(2013·天津理,4)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③[答案] C[解析] 对于①,设球半径为R ,则V =43πR 3,r =12R ,∴V 1=43π×(12R )3=πR 36=18V ,故①正确;对于②,两组数据的平均数相等,标准差一般不相等;对于③,圆心(0,0),半径为22,圆心(0,0)到直线的距离d =22,故直线和圆相切,故①,③正确.12.设a ,b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2;④ab >1;⑤log a b <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( )A .②③④B .②③④⑤C .①②③⑤D .②⑤[答案] D[解析] ①a +b =2可能有a =b =1;②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾;③a +b >-2可能a <0,b <0;④ab >1,可能a <0,b <0;⑤log a b <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.命题“同位角相等”的否定为________,否命题为________. [答案] 有的同位角不相等 若两个角不是同位角,则它们不相等[解析] 全称命题的否定是特称命题;“若p ,则q ”的否命题是“若¬p ,则¬q ” 14.写出命题“若方程ax 2-bx +c =0(a ≠0)的两根均大于0,则ac >0”的一个等价命题是______________________________________________.[答案] 若ac ≤0,则方程ax 2-bx +c =0(a ≠0)的两根不全大于0. [解析] 根据原命题与它的逆否命题是等价命题可直接写出.15.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围是________.[答案] 3≤m <8[解析] ∵p (1)是假命题,p (2)是真命题,∴⎩⎪⎨⎪⎧3-m ≤0,8-m >0.解得3≤m <8. 16.下列命题中,________是全称命题,________是特称命题.①正方形的四条边相等;②有两个内角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数;⑤一定有偶数x 0,y 0,使得3x 0-2y 0=10成立.[答案] ①②③ ④⑤三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.[解析] 逆命题,已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0. 逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.18.(本小题满分12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程x 2+x -m =0必有实数根; (2)q :∃x ∈R ,使得x 2+x +1≤0.[解析] (1)¬p :∃m ∈R ,使方程x 2+x -m =0无实数根. 若方程x 2+x -m =0无实数根,则 Δ=1+4m <0,∴m <-14,∴当m =-1时,¬p 为真. (2)¬q :∀x ∈R ,使得x 2+x +1>0. ∵x 2+x +1=(x +12)2+34>0∴¬q 为真.19.(本小题满分12分)已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},且x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.[解析] P ={x |a -4<x <a +4},Q ={x |1<x <3}. ∵x ∈P 是x ∈Q 的必要条件 ∴x ∈Q ⇒x ∈P ,即Q ⊆P∴⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,⇒⎩⎪⎨⎪⎧a ≤5,a ≥-1.∴-1≤a ≤5.20.(本小题满分12分)(2014·邢台一中第二次月考)已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p 或q ”是假命题,求实数a 的取值范围.[解析] 由a 2x 2+ax -2=0,得(ax +2)(ax -1)=0,显然a ≠0,∴x =-2a 或x =1a,∵x ∈[-1,1],故|2a |≤1或|1a |≤1,∴|a |≥1.只有一个实数x 满足不等式x 2+2ax +2a ≤0. 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0或a =2. 又命题“p 或q ”是假命题, 故a 的取值范围为-1<a <0或0<a <1.21.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] ∵函数f (x )的图象全在x 轴上方,∴⎩⎪⎨⎪⎧a 2+4a -5>0,Δ=16(a -1)2-4(a 2+4a -5)×3<0,或 ⎩⎪⎨⎪⎧a 2+4a -5=0,a -1=0. 解得1<a <19或a =1,故1≤a <19.所以使函数f (x )的图象全在x 轴的上方的充要条件是1≤a <19.22.(本小题满分14分)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b +1b +c =3a +b +c,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.[解析] A 、B 、C 成等差数列. 证明如下: ∵1a +b +1b +c =3a +b +c , ∴a +b +c a +b +a +b +cb +c =3. ∴c a +b +a b +c=1, ∴c (b +c )+a (a +b )=(a +b )(b +c ), ∴b 2=a 2+c 2-ac .在△ABC 中,由余弦定理,得 cos B =a 2+c 2-b 22ac =ac 2ac =12,∵0°<B <180°,∴B =60°. ∴ A +C =2B =120°.∴A、B、C成等差数列.。

