必修一函数经典例题
高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
必修一函数测试题
必修一函数测试题一、选择题(每题3分,共15分)1. 函数f(x) = 3x^2 - 2x + 1的图像关于哪条直线对称?A. x = 0B. x = 1C. x = -1/3D. x = 1/32. 若函数f(x) = x^3 - 2x^2 + x - 2在区间[-1, 2]上是增函数,则下列哪个选项是正确的?A. f(-1) < f(2)B. f(-1) > f(2)C. f(-1) = f(2)D. 无法确定3. 函数y = √(x^2 + 1)的值域是:A. (-∞, 0]B. [0, +∞)C. (-1, 1)D. [1, +∞)4. 已知函数f(x) = 2x - 3,求f(5)的值是:A. 7B. 4C. 1D. 05. 对于函数f(x) = ax + b,若f(1) = 0且f(2) = 5,求a和b的值分别是:A. a = 5, b = -5B. a = -5, b = 5C. a = 1, b = -1D. a = -1, b = 1二、填空题(每题2分,共10分)6. 若函数f(x) = x^2 + 2x + 3的顶点坐标是________。
7. 函数y = 2x + 3与x轴的交点坐标是________。
8. 函数y = 1/x的图像在第________象限是单调递增的。
9. 若函数f(x) = √x在区间[0, +∞)上是单调递增的,则f(4)与f(9)的大小关系是f(4)________f(9)。
10. 函数y = |x - 2| + 3的图像与y轴的交点坐标是________。
三、解答题(共25分)11. 求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点,并判断其单调性。
(10分)12. 已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 6]上的值域。
(7分)13. 给定函数f(x) = 2x - 1,请证明对于所有x > 0,都有f(x) > x。
高一数学函数经典习题及答案
函 数 练 习 题(一)班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x+(21)f x -的定义域是;函数1(2)f x+的定义域为。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x -=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
人教版高中数学必修一函数及其性质典型例题
(每日一练)人教版高中数学必修一函数及其性质典型例题单选题1、已知函数f(x)=x2−|x2−a2x−4|在区间(−∞,−2),(√3,+∞)上都单调递增,则实数a的取值范围是()A.0<a≤2√3B.0<a≤4C.0<a≤4√3D.0<a≤8√3答案:D解析:设g(x)=x2−a2x−4的零点为x1,x2且x1<x2,讨论区间范围写出f(x)的分段函数形式,讨论参数a结合f(x)各区间的函数性质判断单调性,根据已知区间的单调性求参数范围即可.设g(x)=x2−a2x−4,其判别式Δ=a24+16>0,∴函数g(x)一定有两个零点,设g(x)的两个零点为x1,x2且x1<x2,由x2−a2x−4=0,得x1=a2−√a24+162,x2=a2+√a24+162,∴f(x)={a2x+4,x<x12x2−a2x−4,x1≤x≤x2a 2x+4,x>x2,①当a≤0时,f(x)在(−∞,x1)上单调递减或为常函数,从而f(x)在(−∞,−2)不可能单调递增,故a>0;②当a>0时,g(−2)=a>0,故x1>−2,则−2<x1<0,∵f(x)在(−∞,x1)上单调递增,∴f(x)在(−∞,−2)上也单调递增,g(√3)=−√32a −1<0,√3<x 2, 由f(x)在[a 8,x 2]和(x 2,+∞)上都单调递增,且函数的图象是连续的,∴f(x)在[a 8,+∞)上单调递增,欲使f(x)在(√3,+∞)上单调递增,只需a 8≤√3,得a ≤8√3,综上:实数a 的范围是0<a ≤8√3.故选:D.小提示:关键点点睛:先研究绝对值部分的零点,进而写出f(x)的分段函数表达式,再讨论参数a ,根据函数性质及已知区间单调性求参数的范围.2、对于函数f (x )=x|x|+x +1,下列结论中正确的是( )A .f (x )为奇函数B .f (x )在定义域上是单调递减函数C .f (x )的图象关于点(0,1)对称D .f (x )在区间(0,+∞)上存在零点答案:C解析:把f (x )=x|x|+x +1转化为分段函数f (x )={−x 2+x +1,x ⩽0x 2+x +1,x >0 ,画出图像,即可得解.如图,f(x)={−x 2+x+1,x⩽0x2+x+1,x>0由图象可知,图象关于点(0,1)对称,因此不是奇函数,在定义域内函数为增函数,在(−∞,0)上有零点,故选:C.小提示:本题考查了利用函数解析式求函数相关性质,考查了分类讨论思想和数形结合思想,本题主要是数形结合,根据函数图像,直观的看出函数相关性质,属于简单题.3、若f(x)=|sinx|⋅e|x|,x,y∈[−π2,π2]且f(x)>f(y),则下列不等式一定成立的是()A.|x|>|y|B.|x|<|y| C.x<y D.x>y答案:A解析:利用奇偶性定义可证f(x)在x∈[−π2,π2]上是偶函数,应用导数研究f(x)在x∈(0,π2]上的单调性,进而可得x∈[−π2,0)上的单调性,根据题设条件即可得结论.∵f(−x)=|sin(−x)|⋅e|(−x)|=|sinx|⋅e|x|=f(x),∴在x∈[−π2,π2]上f(x)是偶函数.当x∈(0,π2]时,f(x)=e x sinx,则f′(x)=e x(sinx+cosx)>0,故f(x)单调递增;∴当x∈[−π2,0)时,f(x)单调递减;由x,y∈[−π2,π2]且f(x)>f(y),则必有|x|>|y|.故选:A填空题4、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:① f(π)=0;② π是函数f(x)的周期;③ 函数f(x)在区间(−1,1)上单调递增;④ 函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:① ③ ④解析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断① ;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断② ;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③ ;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于② :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f(2π+x)=−f(x+π)=f(x),所以函数f(x)的周期为2π,故② 不正确;对于③ :当0<x<1时,y=sinx单调递增,且y=sinx>0,y=x2−πx+π=(x−π2)2+π−π24在0<x<1单调递减,且y>1−π+π=1,所以f(x)=sinxx2−πx+π在0<x<1单调递增,因为f(x)是奇函数,所以函数f(x)在区间(−1,1)上单调递增;故③ 正确;对于④ :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,作出示意图函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和即为函数y=f(x)与y=sin1两个函数图象交点的横坐标之和,当x∈[−π2,3π2]时,两图象交点关于x=π2对称,此时两根之和等于π,当x∈(3π2,10]时两图象交点关于x=5π2对称,此时两根之和等于5π,当x∈[−5π2,−π2)时两图象交点关于x=−3π2对称,此时两根之和等于−3π,x∈[−10,−5π2)时两图象无交点,所以函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π.故④ 正确;所以答案是:① ③ ④小提示:求函数零点的方法:画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数,ℎ(x)和g(x)的形式,根据f(x)=0⇔ℎ(x)=g(x),则函数f(x)的零点个数就是函数y=ℎ(x)和y=g(x)的图象交点个数;零点之和即为两个函数图象交点的横坐标之和.5、已知定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为__________.答案:(0,12)∪(2,+∞)解析:根据函数奇偶性,以及已知区间的单调性,先确定f(x)在(0,+∞)上单调递增,将所求不等式化为log2x>1或log2x<−1,求解,即可得出结果.因为定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,所以f(x)在(0,+∞)上单调递增,且f(−1)=f(1)=2,因此不等式f(log2x)>2可化为f(log2x)>f(1),,所以log2x>1或log2x<−1,解得x>2或0<x<12)∪(2,+∞).即不等式f(log2x)>2的解集为(0,12)∪(2,+∞).所以答案是:(0,12。
高一经典函数练习题及完美解析
