Application of machine learning algorithms to KDD intrusion detection dataset within misuse

合集下载

集成学习综述

集成学习综述

集成学习综述梁英毅摘要 机器学习方法在生产、科研和生活中有着广泛应用,而集成学习则是机器学习的首要热门方向[1]。

集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。

本文对集成学习的概念以及一些主要的集成学习方法进行简介,以便于进行进一步的研究。

一、 引言机器学习是计算机科学中研究怎么让机器具有学习能力的分支,[2]把机器学习的目标归纳为“给出关于如何进行学习的严格的、计算上具体的、合理的说明”。

[3]指出四类问题的解决对于人类来说是困难的甚至不可能的,从而说明机器学习的必要性。

目前,机器学习方法已经在科学研究、语音识别、人脸识别、手写识别、数据挖掘、医疗诊断、游戏等等领域之中得到应用[1, 4]。

随着机器学习方法的普及,机器学习方面的研究也越来越热门,目前来说机器学习的研究主要分为四个大方向[1]: a) 通过集成学习方法提高学习精度;b) 扩大学习规模;c) 强化学习;d) 学习复杂的随机模型;有关Machine Learning 的进一步介绍请参考[5, 1,3, 4, 6]。

本文的目的是对集成学习的各种方法进行综述,以了解当前集成学习方面的进展和问题。

本文以下内容组织如下:第二节首先介绍集成学习;第三节对一些常见的集成学习方法进行简单介绍;第四节给出一些关于集成学习的分析方法和分析结果。

二、 集成学习简介1、 分类问题分类问题属于概念学习的范畴。

分类问题是集成学习的基本研究问题,简单来说就是把一系列实例根据某种规则进行分类,这实际上是要寻找某个函数)(x f y =,使得对于一个给定的实例x ,找出正确的分类。

机器学习中的解决思路是通过某种学习方法在假设空间中找出一个足够好的函数来近似,这个近似函数就叫做分类器[7]。

y h f h2、 什么是集成学习传统的机器学习方法是在一个由各种可能的函数构成的空间(称为“假设空间”)中寻找一个最接近实际分类函数的分类器h [6]。

中科院计算机类SCI期刊及分区(2016年10月发布)

中科院计算机类SCI期刊及分区(2016年10月发布)
中科院计算机类SCI期刊及分区(201
期刊 IEEE TRANSACTIONS ON FUZZY SYSTEMS International Journal of Neural Systems IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION INTEGRATED COMPUTER-AIDED ENGINEERING IEEE Transactions on Cybernetics IEEE Transactions on Neural Networks and Learning Systems MEDICAL IMAGE ANALYSIS Information Fusion INTERNATIONAL JOURNAL OF COMPUTER VISION IEEE TRANSACTIONS ON IMAGE PROCESSING IEEE Computational Intelligence Magazine EVOLUTIONARY COMPUTATION IEEE INTELLIGENT SYSTEMS PATTERN RECOGNITION ARTIFICIAL INTELLIGENCE KNOWLEDGE-BASED SYSTEMS NEURAL NETWORKS EXPERT SYSTEMS WITH APPLICATIONS Swarm and Evolutionary Computation APPLIED SOFT COMPUTING DATA MINING AND KNOWLEDGE DISCOVERY INTERNATIONAL JOURNAL OF APPROXIMATE REASONING SIAM Journal on Imaging Sciences DECISION SUPPORT SYSTEMS Swarm Intelligence Fuzzy Optimization and Decision Making IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING JOURNAL OF MACHINE LEARNING RESEARCH ACM Transactions on Intelligent Systems and Technology NEUROCOMPUTING ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS ARTIFICIAL INTELLIGENCE IN MEDICINE COMPUTER VISION AND IMAGE UNDERSTANDING JOURNAL OF AUTOMATED REASONING INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS COMPUTATIONAL LINGUISTICS ADVANCED ENGINEERING INFORMATICS JOURNAL OF INTELLIGENT MANUFACTURING Cognitive Computation IEEE Transactions on Affective Computing JOURNAL OF CHEMOMETRICS MECHATRONICS IEEE Transactions on Human-Machine Systems Semantic Web IMAGE AND VISION COMPUTING Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery issn 1063-6706 0129-0657 0162-8828 1089-778X 1069-2509 2168-2267 2162-237X 1361-8415 1566-2535 0920-5691 1057-7149 1556-603X 1063-6560 1541-1672 0031-3203 0004-3702 0950-7051 0893-6080 0957-4174 2210-6502 1568-4946 1384-5810 0888-613X 1936-4954 0167-9236 1935-3812 1568-4539 1041-4347 1532-4435 2157-6904 0925-2312 0952-1976 0169-7439 0933-3657 1077-3142 0168-7433 0884-8173 0891-2017 1474-0346 0956-5515 1866-9956 1949-3045 0886-9383 0957-4158 2168-2291 1570-0844 0262-8856 1942-4787

综述Representation learning a review and new perspectives

综述Representation learning  a review and new perspectives

explanatory factors for the observed input. A good representation is also one that is useful as input to a supervised predictor. Among the various ways of learning representations, this paper focuses on deep learning methods: those that are formed by the composition of multiple non-linear transformations, with the goal of yielding more abstract – and ultimately more useful – representations. Here we survey this rapidly developing area with special emphasis on recent progress. We consider some of the fundamental questions that have been driving research in this area. Specifically, what makes one representation better than another? Given an example, how should we compute its representation, i.e. perform feature extraction? Also, what are appropriate objectives for learning good representations?

基于Lisp的人工智能算法与机器学习技术研究

基于Lisp的人工智能算法与机器学习技术研究

基于Lisp的人工智能算法与机器学习技术研究人工智能(Artificial Intelligence,AI)作为当今科技领域的热门话题,其应用已经渗透到各个领域。

在人工智能的发展过程中,算法和技术一直是推动其进步的核心。

本文将重点探讨基于Lisp语言的人工智能算法与机器学习技术的研究现状和未来发展趋势。

1. Lisp语言简介Lisp(List Processing)是一种基于符号表达的编程语言,由John McCarthy在1958年设计而成。

Lisp以其简洁灵活的语法和强大的元编程能力而闻名,被广泛应用于人工智能领域。

Lisp语言具有强大的列表处理能力,支持递归和函数式编程,这使得其在人工智能算法和机器学习技术中有着独特的优势。

2. 基于Lisp的人工智能算法2.1. Lisp在符号推理中的应用符号推理是人工智能领域中重要的研究方向,而Lisp语言恰好擅长处理符号表达。

基于Lisp的人工智能算法可以利用其强大的符号处理能力实现知识表示、逻辑推理等功能。

例如,基于Lisp开发的Expert System可以根据一系列规则进行推理,帮助解决专家系统中的问题。

2.2. Lisp在自然语言处理中的应用自然语言处理(Natural Language Processing,NLP)是人工智能领域另一个重要方向,而Lisp语言也可以用于处理自然语言数据。

通过Lisp编写的程序可以实现文本分析、情感识别、机器翻译等任务。

Lisp的函数式编程特性使得其在处理文本数据时更加高效和灵活。

2.3. Lisp在机器学习中的优势机器学习(Machine Learning)作为人工智能领域的重要支柱,也可以借助Lisp语言进行算法实现。

Lisp语言提供了丰富的数据结构和函数库,可以支持各种机器学习算法的实现。

同时,Lisp语言对于模式匹配和数据操作有着天然的优势,这使得其在机器学习领域有着独特的价值。

3. 基于Lisp的机器学习技术3.1. Lisp在深度学习中的应用深度学习(Deep Learning)是机器学习领域的热点技术之一,而Lisp语言也可以应用于深度学习模型的构建和训练。

机器学习讲座

机器学习讲座

The learning target is ……
Input:
y1 has the maximum value
“3”
The learning target is defined on the training data.
Learning Target
x1
……
x2
……
y1 is 1 y2 is 2
……
Softmax
…… ……
16 x 16 = 256
Ink → 1 No ink → 0
x256
……
y10 is 0
Output Layer (Option)
• Softmax layer as the output layer
Softmax Layer
Probability: 1 > ������������ > 0 ������������������ = 1
3
z1
e
z2 1
e
z3 -3 e
e z1 20
Step 3: pick the best function
Human Brains PlayGround的网址是: /
Neural Network
Neuron
z a1w1akwk aKwK b
a1 w1
A simple function
Step 3: pick the best function
Three Steps for Deep Learning
Step 1: deNfineeuraalset of fNuentcwtioornk
Step 2: goodness of
function

