物质对伽马射线的吸收实验报告
伽马射线的吸收实验报告
实验3:伽马射线的吸收实验目的1. 了解γ射线在物质中的吸收规律。
2. 测量γ射线在不同物质中的吸收系数。
3. 学习正确安排实验条件的方法。
内容1. 选择良好的实验条件,测量60Co (或137Cs )的γ射线在一组吸收片(铅、铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。
2. 用最小二乘直线拟合的方法求线性吸收系数。
原理1. 窄束γ射线在物质中的衰减规律γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。
准直成平行束的γ射线,通常称为窄束γ射线。
单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。
γ射线强度的衰减服从指数规律,即xNxeI eI I r μσ--==00 ( 1 )其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1=cm )。
显然μ的大小反映了物质吸收γ射线能力的大小。
由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。
由式我们可以得到 x e n n μ-=0 ( 2 )㏑n=㏑n 0-x μ ( 3 )可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直线的斜率的绝对值就是线性吸收系数μ。
由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。
p c ph μμμμ++= ( 4 )式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。
其中5Zph ∝μZ c ∝μ ( 5 )2Zp ∝μ图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定γ射线能谱测定以及γ射线的吸收与物质吸收系数μ的测定实验报告摘要原子核的能级跃迁可以产生伽马射线,通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。
同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。
本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。
闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。
γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,波长短于0.2埃的电磁波,具有很强的穿透性。
本实验将γ射线的次级电子按不同能量分别进行强度测量,通过电子学仪器得到它的能谱图。
实验中使用NaI单晶γ闪烁谱仪对γ的能谱进行测定。
最后得到γ射线在160道数及320道数位置的一些相关数据。
在这些位置它的数量和能量的值都比较合适,有一定数量,又有一定的穿透能力。
实验中将了解NaI(Tl)单晶γ闪烁谱仪是如何测量γ射线的能谱,NaI(Tl)单晶γ闪烁谱仪的结构、原理与特性;掌握NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用方法。
并通过对137Cs和60Co 放射源γ能谱的测量,加深对γ射线与物质相互作用的理解以及通过该实验了解多道脉冲幅度分析器在NaI(Tl)单晶γ谱测量中的数据采集及其基本功能。
在第一个实验的基础上,采用NaI闪烁谱仪测全能峰的方法测量137Cs的γ射线在铅、铝材料中的吸收系数。
并且通过实验对核试验安全防护的重要性有初步的认识。
关键词γ射线吸收系数μ60Co、137Cs放射源能谱NaI单晶γ闪烁谱仪多道分析器引言γ射线首先由法国科学家P.V.维拉德发现,γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出γ射线。
γ射线的吸收实验报告
γ射线的吸收实验报告实验报告:γ射线的吸收实验一、实验目的通过实验探究γ射线的吸收规律,分析各种不同物质对γ射线吸收的影响。
二、实验原理γ射线是一种能量很高的电磁辐射,对物质有很强的透射能力。