【成才之路】高中数学 2.1.1 第2课时类比推理同步测试 新人教A版选修2-2

【成才之路】高中数学 2.1.1 第2课时类比推理同步测试 新人教A版选修2-2

【成才之路】2014-2015学年高中数学 2.1.1 第2课时类比推理同步测试新人教A版选修2-2一、选择题1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3)A.①②B.①③④C.①②④D.②④[答案] C[解析] ①是类比推理;②④是归纳推理,∴①②④都是合情推理.2.(2013·华池一中期中)平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值32a,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为( )A.43a B.63aC.54a D.64a[答案] B[解析] 将正三角形一边上的高32a类比到正四面体一个面上的高63a,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明.3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是( )A.①②B.②③C.③④D.①④[答案] B[解析] 根据立体几何中线面之间的位置关系知,②③是正确的结论.4.(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A .VS 1+S 2+S 3+S 4B .2VS 1+S 2+S 3+S 4C .3VS 1+S 2+S 3+S 4D .4VS 1+S 2+S 3+S 4[答案] C[解析] 将△ABC 的三条边长a 、b 、c 类比到四面体P -ABC 的四个面面积S 1、S 2、S 3、S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r+13S 2r +13S 3r +13S 4r ,∴r =3V S 1+S 2+S 3+S 4. 5.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”.其中类比结论正确的个数是( )A .0B .1C .2D .3[答案] C[解析] 在实数集中,a >b ⇔a -b >0,但在复数集中,不全为实数的两个数不能比较大小,如a =2+i ,b =1+i ,有a -b =1>0,但a >b 不成立;∵a 、b 、c 、d ∈Q ,∴a -c ,b -d ∈Q ,∵a +b 2=c +d 2,∴(a -c )+(b -d )2=0,∴⎩⎪⎨⎪⎧a -c =0b -d =0,∴⎩⎪⎨⎪⎧a =cb =d,故②正确;由复数相等的定义知,若a =x 1+y 1i(x 1、y 1∈R ),b =x 2+y 2i(x 2、y 2∈R ),则由a-b =(x 1-x 2)+(y 1-y 2)i =0⇒⎩⎪⎨⎪⎧x 1-x 2=0y 1-y 2=0,∴⎩⎪⎨⎪⎧x 1=x 2y 1=y 2,∴a =b ,故③正确.6.由代数式的乘法法则类比得到向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 其中类比结论正确的个数是( ) A .1 B .2 C .3 D .4[答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 二、填空题7.设f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.[答案] 3 2[解析] 本题是“方法类比”.因等比数列前n 项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)],而当x 1+x 2=1时,有f (x 1)+f (x 2)=12x 1+2+12x 2+2=22+x 1+2x 22x 1+2x 2+2x 1+x 2+2=22+x 1+2x 22x 1+2x 2+22=12=22,故所求答案为6×22=3 2.8.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式________成立.[答案] b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)[解析] 解法1:从分析所提供的性质入手:由a 10=0,可得a k +a 20-k =0,因而当n <19-n 时,有a 1+a 2+…+a 19-n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n ,而a n +1+a n +2+…+a 19-n =-2na n +1+a 19-n2=0,∴等式成立.同理可得n >19-n 时的情形.由此可知:等差数列{a n }之所以有等式成立的性质,关键在于在等差数列中有性质:a n+1+a 19-n =2a 10=0,类似地,在等比数列{b n }中,也有性质:b n +1·b 17-n =b 29=1,因而得到答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).解法2:因为在等差数列中有“和”的性质a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,故在等比数列{b n }中,由b 9=1,可知应有“积”的性质b 1b 2…b n =b 1b 2…b 17-n (n<17,n ∈N *)成立. (1)证明如下:当n <8时,等式(1)为b 1b 2…b n =b 1b 2…b n b n +1…b 17-n , 即:b n +1·b n +2…b 17-n =1.(2) ∵b 9=1,∴b k +1·b 17-k =b 29=1. ∴b n +1b n +2…b 17-n =b 17-2n9=1.∴(2)式成立,即(1)式成立;当n =8时,(1)式即:b 9=1显然成立; 当8<n <17时,(1)式即:b 1b 2…b 17-n ·b 18-n ·…b n =b 1b 2…b 17-n ,即:b 18-n ·b 19-n …b n =1(3) ∵b 9=1,∴b 18-k ·b k =b 29=1, ∴b 18-n b 19-n ·…·b n =b 2n -179=1,∴(3)式成立,即(1)式成立.综上可知,当等比数列{b n }满足b 9=1时,有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立.9.已知等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,前n 项积为T n ,类比等差数列的性质,填写等比数列的相应性质(m ,n ,k ,w ∈N *).[n 1n m m n k w ,则a m ·a n=a 2w T n ,T 2n T n ,T 3nT 2n构成等比数列 三、解答题10.先解答(1),再根据结构类比解答(2).(1)已知a 、b 为实数,且|a |<1,|b |<1,求证:ab +1>a +b .(2)已知a 、b 、c 均为实数,且|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c . [解析] (1)ab +1-(a +b )=(a -1)(b -1)>0.(2)∵|a |<1,|b |<1,|c |<1,据(1)得(ab )·c +1>ab +c , ∴abc +2=[(ab )·c +1]+1>(ab +c )+1=(ab +1)+c >a +b +c .[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab )·c +1>ab +c 是关键.用归纳推理可推出更一般的结论:a i 为实数,|a i |<1,i =1、2、…、n ,则有:a 1a 2…a n+(n -1)>a 1+a 2+…+a n .一、选择题11.下列类比推理恰当的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n与(a +b )n类比,则有(a +b )n=a n+b nD .把a (b +c )与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c [答案] D[解析] 选项A ,B ,C 没有从本质属性上类比,是简单类比,从而出现错误. 12.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A .5+12B .5-12C .5-1D .5+1[答案] A[解析] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), ∴FB →=(c ,b ),AB →=(-a ,b ), 又∵FB →⊥AB →,∴FB →·AB →=b 2-ac =0, ∴c 2-a 2-ac =0,∴e 2-e -1=0,∴e =1+52或e =1-52(舍去),故应选A.13.(2013·辽师大附中期中)类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边长的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3) D .都不对[答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.二、填空题14.(2014·阜阳一中模拟)若等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n .由类比推理可得:在等比数列{b n }中,若其前n 项的积为P n ,则P 2n -1=________.[答案] b 2n -1n[解析] 将等差数列前n 项和类比到等比数列前n 项的积,将等差中项的“倍数”类比到等比中项的“乘方”.因为等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n .所以类比可得:在等比数列{b n }中,若其前n 项的积为P n ,则P 2n -1=b 2n -1n.15.(2014·湖南长沙实验中学、沙城一中联考)在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,△ABC 、△BOC 、△BDC 三者面积之间关系为________.[答案] S 2△ABC =S △OBC ·S △DBC[解析] 将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DBC .16.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则圆的面积S 圆=πr 2,过点P 的圆的切线方程为x 0x +y 0y =r 2.在椭圆x 2a +y 2b=1(a >b >0)中,当离心率e 趋近于0时,短半轴b 就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式得椭圆面积S椭圆=________.类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为________.[答案] πabx 1a 2·x +y 1b2·y =1 [解析] 当椭圆的离心率e 趋近于0时,椭圆趋近于圆,此时a ,b 都趋近于圆的半径r ,故由圆的面积S =πr 2=π·r ·r ,猜想椭圆面积S 椭=π·a ·b ,其严格证明可用定积分处理.而由切线方程x 0·x +y 0·y =r 2变形得x 0r 2·x +y 0r2·y =1,则过椭圆上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x +y 1b2·y =1,其严格证明可用导数求切线处理.三、解答题 17.点P ⎝⎛⎭⎪⎫22,22在圆C :x 2+y 2=1上,经过点P 的圆的切线方程为22x +22y =1,又点Q (2,1)在圆C 外部,容易证明直线2x +y =1与圆相交,点R ⎝ ⎛⎭⎪⎫12,12在圆C 的内部.直线12x +12y =1与圆相离.类比上述结论,你能给出关于一点P (a ,b )与圆x 2+y 2=r 2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P (a ,b )在⊙C :x 2+y 2=r 2上时,直线ax +by =r 2与⊙C 相切;点P 在⊙C 内时,直线ax +by =r 2与⊙C 相离;点P 在⊙C 外部时,直线ax +by =r 2与⊙C 相交.容易证明此结论是正确的.18.我们知道:12= 1, 22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n∴1+2+3+…+n =n n +2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…S k (n )=1k +2k +3k +…+n k (k ∈N *).已知13= 1, 23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1.将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n .由此知S 2(n )=n 3+3n 2+2n -3S 1n3=2n 3+3n 2+n 6=n n +n +6.。

【成才之路】2014-2015年度学年高级中学数学(人教A版,选择进修2-2)理解练习-2章末综合检测]

【成才之路】2014-2015年度学年高级中学数学(人教A版,选择进修2-2)理解练习-2章末综合检测]