高一经典函数练习题及完美解析函数练习1 函数(一)1.下列各组函数中,表示相同函数的是 ( )A f(x)=x 与 g(x)=xx 2B f(x)=|x| 与 g(x)=2xC f(x)=12-x 与g(x)=1-x • 1+xD f(x)=x 0与g(x)=1 1. 函数y=x--113的定义域为 ( )A (-∞,1]B (-∞,0) (0,1]C (-∞,0) (0,1)D [1,+ ∞)2. 下列函数中值域是R +的是 ( )A y=2x+1 (x>0)B y=x 2C y=112-x D y=x2 3. 函数y=22++-x x 的定义域为__________,值域为_____________.4. 已知f(x)=x 2+1,则f[f(-1)]=______________________ 5. 求下列函数的定义域;(1)y=x111+; (2)y=xx x -+||)1(07.用可围成32m 墙的砖头,沿一面旧墙围猪舍四间(其平面图为連成一排大小相同的四个长方形,如图),应怎样围,才能使猪舍的总面积最大?最大面积是多少?函数练习2 函数(二)1. 下面四个函数:(1)y=1-x (2) y=2x-1 (3) y=x 2-1 (4) y=x5,其中定义域与值域相同的函数有 ( )A 1个B 2个C 3个D 4个2. 下列图象能作为函数图象的是 ( )A B C D 3. (1)数集{x|4≤x<16}用区间表示为_________;(2)数集{x||x|≤3}用区间表示为_______;(3)数集{x|x ∈R ,且x ≠0}用区间表示为_______;4. 已知f(x)=⎪⎩⎪⎨⎧--3210x )0()0()0(<=>x x x ,求f{f[f(5)]}的值。
5. 已知f(x)的定义域为(0,1)求f(x 2)的定义域 6.若2f(x)+f(-x)=3x+1,求f(x)的解析式。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学必修1函数试题及答案-精选版
高一必修1函数测试一、选择题:1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为||)(x x x f y x ==→,其中{},)(|,,x f y y P B y A x ==∈∈则=⋂)(P C B U _________________。
2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+xx 的根,则21x x +值为______________。
3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(xx f =则当2-<x 时=)(x f ________________。
4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则方程()0f x =在[1,4]上的根是x =5、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A 、0 B 、1 C 、2 D 、36、从甲城市到乙城市m 分钟的电话费由函数)47][43(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。
7、函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞-B 、]0,(-∞C 、)23,(--∞ D 、]0,2(- 9、若2)5(12-=-x f x ,则=)125(f __________10、已知映射B A f →:,其中A =B =R ,对应法则为32:2++=→x x y x f 若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________. 12、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。
必修一函数经典例题
例4.已知log 4log 4m n <,比较m ,n 的大小。
解:∵log 4log 4m n <, ∴4411log log m n<,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <,∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域:(1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令23t x =-,则03t <≤,∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥,当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6.判断函数2()log )f x x =的奇偶性。
x >恒成立,故()f x 的定义域为(,)-∞+∞,2()log )f x x -=2log =-2log =-2log ()x f x =-=-,所以,()f x 为奇函数。
(完整版)高一函数大题训练含答案解析
(完整版)高一函数大题训练含答案解析一、解答题1.已知函数()f x 满足()()22f x f x +=,当()0,2x ∈时,()1ln 2f x x ax a ⎛⎫=+<- ⎪⎝⎭,当()4,2x ∈--时,()f x 的最大值为-4. (1)求()0,2x ∈时函数()f x 的解析式;(2)是否存在实数b 使得不等式()x bx f x x->+对于()()0,11,2x ∈时恒成立,若存在,求出实数b 的取值集合,若不存在,说明理由. 2.已知偶函数满足:当时,,当时,.(1)求当时,的表达式; (2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.3.已知函数()ln ()f x x ax a R =-∈有两个不同的零点. (1)求a 的取值范围;(2)记两个零点分别为12,x x ,且12x x <,已知0λ>,若不等式121ln ln x x λλ+<+恒成立,求λ的取值范围.4.若定义在R 上的函数()y f x =满足:对于任意实数x 、y ,总有()()()()2f x y f x y f x f y ++-=恒成立.我们称()f x 为“类余弦型”函数.(1)已知()f x 为“类余弦型”函数,且()514f =,求()0f 和()2f 的值.(2)在(1)的条件下,定义数列()()()211,2,3,...n a f n f n n =+-=求20182019122222log log ...log log 3333a a a a+++的值. (3)若()f x 为“类余弦型”函数,且对于任意非零实数t ,总有()1f t >,证明:函数()f x 为偶函数;设有理数1x ,2x 满足12x x <,判断()1f x 和()2f x 的大小关系,并证明你的结论.5.若函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,则称函数()f x 具有性质P .(1)判断下面两个函数是否具有性质P ,并说明理由.①()1xy a a =>;②3y x =. (2)若函数()f x 具有性质P ,且()()()*002,N f f n n n >∈==,求证:对任意{}1,2,3,,1i n ∈-有()0f i ≤;(3)在(2)的条件下,是否对任意[]0,x n ∈均有()0f i ≤.若成立给出证明,若不成立给出反例.6.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 7.对于函数()f x ,若存在实数m ,使得()()f x m f m +-为R 上的奇函数,则称()f x 是位差值为m 的“位差奇函数”.(1)判断函数()21f x x =+和2()g x x =是否是位差奇函数,并说明理由; (2)若()sin()f x x ϕ=+是位差值为3π的位差奇函数,求ϕ的值; (3)若对于任意[1,)m ∈+∞,()22x x f x t -=-⋅都不是位差值为m 的位差奇函数,求实数t 的取值范围.8.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.9.定义:若存在常数k ,使得对定义域D 内的任意两个不同的实数12,x x ,均有:1212()()f x f x k x x -≤-成立,则称()f x 在D 上满足利普希茨(Lipschitz)条件.(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k 的值,并加以验证; (2)若函数()1f x x =+在[0,)+∞上满足利普希茨(Lipschitz)条件,求常数k 的最小值; (3)现有函数()sin f x x =,请找出所有的一次函数()g x ,使得下列条件同时成立: ①函数()g x 满足利普希茨(Lipschitz)条件;②方程()0g x =的根也是方程()0f x =的根,且()()()()g f t f g t =; ③方程(())(())f g x g f x =在区间[0,2)π上有且仅有一解. 10.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况. 11.已知函数()y f x =的定义域D ,值域为A .(1)下列哪个函数满足值域为R ,且单调递增?(不必说明理由)①()1tan[()],(0,1)2f x x x π=-∈,②()1lg(1),(0,1)g x x x =-∈.(2)已知12()log (21),()sin 2,f x x g x x =+=函数[()]f g x 的值域[1,0]A =-,试求出满足条件的函数[()]f g x 一个定义域D ;(3)若D A ==R ,且对任意的,x y R ∈,有()()()f x y f x f y -=-,证明:()()()f x y f x f y +=+.12.已知定义在R 上的偶函数()f x 和奇函数()g x ,且()()xf xg x e +=.(1)求函数()f x ,()g x 的解析式;(2)设函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭,记()1231n H n F F F F n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()*,2n N n ∈≥.