智能优化算法英文投稿选类别

智能优化算法英文投稿选类别

智能优化算法英文投稿选类别
智能优化算法的英文投稿在选择类别时,可以考虑以下几个类别:
1. Artificial Intelligence (人工智能):这个类别涵盖了所有形式的人工智能技术,包括但不限于机器学习、深度学习、强化学习、神经网络等。

如果你的智能优化算法是基于某种人工智能技术,那么这个类别可能非常适合。

2. Optimization Methods (优化方法):这个类别主要关注各种优化算法和技术,包括但不限于遗传算法、粒子群优化、模拟退火、蚁群优化等。

如果你的智能优化算法是一种新的优化方法,那么这个类别可能非常适合。

3. Computer Science (计算机科学):这个类别涵盖了计算机科学的各个方面,包括算法设计、数据结构、计算复杂性等。

如果你的智能优化算法是一种新的计算方法或者对现有的计算方法进行了改进,那么这个类别可能非常适合。

4. Engineering (工程):这个类别主要关注实际应用和工程问题,包括但不限于机械工程、航空航天工程、土木工程等。

如果你的智能优化算法是用于解决某个工程问题,那么这个类别可能非常适合。

需要注意的是,选择类别时还需要考虑期刊或会议的投稿要求和规范。

有些期刊或会议可能对稿件的格式、内容、长度等方面有特定的要求,因此在选择类别时需要仔细阅读投稿指南并遵循相关规定。

机器学习介绍(英文版:备注里有中文翻译)

机器学习介绍(英文版:备注里有中文翻译)
Curse of Dimensionality:Usually refer to the problem that concerned about computation of vector. With the increase of dimension, calculated amount will jump exponentially.
The core target of machine learning is to generalize from known experience. Generalization means a power of which the machine learning system to be learned for known data that could predict the new data.
2020/9/13
Classification step
Raw data
Feature extraction
Feature selection
Model training
Байду номын сангаас
2020/9/13
New data
Classification and prediction
Feature selection( feature reduction )
2020/9/13
Unsupervised learning
Input data has no labels. It relates to another learning algorithm, i.e. clustering. The basic definition is a course that divide the gather of physical or abstract object into multiple class which consist of similar objects.