第二章综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( )A.10 B.14C.13 D.100[答案] B[解析] 设n∈N*,则数字n共有n个,所以≤100即n(n+1)≤200,又因为n∈N*,所以n=13,到第13个13时共有=91项,从第92项开始为14,故第100项为14.2.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A.大前提错误 B.小前提错误C.推理形式错误 D.不是以上错误[答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.3.用数学归纳法证明等式1+2+3+…+(n+3)=(n∈N*)时,验证n=1,左边应取的项是( )A.1 B.1+2C.1+2+3 D.1+2+3+4[答案] D[解析] 当n=1时,左=1+2+…+(1+3)=1+2+3+4,故应选D.4.(2012·福建南安高二期末)下列说法正确的是( )A.“a<b”是“am2<bm2”的充要条件B.命题“∀x∈R,x3-x2-1≤0”的否定是“∃x∈R,x3-x2-1≤0”C.“若a、b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a、b不都是奇数”D.若p∧q为假命题,则p、q均为假命题[答案] C[解析] A中“a<b”是“am2<bm2”的必要不充分条件,故A错;B中“∀x∈R,x3-x2-1≤0”的否定是“∃x∈R,x3-x2-1>0”,故B错;C正确;D中p∧q为假命题,则p、q中至少有一个为假命题,故D错.5.(2014·东北三校模拟) 下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)[答案] D[解析] 特值法:当k=1时,显然只有3(2+7k)能被9整除,故选D.证明如下:当k=1时,已验证结论成立,假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.∵3(2+7n)能被9整除,36能被9整除,∴21(2+7n)-36能被9整除,这就是说,k=n+1时命题也成立.故命题对任何k∈N*都成立.6.已知f(n)=+++…+,则( )A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2-n项,当n=2时,f(2)=+D.f(n)中共有n2-n+1项,当n=2时,f(2)=++[答案] D[解析] 项数为n2-(n-1)=n2-n+1,故应选D.7.已知a+b+c=0,则ab+bc+ca的值( )A.大于0 B.小于0C.不小于0 D.不大于0[答案] D[解析] 解法1:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-≤0.解法2:令c=0,若b=0,则ab+bc+ac=0,否则a、b异号,∴ab +bc+ac=ab<0,排除A、B、C,选D.8.已知c>1,a=-,b=-,则正确的结论是( )A.a>b B.a<bC.a=b D.a、b大小不定[答案] B[解析] a=-=,b=-=,因为>>0,>>0,所以+>+>0,所以a<b.9.定义一种运算“*”;对于自然数n满足以下运算性质:( )(i)1]B.n+1C.n-1 D.n2[答案] A[解析] 令a n=n*1,则由(ii)得,a n+1=a n+1,由(i)得,a1=1,∴{a n}是首项a1=1,公差为1的等差数列,∴a n=n,即n*1=n,故选A.10.(2013·济宁梁山一中高二期中)已知函数f(x)满足f(0)=0,导函数f′(x)的图象如图所示,则f(x)的图象与x轴围成的封闭图形的面积为( )A. B.C.2 D.[答案] B[解析] 由f′(x)的图象知,f′(x)=2x+2,设f(x)=x2+2x+c,由f(0)=0知,c=0,∴f(x)=x2+2x,由x2+2x=0得x=0或-2.故所求面积S=--2(x2+2x)dx==.11.已知1+2×3+3×32+4×32+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么a、b、c的值为( )A.a=,b=c=B.a=b=c=C.a=0,b=c=D.不存在这样的a、b、c[答案] A[解析] 令n=1、2、3,得所以a=,b=c=.12.设函数f(x)定义如下表,数列{x n}满足x0=5,且对任意的自然数均有x n+1=f(x n),则x2011=( )x12345f(x)41352A.1 B.2C.4 D.5[答案] C[解析] x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{x n}是周期为4的数列,所以x2011=x3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.在△ABC中,D为边BC的中点,则=(+).将上述命题类比到四面体中去,得到一个类比命题:_____________________________________________________.[答案] 在四面体A-BCD中,G为△BCD的重心,则=(++)14.(2013·安阳中学高二期末)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=________.[答案] [解析] 观察f1(x)、f2(x)、f3(x)、f4(x)的表达式可见,f n(x)的分子为x,分母中x的系数比常数项小1,常数项依次为2,4,8,16……2n.故f n(x)=.14.(2014·厦门六中高二期中)在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c2=a2+b2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1、S2、S3表示三个侧面面积,S表示截面面积,那么类比得到的结论是________.[答案] S2=S+S+S[解析] 类比如下:正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S2=S+S+S.证明如下:如图,作OE⊥平面LMN,垂足为E,连接LE并延长交MN于F,∵LO⊥OM,LO⊥ON,∴LO⊥平面MON,∵MN⊂平面MON,∴LO⊥MN,∵OE⊥MN,∴MN⊥平面OFL,∴S△OMN=MN·OF,S△MNE=MN·FE,S△MNL=MN·LF,OF2=FE·FL,∴S=(MN·OF)2=(MN·FE)·(MN·FL)=S△MNE·S△MNL,同理S=S△MLE·S△MNL,S=S△NLE·S△MNL,∴S+S+S=(S△MNE+S△MLE+S△NLE)·S△MNL=S,即S+S+S=S2.16.(2014·洛阳部分重点中学教学检测)观察下列等式:×=1-,×+×=1-,×+×+×=1-,……,由以上等式推测到一个一般的结论:对于n∈N*,×+×+…+×=________.[答案] 1-[解析] 由已知中的等式:×=1-×+×=1-,×+×+×=1-,…,所以对于n∈N*,×+×+…+×=1-.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)已知:a、b、c∈R,且a+b+c=1.求证:a2+b2+c2≥.[证明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca.三式相加得a2+b2+c2≥ab+bc+ca.∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc+ca)=(a+b+c)2.由a+b+c=1,得3(a2+b2+c2)≥1,即a2+b2+c2≥.18.(本题满分12分)设n∈N+,用归纳推理猜想的值.[解析] 记f(n)=,则f(1)==3,f(2)===33,f(3)===333.猜想f(n)=333….[点评] f(n)=333…可证明如下:∵111…=(102n-1),222…=(10n-1),令10n=x>1,则f(n)===(x-1)=(10n-1),即f(n)=33….19.