探究是否存在正整数()2n n ≥,使得对任意的(]0,1x ∈,不等式()()()2g x H n g x >⋅恒成立?若存在,求出所有满足条件的正整数n 的值;若不存在,请说明理由.13.已知函数()f x ,对任意a ,b R ∈恒有()()()f a b f a f b 1+=+-,且当x 0>时,有()f x 1>.(Ⅰ)求()f 0;(Ⅱ)求证:()f x 在R 上为增函数;(Ⅲ)若关于x 的不等式(()222f[2log x)4f 4t 2log x 2⎤-+-<⎦对于任意11x ,82⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.14.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.15.已知函数()21log 21mx f x x x +⎛⎫=- ⎪-⎝⎭()m 为常数是奇函数. (1)判断函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上的单调性,并用定义法证明你的结论;(2)若对于区间[]2,5上的任意值,使得不等式()2xf x n ≤+恒成立,求实数的取值范围.【参考答案】一、解答题1.(1)f (x )=lnx -x ;(2){1} 【解析】 【详解】试题分析:(1)由已知得:f (x )=2f (x +2)=4f (x +4),设x ∈(-4,-2)时,则x +4∈(0,2),代入x ∈(0,2)时,f (x )=lnx +ax (a <−12),求出f (x +4)=ln (x +4)+a (x +4),再根据当x ∈(-4,-2)时,f (x )的最大值为-4,利用导数求得它的最大值,解方程即可求得a 的值,进而求得结论; (2)假设存在实数b使得不等式()x bf x x->+对于x ∈(0,1)∪(1,2)时恒成立,由(1)可得:x ∈(0,1)∪(1,2)时,不等式()x bf x x->+恒成立,利用分离参数的方法,转化为求函数的最值问题,即可求得b 的值. 试题解析:(1)由已知,f (x )=2f (x +2)=4f (x +4) 当x ∈(0,2)时,f (x )=lnx +ax (a <-12) 当x ∈(-4,-2)时,x +4∈(0,2), ∴f (x +4)=ln (x +4)+a (x +4)∴当x ∈(-4,-2)时,f (x )=4f (x +4)=4ln (x +4)+4a (x +4)∴f '(x )=44x ++4a =4a•144x a x +++, ∵a <−12,∴−4<−1a−4<−2,∴当x ∈(−4, −1a−4)时,f′(x )>0,f (x )为增函数, 当x ∈(−1a−4,−2)时,f′(x )<0,f (x )为减函数, ∴f (x )max =f (−1a−4)=4ln (−1a)+4a (−1a)=−4,∴a =-1 ∴当x ∈(0,2)时,f (x )=lnx -x(2)由(1)可得:x ∈(0,1)∪(1,2)时,不等式()x bf x x->+即为ln x bx-> ①当x ∈(0,1)时,ln x bx- ⇒b >,令g (x )=,x ∈(0,1) 则g′(x )=令h (x )=,则当x ∈(0,1)时,h′(x )=11x x -=1x x-<0 ∴h (x )>h (1)=0,∴g ′(x )=()2h x x>0, ∴g (x )<g (1)=1,故此时只需b≥1即可; ②当x ∈(1,2)时,ln x bx x-> ⇒b <x−x lnx ,令φ(x )=x−x lnx ,x ∈(1,2)则φ′(x )=1−ln 12x x x -=2ln 12x x x -- 令h (x )=2x −lnx−2, 则当x ∈(1,2)时,h′(x )=11x x -=1x x->0 ∴h (x )>h (1)=0,∴φ′(x )=()2h x x>0, ∴φ(x )>φ(1)=1,故此时只需b≤1即可, 综上所述:b =1,因此满足题中b 的取值集合为:{1}考点:利用导数研究函数的单调性,最值,函数的周期性,不等式恒成立问题,分类讨论.2.(1)()()(2)f x x a x =+--;(2)①23a <+时,34m =;②4a =时,1m =;③10473a +>时,23201216a a m -+=. 【解析】 【详解】(1)因为f(x)为偶函数,只需用-x 代替中的x 即可得到当时,的表达式; (2)零点,与交点有4个且均匀分布.所以,然后再分或24a <<或或四种情况讨论求出m 的值.解:(1)设则,又偶函数所以, ………………………3分 (2)零点,与交点有4个且均匀分布(Ⅰ)时, 得,所以时, …………………………5分 (Ⅱ)24a <<且时 , ,所以 时,……………………………7分(Ⅲ)时m=1时 符合题意………………… ……8分(IV )时,,,m此时所以 (舍) 且时,时存在 ………10分综上: ①时,②时,③时,符合题意 ………12分3.(1)10a e<<(2)1λ≥ 【解析】 【详解】试题分析:(Ⅰ)方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点,对()g x 进行求导,通过单调性画出()g x 的草图,由()g x 与y a =有两个交点进而得出a 的取值范围; (Ⅱ)分离参数得:121a x x λλ+>+,从而可得()1122lnx a x x x =-恒成立;再令()12,0,1x t t x =∈,从而可得不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立,再令()()()11ln t h t t t λλ+-=-+,从而利用导数化恒成立问题为最值问题即可.试题解析:(I )依题意,函数()f x 的定义域为()0,+∞, 所以方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点.又()21ln xg x x-'=,即当0x e <<时,()0g x '>;当x e >时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减. 从而()()max 1g x g e e==. 又()g x 有且只有一个零点是1,且在0x →时,()g x →∞,在x →+∞时,()0g x →, 所以()g x 的草图如下:可见,要想函数()ln x g x x =与函数y a =在图像()0,+∞上有两个不同交点,只需10a e<<. (Ⅱ)由(I )可知12,x x 分别为方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =, 所以原式等价于()12121ax ax a x x λλλ+<+=+. 因为0λ>,120x x <<,所以原式等价于121a x x λλ+>+. 又由11ln x ax =,22ln x ax =作差得,()1122ln x a x x x =-,即1212ln xx a x x =-. 所以原式等价于121212ln1x x x x x x λλ+>-+. 因为120x x <<,原式恒成立,即()()1212121ln x x x x x x λλ+-<+恒成立. 令()12,0,1x t t x =∈,则不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立. 令()()()11ln t h t t t λλ+-=-+,则()()()()()()222111t t h t t t t t λλλλ--+=-=++', 当21λ≥时,可见()0,1t ∈时,()0h t '>,所以()h t 在()0,1t ∈上单调递增,又()()10,0h h t =<在()0,1t ∈恒成立,符合题意;当21λ<时,可见当()20,t λ∈时,()0h t '>;当()2,1t λ∈时,()0h t '<, 所以()h t 在()20,t λ∈时单调递增,在()2,1t λ∈时单调递减.又()10h =,所以()h t 在()0,1t ∈上不能恒小于0,不符合题意,舍去.综上所述,若不等式121ln ln x x λλ+<+恒成立,只须21λ≥,又0λ>,所以1λ≥. 【点睛】本题考查了利用导数研究函数的极值,单调性,不等式恒成立问题,考查分类讨论思想,转化思想,考查学生灵活运用所学知识分析解决问题的能力,本题综合性较强,能力要求较高,属于难题,其中(2)问中对两根12,x x 的处理方法非常经典,将两个参数合并成一个参数t ,然后再构造函数,利用导函数进行分类讨论求解.4.(1)()01f =;()1728f =;(2)2037171;(3)证明见解析,()()12f x f x <. 【解析】 【分析】(1)先令1x =,0y =,解出()0f ,然后再令1x y ==解出()2f ;(2)由题意可以推出{}n a 是以3为首项,公比为2的等比数列,然后得出数列{}n a 的通项公式,再利用对数的运算法则求20182019122222log log ...log log 3333a a a a+++的值; (3)先令1x =,0y =得出()01f =,然后令0x =,得()()f y f y =-可证明()f x 为偶函数;由0t ≠时,()1f t >,则()()()()()22f x y f x y f x f y f y ++-=>,即()()()()f x y f y f y f x y +-=--,令y kx =(k 为正整数),有()()()()11f k x f kx f kx f k x +->--⎡⎤⎡⎤⎣⎦⎣⎦,由此可递推得到对于任意k 为正整数,总有()()1f k x f kx +>⎡⎤⎣⎦成立,即有n m <时,()()f nx f mx <成立,可设12112q p x p p =,12212p q x p p =,其中12,q q 是非负整数,12,p p 都是正整数,再由偶函数的结论和前面的结论即可得到大小. 