ieee中有关智能算法的文献

ieee中有关智能算法的文献

IEEE是世界上最大的专业技术协会之一,其出版的文献涵盖了广泛的科学和工程领域,包括智能算法。

智能算法是一种模仿人类智慧的计算方法,它可以通过学习和适应来提高性能,并在解决复杂问题时发挥重要作用。

通过对IEEE中有关智能算法的文献进行研究和分析,我们可以了解当前智能算法的最新发展和应用情况,为相关领域的研究和应用提供有力的支持。

一、智能算法的概述智能算法是一种基于人工智能的计算方法,它主要包括遗传算法、粒子裙算法、模拟退火算法、人工神经网络等多种技术手段。

这些算法在解决优化问题、模式识别、数据挖掘等方面具有重要应用价值。

通过对IEEE中有关智能算法的文献进行梳理,我们可以了解到智能算法在不同领域的应用情况和研究进展。

二、智能算法在优化问题中的应用1. 遗传算法遗传算法是一种模拟自然界生物进化过程的优化算法,它通过模拟遗传、交叉和变异等操作来寻找最优解。

在IEEE的文献中,我们可以找到很多关于遗传算法在优化问题中的应用案例,如工程设计优化、资源调度等方面。

2. 粒子裙算法粒子裙算法是一种模拟鸟裙觅食行为的优化算法,它通过模拟粒子在解空间中的搜索过程来寻找最优解。

在IEEE的文献中,粒子裙算法被广泛应用于无线通信、机器学习等领域,取得了显著的成果。

三、智能算法在模式识别中的应用1. 人工神经网络人工神经网络是一种模拟生物神经网络的计算模型,它通过训练来识别模式和学习规律。

在IEEE的文献中,我们可以找到很多关于人工神经网络在图像识别、语音识别等方面的应用研究,为相关领域的发展提供了重要的技术支持。

2. 支持向量机支持向量机是一种基于统计学习理论的模式识别方法,它通过寻找最优超平面来实现模式分类。

在IEEE的文献中,支持向量机被广泛应用于生物医学图像处理、工业质检等领域,具有较高的准确性和稳定性。

四、智能算法在数据挖掘中的应用1. 关联规则挖掘关联规则挖掘是一种发现数据集中属性之间关联关系的数据挖掘方法,它在市场分析、推荐系统等领域有着重要的应用。

智慧教育背景下采用机器学习技术的成绩预测决策系统

智慧教育背景下采用机器学习技术的成绩预测决策系统

宁德师范学院学报(自然科学版)Journal of Ningde Normal University(Natural Science)Vol.33No.1 Mar.2021第33第1扌2021 3月智慧教育背景下采用机器学习技术的成绩预测决策系统李国峰(滁州学院教育科学学院,安徽滁州239000)摘要:学生学习成绩是高校辅导员决策的重要依据.将机器学习技术应用于教育系统中,构建学生学习成绩数据预测分析模型,开发了数据分析器,并将其应用于某高校大一学生的外国语成绩预测中.结果表明,搭建的成绩预测系统具有比较高的准确率,这对教育工作者有效识别出弱势学生,提供支持行动,提升学生学习成绩具有一定的参考价值.关键词:机器学习;决策支持工具;智慧教育;预测成绩中图分类号:TP391文献标识码:A文章编号:2095-2481(2021)01-0036-06机器学习技术在智慧教育中的应用已经成为挖掘数据价值、探索智慧教育的新兴领域.基于机器学习技术,深挖数据,建教育背景下的学生成绩预测系统,是教育发的必然趋势.随着越来越多的学生学习环境,有关学生访问和学习模的数据将,诸如考试分数等电可为教师提供有的决策工具.这些数据使教育者发于学生的新的、有的和有:的信息.国内外学者对此进行了深入的研究M.Hershkovitz等冋提供了一种基于智慧教育的机器学习技术应用分;Kabra问将决策分应用于教育系统预测学生的学习成绩,并提用来学生在考试中的成绩;Kotsiantis[7]在前人工作的基础上,开发了一个基于技术的原型决策支持系统,用于预测学生的成绩.于前人的研究,本文提出了一种基于机器学习算法的决策支持工具,其被用于预测学生在学年期末考试中的表现.该工具的具有简单的,其署任何操作系统下的任何平台上,同时支持学生入学程序和教育机构的服务系统,因此更有利于影响大学生成绩的主要因素,最终高校学生成绩辅导提供科学的决策.1智慧教育中的机器学习传统的数据库只能实现成绩查询、查找表现较差的学生、查找最高分的学生等功能.而作为一个新兴的研究,机器学习对提高教育机构教育系统的质量具有巨大的潜.在过去的十年中,因为教育利益相关者通过机器学习发于学生的的、有的有用的信息并能改善传统教育系统的不足叫因此这一的研究呈指数级增长.机器学习的重要性在于帮助教育工作者究人员从复杂的问题中提取有用的数据叫其应用主要集中在开发准确的模型、预测学生的成绩方面,从而提高学习体验和学习效果.1.1预测成绩的意义高等教育的快速发展使得高校不断地扩大办学规模,专业数量越来越多,同时招生的人数也越来越多,准确预测学生同阶段的学习成绩对教育工作者实施学生教学管理具有至关重要的意义叫了预测学生的成绩,教育者可以将学生的口头和书面考及少量的评估测试中的成绩作为强有力的决策工具.通过预测结果为每一名学生指定最合适的干预措施,并根据他们的需要提供一步的帮助.匕:2020-06-14作者:李国峰(1988-),男,讲师.E-mail:**************金项目:安徽省一般教学究项目(2017jy>m0480);安徽省重大教学研究项目(2018jyxm0453).第1期李国峰:智慧教育背景下采用机S学习技术的成绩预测决策系统-37-外,对学习成绩比较差的学生进行准确识别,有助于教师结合学生的实际情况提供更具针对性的教育服务方式,从而确保学生获得良好的知识教育.1.2智慧教育机器学习技术机器学习是从一组已知属性值来预测未知属性值的过程[11].为此,人们开发了大量人工智能和统计的技术和算法.贝叶斯网络的结构是由节点和链接的有向无和一组组成.网络的-节点一个特性相关联,节点之间的链接表示它们之间的关系,链接的强度由条件概率表决定.人工神经网络(ANN)是由系的组成的并行计算,具有从经验中学习和发信息的特点叫决是学习的算法之一,一组训练示例创建一于树结构的模型,属于的示开来.向量机(SVM)是一组学习方法,作为冲最精确的方法的一部分,可对算法的性模型的问.该算法基于结构,这是机器学习的一的具有的间,一的训练集吟呵.图1为成绩预测决策流程示意图.图1成绩预测决策流程示意图2随机森林决策系统2.1方法与数据集本研究的目的是开发一种决策支持工具来预测学生在期末考试中的表现.第一阶段为和准为构建阶段,通过一系列的测试来评估每种机器学习技术行和常的算法的性能.三阶段中将准确率最高的分类器整合到一个用户友好的软件工具中,且工具被于预测学生的成绩,以便教育工者更容易地识别出弱势学生并提供行动.的数据是某高校大一学生的外国语成绩,包括279个不同的数据集.该数据集与学生的口语成绩、成绩和期成绩有关.在学生绩效评估中使用分类方案,学生为4个等级.1)“Fail”代表学生表现得分为0~9.2)“Good”代表学生表现得分为10-14.3)$Very good”代表学生表现得分为15-17.-38 -宁德师范学院学报(自然科学版)2021年1月^“Excellent ”代表学生表现得分为18-20.图2给出了数据集的分布,图中显示了被划分为“失败”(53个实例)、“良好”(76个实例"、“非常好” (85个实例)和“优秀”(65个实例)的学生数量.2.2研究的数据集本文数据集的属性(特性)和每个属性的值如表1所示.属性集分为3组,分别为“注册属性”“导师属 性”和“课堂属性”.表1数据集的详细信息表注册属性属性值导师属性属性值课堂属性属性值性别男,女第一次课堂出席,缺席期末考试测试0〜10年龄24〜461日写作业没有,0~10婚姻状况单身,已婚, 离异,丧偶第二次课堂出席,缺席孩子的数量没有,一个, 两个或更多2日写没有,0~10工作没有,兼职,全职次课堂出席,缺席计算机知识不,是的3日写作业没有,0~10与计算机有的,初级用户,高级用户第四次课堂出席,缺席4日写没有,0~102.3随机森林分类随机森林算法的步骤如下〔叫1) 利用Bootstrap 方法多次采样,随机产生!个训练集!i ,!#,…,!;利用每个训练集生成对应的决策树集!(#,!1)}, !(#,!#)",…,!(#,仇)};2) 假设特 为$ ,从$ 特征中随机抽取%个特征作为当前节点的分裂特征集,并以%个特征中最好分分裂;3) 分中, 每个 的生 ;4) 对于测试集样本Z ,运用每个 测试,获取对应的类别{"(z ,!1)}, {"('◎)},…,{T (z0!)};5) 运用 ,将!个 中输出别作为测试集样本Z 所属 另IJ.学习成绩测评流程图如图3所示.第1期李国峰:智慧教育背景下采用机3学习技术的成绩预测决策系统-39-图3基于随机森林的学习成绩测评流程图3机器学习算法的实验结果机器学习算法的最终目的在于获得一个函数模型,本文利用未知回归函数的样本对目标连续变量y与变量"1,"2,","”的关系进行预测,这些样本描述了预测器和目标变量之间的不同映射.本实验结果验证所采用算法:随机森林(RF)、递归流分类(RFC)、支持向量机(SV M)和前馈神经网络(BPNN).实验分两个阶段进行.在第一阶段(训练阶段),使用采集的数据进行训练.训练阶段分为5个连续的步骤.第一步为人员数据的、第一&和最终的程情况(最终分数);第二步为第三次情况;第三第三'第四步包括第四次课堂情况;第包括表1描述的所%的数获学学的10数据,这10数用来验证成绩预测决策系统在测试阶段的准确性.测试阶段也分为5个步骤.第一用人口统计数据以及新学年的两次课堂和书面作业来预测每个学生的成绩,该步骤重复10次.第二步采用这些人员统计数据和第三次课堂的数预测个学的成绩,10.第三利用第二的数和第三的数预测学生的成绩.剩下的描述的方法使用新学的数据,10次.表2了实验所有测试步骤中最的测量方法一对误差.表2实验结果的平均绝对误差算法M5BP LR LWR SMOreg规则WRI-2 1.83 2.15 1.89 1.84 1.84FTOF-3 1.74 2.08 1.83 1.79 1.78WRI-3 1.55 1.79 1.6 1.53 1.56FTOF-4 1.54 1.8 1.56 1.5 1.55WRI-4 1.23 1.65 1.5 1.4 1.44结果表明,M5规则是用于构建软件支持工具的最精确的回归算法.M5规则除了性能更好之外,还具有更高的的优点.4预测实验为保证实测结果的可靠性,随机抽取80%的数据作为训练样本集,剩下20%为测试样本集,将随机森林(RF)、递归流分类(RFC)、支持向量机(SVM)和前馈神经网络(BPNN)进行对比.测试结果如表3所示.-40 -宁德师范学院学报(自然科学版)2021年1月表3识别效果算法准确率!%RF99.41RFC 96.30SVM96.50BPNN 92.33图4、图5、图6、图7中,“! ”表示大学生成绩状态的预测类别,“O ”表示大学生实际知识储备,通过对比可以直观地显示大学生心理状态识别结果和实际大学生成绩状态类别,其中1、2、3、4分别表示学习成绩:Excellent % Very good % Good 和Fail.当“ ! ”和”重合时,大学生成绩状态的预测类别和实际 类别一致,说明识别正确;当“! ”和“O ”不重合时,大学生成绩状态的预测类别和实际类别不一致,此时 大学生心理状态识别错误.实验结果显示,随机森林的识别准确率为99.41%,其优于RFC 的96.30%%SVM 的96.50%和BP 的92.33%.通过对比发现随机森林具有更高的大学生心理状态识别率,效果较好.W 晅謁隸*5.04.54.03.53.02.52.01.51.0(0亠」10.O.5.O .5.O .5.O .5.05.4.4.3.3.22LLW晅謁隸0 10o 实际类别* 预测类别2030 40 50 60测试样本图4 RF 识别结果图$7*-----saeseesseagQ实际类别预测类别来米米20 30 40 50 60测试样本图6 S2M 识别结果图5.04.54.03.53.02.52.01.51.0(O 实际类别* 预测类别.O .5.O .5.0.54.3.3.2 2L W 晅謁隸米米20 30 40 50 60测试样本图5 RFC 识别结果图5.04.54.03.53.02.52.01.51.0() 10O ~实际类别来预测类别-来•••一2030 40 50 60测试样本图7 BPNN 识别结果图来- -*** ** 共论结5在智慧教育背景下,本文提出了基于机器学习技术的成绩预算决策系统,并利用数据挖掘方法和机器学习方法,建立学习预测体系,提升了预测效果,最终为教师的指导和管理 .本文工具的建立与应 用可为确 学习 机的学习 学率, 时预测其通过 的成 率.通过对一41第1期李国峰:智慧教育背景下采用机器学习技术的成绩预测决策系统几种最先进的算法的比较,找到更适合帮助教师的教学辅助工具,从而更准确地预测学生的学习成绩.参考文献:[1]黄悦悦.大数据背景下智慧教育的发展研究卩].今日财富:中国知识产权'2019,26(3):112-113.[2]戴德宝,兰玉森'范体军'等.基于文本挖掘和机器学习的股指预测与决策研究[J].中国软科学,2019,340(4)&171-180.⑶邱麒玮.基于机器学习的自动阅卷系统的设计与实现[J].电子制作,201&94(2):43-44.[4]张茂聪'鲁婷.国内外智慧教育研究现状及其发展趋势:基于近10年文献计量分析[J].中国教育信息化,2020(1):15-22.[5]HERSHKOVITZ A,NACHMIAS R.Online persistence in higher education web-supported courses卩].The Internet andHigher Education,2011,14(2):98-106.[6]KABRA R R,BICHKAR R S.Performance prediction of engineering students using decision trees卩].International Journal ofComputer Applicatin,2011,12(36):8-12.[7]KOTSIANTIS S B.Decision trees:a recent overview[J].Artificial Intelligence Review,2013,39(4):261-283.[8]梁迎丽,梁英豪.人工智能时代的智慧学习:原理、进展与趋势[J].中国电化智慧教育,2019,385(2):21-26.[9].的[J].智慧教育:中学生,2017(5):23-23.[10],.大数据的智慧研究[J].学学,2018,34(9):89-94.[11].智慧教育大数据的与决策[J].知识与,2019,15(2):162-163.[12]马黎,陈沫,马云飞,等.基于人脸识别技术的智慧职场设计与实现[J].中国金融电脑,2019,30(4):37-39.[13]贡国忠,吴访升,杨淑芳,等.人工智能视角下的职业智慧教育大数据:现实挑战、应用模式和智慧服务[J].江苏智慧教育研究,2018,387(27):21-25.[14]杨旭,张秀英.基于“辩证动态双主教学”理念的高职数学实验研究[J].江苏智慧教育研究,201&390(30):16-20.[15].智慧教学生状测研究与[J].与,2019,44(1):111-112.[16]史玉琢.人工智能+校企协同育人云平台数据支持下的自适应学习研究[J].信息记录材料,2019,20(5):243-244.Decision system for performance prediction based on machine learning technology in fhe confex)o+"/728伍&'LI Guo-feng(School of Educational Science,Chuzhou University,Chuzhou,Anhui23900,China)Abst ract:Students)academic performance is an important factor influencing the decision-making of college counselors.The machine-learning technology is applied to the education system,and a data prediction analysis model of students*academic performance is constructed.A data analyzer is developed and applied to the prediction of the first year students*performance in the foreign language learning in a university.The results show that the performance prediction system has a high accuracy,which provides certain reference for educators to effectively identify weak students,put forward supporting actions and improve students*academic performance. Key words:machine learning;decision-supporting tool;intelligent education;performance prediction[责任编辑郭涓]。