当γ射线通过不同物质时,会发生吸收现象,即射线的强度会发生变化。
主要影响γ射线吸收的因素包括物质的厚度、密度、原子序数等。
实验中通过改变不同材料的厚度和密度,来研究γ射线吸收规律。
三、实验器材和试剂1.γ射线源:用于发射γ射线的辐射源。
2.安全屏蔽装置:用于屏蔽γ射线的辐射。
3.各种材料:如不同厚度和密度的铅片、铝片等。
四、实验步骤1.取一块铝片作为基准样品,记录γ射线源发出的射线强度。
2.依次将铅片放在铝片上,每次增加一块铅片并记录射线强度,直到达到一定厚度。
3.记录各个厚度下的射线强度,计算吸收率。
4.将铝片和不同厚度的铅片放在γ射线源和探测器之间,记录射线强度和各种材料的厚度、密度。
5.分析各个实验结果,总结出γ射线的吸收规律。
五、实验数据和结果实验结果如下表所示:材料,厚度(cm),密度(g/cm³),射线强度(cps):-----,:--------:,:----------:,:------------:铝片,0,2.7,600铝片+铅片,0+0.5,11.3,500铝片+铅片,0+1.0,11.3,300铝片+铅片,0+1.5,11.3,100铝片+铅片,0+2.0,11.3,50铝片+铅片,0+2.5,11.3,20根据实验数据,可以绘制γ射线强度与不同厚度材料的关系图。
根据实验数据和图表分析可得到结论:随着铅片厚度的增加,γ射线的吸收率逐渐增大,射线强度逐渐减小。
当铅片厚度超过2.5cm时,射线强度已经变得非常弱。
六、讨论和分析1.实验结果符合γ射线的吸收规律。
厚度越大,吸收率越高。
2.实验中使用了铝片作为基准样品,因为铝对γ射线的吸收相对较低,便于观察强度的变化。
铅作为一种重金属,对γ射线有较高的吸收能力,可以用于改变吸收率。
《射线的吸收》报告
厚度(cm)
1.020
1.480
1.956
2.456
3.476
计数n
14618
13905
13463
12760
11744
根据式(6)、(7)得到:
算出:a=-0.1362。故得:
铝样品的线性吸收系数为
铝样品的半吸收厚度为
最小二乘法曲线拟合如下图:
5.总结
通过实验,我们可以发现不同的物质对γ射线的吸收能力是不同的,实际上即使是同一种物质,它对不同能量的γ射线的吸收能力也是不同的。在相同的厚度条件下,铅对γ射线的吸收能力大大高于其他两种材料,这也正是铅服用来防护γ射线辐射的原因。
实验原理
当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量;γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为 的光子就消失,或散射后能量改变、并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射γ束中移去。γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失它的能量。带电粒子在物质中是逐渐损失能量,最后停止下来,有射程概念;γ射线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
编号
1
2
3
4
1+4
厚度(cm)
1.012
1.462
2.000
2.460
3.472
计数n
11713
10434
9174
8352
7117
物质对γ射线的吸收系数μ的测定
浙 江 师 范 大 学 实 验 报 告实验名称 吸收系数的测定 班 级 物理071 姓名 陈群 学号 07180116 同 组 人 刘懿钧 实验日期 09/12/8 室温 气温物质对γ射线的吸收系数μ的测定摘 要: 本实验验证γ射线通过物质时其强度减弱遵循指数规律,测量γ射线在不同厚度的铅(铝、铜)中的吸收系数。
通过对γ射线的吸收特性,分析与物质吸收系数有关的因素。
关键字: 射线 吸收系数引 言: 由于射线与物质的相互作用,使射线通过一定厚度物质后,能量或强度有一定的减弱,称为物质对射线的吸收。
研究物质对射线的吸收规律,不同物质的吸收性能等,在防护核辐射、核技术应用和材料科学等许多领域都有重要意义。
本实验是要学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。