【详解】解:(1)令1x =,0y =,得()()()21210f f f =⋅,∴()01f =; 再令1x y ==,得()()()()21120f f f f =+,∴()25218f =+,∴()1728f =. (2)由题意可知,()()1175221344a f f =-=-= 令1x n =+,1y =,得()()()()2112f n f f n f n +=++, ∴()()()5212f n f n f n +=+- ∴()()()()()()()152212114122n a f n f n f n f n f n f n f n +⎡⎤=+-+=+--+=+-⎢⎥⎣⎦()()()22121n f n f n a n =+-=≥⎡⎤⎣⎦.∴{}n a 是以3为首项,以2为公比的等比数列.因此132n n a -=⋅,故有2log 13na n =- 所以20182019122222log log ...log log 3333a a a a++++ 12...20172018100920192037171=++++=⋅=(3)令1x =,0y =,()()()()20111f f f f =+,又∵()11>f ,∴()01f = 令0x =,()()()()20f f y f y f y =+-,∴()()()()0f f y f y f y =+-, 即()()()2f y f y f y =+-.∴()()f y f y =-对任意的实数y 总成立, ∴()f x 为偶函数. 结论:()()12f x f x <.证明:设0y ≠,∵0y ≠时,()1f y >,∴()()()()()22f x y f x y f x f y f x ++-=>,即()()()()f x y f x f x f x y +->--.∴令()*x ky k N =∈,故*k N ∀∈,总有()()()()11f k y f ky f ky f k y +->--⎡⎤⎡⎤⎣⎦⎣⎦成立.()()()()()()()()1112...00f k y f ky f ky f k y f k y f k y f y f +->-->--->>->⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦∴对于*k N ∈,总有()()1f k y f ky +>⎡⎤⎣⎦成立.∴对于*,m n ∈N ,若n m <,则有()()...f ny f my <<成立. ∵12,x x Q ∈,所以可设111q x p =,222q x p =,其中1q ,2q 是非负整数,1p ,2p 都是正整数, 则12112q p x p p =,12212p q x p p =,令121y p p =,12t q p =,12s p q =,则*,t s N ∈. ∵12x x <,∴t s <,∴()()f ty f sy <,即()()12f x f x <.∵函数()f x 为偶函数,∴()()11f x f x =,()()22f x f x =.∴()()12f x f x <. 【点睛】本题考查新定义函数问题,考查学生获取新知识、应用新知识的能力,考查函数的基本性质在解题中的应用,属于难题.5.(1)①()1xy a a =>具有性质P ;②3y x =不具有性质P ,见解析;(2)见解析(3)不成立,见解析 【解析】 【分析】(1)①根据已知中函数的解析式,结合指数的运算性质,计算出()()()112f x f x f x -++-的表达式,进而根据基本不等式,判断其符号即可得到结论;②由3y x =,举出当1x =-时,不满足()()()112f x f x f x -++≥,即可得到结论; (2)由于本题是任意性的证明,从下面证明比较困难,故可以采用反证法进行证明,即假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真;(3)由(2)中的结论,我们可以举出反例,如()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数,证明对任意[]0,x n ∈均有()0f x ≤不成立.【详解】证明:(1)①函数()()1xf x a a =>具有性质P ,()()()11111222x x x x f x f x f x a a a a a a -+⎛⎫-++-=+-=+- ⎪⎝⎭,因为1a >,120x a a a ⎛⎫+-> ⎪⎝⎭,即()()()112f x f x f x -++≥, 此函数为具有性质P ;②函数()3f x x =不具有性质P ,例如,当1x =-时,()()()()11208f x f x f f -++=-+=-,()22f x =-,所以,()()()201f f f -+<-, 此函数不具有性质P . (2)假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,则()()10f i f i -->, 因为函数()f x 具有性质P , 所以,对于任意*n ∈N ,均有()()()()11f n f n f n f n +-≥--, 所以()()()()()()11210f n f n f n f n f i f i --≥---≥≥-->,所以()()()()()()110f n f n f n f i f i f i =--+++-+>⎡⎤⎡⎤⎣⎦⎣⎦,与()0f n =矛盾, 所以,对任意的{}1,2,3,,1i n ∈-有()0f i ≤.(3)不成立.例如,()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数证明:当x 为有理数时,1x -,1x +均为有理数,()()()112f x f x f x -++-()()()2221121122x x x n x x x =-++---++-=,当x 为无理数时,1x -,1x +均为无理数,()()()()()2221121122f x f x f x x x x -++-=-++-=所以,函数()f x 对任意的x ∈R , 均有()()()112f x f x f x -++≥, 即函数()f x 具有性质P .而当[]()0,2x n n ∈>且当x 为无理数时,()0f x >. 所以,在(2)的条件下,“对任意[]0,x n ∈均有()0f x ≤”不成立. 如()()()01x f x x ⎧⎪=⎨⎪⎩为有理数为无理数,()()()01x f x x ⎧⎪=⎨⎪⎩为整数为非整数,()()()2x f x xx ⎧⎪=⎨⎪⎩为整数为非整数等.【点睛】本题考查了函数的新定义及其应用,涉及指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法. 6.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭,从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 7.(1) 对于任意m 有()21f x x =+为位差奇函数, 不存在m 有2()g x x =为位差奇函数.(2),3k k Z πϕπ=-∈;(3) (),4t ∈-∞【解析】 【分析】(1)根据题意计算()()f x m f m +-与()()g x m g m +-,判断为奇函数的条件即可. (2)根据()sin()f x x ϕ=+是位差值为3π的位差奇函数可得()()33f x f ππ+-为R 上的奇函数计算ϕ的值即可.(3)计算()()f x m f m +-为奇函数时满足的关系,再根据对于任意[1,)m ∈+∞()22x x f x t -=-⋅都不是位差值为m 的位差奇函数求解恒不成立问题即可. 【详解】(1)由()21f x x =+,所以()()2()1(21)2f x m f m x m m x +-=++-+=为奇函数. 故对于任意m 有()21f x x =+为位差奇函数.又2()g x x =,设222()()()()2G x g x m g m x m m x mx =+-=+-=+.此时()22()22G x x mx x mx -=--=-,若()G x 为奇函数则22220x mx x mx -++=恒成立.与假设矛盾,故不存在m 有2()g x x =为位差奇函数. (2) 由()sin()f x x ϕ=+是位差值为3π的位差奇函数可得,()()33f x f ππ+-为R 上的奇函数.即()()sin()sin()3333f x f x ππππϕϕ+-=++-+为奇函数.即3k πϕπ+=,,3k k Z πϕπ=-∈.(3)设()()22()()()(222)12122x m mm m m x x x m h t x f t m t f x m ----+-=+-=--⋅-⋅⋅=--- .由题意()()0h x h x +-=对任意的[1,)m ∈+∞均不恒成立.此时()()()()22222222()()11110m x m x xm x m h x t h x t ----+-=--⋅-⋅-+--= 即()()222221112122m x x xx m m m t t -----+-=-+=⋅-⇒⋅对任意的[1,)m ∈+∞不恒成立.故22m t =在[1,)m ∈+∞无解.又22224m ≥=,故4t <. 故(),4t ∈-∞ 【点睛】本题主要考查了函数的新定义问题,需要根据题意求所给的位差函数的表达式分析即可.属于中等题型.8.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.9.(1)()f x x =,2k =,见解析;(2)min 12k =(3)11(),[,0)(0,]22g x kx k =∈-⋃ 【解析】 【分析】(1)令()f x x =,可以满足题意,一次函数和常值函数都可以满足; (2)根据定义化简1212()()f x f x x x --12<,得出k 的最小值;(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根,推得0b =,若k 符合题意,则k -也符合题意,可以只考虑0k >的情形,分①若1k,②若112k <<,分别验证是否满足题意,可得k 的范围. 