机器学习研究员:阿德里安·科尔夫(Adrian Colyer)人物简介

机器学习研究员:阿德里安·科尔夫(Adrian Colyer)人物简介

对序列到序列(Seq2Seq)模型做出了重要贡献
• 提出了多种改进Seq2Seq模型的方法,提高了模型的性能
• 为Seq2Seq模型的发展做出了重要贡献,被誉为Seq2Seq领域的领军人物
对深度强化学习做出了重要贡献
• 提出了多种改进深度强化学习方法,提高了模型的性能
• 为深度强化学习的发展做出了重要贡献,被誉为深度强化学习领域的领军人物
在机器学习领域将继续
与其他专家进行深入合

• 获得更多的奖项,为机器学习领
• 面对深度学习等领域的竞争,需
• 与其他机器学习专家进行合作,
域的发展做出贡献
要不断提高自己的研究水平
共同推动机器学习领域的发展
• 发表论文,为机器学习领域的发
• 面对机器学习技术的广泛应用,
• 与其他领域的专家进行合作,将
阿德里安·科尔夫在机器学习应用领域的创新与实践
将机器学习技术应用于强化学习领域
• 提出了多种机器人控制和游戏智能算法,取得了较高的准确率
• 在Robotarium和Atari等强化学习竞赛中取得了优异成绩
将机器学习技术应用于计算机视觉领域
• 提出了பைடு நூலகம்种图像识别和目标检测算法,取得了较高的准确率
• 在ImageNet和COCO等图像识别竞赛中取得了优异成绩
• 在WMT和SQuAD等自然语言处理竞赛中取得了优异成绩
阿德里安·科尔夫在强化学习领域的研究
主要研究方向为深度强化学习
• 提出了多种改进深度强化学习方法,提高了模型的性能
• 发表了多篇关于深度强化学习的论文,为深度强化学习的发展做出了重要贡献
对机器人控制和游戏智能等领域也有深入研究
• 提出了多种机器人控制和游戏智能算法,取得了较高的准确率

《基于多线程技术的水平基因转移事件识别算法研究与平台构建》范文

《基于多线程技术的水平基因转移事件识别算法研究与平台构建》范文

《基于多线程技术的水平基因转移事件识别算法研究与平台构建》篇一一、引言近年来,随着生物学和计算机科学的交叉发展,基因组学领域的研究取得了显著的进步。

其中,水平基因转移(Horizontal Gene Transfer, HGT)事件作为生物进化过程中的重要现象,对于理解生物多样性和物种演化的机制具有重要意义。

本文旨在研究基于多线程技术的水平基因转移事件识别算法,并构建相应的平台以实现高效、准确的识别。

二、水平基因转移事件概述水平基因转移是指不同生物体之间直接进行的基因交流过程,与传统的垂直遗传方式(即亲代遗传给子代)不同。

这一过程在细菌、病毒、真核生物等生物体中广泛存在,对于生物的适应性和进化具有重要影响。

因此,准确识别水平基因转移事件对于揭示生物进化的奥秘具有重要意义。

三、多线程技术概述多线程技术是一种计算机科学中的并行处理技术,通过在单个程序中同时运行多个独立线程来实现高效的计算和任务处理。

在生物信息学领域,多线程技术可以用于加速大规模数据处理和分析过程,提高计算效率和准确性。

因此,将多线程技术应用于水平基因转移事件的识别具有很大的潜力。

四、基于多线程技术的水平基因转移事件识别算法研究(一)算法设计本文提出的水平基因转移事件识别算法采用多线程技术,通过并行处理大量基因序列数据,加速识别过程。

算法主要包括以下步骤:数据预处理、序列比对、相似性分析、转移事件识别和结果输出。

其中,数据预处理和序列比对采用多线程技术进行并行处理,以提高计算速度。

(二)算法实现算法实现过程中,我们采用了高效的编程语言和工具,如Python、C++等,以及常用的生物信息学软件和数据库。

通过优化算法结构和提高计算效率,实现了快速、准确的水平基因转移事件识别。

五、平台构建(一)平台架构设计平台采用模块化设计,包括数据输入模块、算法处理模块、结果输出模块等。

其中,算法处理模块采用多线程技术进行加速处理。

平台支持多种格式的基因序列数据输入,以及灵活的参数设置和结果输出方式。

多任务学习和元学习在农业智能化中的应用研究

多任务学习和元学习在农业智能化中的应用研究

多任务学习和元学习在农业智能化中的应用研究随着科技的不断进步和人工智能技术的快速发展,农业智能化正逐渐成为现代农业发展的重要方向。

在农业智能化中,多任务学习和元学习作为两个重要的研究方向,具有广阔的应用前景。

本文将探讨多任务学习和元学习在农业智能化中的应用,并分析其优势和挑战。

一、多任务学习在农业智能化中的应用多任务学习是指通过同时训练模型完成多个相关任务,以提高模型性能。

在农业领域,有许多相关且相互依赖的任务需要同时进行,如作物病虫害识别、土壤肥力评估、气象预测等。

通过将这些相关任务进行联合训练,可以提高模型对不同领域数据集的泛化性能。

首先,在作物病虫害识别方面,传统方法通常需要针对每一种病虫害分别进行建模,并且需要大量标记数据来训练模型。

然而,在现实情况下获取大量标记数据是一项耗时耗力的工作。

而多任务学习可以通过共享模型的特征提取层,将不同作物的病虫害识别任务同时进行,从而提高模型的识别能力。

同时,多任务学习可以通过迁移学习的方式,将已经训练好的模型应用到新的作物上,从而减少新数据集上训练模型所需的标记数据量。

其次,在土壤肥力评估方面,多任务学习可以将土壤质地分类、土壤养分含量分析等不同任务进行联合训练。

通过共享底层特征提取层和部分上层网络结构,可以提高模型对土壤样本特征的学习能力。

同时,在实际应用中,农民通常需要评估土壤肥力等多个指标。

通过使用多任务学习方法,在一个模型中同时预测多个指标值,不仅减少了农民对不同指标值进行单独测量和评估所需的时间和精力,还能够提供更全面准确地肥料推荐。

最后,在气象预测方面,农业生产对天气预测非常敏感。

传统方法通常需要使用专门针对某一特定气象指标的模型进行预测,而多任务学习可以将不同气象指标的预测任务进行联合训练,从而提高模型对不同气象指标的预测能力。

此外,多任务学习还可以将不同地区的气象数据进行联合训练,从而提高模型对地区间差异的适应能力。

总之,多任务学习在农业智能化中具有广泛应用前景。

二进制遗传算法和八进制遗传算法的函数优化结果比较

二进制遗传算法和八进制遗传算法的函数优化结果比较

二进制遗传算法和八进制遗传算法的函数优化结果比较
李冬黎;何湘宁
【期刊名称】《浙江工业大学学报》
【年(卷),期】2001(029)003
【摘要】研究了遗传算法在寻找函数最优值方面的应用,比较分析了二进制遗传算法和八进制算法的函数优化结果。