实验方案:实验原理:当γ射线穿过物质时,与物质作用发生光电效应、康普顿效应和电子对效应(当γ射线的能量大于1.02MeV ),γ射线损失其能量,γ射线与物质的原子一旦发生上述三种相互作用,原来为Eγ的光子就消失,或散射后能量改变并偏离原来的入射方向。
γ射线通过物质时其强度会逐渐减弱,这种现象称为γ射线的吸收。
单能窄束γ射线强度的衰减遵循指数规律:00r Nx x I I e I e σμ--==其中I 、I0分别是通过物质前、后γ射线强度,μ是物质的线性吸收系数,μ=μph+μc+μp ,μ的大小反映了物质吸收γ射线能力的大小。
当光子能量比较低时和原子相碰撞, 发生光电效应。
光电效应的线性吸收系数μph ∝ Z5 .光子和原子中的一个电子的弹性相互作用时发生康普顿效应。
它的线性吸收系数μc ∝Z. 当光子的能量大于两个电子的静止质量,在原子核库仑场的作用下,产生一个正负电子对,即电子对效应。
它的线性吸收系数μp ∝Z2。
下图为铅对γ射线的线性吸收系数与γ射线能量的线性关系曲线。
实际测量中,在相同试验条件下,某时刻的计数率总与该时刻的γ射线强度成正比。
伽马射线的吸收实验分析报告
伽马射线的吸收实验分析报告伽马射线是一种高能电磁辐射,它具有较强的穿透能力和高能量。
为了研究伽马射线在物质中的吸收特性,我们进行了一系列的实验,并对实验结果进行了详细的分析。
实验目的:1.研究伽马射线在不同物质中的吸收情况;2.了解伽马射线的穿透能力和吸收特性;3.探究伽马射线吸收实验的应用价值。
实验装置:1. 伽马射线源:选用共振核素Cesium-137 (Cs-137)。
2.探测器:采用闪烁体探测器,记录伽马射线的强度变化。
3.不同材料:如铅、铝、聚乙烯等具有不同密度和原子序数的材料。
实验步骤:1.将伽马射线源定位在一定距离的位置上,探测器放置在伽马射线源的背面,预留一定的触发时间。
2.依次将铅、铝和聚乙烯等材料放置在伽马射线源和探测器之间,记录不同材料下的伽马射线强度。
3.根据伽马射线的强度变化情况,分析不同材料对伽马射线的吸收程度。
实验结果与分析:我们进行了三组实验,分别使用了铅、铝和聚乙烯作为吸收材料。
我们记录了不同材料下伽马射线的强度变化情况。
首先,当伽马射线通过铅材料时,我们观察到伽马射线的强度明显减弱。
这是因为铅具有较高的密度和原子序数,能够对伽马射线产生较强的吸收作用。
所以,铅是一种比较好的屏蔽伽马射线的材料。
其次,当伽马射线通过铝材料时,尽管铝的密度较低,但其原子序数较高,对伽马射线也有一定的吸收作用。
与铅相比,铝的吸收效果较弱。
这可能是因为伽马射线的穿透能力与其能量有关,而铝的原子序数相对较小,无法有效吸收高能伽马射线。
最后,当伽马射线通过聚乙烯材料时,我们观察到伽马射线的强度几乎没有明显的减弱。
这是因为聚乙烯的密度较低,原子序数也很小,无法有效吸收伽马射线。
因此,聚乙烯对伽马射线的屏蔽效果很差。
通过对实验结果的分析,我们可以得出以下结论:1.伽马射线的穿透能力与所穿过材料的密度和原子序数有关。
密度和原子序数较大的材料对伽马射线具有较强的吸收能力。
2.铅是一种较好的屏蔽伽马射线的材料,其吸收能力远远高于铝和聚乙烯。
γ射线的吸收与物质吸收系数的测定
材料物理08-1 XX 同组者:XXX 指导老师:XXX 实验日期:2010年04月11号实验9-3 γ射线的吸收与物质吸收系数的测定测量物质对γ射线的吸收规律,不仅有助于了解γ射线与物质的相互作用机理,而且,作为一种重要的实验方法,在许多科学领域都发挥着巨大的作用。
例如,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。
【实验目的】1、进一步认识γ射线与物质相互作用的规律。
2、测量不同能量的窄束γ射线在不同物质中的吸收系数。
【实验原理】γ射线与物质发生作用时,主要有三种效应:光电效应、康普顿效应和电子对效应。
对于低能γ射线,与物质的作用以光电效应为主,如果γ射线能量接近1MeV ,康普顿效应将占主导地位,而当γ射线能量超过1.02MeV 时,就有可能产生电子对效应。
准直成平行束的γ射线,通常称为窄束γ射线。
单能的窄束γ射线在穿过物质时,由于上述三种效应,其强度会减弱,这种现象称为γ射线的吸收。
γ射线强度的衰减服从指数规律,即x x N e I e I I r μσ--==00 (9-3-1)其中I 0和I 分别是穿过吸收物质前、后的γ射线强度,x 是γ射线穿过吸收物质的厚度(单位为㎝),σr 是光电、康普顿、电子对三种效应截面之和,N 是吸收物质单位体积中原子数,μ是吸收物质的线性吸收系数(N r σμ=,单位为㎝-1)。