【详解】(1)例如令()f x x =,由12122x x x x -≤-知可取2k =满足题意(任何一次函数或常值函数等均可). (2)()f x =[0,)+∞为增函数∴对任意12,x x R ∈有1212()()f x f x x x --12==<(当120,0x x =→时取到)所以min 12k =(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根()0bg t t k∴=⇒=-, 又(())(())(0)(0)0()f g t g f t f g b g x kx =∴=∴=∴=若k 符合题意,则k -也符合题意,故以下仅考虑0k >的情形. 设()(())(())sin sin h x f g x g f x kx k x =-=- ①若1k,则由sin sin 0h k kk πππ⎛⎫=-<⎪⎝⎭且3333sin sin sin 02222k k h k k ππππ⎛⎫=-=+≥⎪⎝⎭所以,在3,2k ππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.②若112k <<,则由[]sin sin 0,2h k h k k ππππ⎛⎫=-≥⎪⎝⎭sin 2sin 20k k ππ=-< 所以,在,2kππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.102k ∴<≤以下证明,对任意1(0,],()2k g x kx ∈=符合题意.当(0,]2x π∈时,由sin y x =图象在连接两点()(0,0),,sin x x 的线段的上方知sin sin kx k x >()0h x ∴>当(,]22x kππ∈时,sin sinsin sin ()022k kx k k x h x ππ>≥≥∴> 当,22x k ππ⎛⎫∈⎪⎝⎭时,sin 0,sin 0,()0kx x h x >∴ 综上:()0h x =有且仅有一个解0x =,()g x kx ∴=在1(0,]2k ∈满足题意. 综上所述:11(),[,0)(0,]22g x kx k =∈-⋃, 故得解. 【点睛】本题考查运用所学的函数知识解决新定义等相关问题,关键在于运用所学的函数知识,紧紧抓住定义,构造所需要达到的定义式,此类题目综合性强,属于难度题.10.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b(2)令()()110y f x g x bx x a x a=-=+-=-+ ()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a =-的解的个数即可 ①当0b =时,222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点②当0b >时 ,2220x a b =+> x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a=-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题. 11.(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)由正切函数与对数函数的性质可直接判断;(2)由()()[]12log 2sin211,0f g x x ⎡⎤=+∈-⎣⎦,得[]2sin211,2x +∈,进而利用正弦函数的性质列式求解即可;(3)利用反证法,假设存在,a b 使得()()()f a b f a f b +≠+,结合条件推出矛盾即可证得. 【详解】(1)()()1tan ,0,12f x x x π⎡⎤⎛⎫=-∈ ⎪⎢⎥⎝⎭⎣⎦满足.()()1lg 1,0,1g x x x ⎛⎫=-∈ ⎪⎝⎭不满足.(2)因为()()[]12log 2sin211,0f g x x ⎡⎤=+∈-⎣⎦,所以[]2sin211,2,x +∈ 即1sin20,2x ⎡⎤∈⎢⎥⎣⎦,所以][522,22,2,.66x k k k k k Z πππππππ⎡⎤∈+⋃++∈⎢⎥⎣⎦所以][5,,,,12122x k k k k k Z πππππππ⎡⎤∈+⋃++∈⎢⎥⎣⎦ 满足条件的0,12D π⎡⎤=⎢⎥⎣⎦(答案不唯一).(3)假设存在,a b 使得()()()f a b f a f b +≠+ 又有()()()()()(),f a f a b f b f b f a b f a =+-=+-, 所以()()()()()(),f a f a b f b f b f a b f a -=+--=+-,结合两式:()()(),0f a f b f a b =+=,所以()()()0f b f a f a b --=+=, 故()()()f a f b f a -==.由于()()()f a b f a f b +≠+知:()0f a ≠.又()()12222a a a f f a f f f a ⎛⎫⎛⎫⎛⎫=-⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 类似地,由于()0f a -≠,()22a a f f a f ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭得()()11222a f f a f a ⎛⎫-=-= ⎪⎝⎭.所以()022a a f a f f ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,与()0f a ≠矛盾,所以原命题成立. 【点睛】本题主要考查了复合函数的性质及反证法的证明,属于难题. 12.(1)见解析;(2)2,3n = 【解析】 【分析】(1)已知()()x f x g x e +=,结合函数的奇偶性可得()()xf xg x e --=,解方程组即可得函数解析式;(2)由函数奇偶性的性质可知()()g x f x 为奇函数,图象关于()0,0对称,则()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称,利用对称性可得()H n ,然后利用恒成立问题解()()()2g x H n g x >⋅即可. 【详解】 (1)()()x f x g x e +=,()()x f x g x e --+-=函数()f x 为偶函数,()g x 为奇函数, ∴ ()()x f x g x e --=,()2x x e e f x -+∴=,()2x xe e g x --=. (2)易知()()g x f x 为奇函数,其函数图象关于()0,0中心对称,∴函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称, 即对任意的x R ∈,()()12F x F x -+=成立. ()12H n F F n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,()12n n H n F F n n --⎛⎫⎛⎫∴=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭.两式相加,得()112n H n F F n n ⎡⎤-⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2233n n F F F F n n n n ⎡⎤⎡⎤--⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 11n F F n n ⎡⎤-⎛⎫⎛⎫+⋅⋅⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 即()()221H n n =-.()1H n n ∴=-.()()()2g x H n g x ∴>⋅,即()()221x x x x e e n e e --->--.()()()10x x x xe e e e n --⎡⎤∴-+-->⎣⎦.(]0,1x ∈,0x x e e -∴-> 1x x e e n -∴++>恒成立.令x t e =,(]1,t e ∈.则11y t t=++在(]1,e 上单调递增.1x x y e e -∴=++在(]0,1上单调递增.3n ∴≤.又已知2n ≥,2,3n ∴=. 【点睛】本题考查由函数奇偶性求函数解析式,考查由函数的对称性求值问题,考查恒成立问题的解法,属于中档题.13.(Ⅰ)()f 01=; (Ⅱ)见解析; (Ⅲ)t 5<-. 【解析】 【分析】(Ⅰ)根据题意,由特殊值法分析:令a b 0==,则()()f 02f 01=-,变形可得()f 0的值, (Ⅱ)任取1x ,2x R ∈,且设12x x <,则21x x 0->,结合()()()f a b f a f b 1+=+-,分析可得()()21f x f x >,结合函数的单调性分析可得答案;(Ⅲ)根据题意,原不等式可以变形为(()222f[2log x)2log x 4t 4f 0⎤-+-<⎦,结合函数的单调性可得2222(log x)2log x 4t 40-+-<,令2m log x =,则原问题转化为22m 2m 4t 40-+-<在[]m 3,1∈--上恒成立,即24t 2m 2m 4<-++对任意[]m 3,1∈--恒成立,结合二次函数的性质分析可得答案. 【详解】(Ⅰ)根据题意,在()()()f a b f a f b 1+=+-中,令a b 0==,则()()f 02f 01=-,则有()f 01=;(Ⅱ)证明:任取1x ,2x R ∈,且设12x x <,则21x x 0->,()21f x x 1->,又由()()()f a b f a f b 1+=+-,则()()()()()()221121111f x f x x x f x x f x 11f x 1f x ⎡⎤=-+=-+->+-=⎣⎦, 则有()()21f x f x >, 故()f x 在R 上为增函数.