计算机仿真结果表明二进制编码遗传算法在函数优化中要优于八进制编码遗传算法。

【总页数】4页(P308-311)
【作者】李冬黎;何湘宁
【作者单位】浙江大学电气工程学院,;浙江大学电气工程学院,
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.改进的快速遗传算法在函数优化中的应用 [J], 周勇;胡中功
2.遗传算法在函数优化中的应用研究 [J], 厉强强;孙银
3.基于遗传算法的SRM转矩分配函数优化 [J], 王辉; 游紫露; 李孟秋; 蔡辉; 沈仕其
4.基于改进的遗传算法在函数优化中的应用 [J], 闫春; 厉美璇; 周潇
5.求解高维函数优化的反馈多智能体遗传算法 [J], 杨超;石连栓;施承尧;武琴
因版权原因,仅展示原文概要,查看原文内容请购买。

Applied Machine Learning

Applied Machine Learning

Applied Machine Learning Machine learning is a rapidly evolving field with applications in various industries such as healthcare, finance, retail, and more. It involves the development of algorithms and models that enable computers to learn from and make predictions or decisions based on data. While the potential benefits of machine learning are vast, there are also several challenges and concerns that need to be addressed. One of the primary issues with applied machine learning is the ethical considerations surrounding the use of algorithms in decision-making processes. As machine learning models are trained on historical data, they may inadvertently perpetuate biases and discrimination present in the training data. This can lead to unfair outcomes for certain groups of people, such as racial minorities or women, and exacerbate existing societal inequalities. It is crucial for practitioners to carefully consider the ethical implications of their work and take proactive steps to mitigate bias in their models. Another challenge in applied machine learning is the interpretability of models. Many machine learning algorithms, such as deep neural networks, are often referred to as "black boxes" because it is difficult to understand how they arrive at a particular decision. This lack of transparency can be problematic, especially in high-stakes applications like healthcare or criminal justice, where the reasoning behind a model's prediction is crucial for gaining trust and acceptance from stakeholders. Researchers and practitioners are actively working on developing methods to improve the interpretability of machine learning models, such as feature importance analysis and model-agnostic techniques. Furthermore, the availability and quality of data are critical factors that can significantly impact the performance of machine learning models. In many real-world scenarios, obtaining labeled data for training machine learning models can be a time-consuming and expensive process. Additionally, the data may be noisy, incomplete, or biased, which can lead to suboptimal model performance. Data collection and preprocessing are essential steps in the machine learning pipeline, and it is important for practitioners to be mindful of potential biases and limitations in the data that could affect the generalizability of their models. On the technical side, the scalability and efficiency of machine learning algorithms pose significantchallenges, especially when dealing with large-scale datasets or real-time applications. Training complex models on massive amounts of data can be computationally intensive and time-consuming, requiring significant computational resources. Moreover, deploying and maintaining machine learning systems in production environments can be challenging, as it involves considerations such as model monitoring, retraining, and version control. Addressing these technical challenges requires a combination of expertise in software engineering,distributed systems, and machine learning. In addition to the technical and ethical challenges, there are also broader societal implications of the widespread adoption of machine learning. Automation driven by machine learning has the potential to disrupt labor markets and lead to job displacement in certain industries. Furthermore, the increasing reliance on algorithms for decision-making raises concerns about accountability and transparency. In cases where machine learning models are used to make decisions that affect individuals' lives, it is essential to establish mechanisms for recourse and appeal in the event of errors or unfair outcomes. Despite these challenges, there are also numerous opportunities for applied machine learning to create positive impact. In healthcare, machine learning models can be used for early disease detection, personalized treatment recommendations, and drug discovery. In finance, algorithms can help detect fraudulent transactions, optimize investment strategies, and assess credit risk. In retail, machine learning powers recommendation systems, demand forecasting, and supply chain optimization. The potential benefits of machine learning are vast, and with careful consideration of the challenges and ethical implications, it can be a powerful tool for driving innovation and progress in various domains. In conclusion, applied machine learning holds great promise for transforming industries and solving complex problems. However, it is essential for practitioners to be mindful of the ethical considerations, interpretability of models, data quality and bias, technical scalability, and broader societal implications. By addressing these challenges and leveraging the opportunities, machine learning can be harnessed to create meaningful and positive impact in the world.。

机器学习学术报告

机器学习学术报告

·自动驾驶汽车
1
·通过电脑阅读手写的字母或者数字
·编写程序让直升机飞行或倒立飞行
然而通过让便编写一个学习型算法,让计算机自己学习,可
以很好解决这些问题,如手写识别等。
培训专用
机器学习-定义
“对于某类任务T和性能度量P,如果一个计算机程序在T上以P
衡量的性能随着经验E而自我完善,那么我们称这个计算机程序
培训专用
任务T-回归
回归:在这类任务中,计算机程序需要对给定输入预测数值。为
了解决这个务,学习算法需要输出函数f 。除了返回结果的形式不 一样外,这类问题和分类问题是很像的。这类任务的一个示例 是预测投保人的索赔金额(用于设1 置保险费),或者预测证券 未来的价格。这类预测也用在算法交易中。
培训专用
培训专用
思考-代价函数
我们选择的参数决定了我们得到的直线相对于我们的
训练集的准确程度,模型所预测的值与训练集中实际值之间的
差距(下图中蓝线所指)就是建模误差。
1
培训专用
思考-代价函数
我们的目标便是选择出可以使得建模误差的平方和能够最小 的模型参数。即使得代价函数最小。这个函数也叫费用函数。
1
培训专用
走,或者可以人工编写特定的指令来指导机器人如何行走。 通常机器学习任务定义为学习1 系统应该如何处理样本。 样本
是指我们从某些希望机器学习系统处理的对象或事件中收集到的已
经量化的 特征的集合。我们通常会将样本表示成一个,其中向量
的每一个元素是一个特征。例如,一张图片的特征通常是指这张图 片的像素值。
T 和性能度量P,一个计算机程序被认为可以从经验E 中学习是 指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性

联邦学习概述:技术、应用及未来

联邦学习概述:技术、应用及未来

联邦学习概述:技术、应用及未来
李少波;杨磊;李传江;张安思;罗瑞士
【期刊名称】《计算机集成制造系统》
【年(卷),期】2022(28)7
【摘要】联邦学习(FL)以多方数据参与为驱动,通过数据加密交互实现数据自身价值的最大化,近年来受到各界研究学者的广泛关注与研究,逐步从基础理论研究走向实际应用,为企业进一步发挥数据价值提供了新技术。

在阐述联邦学习定义及分类的基础上,首先对其隐私保护、通信效率、异构性、激励机制等相关技术的国内外研究进展展开了较为全面的分析和总结;其次介绍了当前联邦学习已有的应用平台和框架,并提出了联邦学习在智能制造、医疗、教育等领域的应用框架;最后,结合联邦学习在一些关键的开放性问题上的不足,对其未来发展趋势和方向进行了总结与展望,旨在为联邦学习的理论研究及应用落地提供参考。