(本题满分12分)(2013·华池一中高二期中)在圆x2+y2=r2(r>0)中,AB为直径,C为圆上异于A、B的任意一点,则有k AC·k BC=-1.你能用类比的方法得出椭圆+=1(a>b>0)中有什么样的结论?并加以证明.[解析] 类比得到的结论是:在椭圆+=1(a>b>0)中,A、B分别是椭圆长轴的左右端点,点C(x,y)是椭圆上不同于A、B的任意一点,则k AC·k BC=-证明如下:设A(x0,y0)为椭圆上的任意一点,则A关于中心的对称点B的坐标为B(-x0,-y0),点P(x,y)为椭圆上异于A,B两点的任意一点,则k AP·k BP=·=.由于A、B、P三点在椭圆上,∴两式相减得,+=0,∴=-,即k AP·k BP=-.故在椭圆+=1(a>b>0)中,长轴两个端点为A、B、P为异于A、B的椭圆上的任意一点,则有k AB·k BP=-.20.(本题满分12分)已知函数f(x)=a x+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.[解析] (1)证法1:任取x1、x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1且ax1>0,∴ax2-ax1=ax1(ax2-x1-1)>0,又∵x1+1>0,x2+1>0,∴-==>0,于是f(x2)-f(x1)=ax2-ax1+->0,故函数f(x)在(-1,+∞)上为增函数.证法2:f′(x)=a x ln a+=a x ln a+∵a>1,∴ln a>0,∴a x ln a+>0,f′(x)>0在(-1,+∞)上恒成立,即f(x)在(-1,+∞)上为增函数.(2)解法1:设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-,且0<ax0<1.∴0<-<1,即<x0<2,与假设x0<0矛盾.故方程f(x)=0没有负数根.解法2:设x0<0(x0≠-1),①若-1<x0<0,则<-2,ax0<1,∴f(x0)<-1.②若x0<-1则>0,ax0>0,∴f(x0)>0.综上,x<0(x≠-1)时,f(x)<-1或f(x)>0,即方程f(x)=0无负数根.21.(本题满分12分)(2014·哈六中期中)已知函数f(x)=(x-2)e x-x2+x+2.(1)求函数f(x)的单调区间和极值;(2)证明:当x≥1时,f(x)>x3-x.[解析] (1)f′(x)=(x-1)(e x-1),当x<0或x>1时,f′(x)>0,当0<x<1时,f′(x)<0,∴f(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,当x=0时,f(x)有极大值f(0)=0,当x=1时,f(x)有极小值f(1)=-e.(2)设g(x)=f(x)-x3+x,则g′(x)=(x-1)(e x--),令u(x)=e x--,则u′(x)=e x-,当x≥1时,u′(x)=e x->0,u(x)在[1,+∞)上单调递增,u(x)≥u(1)=e-2>0,所以g′(x)=(x-1)(e x--)≥0,g(x)=f(x)-x3+x在[1,+∞)上单调递增.g(x)=f(x)-x3+x≥g(1)=-e>0,所以f(x)>x3-x.22.(本题满分14分)设数列a1,a2,…a n,…中的每一项都不为0.证明{a n}为等差数列的充分必要条件是:对任何n∈N+,都有++…+=.[分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性.[证明] 先证必要性.设数列{a n}的公差为d.若d=0,则所述等式显然成立.若d≠0,则++…+=====.再证充分性.证法1:(数学归纳法)设所述的等式对一切n∈N+都成立.首先,在等式+=两端同乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.假设a k=a1+(k-1)d,当n=k+1时,观察如下两个等式++…+=,①++…++=②将①代入②,得+=,在该式两端同乘a1a k a k+1,得(k-1)a k+1+a1=ka k.将a k=a1+(k-1)d代入其中,整理后,得a k+1=a1+kd.由数学归纳法原理知,对一切n∈N,都有a n=a1+(n-1)d,所以{a n}是公差为d的等差数列.证法2:(直接证法)依题意有++…+=,①++…++=. ②②-①得=-,在上式两端同乘a1a n+1a n+2,得a1=(n+1)a n+1-na n+2. ③同理可得a1=na n-(n-1)a n+1(n≥2) ④③-④得2na n+1=n(a n+2+a n)即a n+2-a n+1=a n+1-a n,由证法1知a3-a2=a2-a1,故上式对任意n∈N*均成立.所以{a n}是等差数列.1.已知数列,,2,,…,则2是这个数列的( )A.第6项 B.第7项C.第19项 D.第11项[答案] B[解析] ,,,,…,而2=,可见各根号内被开方数构成首项为2,公差为3的等差数列,由20=2+(n-1)×3得n=7.2.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是__________________.[答案] 丙[解析] 若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.3.(1)由“若a、b、c∈R,则(ab)c=a(bc)”类比“若a、b、c为三个向量,则(a·b)c=a(b·c)”;(2)在数列{a n}中,a1=0,a n+1=2a n+2,猜想a n=2n-2;(3)“在平面内,三角形的两边之和大于第三边”类比“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;上述三个推理中结论正确的序号为________.[答案] ②③[解析] (a·b)c=a(b·c)不一定成立,其左边为平行于c的向量,右边为平行于a的向量,即命题(1)不正确;由a1=0,a n+1=2a n+2可得a n+1+2=2(a n+2),则数列{a n+2}是首项为2,公比为2的等比数列,a n+2=2n,即a n=2n-2,命题(2)正确;(3)正确,可结合三个侧面在底面上的射影去证明;综上可得正确的结论为(2)(3).4.若x>0,y>0,用分析法证明:(x2+y2)>(x3+y3).[证明] 要证(x2+y2)>(x3+y3),只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3y4x2>2x3y3.又因为x>0,y>0,所以x2y2>0,故只需证3x2+3y2>2xy.而3x2+3y2>x2+y2≥2xy成立,所以(x2+y2)>(x3+y3)成立.5.已知a是正整数,且a3是偶数,求证:a也是偶数.[分析] 已知a3的奇偶性研究a的奇偶性,不易直接证明,但如果已知a的奇偶性研究a3的奇偶性则较容易证明,故可用反证法.[证明] 假设a不是偶数,则a必为奇数,设a=2k+1(k∈N),则a3=(2k+1)3=8k3+12k2+6k+1=2(4k3+6k2+3k)+1,由于k∈N,所以4k2+6k2+3k∈N,故2(4k3+6k2+3k)是偶数,2(4k3+6k2+3k)+1为奇数,即a3为奇数,这与a3是偶数相矛盾.故假设不正确,即a也是偶数.6.我们知道,在△ABC中,若c2=a2+b2,则△ABC是直角三角形.现在请你研究:若c n=a n+b n(n>2),问△ABC为何种三角形?为什么?[解析] 锐角三角形 ∵c n=a n+b n(n>2),∴c>a, c>b,由c是△ABC的最大边,所以要证△ABC是锐角三角形,只需证角C为锐角,即证cos C>0.∵cos C=,∴要证cos C>0,只要证a2+b2>c2,①注意到条件:a n+b n=c n,于是将①等价变形为:(a2+b2)c n-2>c n. ②∵c>a,c>b,n>2,∴c n-2>a n-2,c n-2>b n-2,即c n-2-a n-2>0,c n-2-b n-2>0,从而(a2+b2)c n-2-c n=(a2+b2)c n-2-a n-b n=a2(c n-2-a n-2)+b2(c n-2-b n-2)>0,这说明②式成立,从而①式也成立.故cos C>0,C是锐角,△ABC为锐角三角形.。