(Ⅲ)根据题意,][(222f[2log x)4f 4t 2log x 2⎤-+-<⎦,即][(222f[2log x)4f 4t 2log x 11⎤-+--<⎦,则(222f[2log x)2log x 4t 41⎤-+-<⎦, 又由()f 01=,则(()222f[2log x)2log x 4t 4f 0⎤-+-<⎦,又由()f x 在R 上为增函数,则2222(log x)2log x 4t 40-+-<,令2m log x =,11x ,82⎡⎤∈⎢⎥⎣⎦,则3m 1-≤≤-,则原问题转化为22m 2m 4t 40-+-<在[]m 3,1∈--上恒成立, 即24t 2m 2m 4<-++对任意[]m 3,1∈--恒成立, 令2y 2m 2m 4=-++,只需4t y <最小值,而2219y 2m 2m 42(m )22=-++=--+,[]m 3,1∈--,当m 3=-时,y 20=-最小值,则4t 20<-. 故t 的取值范围是t 5<-. 【点睛】本题考查函数的恒成立问题,涉及抽象函数的单调性以及求值,其中解答中合理利用函数的单调性和合理完成恒成立问题的转化是解答的关键,同时注意特殊值法的应用,着重考查了转化思想,以及分析问题和解答问题的能力,属于中档试题.14.(1)函数()sin()3f x x π=+是“M 类函数”;(2)54-;(3)[1,1)-.【解析】 【详解】试题分析:(1) 由()()f x f x -=-,得sin()sin()33x x ππ-+=-+整理可得02x R π=∈满足00()()f x f x -=-(2) 由题存在实数0[1,1]x ∈-满足00()()f x f x -=-,即方程2220x x m -++=在[1,1]-上有解.令12[,2]2xt =∈分离参数可得11()2m t t =-+,设11()()2g t t t =-+求值域,可得m 取最小值54-(3) 由题即存在实数0x ,满足00()()f x f x -=-,分02x ≥,022x -<<,02x ≤-三种情况讨论可得实数m 的取值范围.试题解析:(1)由()()f x f x -=-,得:sin()sin()33x x ππ-+=-+0x = 所以存在02x R π=∈满足00()()f x f x -=-所以函数()sin()3f x x π=+是“M 类函数”,(2)因为()2x f x m =+是定义在[1,1]-上的“M 类函数”, 所以存在实数0[1,1]x ∈-满足00()()f x f x -=-, 即方程2220x x m -++=在[1,1]-上有解. 令12[,2]2xt =∈则11()2m t t =-+,因为11()()2g t t t =-+在1[,1]2上递增,在[1,2]上递减所以当12t =或2t =时,m 取最小值54-(3)由220x mx ->对2x ≥恒成立,得1m <因为若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”所以存在实数0x ,满足00()()f x f x -=-①当02x ≥时,02x -≤-,所以22003log (2)x mx -=--,所以00142m x x =- 因为函数142y x x=-(2x ≥)是增函数,所以1m ≥- ②当022x -<<时,022x -<-<,所以33-=,矛盾③当02x ≤-时,02x -≥,所以2200log (2)3x mx +=,所以00142m x x =-+ 因为函数142y x x=-+(2)x ≤-是减函数,所以1m ≥- 综上所述,实数m 的取值范围是[1,1)-点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.15.(1)()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数;证明见解析 (2)25 log 63n ≥- 【解析】【详解】试题分析:(1)利用奇偶性,确定函数的解析式,然后利用函数单调性的定义,判断函数的单调性;(2)利用函数的单调性,结合不等式恒成立问题,求解参数的取值范围.试题解析:(1)由条件可得()()0f x f x -+=,即 2211log log 02121mx mx x x -+⎛⎫⎛⎫+= ⎪ ⎪---⎝⎭⎝⎭化简得222114m x x -=-,从而得2m =±;由题意2m =-舍去,所以2m =即()212log 21x f x x x +⎛⎫=- ⎪-⎝⎭, ()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数, 证明如下:设1212x x <<<+∞, 则()()12f x f x -=122122121212log log 2121x x x x x x ⎛⎫⎛⎫++--+ ⎪ ⎪--⎝⎭⎝⎭因为1212x x <<<+∞,所以210x x ->,12210,210x x ->->; 所以可得1212122112112x x x x +-⋅>-+,所以()()120f x f x ->,即()()12f x f x >; 所以函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数,(2)设()()2x g x f x =- ,由(1)得()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, 所以()()2x g x f x =-在[]2,5上单调递减;所以()()2x g x f x =-在[]2,5上的最大值为()252log 63g n =≥-. 由题意知()n g x ≥在[]2,5上的最大值,所以25log 63n ≥-.。
高一数学函数经典练习题(含答案详细)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
必修一数学《函数的应用》经典习题(含答案解析)
必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。
(word完整版)高一数学必修一函数练习习题及答案
高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)(1)(2)(3)(4)7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一第四章指数函数与对数函数典型例题(带答案)
高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A.f(x)=x B.f(x)=|x|C.f(x)=-x2D.f(x)=2.函数f(x)=x2+的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为()A.5 B.10C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是()A.f(-1)<f(3) B.f(2)<f(3)C.f(-3)<f(5) D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=在区间[,2]上的最大值是()B.-1C.4 D.-42.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9 B.9(1-a)C.9-a D.9-a23.函数f(x)=则f(x)的最大值、最小值分别为()A.10,6 B.10,8C.8,6 D.以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为()A.90万元B.60万元C.120万元D.万元5.若一次函数y=f(x)在区间[-1,2]上的最小值为1,最大值为3,则y=f(x)的解析式为_____.6.(2011·合肥高一检测)函数y=-x2-4x+1在区间[a,b](b>a>-2)上的最大值为4,最小值为-4,则a=__________,b=________.7.画出函数f(x)=的图象,并写出函数的单调区间,函数最小值.8.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是()A.a·a=a B.a12-·a=0C.(a3)2=a9D.a÷a=a+(a-4)0有意义,则a的取值范围是()A.a≥2 B.2≤a<4或a>4C.a≠2 D.a≠4 3.(1)0-(1--2)÷()的值为()A.-4.设a-a12-=m,则=()A.m2-2 B.2-m2C.m2+2 D.m25.计算:(π)0+2-2×=________.6.若102x=25,则10-x等于________.7.根据条件进行计算:已知x=,y=,求-的值.8.计算或化简下列各式:(1)[)-]+[-(-32)-×()-2];(2).✍✍幂函数1.幂函数y=x n的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的()A.一点B.两点C.三点D.四点2.下列幂函数中过点(0,0),(1,1)的偶函数是()A.y=x B.y=x4C.y=x-2D.y=x3.如图,函数y=x的图象是()4.幂函数f(x)=xα满足x>1时f(x)>1,则α满足的条件是()A.α>1B.0<α<1C.α>0D.α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x,②y=x,③y=x-,④y=x,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和52-;(2)-878-和-();(3)(-)23-和(-)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案✍✍函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b=0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3.答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即=0,∴b=0,又f()==,∴a=1,∴f(x)=.8.