【总页数】20页(P2119-2138)
【作者】李少波;杨磊;李传江;张安思;罗瑞士
【作者单位】贵州大学省部共建公共大数据国家重点实验室;贵州大学机械工程学院
【正文语种】中文
【中图分类】TP309;TP181
【相关文献】
1.用技术连接学生的未来和全面发展:在线学习与技术应用的实践思考
2.从智能教育到未来学习:新时代教育技术创新与应用新常态
——第十九届教育技术国际论坛综述3.面向未来泛在智能的云边端协同联邦学习关键技术与应用4.联邦学习技术在证券行业的应用研究5.技术增强STEM教育的未来应用图景——基于《创新聚焦:技术有力支持STEM学习的九种方式》解读与启示
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Application of Machine Learning Algorithms toKDD Intrusion Detection Dataset within Misuse Detection ContextMaheshkumar Sabhnani EECS Dept, University of Toledo Toledo, Ohio 43606 USAGursel SerpenEECS Dept, University of ToledoToledo, Ohio 43606 USAAbstractA small subset of machine learning algorithms, mostly inductive learning based, applied to the KDD 1999 Cup intrusion detection dataset resulted in dismal performance for user-to-root and remote-to-local attack categories as reported in the recent literature. The uncertainty to explore if other machine learning algorithms can demonstrate better performance compared to the ones already employed constitutes the motivation for the study reported herein. Specifically, exploration of if certain algorithms perform better for certain attack classes and consequently, if a multi-expert classifier design can deliver desired performance measure is of high interest. This paper evaluates performance of a comprehensive set of pattern recognition and machine learning algorithms on four attack categories as found in the KDD 1999 Cup intrusion detection dataset. Results of simulation study implemented to that effect indicated that certain classification algorithms perform better for certain attack categories: a specific algorithm specialized for a given attack category . Consequently, a multi-classifier model, where a specific detection algorithm is associated with an attack category for which it is the most promising, was built. Empirical results obtained through simulation indicate that noticeable performance improvement was achieved for probing, denial of service, and user-to-root attacks.Keywords: Computer security, Machine learning, Intrusion detection, misuse, KDD dataset, Probability of detection, False alarm rate1. IntroductionLiterature survey indicates that, for intrusion detection, most researchers employed a single algorithm to detect multiple attack categories with dismal performance in some cases. The set of machine learning algorithms applied in the literature constitutes a very small subset of what is potentially applicable for the intrusion detection problem. Additionally, reported results suggest that much detection performance improvement is possible. In light of the widely-held belief that attack execution dynamics and signatures show substantial variation from one attack category to another, identifying attack category specific detection algorithms offers a promising research direction for improved intrusion detection performance. In this paper, a comprehensive set of pattern recognition and machine learning algorithms will be evaluated on the KDD data set [1], which is one of few public domain such data, utilizes TCP/IP level information and embedded with domain-specific heuristics, to detect intrusions at the network level.KDD dataset covers four major categories of attacks: Probing attacks (information gathering attacks), Denial-of-Service (DoS) attacks (deny legitimate requests to a system), user-to-root (U2R) attacks (unauthorized access to local super-user or root), and remote-to-local (R2L) attacks (unauthorized local access from a remote machine). KDD dataset is divided into labeled and unlabeled records. Each labeled record consisted of 41 attributes (features) [2] and one target value. Target value indicated the attack category name. There are around 5 million (4,898,430) records in the labeled dataset, which was used for training all classifier models discussed in this paper. A second unlabeled dataset (311,029 records) is provided as testing data [3]. Next, a brief and up-to-date literature survey of attempts for designing intrusion detection systems using the KDD dataset is presented.Agarwal and Joshi [4] proposed a two-stage general-to-specific framework for learning a rule-based model (PNrule) to learn classifier models on a data set that has widely different class distributions in the training data. The PNrule technique was evaluated on the KDD testing data set, which contained many new R2L attacks not present in the KDD training dataset. The proposed model was able to detect 73.2% of probing attacks, 96.9% of denial of service attacks, 6.6% of U2R attacks, and 10.7% of attacks in R2L attack category. False alarms were generated at a level of less than 10% for all attack categories except for U2R: an unacceptably high level of 89.5% false alarm rate was reported for the U2R category.Using Kernel Miner tool and the KDD data set [5], Levin created a set of locally optimal decision trees (called the decision forest) from which optimal subset of trees (called the sub-forest) was selected for predicting new cases. Levin used only 10% of the KDD training data randomly sampled from the entire training data set. Multi-class detection approach was used to detect different attack categories in the KDD data set. The final trees gave very high detection rates for all classes including the R2L in the entire training data set. The proposed classifier achieved 84.5% detection for probing, 97.5% detection for denial of service, 11.8% detection for U2R, and only 7.32% detection for R2L attack category in the KDD testing data set. False alarm rates of 21.6%, 73.1%, 36.4%, and 1.7% were achieved for probing, DoS, U2R and R2L attack categories, respectively.Ertoz and Steinbach [6] used shared nearest neighbor (SNN) technique, which is particularly suited for finding clusters in data of different sizes, density, and shapes, mainly when the data contains large amount of noise and outliers. All attack records were selected from the KDD training and testing data sets with a cap of 10,000 records from each attack type: there are a total of 36 attack types from 4 attack categories. Also 10,000 records were randomly picked from both the training and the testing data sets. In total, around 97,000 records were selected from the entire KDD data set. After removing duplicate KDD records, the data set size reduced to 45,000 records. This set was then used to train two clustering algorithms: K-means and the proposed SNN technique, which were compared in terms of detection rates achieved. K-means algorithm, with number of clusters equal to 300, could detect 91.88% of probing, 97.85% of DoS, 5.6% of U2R, and 77.04% of the R2L attack records. The proposed SNN technique was able to detect 73.43% of probing, 77.76% of DoS, 37.82% of U2R, and 68.15% of the R2L records, while noting that no discussion on false alarm rates were reported by the authors. Results suggested that SNN performed better than K-means for U2R attack category. It is important to note that there was no independent testing data used. Also the results are evaluated on a relatively small portion of KDD dataset and not on complete KDD testing dataset. Hence the reported results show the performance of both algorithms on the training data set only, which is expected to result in high detection rates by default.Yeung and Chow [7] proposed a novelty detection approach using non-parametric density estimation based on Parzen-window estimators with Gaussian kernels to build an intrusion detection system using normal data only. This novelty detection approach was employed to detect attack categories in the KDD data set. 30,000 randomly sampled normal records from the KDD training data set were used as training data set to estimate the density of the model. Another 30,000 randomly sampled normal records (also from the KDD training data set) formed the threshold determination set, which had no overlap with the training data set. The technique could detect 99.17% of probing, 96.71% of DoS, 93.57% of U2R, and 31.17% of R2L attacks in the KDD testing dataset as intrusive patterns: authors did not report any information on false alarm rates. As a significant limitation, it is important to note that this model detects whether a record is intrusive or not and not if the attack records belongs to a specific attack category.Literature survey shows that, for all practical purposes, most researchers applied a single algorithm to address all four major attack categories. It is critical to question this approach that strives to identify a single algorithm that can detect attacks in all four attack categories. These four attack categories including DoS, Probing, R2L, and U2R, have distinctly unique execution dynamics and signatures [8], which motivates to explore if in fact certain, but not all, detection algorithms are likely to demonstrate superior performance for a given attack category. In light of this possibility, the study presented here will create detection models using a comprehensive set of pattern recognition and machine learning algorithms and select best performing (in terms of probability of detection and false alarm rates) algorithms for each attack category.In the event that certain subset of detection algorithms do offer improved probability of detection coupled with false alarm rates for a specific attack category, a multi-classifier system will be attempted to improve the overall detection performance on the four attack categories as they exist in the KDD data sets.2. Simulation studyThis section will elaborate the methodology employed to test various algorithms on the KDD datasets. First required data preprocessing and tools employed will be discussed in Section 2.1. Cost matrix measure, which is employed to select best instances of a given classifier algorithm, will be presented in the following section. Parameter settings for various models will be described in Section 2.3. Results of testing classifier algorithms will be discussed in Section 2.4.2.1. Data preprocessing and simulation toolsAttributes in the KDD datasets had all forms - continuous, discrete, and symbolic, with