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习题:2章-反馈练习题]

【成才之路】2014-2015学年高中数学(人教A版)选修2-1练习题:2章-反馈练习题]

反馈练习一、选择题1.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( )A .k >3B .2<k <3C .k =2D .0<k <2[答案] C [解析] k >0,c =9-k 2=k +3,∴k =2.2.已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=16外切,则动圆的圆心P 的轨迹是( )A .线段B .双曲线C .圆D .椭圆[答案] B[解析] 设动圆P 和定圆B 外切于M ,则动圆的圆心P 到两点A (-3,0)和B (3,0)的距离之差恰好等于定圆半径,即|PB |-|P A |=4,∴点P 的轨迹是以A 、B 为焦点的双曲线的左支,故选B.[点评] 求解中易把动点的轨迹看成双曲线,忽视了双曲线定义中“距离的差的绝对值是常数”这一条件,动点轨迹实际上是双曲线的一支.||PF 1|-|PF 2||=2a <|F 1F 2|(a >0),即|PF 1|-|PF 2|=±2a (0<2a <|F 1F 2|)时,P 点的轨迹是双曲线,其中取正号时为双曲线的右支,取负号时为双曲线的左支.3.与抛物线x 2=4y 关于直线x +y =0对称的抛物线的焦点坐标是( ) A .(1,0) B .(116,0)C .(-1,0)D .(0,-116)[答案] C[解析] x 2=4y 关于x +y =0,对称的曲线为y 2=-4x ,其焦点为(-1,0).4.已知点P 是抛物线y 2=-8x 上一点,设P 到此抛物线准线的距离是d 1,到直线x +y -10=0的距离是d 2,则d 1+d 2的最小值是( )A. 3 B .2 3 C .6 2 D .3 [答案] C[解析] 抛物线y 2=-8x 的焦点F (-2,0),根据抛物线的定义知,d 1+d 2=|PF |+d 2,显然当由点F 向直线x +y -10=0作垂线与抛物线的交点为P 时,d 1+d 2取到最小值,即|-2+0-10|2=6 2. 5.(2014·吉林省实验中学一模)如图,F 1、F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1、C 2在第一象限的公共点,若|F 1F 2|=|F 1A |,则C 2的离心率是()A.13 B .23C.23或25 D .25[答案] B[解析] 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意得,|AF 1|=|F 1F 2|=2c =21+3=4,∴c =2,|AF 1|-|AF 2|=2,∴|AF 2|=2,∴2a =|AF 1|+|AF 2|=6,∴a =3,∴e =c a =23.6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是( )A.33B .22C .14D .12[答案] D[解析] 由题意可得⎩⎪⎨⎪⎧c 2=m 2+n 2,c 2=am ,2n 2=2m 2+c 2.解得c 2a 2=14,∴e =c a =12.7.(2014·山东省烟台市期末)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+2相切,则此双曲线的离心率等于( )A .2B .3 C. 6 D .9[答案] B[解析] 由题意双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =ba x ,代入抛物线方程y =x 2+2整理得x 2-bax +2=0,因渐近线与抛物线相切,∴Δ=(-ba )2-8=0,即(b a )2=8,∴此双曲线的离心率e =c a=1+(ba)2=1+8=3.故选B.8.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )A .x 2+y 2=1B .(x -1)2+y 2=4C .x 2+y 2=4D .x 2+(y -1)2=4[答案] A[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为B (1,0),可知BF 1⊥BF 2,于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.9.双曲线的虚轴长为4,离心率e =62,F 1、F 2分别为它的左、右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,则|AB |等于( )A .8 2B .4 2C .2 2D .8[答案] A[解析] ∵c a =62,2b =4,∴a 2=8,a =22,|AF 2|-|AF 1|=2a =42, |BF 2|-|BF 1|=2a =42,两式相加得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=82,又∵|AF 2|+|BF 2|=2|AB |,|AF 1|+|BF 1|=|AB |, ∴|AB |=8 2.10. (2014·武汉市调研)如图,半径为2的半圆有一内接梯形ABCD ,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上.若双曲线以A ,B 为焦点,且过C 、D 两点,则当梯形ABCD 的周长最大时,双曲线的实轴长为( )A.3+1 B .23+2 C.3-1 D .23-2[答案] D[解析] 连接AC 、OC ,过D 作DE ⊥AB ,垂足为E ,由题意知,梯形ABCD 为等腰梯形.设∠CAB =α,∵AB 为⊙O 的直径,AB =4,∴∠ACB 为直角,∴AC =4cos α,BC =4sin α,AE =AD cos ∠DAE =BC cos ∠CBA =4sin α·sin ∠CAB =4sin 2α,∴CD =2(AO -AE )=4(1-2sin 2α),∴梯形的周长l =AB +2BC +CD =4+8sin α+4(1-2sin 2α)=-8sin 2α+8sin α+8=-8(sin α-12)2+10,显然当sin α=12时,周长l 取最大值,∵α为锐角,∴cos α=32,此时2a =CA -CB =4cos α-4sin α=23-2,故选D.11.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )[答案] D[解析] 解法一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程x 21a 2+y 21b 2=1,y 2=-a b x .因为a >b >0,因此1b >1a>0. 所以有椭圆的焦点在y 轴,抛物线的开口向左.解法二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明ax +by 2=0的图象关于x 轴对称,排除B 、C ,又椭圆的焦点在y 轴,排除A.12.B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30°方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上选一处M 建一座码头, 向B 、C 两地运转货物.经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km ,那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2)a 万元C .27a 万元D .(7-1)a 万元[答案] B[解析] 设总费用为y 万元,则y =a ·(MB +MC )∵河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km , ∴曲线PQ 是双曲线的一支,B 为焦点,且a =1,c =2. 由双曲线定义,得MA -MB =2a ,即MB =MA -2, ∴y =a ·(MA +MC -2)≥a ·(AC -2).以直线AB 为x 轴,线段AB 的中点为坐标原点,建立直角坐标系,则A (-2,0),C (3,3). ∴AC =(3+2)2+(3)2=27,故y ≥(27-2)a (万元). 二、填空题13.直线y =kx +1(k ∈R )与椭圆x 25+y 2m =1恒有公共点,则m 的取值范围为________.[答案] m ≥1且m ≠5[解析] 将y =kx +1代入椭圆方程,消去y 并整理,得(m +5k 2)x 2+10kx +5-5m =0. 由m >0,5k 2≥0,知m +5k 2>0,故△=100k 2-4(m +5k 2)(5-5m )≥0对k ∈R 恒成立. 即5k 2≥1-m 对k ∈R 恒成立,故 1-m ≤0,∴m ≥1.又∵m ≠5,∴m 的取值范围是m ≥1且m ≠5.14.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的双曲线的离心率为________.[答案] 2[解析] ∵AB =2c =4,∴c =2.∵AB =4,BC =3,∠ABC =90°,∴AC =5, ∴2a =CA -CB =2,∴a =1,∴e =ca=2.15.(2014·长春市调研)已知F 是抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,设|F A |>|FB |,则|F A ||FB |=________. [答案] 3+2 2[解析] 抛物线y 2=4x 的焦点F (1,0),过F 斜率为1的直线方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0,求得x 1=3+22,x 2=3-22,故由抛物线的定义可得|F A ||FB |=x 1+1x 2+1=3+2 2.16.椭圆mx 2+ny 2=1与直线l :x +y =1交于M 、N 两点,过原点与线段MN 中点的直线斜率为22,则mn=________. [答案]22[解析] 设M (x 1,y 1),N (x 2,y 2),∴mx 21+ny 21=1 ① mx 22+ny 22=1②又y 2-y 1x 2-x 1=-1,∴①-②得:m -n ·y 1+y 2x 1+x 2=0, ∵y 1+y 2x 1+x 2=y 1+y 22-0x 1+x 22-0=22,∴m =22n ,∴m n =22.三、解答题17.已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.[解析] 依题意,设抛物线方程为y 2=2px ,(p >0), ∵点(32,6)在抛物线上,∴6=2p ×32,∴p =2,∴所求抛物线方程为y 2=4x . ∵双曲线左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点(32,6)在双曲线上,∴94a 2-6b2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b2=1.解得a 2=14,b 2=34.∴所求双曲线方程为4x 2-43y 2=1.18.已知抛物线y 2=4x ,椭圆x 29+y 2m=1,它们有共同的焦点F 2,并且相交于P 、Q 两点,F 1是椭圆的另一个焦点,试求:(1)m 的值; (2)P 、Q 两点的坐标; (3)△PF 1F 2的面积.[解析] (1)∵抛物线方程为y 2=4x ,∴2p =4, ∴p2=1, ∴抛物线焦点F 2的坐标为(1,0),它也是椭圆的右焦点,在椭圆中,c =1,a 2=9=b 2+c 2,∴9=m +1,∴m =8.(2)解方程组⎩⎪⎨⎪⎧ y 2=4x ,x 29+y 28=1.得⎩⎪⎨⎪⎧ x =32,y =6,或⎩⎪⎨⎪⎧x =32,y =- 6.∴点P 、Q 的坐标为(32,6)、(32,-6).(3)点P 的纵坐标6就是△PF 1F 2的边F 1F 2上的高, ∴S △PF 1F 2=12|F 1F 2|·|y p |=12×2×6= 6.19.设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B ,求双曲线C 的离心率的取值范围.[解析] 由C 与l 相交于两个不同点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1有两组不同的实根,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2,且a ≠1.双曲线的离心率e =1+a 2a=1a 2+1,因为0<a <2且a ≠1. 所以e>62,且e ≠ 2. 即离心率e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞). 20.(2014·浙北名校联盟联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0),且经过点P (1,32).(1)求椭圆C 的方程;(2)设过F 1的直线l 与椭圆C 交于A 、B 两点,问在椭圆C 上是否存在一点M ,使四边形AMBF 2为平行四边形,若存在,求出直线l 的方程,若不存在,请说明理由.[解析] (1)∵c =1,1a 2+94b 2=1,a 2=b 2+c 2,∴a =2,b =3,∴椭圆C 的方程为x 24+y 23=1.(2)假设存在符合条件的点M (x 0,y 0), 设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,3x 2+4y 2=12,消去x 得:(3m 2+4)y 2-6my -9=0, 由条件知Δ>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m3m 2+4,∴AB 的中点为(-43m 2+4,3m 3m 2+4), ∵四边形AMBF 2为平行四边形, ∴AB 的中点与MF 2的中点重合,即⎩⎨⎧x 0+12=-43m 2+4,y 02=3m3m 2+4.∴M (-3m 2+123m 2+4,6m3m 2+4),把点M 的坐标代入椭圆C 的方程得:27m 4-24m 2-80=0,解得m 2=209,∴存在符合条件的直线l ,其方程为:y =±3510(x +1).21.如图是抛物线形拱桥,设水面宽|AB |=18m ,拱顶离水面的距离为8m ,一货船在水面上的部分的横断面为一矩形CDEF .若矩形的长|CD |=9m ,那么矩形的高|DE |不能超过多少m 才能使船通过拱桥?[解析] 如图,以O 点为原点,过O 且平行于AB 的直线为x 轴,以线段AB 的垂直平分线为y 轴建立直角坐标系.则B (9,-8),设抛物线方程为x 2=-2py (p >0).∵点B 在抛物线上,∴81=-2p ·(-8), ∴p =8116,∴抛物线的方程为x 2=-818y ,∴当x =92时,y =-2,∴|DE |=6,∴当矩形的高|DE |不超过6m 时,才能使船通过拱桥.22.在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 值;如果不存在,请说明理由.[解析] (1)由已知条件,直线l 的方程为y =kx +2,代入椭圆方程整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.∵直线l 与椭圆有两个不同的交点, ∴Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0, 解得k <-22或k >22.【成才之路】2014-2015学年高中数学(人教A 版)选修2-1练习题:2章-反馈练习题] 11 / 11 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞. (2)设P (x 1,y 1)、Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2),又x 1+x 2=-42k 1+2k 2. 又y 1+y 2=k (x 1+x 2)+22=221+2k 2. 又A (2,0),B (0,1),∴AB →=(-2,1).∵OP →+OQ →与AB →共线,∴x 1+x 2=-2(y 1+y 2), ∴-42k 1+2k 2=-2×221+2k 2,解得k =22. 由(1)知k <-22或k >22,故没有符合题意的常数k .。