解:由f(x)在R上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a2+a+1=2(a+)2+>0,2a2-2a+3=2(a-)2+>0,且f(2a2+a+1)<f(2a2-2a+3),∴2a2+a+1>2a2-2a+3,即3a-2>0,解得a>.✍✍函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C设公司在甲地销售x辆,则在乙地销售15-x辆,公司获利为L=-x2+21x+2(15-x)=-x2+19x+30=-(x-)2+30+,∴当x=9或10时,L最大为120万元.5.解析:设f(x)=ax+b,易知a≠0.当a>0时,f(x)单调递增,则有,∴,即,∴f(x)=x+;当a<0时,f(x)单调递减,则有,∴,即,∴f(x)=-x+.综上,y=f(x)的解析式为f(x)=x+或f(x)=-x+.答案:f(x)=x+或f(x)=-x+6.解析:∵y=-(x+2)2+5,∴函数图象对称轴是x=-2.故在[-2,+∞)上是减函数.又∵b>a>-2,∴y=-x2-4x+1在[a,b]上单调递减.∴f(a)=4,f(b)=-4.由f(a)=4,得-a2-4a+1=4,∴a2+4a+3=0,即(a+1)(a+3)=0.∴a=-1或a=-3(舍去),∴a=-1.由f(b)=-4,得-b2-4b+1=-4,b=1或b=-5(舍去),∴b=1.答案:-1 17.解:f(x)的图象如图所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.8.解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],当x=1时,有f(x)min=1,当x=-5时,有f(x)max=37.(2)∵函数f(x)=(x+a)2+2-a2图象的对称轴为x=-a,f(x)在区间[-5,5]上是单调函数,∴-a≤-5或-a≥5,即a≥5或a≤-5.✍✍指数与指数幂的运算1.选D a·a=a 1332+=a;a12-·a=a0=1;(a3)2=a6;a÷a=a1123-=a,故D正确.2.选B要使原式有意义,应满足得a≥2且a≠4. 3.选D原式=1-(1-4)÷=1+3×=.4.选C将a-a12-=m平方得(a-a12-)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+=m2+2?=m2+2. 5.解析:(π)0+2-2×=1+×=1+×=.答案:6.解析:由102x=25得:(10x)2=25,∴10x是25的平方根.由于10x>0,∴10x=5,∴10-x==.答案:7.解:∵-=-=,把x=,y=代入得,原式==4.8.解:(1)原式=()3××(-)×+(81+32-×100)=+9=.(2)原式==a111326---·b115236+-=.✍✍幂函数1.选A当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点.2.选B y=x不是偶函数;y=x-2不过(0,0);y=x是奇函数.3.选D幂函数y=x是偶函数,图象关于y轴对称.4.选C因为x>1时xα>1=1α,所以y=xα单调递增,故α>0.5.解析:令2m-1=1得m=1,该函数为y=x.答案:16.解析:函数①④⑥的定义域为R,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}.答案:①④⑥7.解:(1)函数y=x52-在(0,+∞)上为减函数,因为3<,所以352->52-.(2)-878-=-(),函数y=x在(0,+∞)上为增函数,因为>,则()>(),从而-8-<-().(3)(-)23-=()23-,(-)23-=()23-,函数y=x23-在(0,+∞)上为减函数,因为>,所以()23-<()23-,即(-)23-<(-)23-.8.解:∵函数在(0,+∞)上递减,∴3m-9<0,解得m<3.又m∈N*,∴m=1,2.又函数图象关于y轴对称,∴3m-9为偶数,故m=1.即幂函数y=x3m-9的解析式为y=x-6.。
必修一函数典型题
函数典型题1.下列函数完全相同的是 ( B ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +32.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=( B )A .1B .-1 C.35 D .-35解析.f (2)f ⎝⎛⎭⎫12=22-122+1⎝⎛⎭⎫122-1⎝⎛⎭⎫122+1=35-3454=35×⎝⎛⎭⎫-53=-1. 3.函数y =1-x +x 的定义域是( D )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.若函数f (x )的定义域是[-1,1],则函数f (x +1)的定义域是( A. )A .[-2,0]B .[-1,1]C .[1,2]D .[0,2] 解析:A.令-1≤x +1≤1,得-2≤x ≤0. 5.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1} D .∅或{2} 解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.6.若[a,2a ]为一确定区间,则a ∈________. 解析:∵[a,2a ]为一确定区间,∴2a >a ,∴a >0.答案:(0,+∞) 7.若函数y =f (x )的定义域为[-1,1),则f (2x -1)的定义域为________.解析:∵-1≤2x -1<1,∴0≤x <1. 答案:{x |0≤x <1}8.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是___{-2,-1,2}_____.解析:把x =0,-1,1,2代入函数式求y 值.得y =-2,-1,2.9.求下列函数的定义域:(1)f (x )=5-x|x |-3; (2)y =x -1+1-x .解:(1)要使函数有意义,则⎩⎪⎨⎪⎧ 5-x ≥0|x |-3≠0,即⎩⎪⎨⎪⎧x ≤5x ≠±3,在数轴上标出,如图,即x <-3或-3<x <3或3<x ≤5.故函数f (x )的定义域为(-∞,-3)∪(-3,3)∪(3,5].(也可表示为{x |x <-3或-3<x <3或3<x ≤5})(2)要使函数有意义,则⎩⎪⎨⎪⎧x -1≥01-x ≥0,即⎩⎪⎨⎪⎧x ≥1x ≤1,所以x =1,从而函数的定义域为{1}. 10.已知函数f (x )对任意实数x ,y 都有f (xy )=f (x )+f (y )成立. (1)求f (0)与f (1)的值;(2)若f (2)=a ,f (3)=b (a ,b 均为常数),求f (36)的值.解:由f (xy )=f (x )+f (y ).(1)令x =y =0,f (0)=f (0)+f (0), ∴f (0)=0. 令x =y =1,f (1)=f (1)+f (1), ∴f (1)=0. (2)令x =y =2,f (4)=f (2)+f (2)=2∴f (2)=2a . 令x =y =3,得f (9)=f (3)+f (3)=2f (3)=2b . 令x =4,y =9,得f (36)=f (4×9)=f (4)+f (9)=2a +2b .11.下列式子中不.能表示函数y =f (x )的是( )A .x =y 2+1B .y =2x 2+1C .x -2y =6D .x =y解析:选A.一个x 对应的y 值不唯一.4.函数y =x 与y =x 2表示同一个函数需要注明定义域为____{x |x ≥0,x ∈R } ___.解析:y =x 2=|x |≥0,∴x ≥0. 12.下列集合A 到集合B 的对应关系f 是映射的是( )A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.B 中元素1在f 下有两个元素±1与之对应,不是映射;C 中元素0无倒数,不是映射;D 中元素0在B 中无元素与之对应,不是映射. 13.已知函数y =⎩⎪⎨⎪⎧f (1)=0f (n +1)=f (n )+3,n ∈N *,则f (3)等于( )A .0B .3C .6D .9 解析:选C.f (2)=f (1+1)=f (1)+3=0+3=3,∴f (3)=f (2+1)=f (2)+3=3+3=6.14.设函数f (x )=⎩⎪⎨⎪⎧1-x 2 (x ≤1)x 2+x -2 (x >1),则f ⎣⎡⎦⎤1f (2)的值为( ) A.1516 B .-2716 C.89D .18 解析:选A.f (2)=22+2-2=4, f ⎣⎡⎦⎤1f (2)=f (14)=1-(14)2=1516. 15.设f (x )=⎩⎪⎨⎪⎧(x +1)2 x ≤-1,2(x +1) -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∪⎝⎛⎭⎫-12,1 D.⎝⎛⎭⎫-12,12∪(1,+∞) 解析:选C.f (a )>1⇔或⎩⎪⎨⎪⎧-1<a <12(a +1)>1或⎩⎪⎨⎪⎧a ≥11a -1>1⇔⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 16.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x<1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)17.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是_(-∞,32]_______. 解析:原不等式可化为下面两个不等式组 ⎩⎪⎨⎪⎧x +2≥0x +(x +2)·1≤5或⎩⎪⎨⎪⎧x +2<0,x +(x +2)·(-1)≤5, 解得-2≤x ≤32或x <-2,即x ≤32.18.已知函数f (x )=⎩⎪⎨⎪⎧x +2 x ≤-1,x 2-1<x <2,2x x ≥2.