significantly varying resolution and ranges. Most pattern classification methods are not able to process data in such a format. Hence preprocessing was required before pattern classification models could be built. Preprocessing consisted of two steps: first step involved mapping symbolic-valued attributes to numeric-valued attributesand second step implemented scaling. Attack names (like buffer_overflow, guess_passwd, etc.) were first mapped to one of the five classes, 0 for Normal, 1 for Probe, 2 for DoS, 3 for U2R, and 4 for R2L, as described in [9]. Symbolic features like protocol_type (3 different symbols), service (70 different symbols), and flag (11 different symbols) were mapped to integer values ranging from 0 to N-1 where N is the number of symbols. Then each of these features was linearly scaled to the range [0.0, 1.0]. Features having smaller integer value ranges like duration [0, 58329], wrong_fragment [0, 3], urgent [0, 14], hot [0, 101], num_failed_logins [0, 5], num_compromised [0, 9], su_attempted [0, 2], num_root [0, 7468], num_file_creations [0, 100], num_shells [0, 5], num_access_files [0, 9], count [0, 511], srv_count [0, 511], dst_host_count [0, 255], and dst_host_srv_count [0, 255] were also scaled linearly to the range [0.0, 1.0]. Two features spanned over a very large integer range, namely src_bytes [0, 1.3 billion] and dst_bytes [0, 1.3 billion]. Logarithmic scaling (with base 10) was applied to these features to reduce the range to [0.0, 9.14]. All other features were either boolean, like logged_in, having values (0 or 1), or continuous, like diff_srv_rate, in the range [0.0, 1.0]. Hence scaling was not necessary for these attributes.The KDD 1999 Cup dataset has a very large number of duplicate records. For the purpose of training different classifier models, these duplicates were removed from the datasets. The total number of records in the original labeled training dataset is 972,780 for Normal, 41,102 for Probe, 3,883,370 for DoS, 52 for U2R, and 1,126 for R2L attack classes. After filtering out the duplicate records, there were a total of 812,813 records for Normal, 13,860 for Probe, 247,267 for DoS, 52 for U2R, and 999 for R2L attack classes.The software tool LNKnet, which is a publicly available pattern classification software package [10], was used to simulate pattern recognition and machine learning models. The only exception was for developing decision tree classifier models. The C4.5 algorithm was employed to generate decision trees using the software tool obtained at [11]. All simulations were performed on a multi-user Sun SPARC™ machine, which had dual microprocessors, UltraSPARC-II, running at 400 MHz. System clock frequency was equal to 100 MHz. The system had 512 MB of RAM and Solaris™ 8 operating system.2.2. Performance comparison measuresIdentifying an optimal set of settings for the topology and parameters for a given classifier algorithm through empirical means required multiple instances of detection models to be built and tested on the KDD datasets. For instance, more than 50 models were developed using the multilayer perceptron algorithm alone. Hence a comparative measure is needed to select the best model for a given classifier algorithm. One such measure is the cost per example that requires two quantities to be defined: cost matrix and confusion matrix.A cost matrix (C) is defined by associating classes as labels for the rows and columns of a square matrix: in the current context for the KDD dataset, there are five classes, {Normal, Probe, DoS, U2R, R2L}, and therefore the matrix has dimensions of 5×5. An entry at row i and column j, C(i,j), represents the non-negative cost of misclassifying a pattern belonging to class i into class j. Cost matrix values employed for the KDD dataset are defined elsewhere in [9]. These values were also used for evaluating results of the KDD’99 competition. The magnitude of these values was directly proportional to the impact on the computing platform under attack if a test record was placed in a wrong category.A confusion matrix (CM) is similarly defined in that row and column labels are class names: a 5×5 matrix for the KDD dataset. An entry at row i and column j, CM(i,j), represents the number of misclassified patterns, which originally belong to class i yet mistakenly identified as a member of class j.Given the cost matrix as predefined in [9] and the confusion matrix obtained subsequent to an empirical testing process, cost per example (CPE) was calculated using the formula,===5151),(*),(1i jjiCjiCMNCPEwhere CM corresponds to confusion matrix, C corresponds to the cost matrix, and N represents the number of patterns tested. A lower value for the cost per example indicates a better classifier model.Comparing performances of classifiers for a given attack category is implemented through the probability of detection along with the false alarm rate, which are widely accepted as standard measures.2.3. Pattern recognition and machine learning algorithms applied to intrusion detectionNine distinct pattern recognition and machine learning algorithms were tested on the KDD dataset. These algorithms were selected so that they represent a wide variety of fields: neural networks, probabilistic models, statistical models, fuzzy-neuro systems, and decision trees. An overview of how specific instances of these algorithms were identified as well as their intrusion detection performance on the KDD testing data set follows next.2.3.1. Multilayer perceptron (MLP). Multilayer perceptron (MLP) [12] is one of most commonly used neural network classification algorithms.The architecture used for the MLP during simulations with KDD dataset consisted of a three layer feed-forward neural network: one input, one hidden, and one output layers. Unipolar sigmoid transfer functions were used for each neuron in both the hidden and the output layers with slope value of 1.0. The learning algorithm used was stochastic gradient descent with mean squared error function. There were a total of 41 neurons in the input layer (41-feature input pattern), and 5 neurons (one for each class) in the output layer. Multiple simulations were performed with number of hidden layer nodes varying from 40 to 80 in increments of 10. Also for each simulation a constant learning rate (one of the four values 0.1,0 0.2, 0.3, and 0.4) was used along with 0.6 as the weight change momentum value. Different simulations had different learning rates that varied from 0.1 to 0.4 in steps of 0.1. Randomly selected initial weights were used that were uniformly distributed in the range [-0.1, 0.1]. Each epoch consisted of 500,000 samples having equi-probable records from each of the five output categories. Initially a total of 30 epochs were performed on the training dataset. Other simulations studied the effect of changing the number of training epochs: number of epochs was varied to 40, 50, 60, 100, etc. The final model, which scored the lowest cost per example value of 0.2393, consisted of 50 nodes in the hidden layer with a learning rate value equal to 0.1 and 60 epochs for training.2.3.2. Gaussian classifier (GAU). Maximum likelihood Gaussian classifiers assume inputs are uncorrelated and distributions for different classes differ only in mean values. Gaussian classifier is based on the Bayes decision theorem [13].Four distinct models were developed using the Gaussian classifier: quadratic classifier with diagonal covariance matrix, quadratic classifier with tilted covariance matrix, linear classifier with diagonal covariance matrix, and linear classifier with tilted covariance matrix. Linear discriminant classifier with full tilted matrix performed the best on the KDD testing dataset with cost per example value of 0.3622.2.3.3. K-means clustering (K-M). K-means clustering algorithm [13] positions K centers in the pattern space such that the total squared error distance between each training pattern and the nearest center is minimized.Using the K-means clustering algorithm, different clusters were specified and generated for each output class. Simulations were run having 2, 4, 8, 16, 32, 40, 64, 75, 90, 110, 128, and 256 clusters. Each simulation had equal number of clusters for each attack class. For number of clusters (K) that are not integer powers of 2,after generating P clusters (P being an integer power of 2)where P>K, the cluster centers having minimum varianceamong its patterns were removed one at a time until theclusters were reduced to K. An epoch consisted ofpresenting all training patterns in an output class for whichcenters are being generated. Clusters were trained untilthe average squared error difference between two epochswas less than 1%. During splitting, the centers were disturbed by 1% of the standard deviation in each cluster so that new clusters are formed. A random offset of =1% was also added during each split. The model that achieved the lowest cost per example value (0.2389)had 16 clusters in each class.2.3.4. Nearest cluster algorithm (NEA). Nearest cluster algorithm [13] is a condensed version of K-nearest neighbor clustering algorithm. Input to this algorithm is a set of cluster centers generated from the training data set using standard clustering algorithms like K-means, E & M binary split, and leader algorithm.Initial clusters were created using the K-means.Multiple simulations were performed using different set ofinitial clusters in each output class including 2, 4, 8, 16,32, 40, 64, 75, 90, 110, 128, and 256 clusters using the K-means algorithm. Euclidean distance was used as thedistance measure. Based on the minimum cost per testexample, the nearest cluster model that performed the besthad 32 clusters in each class during training. The model’scost per example for the KDD test data was equal to0.2466.2.3.5. Incremental radial basis function (IRBF). Incremental radial basis function (IRBF) neural networks [14] can also perform nonlinear mapping between input and output vectors similar to an MLP.A total of six simulations were performed using theIRBF algorithm. Each