【成才之路】2014-2015高中数学人教a版第选修1-1配套课件: 2.2 第2课时双曲线的简单几何性质.

【成才之路】2014-2015高中数学人教a版第选修1-1配套课件: 2.2 第2课时双曲线的简单几何性质.

x2 y2 a2+b2=1(a>b>0) 对称轴:x 轴、y 轴 对称中心:原点
x2 y2 a2-b2=1(a>0,b>0) 对称轴:x 轴、y 轴 对称中心:原点 (-a,0)、(a,0) 实轴长 2a 虚轴长 2b c e>1 e=a,(_______)
1-2
新知导学 1.在双曲线方程中,以-x、-y代替x、y方程不变,因此 轴对称 图形;也是以原点为 双曲线是以x轴、y轴为对称轴的________ 中心对称 图形,这个对称中心叫做 __________ 双曲线 对称中心的 ___________ 的中心 . _________
1-1
第二章
2.2
第2课时
1-2
1.类比椭圆的性质,能根据双曲线的标准方程,讨论它的 几何性质.
2.能运用双曲线的性质解决一些简单的问题.
1-1
第二章
2.2
第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修1-1
1-2
重点:双曲线的几何性质.
难点:双曲线性质的应用,渐近线的理解.
1-1
第二章
2.2
第2课时
方程 x2 y2 a2+b2=1(a>b>0) x2 y2 a2-b2=1(a>0,b>0)
图形
范围
|x|≤a,|y|≤b
|x|≥a,y∈R ______________
1-1 第二章 2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修1-1
1-2
方程 对称性 顶点 轴长
对圆锥曲线来说,渐近线是双曲线的特有性质,渐近线是 刻画双曲线的一个重要概念,画双曲线时应先画出它的渐近 线.