若f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,又f (a )=3,∴a =1(舍去).②当-1<a <2时,f (a )=a 2,又f (a )=3,∴a =±3,其中负值舍去.∴a = 3. ③当a ≥2时,f (a )=2a ,又f (a )=3,∴a =32(舍去).综上所述:a = 3.19.设函数f (x )=⎩⎨⎧x -1 (x ≥1)-x (x <1),则f (f (1))=( A )A .0B .1C .2D .3 解析: f (1)=1-1=0,∴f (f (1))=f (0)=0. 20.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是( )解析:选 C.A 、B 、D 均满足映射定义,C不满足集合A 中任一元素在集合B 中有唯一元素与之对应. 21.已知f (x )=⎩⎪⎨⎪⎧x 2,x >02,x =00,x <0,则f (4)=________;f (-3)=________;f [f (-3)]=________.答案:16 0 23.函数y =x +|x |x的图象为()解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,1.已知函数f (x )由下表给出,则f (f (3))等于(A.解析:选A.f (f (3))=f (4)=-1. 2.函数y =2x +1,x ∈{1,2,3}的值域是( ) A .R B .[1,3] C .{1,2,3} D .{3,5,7} 解析:选 D.f (1)=2×1+1=3,f (2)=2×2+1=5,f (3)=2×3+1=7.3.已知函数f (x +1)=3x +2,则f (x )的解析式是( )A .3x +2B .3x +1C .3x -1D .3x +4 解析:选C.设x +1=t ,则x =t -1,则f (t )=3(t -1)+2=3t -1,则f (x )=3x -1.4.已知f (x )=2x +3,且f (m )=6,则m 等于( )A .6B .15 C.32D .3解析:选C.2m +3=6,m =32.6.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 解析:选B.设f (x )=kx +b (k ≠0),∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2, ∴f (x )=3x -2. 7.已知f (2x )=x 2-x -1,则f (x )=________.解析:答案:x 24-x 2-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4.已知log 4log 4m n <,比较m ,n 的大小。
解:∵log 4log 4m n <, ∴4411log log m n<,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <,∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域:(1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令23t x =-,则03t <≤,∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥,当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6.判断函数2()log )f x x =的奇偶性。
x >恒成立,故()f x 的定义域为(,)-∞+∞,2()log )f x x -=2log =-2log =-2log ()x f x =-=-,所以,()f x 为奇函数。
例7.求函数2132log (32)y x x =-+的单调区间。
解:令223132()24u x x x =-+=--在3[,)2+∞上递增,在3(,]2-∞上递减, 又∵2320x x -+>, ∴2x >或1x <,故232u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵132log y u =为减函数,所以,函数2132log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。
例8.若函数22log ()y x ax a =---在区间(,1-∞-上是增函数,a 的取值范围。
解:令2()u g x x ax a ==--,∵函数2log y u =-为减函数,∴2()u g x x ax a ==--在区间(,1-∞上递减,且满足0u >,∴12(10ag ⎧≥⎪⎨⎪≥⎩,解得22a -≤≤, 所以,a的取值范围为[22]-.例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()xf c 的大小关系是_____.分析:先求b c ,的值再比较大小,要注意xxb c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321xx ≥≥,∴(3)(2)x x f f ≥;若0x <,则321xx<<,∴(3)(2)x xf f >. 综上可得(3)(2)xxf f ≥,即()()xxf c f b ≥.评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)xx a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)xy a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3求函数y =解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤.∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数221(01)xx y aa a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令xt a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令xt a =,则0t >,函数221xx y aa =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤, ∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x⨯-⨯-=,令3(0)xt t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x=,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935xy =⨯+的图象,可以把函数3xy =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935xy =⨯+转化为235x t +=+,再利用图象的平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935xy =⨯+的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等. 习题1、比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与 ;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故.(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有.因若 ,则 .又 ,故,这样 .又因,故.从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2曲线 分别是指数函数 ,和的图象,则与1的大小关系是 ( ). (分析:首先可以根据指数函数单调性,确定,在轴右侧令 ,对应的函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x+2x+1+1的定义域为R.∵2x>0,∴y =4x+2x+1+1=(2x )2+2·2x+1=(2x+1)2>1. ∴y =4x+2x+1+1的值域为{y |y>1}.4 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
5、设,求函数的最大值和最小值.分析:注意到 ,设 ,则原来的函数成为 ,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设,由知,,函数成为 , ,对称轴,故函数最小值为 ,因端点 较 距对称轴 远,故函数的最大值为 .6(9分)已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值..解:)1(122>-+=a a a y x x , 换元为)1(122a t at t y <<-+=,对称轴为1-=t .当1>a ,a t =,即x =1时取最大值,略解得 a =3 (a = -5舍去)7.已知函数 (且) (1)求 的最小值; (2)若,求的取值范围..解:(1) , 当即时, 有最小值为(2) ,解得当 时,;当时,.8(10分)(1)已知m x f x +-=132)(是奇函数,求常数m 的值;(2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无解?有一解?有两解?解: (1)常数m =1(2)当k <0时,直线y =k 与函数|13|-=x y 的图象无交点,即方程无解;当k =0或k ≥1时, 直线y =k 与函数|13|-=xy 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x y 的图象有两个不同交点,所以方程有两解。