simulation used initial clusterscreated using K-means algorithm: there were 8, 16, 32, 40,64, and 75 clusters each in different output classes.Learning rate for change in weights was 0.1 and those forchanges in hidden unit means and variance were 0.01. Aseparate diagonal covariance matrix was used for eachhidden unit with minimum variance of 0.000001. A totalof 10 epochs were performed on the training data. Duringeach epoch, 500,000 records were randomly anduniformly sampled from each attack class. Mean squarederror cost function was used for these simulations. Initialweights were randomly selected from a uniformdistribution in the range of [-0.01, 0.01]. For eachsimulation using the IRBF, cost per example for the testdataset was calculated. The model with 40 hidden nodesfor each class performed best with the cost per examplevalue equal to 0.4164.2.3.6. Leader algorithm (LEA). Leader algorithm [15] partitions a set of M records into K disjoint clusters (where M≥K). A rule for computing distance measure between records is assumed along with a threshold value,delta. First input record forms the leader of first cluster.Each input record is sequentially compared with currentleader clusters. If the distance measure between thecurrent record and all leader records is greater than delta,a new cluster is formed with the current record being thecluster leader.Different clusters were created for different outputclasses. Multiple simulations were executed with distancethreshold value, delta, assuming values from the set {0.05,0.2, 0.4, 0.6, 0.8, 1, 5, 10, 50, 70, 90, and 100}. Recordsfrom each class were randomly presented during training.As the value of delta was increased, the number ofclusters in each output class kept reducing. Only onecluster per class was formed when delta was equal to 100.It was observed that the results were not reproducible asleader records for each cluster were dependent on thesequence in which the records were presented. The resultsvaried tremendously for larger values of delta. Cost perexample for test data was calculated for each simulation.The model that performed best had delta value equal to0.05 and cost per example value equal to 0.2528.2.3.7. Hypersphere algorithm (HYP). Hypersphere algorithm [16] [17] creates decision boundaries using spheres in input feature space. Any pattern that falls within the sphere is classified in the same class as that of the center pattern. Spheres are created using an initial defined radius. Euclidean distance between a pattern and sphere centers is used to test whether a pattern falls in one of the current defined spheres.Multiple simulations were performed with differentinitial radius, e.g. 0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, and20.0. The total number of epochs performed was equal to30. All patterns present in the training dataset were usedduring each epoch. Single nearest neighbor classificationwas used to classify patterns that were ambiguous oroutside all hyperspheres created. A total of 1066hyperspheres were formed after 30 epochs in allcategories during training. The Hypersphere model thatperformed the best had initial radius equal to 0.05 andcost per example value equal to 0.2486.2.3.8. Fuzzy ARTMAP (ART). Fuzzy ARTMAP (Adaptive Resonance Theory mapping) [18] algorithm is used for supervised learning of multidimensional data.Fuzzy ARTMAP uses two ART’s – ARTa and ARTb.ARTa maps features into clusters. ARTb maps outputcategories into clusters. There is a mapping from ARTaclusters to ARTb clusters which is performed duringtraining. A constant vigilance value (distance measure) of0.999 was used for ARTb in all simulations. Vigilance for ARTa was different for each simulation. Five simulations were performed using fuzzy ARTMAP algorithm. The vigilance values for ARTa during training were equal to 0.95, 0.9, 0.85, 0.75, and 0.65, respectively one for each simulation. And the corresponding testing vigilance for ARTa was equal to 0.9, 0.9, 0.8, 0.7, and 0.6, respectively. Different vigilance parameters can be set for each ART. Fuzzy ART parameters, alpha and beta, were set to 0.001 and 1.0 respectively. The parameter alpha is used to define the initial long term memory values in ART. The value of alpha should be set as small as possible. The value of beta can vary in the range [0.0, 1.0]. Smaller the value of beta larger is the effect of old weights during training. Generally beta is set to 1.0 so that changes in weights should be dependent on current input patterns. All inputs were normalized to the range [0.0, 1.0] prior to training. Inputs were complement-coded so that low feature values do not diminish during ART training. A total of 20 epochs were performed on the training data. During each epoch 200,000 records were sampled from each attack category given by Normal, Probe, DoS, U2R, and R2L with probabilities of 0.7, 0.08, 0.2, 0.05, and 0.05, respectively. The model that performed the best with respect to cost per example value had vigilance parameter equal to 0.95 and 0.9 for training and testing ARTa. It had 0.999 as vigilance parameter for ARTb both during training and testing. Cost per example for this model was equal to 0.2497.2.3.9. C4.5 decision tree (C4.5). The C4.5 algorithm [C4.5 Simulator], developed by Quinlan [12], generates decision trees using an information theoretic methodology. The goal is to construct a decision tree with minimum number of nodes that gives least number of misclassifications on training data. The C4.5 algorithm uses divide and conquer strategy.Initial window was set to 20% of the records present in the KDD training dataset. 20% of records present in the initial window size were added after each iteration and the tree was retrained. In all tests, at least two branches contained a minimum of two records. The cost per example achieved for the best decision tree classifier model was equal to 0.2396.2.4. Classification performance of algorithms on KDD testing datasetBest performing instances of all nine classifiers developed through the KDD training dataset in Section 2.3 were evaluated on the KDD testing data set. For a given classifier, its probability of detection and false alarm rate performance on a specific attack category was recorded. Simulation results are presented in Table 1. Both probability of detection (PD) and false alarm rate(FAR) are indicated for each classifier algorithm and each attack category.Table 1 shows that a single algorithm could not detect all attack categories with a high probability of detection and a low false alarm rate. Results also show that for a given attack category, certain algorithms demonstrate superior detection performance compared to others. MLP, GAU, K-M, NEA, and RBF detected more than 85% of attack records for probing category. For attack records in DoS category, MLP, K-M, NEA, LEA, and HYP scored a 97% detection rate. GAU and K-M, the two most successful classifiers for U2R category, detected more than 22% of attack records. In case of R2L category, only GAU could detect around 10% of attack records. Once the promising algorithms for each attack category are identified, the best algorithm can be chosen also considering the FAR values. Hence, MLP performs the best for probing, K-M for DoS as well as U2R, and GAU for R2L attack categories.Table 1. PD and FAR for various algorithmsProbe DoS U2R R2LPD 0.887 0.972 0.132 0.056 MLPFAR 0.004 0.003 5E-4 1E-4PD 0.902 0.824 0.228 0.096 GAUFAR 0.113 0.009 0.005 0.001PD 0.876 0.973 0.298 0.064 K-MFAR 0.026 0.004 0.004 0.001PD 0.888 0.971 0.022 0.034 NEAFAR 0.005 0.003 6E-6 1E-4PD 0.932 0.730 0.061 0.059 RBFFAR 0.188 0.002 4E-4 0.003PD 0.838 0.972 0.066 0.001 LEAFAR 0.003 0.003 3E-4 3E-5PD 0.848 0.972 0.083 0.010 HYPFAR 0.004 0.003 9E-5 5E-5PD 0.772 0.970 0.061 0.037 ARTFAR 0.002 0.003 1E-5 4E-5PD 0.808 0.970 0.0180.046C4.5FAR 0.007 0.003 2E-5 5E-5It is reasonable to state that the set of pattern recognition and machine learning algorithms tested on the KDD data sets offered an acceptable level of misuse detection performance for only two attack categories, namely Probing and DoS. On the other hand, all nine classification algorithms failed to demonstrate an acceptable level of detection performance for the remaining two attack categories, which are U2R and R2L.Subsequent to the observation that for a given attack category, certain subset of classifier algorithms offer superior performance as empirically evidenced through results in Table 1, a multi-classifier design, where classifier components are selected among the best performing ones for a given attack category justifiably deserves further attention. This very issue will be elaborated in the next section.3. Multi-classifier modelResults in Section 2 suggest that the performance can be improved if a multi-classifier model is built that has sub-classifiers trained using different algorithms for each attack category. Section 2 identified the best algorithms for each attack category: MLP for probing, K-M for DoS as well as U2R, and GAU for R2L. This observation can be readily mapped to a multi-classifier topology as in Figure 1. Table 2 shows the performance comparison of the proposed multi-classifier model with others in literature. Results in Table 2 suggest that the multi-classifier model showed significant improvement in detection rates for probing and U2R attack categories. Also the FAR was reasonably small for all attack categories.Figure 1. Multi-classifier modelTable 2. Comparative detection performance of Multi-classifierProbe DoS U2R R2LPD 0.833 0.971 0.132 0.084 KDD CupWinner FAR 0.006 0.003 3E-5 5E-5PD 0.833 0.971 0.132 0.084 KDD CupRunnerUp FAR 0.006 0.003 3E-5 5E-5PD 0.73 0.969 0.066 0.107 Agarwaland Joshi FAR 8E-5 0.001 4E-5 8E-4PD 0.887 0.973 0.298 0.096 Multi-Classifier FAR 0.004 0.004 0.004 0.001A second measure, the cost per example, can also be leveraged to elaborate further on the comparative performance assessment. Winner of the KDD-99 intrusion detection competition, who used C5 decision trees, obtained cost per example value of 0.2331.。

相关文档
最新文档