【成才之路】高中数学 第2章 圆锥曲线与方程综合素质检测 新人教A版选修1-2

【成才之路】高中数学 第2章 圆锥曲线与方程综合素质检测 新人教A版选修1-2

【成才之路】2014-2015学年高中数学 第2章 圆锥曲线与方程综合素质检测 新人教A 版选修1-2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若椭圆x 24+y 2m2=1(m >0)的一个焦点坐标为(1,0),则m 的值为( )A .5B .3C . 5D . 3[答案] D[解析] 解法一:由椭圆的焦点在x 轴上,可知4>m 2,∴0<m <2,故选D. 解法二:由题意得4-m 2=1,∴m 2=3,又m >0,∴m = 3.2.设P 是椭圆x 2169+y 225=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13[答案] A[解析] 由椭圆的定义知,|PF 1|+|PF 2|=26,因为|PF 1|=4,所以|PF 2|=22.3.3<m <5是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的( )A .充分但非必要条件B .必要但非充分条件C .充分必要条件D .既非充分又非必要条件[答案] A[解析] 当3<m <5时,m -5<0,m 2-m -6>0,∴方程x 2m -5+y 2m 2-m -6=1表示双曲线.若方程x 2m -5+y 2m 2-m -6=1表示双曲线,则(m -5)(m 2-m -6)<0, ∴m <-2或3<m <5,故选A.4.(2014·江西文,9)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( )A .x 24-y 212=1B .x 27-y 29=1C .x 28-y 28=1D .x 212-y 24=1 [答案] A[解析] 如图设双曲线的右焦点F ,右顶点B ,设渐近线OA 方程为y =b ax ,由题意知,以F 为圆心,4为半径的圆过点O ,A , ∴|FA |=|FO |=r =4.∵AB ⊥x 轴,A 为AB 与渐近线y =b ax 的交点, ∴可求得A 点坐标为A (a ,b ).∴在Rt △ABO 中,|OA |2=OB 2+AB 2=a 2+b 2=c =|OF |=4,∴△OAF 为等边三角形且边长为4,B 为OF 的中点,从而解得|OB |=a =2,|AB |=b =23,∴双曲线的方程为x 24-y 212=1,故选A.5.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m为边长的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] B[解析] 双曲线的离心率e 1=a 2+b 2a ,椭圆的离心率e 2=m 2-b 2m ,由a 2+b 2a ·m 2-b 2m=1得a 2+b 2=m 2,故为直角三角形.6.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0[答案] B[解析] ∵直线与圆无交点,∴4m 2+n 2>2,∴m 2+n 2<4,∴点P 在⊙O 内部,又⊙O 在椭圆内部,∴点P 在椭圆内部, ∴过点P 的直线与椭圆有两个交点.7.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48[答案] C[解析] 设抛物线为y 2=2px ,则焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线x =-p2,由|AB |=2p =12,知p=6,所以F 到准线距离为6,所以三角形面积为S =12×12×6=36.8.过点(0,1)与双曲线x 2-y 2=1仅有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .4条[答案] D[解析] 过点(0,1)与双曲线x 2-y 2=1的两条渐近线平行的直线与双曲线只有一个公共点;过点(0,1)与双曲线相切的直线设为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1x 2-y 2=1,得(1-k 2)x 2-2kx-2=0,当1-k 2≠0时,Δ=4k 2+8(1-k 2)=0, ∴k =±2,故满足条件的直线有4条.9.(2014·山东省烟台市期末)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x2+2相切,则此双曲线的离心率等于( )A .2B .3C . 6D .9[答案] B[解析] 由题意双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =bax ,代入抛物线方程y =x 2+2整理得x 2-b ax +2=0,因渐近线与抛物线相切,∴Δ=(-b a)2-8=0,即(b a)2=8,∴此双曲线的离心率e =c a=1+b a2=1+8=3.故选B.10.已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A .线段B .直线C .圆D .椭圆[答案] D[解析] 如下图,设动圆P 和定圆B 内切于M ,则动圆的圆心P 到两点,即定点A (-3,0)和定圆的圆心B (3,0)的距离之和恰好等于定圆半径,即|PA |+|PB |=|PM |+|PB |=|BM |=8.∴点P 的轨迹是以A 、B 为焦点的椭圆,故选D.11.(2014·陕西工大附中四模)F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1的直线l 与双曲线的左、右两支.....分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A . 2B . 3C . 5D .7[答案] D[解析] 如图,由双曲线的定义知,|AF 2|-|AF 1|=2a , |BF 1|-|BF 2|=2a ,∴|AB |=|BF 1|-|AF 1|=|BF 1|-|AF 1|+|AF 2|-|BF 2|=(|BF 1|-|BF 2|)+(|AF 2|-|AF 1|)=4a ,∴|BF 2|=4a ,|BF 1|=6a , 在△BF 1F 2中,∠ABF 2=60°,由余弦定理,|BF 1|2+|BF 2|2-|F 1F 2|2=2|BF 1|·|BF 2|·cos60°, ∴36a 2+16a 2-4c 2=24a 2,∴7a 2=c 2, ∵e>1,∴e =ca=7,故选D.12.F 是抛物线y 2=2x 的焦点,P 是抛物线上任一点,A (3,1)是定点,则|PF |+|PA |的最小值是( )A .2B .72C .3D .12[答案] B[解析] 如图,|PF |+|PA |=|PB |+|PA |,显然当A 、B 、P 共线时,|PF |+|PA |取到最小值3-(-12)=72.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=______.[答案] 2[解析] 本题考查抛物线的定义,直线与抛物线的位置关系. 设点A (x 1,y 1),点B (x 2,y 2)抛物线y 2=4x 的焦点为(1,0),准线方程为x =-1. |AF |=x 1-(-1)=2,所以x 1=1. 则AF 与x 轴垂直,|BF |=|AF |=2.14.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为________.[答案] 12[解析] ∵AB =2c =4,∴c =2. 又AC +CB =5+3=8=2a ,∴a =4.∴椭圆离心率为c a =12.15.设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是________.[答案]x 22+y 2=1[解析] ∵双曲线2x 2-2y 2=1的离心率为2,∴所求椭圆的离心率为22, 又焦点为(±1,0),∴所求椭圆的方程为x 22+y 2=1.16.椭圆的离心率等于33,且与双曲线x 216-y29=1有相同的焦距,则椭圆的标准方程是________.[答案]x 275+y 250=1或y 275+x 250=1[解析] 双曲线x 216-y 29=1的焦距2c =10,∴c =5,又椭圆的离心率e =5a =33,∴a=53,∴a 2=75,b 2=a 2-c 2=50,故椭圆的标准方程为x 275+y 250=1或y 275+x 250=1.三、解答题(本题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)求下列双曲线的标准方程.(1)与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线;(2)以椭圆3x 2+13y 2=39的焦点为焦点,以直线y =±x2为渐近线的双曲线.[解析] (1)∵双曲线x 216-y 24=1的焦点为(±25,0),∴设所求双曲线方程为:x 2a 2-y 220-a2=1(20-a 2>0)又点(32,2)在双曲线上, ∴18a2-420-a2=1,解得a 2=12或30(舍去), ∴所求双曲线方程为x 212-y 28=1.(2)椭圆3x 2+13y 2=39可化为x 213+y 23=1,其焦点坐标为(±10,0), ∴所求双曲线的焦点为(±10,0),设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)∵双曲线的渐近线为y =±12x ,∴b a =12,∴b 2a 2=c 2-a 2a 2=10-a 2a 2=14, ∴a 2=8,b 2=2,即所求的双曲线方程为:x 28-y 22=1.18.(本题满分12分)方程x 2sin α-y 2cos α=1表示焦点在y 轴上的椭圆,求α的取值范围.[分析] 根据焦点在y 轴上的椭圆的标准方程的特点,先将方程化为标准式,得到关于α的关系式,再求α的取值范围.[解析] ∵x 2sin α-y 2cos α=1,∴x 21sin α+y 2-1cos α=1.又∵此方程表示焦点在y 轴上的椭圆,∴⎩⎪⎨⎪⎧1sin α>0-1cos α>01sin α<-1cos α,即⎩⎪⎨⎪⎧sin α>00<-cos α<sin α,∴2k π+π2<α<2k π+3π4(k ∈Z).故所求α的范围为⎝⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z).19.(本题满分12分)(2014·云南景洪市一中期末)设F 1、F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |.(2)若直线l 的斜率为1,求b 的值.[解析] (1)求椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程式为y =x +c ,其中c =1-b 2设A (x 1,y 1),B (x 1,y 1),则A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,消去y 化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1| 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2 =-b 2+b22--2b 21+b2=8b 41+b2, 解得b =22. 20.(本题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0)、B (2,0),|AD →|=2,AC →=AB →+AD →,AE →=12AC →,求点E 的轨迹方程.[解析] 如图设点E 的坐标为(x ,y ), ∵AE →=12AC →=12(AB →+AD →),∴由向量加法的平行四边形法则可知,点E 为BD 的中点,连结OE , 又O 为AB 的中点,∴OE =12AD =1.即动点E 到定点O 的距离为定值1,由圆的定义知,点E 的轨迹方程为x 2+y 2=1(y ≠0).[点评] 平面向量在解析几何中的应用,是高考考查的重要内容,本题借助于图形,将数与形有机地结合起来,找到了突破口,即点E 到定点O 的距离等于定值1这一关键,从而求出了动点E 的轨迹方程,充分体现了数形结合这一重要思想.21.(本题满分12分)(2014·韶关市曲江一中月考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.[解析] (1)将点(0,4)代入椭圆C 的方程,得16b2=1,∴b =4,又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得x 225+x -225=1,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65). 22.(本题满分14分)已知动点P 与平面上两定点A (-2,0)、B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C .(2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |=423时,求直线l 的方程.[解析] 设点P (x ,y ),则依题意有y x +2·yx -2=-12,整理得x 22+y 2=1.由于x ≠±2,所以求得的曲线C 的方程为x 22+y 2=1(x ≠±2).(2)由⎩⎪⎨⎪⎧x 22+y 2=1y =kx +1,消去y 得:(1+2k 2)x 2+4kx =0.解得x 1=0,x 2=-4k 1+2k 2(x 1、x 2分别为M 、N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2|4k 1+2k 2|=432, 解得:k =±1.所以直线l 的方程x -y +1=0或x +y -1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修1-2 第二章 2.1 第2课时
一、选择题
1.“∵四边形ABCD为矩形,∴四边形ABCD的对角线相等”,以上推理省略的大前提为( )
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形
[答案] B
2.三段论:“①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港的;③所以这艘船是准时起航的.”中的“小前提”是( )
A.① B.②
C.①② D.③
[答案] B
3.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( )
A.完全正确
B.推理形式不正确
C.不正确,两个“自然数”概念不一致
D.不正确,两个“整数”概念不一致
[答案] A
[解析] 大前提“凡是自然数都是整数”正确.
小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.
4.关于下面推理结论的错误:“因为对数函数y=log a x是增函数(大
前提),又y=log x是对数函数(小前提),所以y=log x是增函数(结论).”下列说法正确的是( )
A.大前提错误导致结论错误
B.小前提错误导致结论错误
C.推理形式错误导致结论错误
D.大前提和小前提都错误导致结论错误
[答案] A
[解析] 大前提错误,因为对数函数y=log a x(o<a<1)是减函数,故选A.
5.下面符合三段论推理规则的为( )
A.如果p⇒q,p真,则q真 B.如果b⇒c,a⇒b,则a⇒c
C.如果a∥b,b∥c,则a∥c D.如果a≥b,b≥c,则a≥c
[答案] B
6.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为( )
A.大前提错误 B.小前提错误
C.推理形式错误 D.非以上错误
[答案] B
[解析] 用小前提“S是M”,判断得到结论“S是P”时,大前提“M
是P”必须是所有的M,而不是部分.
二、填空题
7.已知推理:“因为△ABC的三边长依次为3、4、5,所以△ABC 是直角三角形”,若将其恢复成完整的三段论,则大前提是________.[答案] 一条边的平方等于其他两边平方和的三角形是直角三角形.
8.函数y=2x+5的图象是一条直线,用三段论表示为:
大前提
___________________________________________________________.
小前提
____________________________________________________________.结论
______________________________________________________________.[答案] 所有一次函数的图象都是一条直线 函数y=2x+5是一次
函数 函数y=2x+5的图象是一条直线
9.以下推理中,错误的序号为________.
①∵ab=ac,∴b=c;
②∵a≥b,b>c,∴a>c;
③∵75不能被2整除,∴75是奇数;
④∵a∥b,b⊥平面α,∴a⊥α.
[答案] ①
[解析] 当a=0时,ab=ac,但b=c未必成立.
三、解答题
10.指出下列推理中的错误,并分析产生错误的原因.
(1)无限小数是无理数,=0.666…是无限小数,是无理数;
(2)对于函数f(x),如果对定义域内的任意x,都有f(-x)=-f(x),
则f(x)为奇函数,f(x)=sin x(-<x≤)满足f(-x)=-f(x),所以f(x)为奇函
数.
[解析] (1)大前提错,无限不循环小数是无理数.
(2)小前提错,f(x)的定义域不关于原点对称,f()有意义,f(-)无意义.
一、选择题
11.“在四边形ABCD中,∵AB綊CD,∴四边形ABCD是平行四边形”.上述推理过程( )
A.省略了大前提 B.省略了小前提
C.是完整的三段论 D.推理形式错误
[答案] A
[解析] 上述推理基于大前提“一组对边平行且相等的四边形为平行四边形”.
12.(2014·四川文,5)若a>b>0,c<d<0,则一定有( )
A.> B.<
C.> D.<
[答案] B
[解析] ∵c<d<0,∴<<0,又∵a>b>0,∴<.选B.
13.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( )
A.结论正确 B.大前提不正确
C.小前提不正确 D.全不正确
[答案] C
[解析] 大前提中的“正弦函数”指y=sin x,x∈R,因此函数f(x)=sin(x2+1)不是正弦函数,故小前提不正确,故选C.
14.下面几种推理过程是演绎推理的是( )
A.因为∠A和∠B是两条平行直线被第三条直线所截得的同旁内角,所以∠A+∠B=180°
B.我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油
C.由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和
D.在数列{a n}中,a1=1,a n=(n≥2),通过计算a2,a3,a4,a5的值归纳出{a n}的通项公式
[答案] A
[解析] 选项A中“两条直线平行,同旁内角互补”是大前提,是真命题,该推理为三段论推理,选项B为类比推理,选项C,D都是归纳推
理.
二、填空题
15.三段论“平面内到两定点F1、F2的距离之和为定值的点的轨迹是椭圆(大前提),平面内动点M到两定点F1(-2,0)、F2(2,0)的距离之和为4(小前提),则M点的轨迹是椭圆(结论)”中的错误是________.[答案] 大前提
[解析] 大前提中到两定点距离之和为定值的点的轨迹是椭圆,概念出错,不严密.
而因为F1(-2,0)、F2(2,0)间距离为|F1F2|=4,
所平平面内动点M到两定点F1(-2,0)、F2(2,0)的距离之和为4的点的轨迹应为线段而不是椭圆.
16.(2014·泸州市一诊)已知集合A={f(x)|f2(x)-f2(y)=f(x+y)·f(x -y),x、y∈R},有下列命题:
①若f(x)=,则f(x)∈A;
②若f(x)=kx,则f(x)∈A;
③若f(x)∈A,则y=f(x)可为奇函数;
④若f(x)∈A,则对任意不等实数x1、x2,总有<0成立.
其中所有正确命题的序号是________.(填上所有正确命题的序号) [答案] ②③
[解析] 对于①,取x=1,y=-1知,f2(x)-f2(y)=f2(1)-f2(-1)=1-1=0,但f(x+y)f(x-y)=f(0)·f(2)=1,∴①错;
对于②,当f(x)=kx时,f2(x)-f2(y)=k2x2-k2y2=k(x+y)·k(x-y)=f(x+y)·f(x-y),∴②正确;
对于③,在f2(x)-f2(y)=f(x+y)f(x-y)中令x=0,y=0得,f(0)=0,又令x=0得,f2(0)-f2(y)=f(y)·f(-y),当f(y)≠0时,有f(-y)=-f(y),
∴f(x)可以为奇函数.
对于④,取f(x)=x,则f2(x)-f2(y)=x2-y2=(x+y)(x-y)=f(x
+y)f(x-y),但x1、x2∈R且x1≠x2时,==1>0,∴④错.
三、解答题
17.下面给出判断函数f(x)=的奇偶性的解题过程:
解:由于x∈R,且
=·
===-1.
∴f(-x)=-f(x),故函数f(x)为奇函数.
试用三段论加以分析.
[解析] 判断奇偶性的大前提“若x∈R,且f(-x)=-f(x),则函
数f(x)是奇函数;若x∈R,且f(-x)=f(x),则函数f(x)是偶函数”.在解题过程中往往不用写出来,上述证明过程就省略了大前提.解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(-x)=-f(x).。

相关文档
最新文档