显然μ的大小反映了吸收物质吸收γ射线能力的大小。
需要注意的是,由于γ射线与吸收物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,所以线性吸收系数μ是吸收物质的原子序数Z 和γ射线能量γE 的函数。
考虑到σr 是光电、康普顿、电子对三种效应截面之和,那么线性吸收系数μ就可以表示为p c ph μμμμ++= (9-3-2)式中ph μ、c μ、p μ分别为光电、康普顿、电了对效应的线性吸收系数,且⎪⎩⎪⎨⎧∝∝∝25ZZZpcphμμμ(9-3-3)从中可以看出线性吸收系数μ与吸收物质的原子序数Z之间的复杂关系。
γ射线的吸收与物质吸收系数μ的测定修改后
浙江师范大学实验报告实验名称物质吸收系数μ测定班级物理071姓名骆宇哲学号07180132同组人沈宇能实验日期09/12/24室温气温γ射线的吸收与物质吸收系数μ的测定摘要:本实验中学生将了解γ射线与物质相互作用的特性;窄束γ射线在物质中的吸收规律;测量γ在不同物质中的吸收系数关键词:吸收体厚度吸收体质量密度全能峰引言:伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,它的能量非常高。
通过对γ射线谱的研究可了解核的能级结构。
γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。
γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。
军事上,伽马射线也被用来做成伽马射线弹等核武器。
同时探测伽玛射线有助天文学的研究。
当人类观察太空时,看到的为“可见光”,然而电磁波谱的大部份是由不同辐射组成,当中的辐射的波长有较可见光长,亦有较短,大部份单靠肉眼并不能看到。
通过探测伽玛射线能提供肉眼所看不到的太空影像。
正文:一、实验内容1.测量137Cs的γ射线(取0.661MeV光电峰)在一组吸收片(铅、铜或铝)中的吸收曲线,并用最小二乘原理拟合求线性吸收系数。
2.根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。
二、实验步骤1.调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。
2.在闪烁探测器和放射源之间加上1片、2片、3片、4片已知质量厚度的吸收片如Pb、Al(所加吸收片最后的总厚度要能吸收γ射线70%以上),进行定时测量,并存下实验谱图。
3.根据软件测得相关数据并记录下来。
4、根据各个能谱图中光电峰的净面积S(与总计数率N成正比)和相应的吸收片厚度的关系画lnN-R直线,用二乘法求直线的斜率。
即为用作图法算吸收片材料的质量吸收系数。
三、实验数据1、测量Al对137Cs的吸收系数Al的密度为ρ=2.7g/cm3预置时间设为300秒电压858伏找137Cs放射源准直孔和闪烁探测器的中心对准位置的位置时,所测得的数据如下表。
实验2γ射线的吸收与物质吸收系数μ的测定实验报告
百度文库•让每个人平等地捉升口我近代物理实验报告Y射线的吸收与物质吸收系数测定学班姓学时院级名号间数理与信息工程学院光信081班086201142011年04月27日Y射线的吸收与物质吸收系数u的测定班级:光信081 姓名:陈亮学号:08620114摘要:学会Nal (T1)单晶T闪烁体整套装置的操作、调整和使用;在此基础上测量137Cs和60Co 的T能谱,求出能量变化率、唸康比、线性等各项指标,并分析谱形;了解多道脉冲幅度分析器在Nal(Tl)单晶T谱测量中的数据采集及英基本功能,在数拯处理中包括对谱形进行光滑、寻峰,曲线拟合等。
通过测量137Cs和60Co的T射线的吸收曲线,研究T射线与物质(被束缚在原子中的电子、自有电子、库仑场、核子)相互作用的特性,了解窄束丁射线在物质中的吸收规律及测量其在不同物质中的吸收系数。
关键字:T射线能谱物质吸收系数U光电效应康普顿效应电子对效应引言:原子核由髙能级向低能级跃迁时会辐射射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的射线,将射线的次级电子按不同能量分别进行强度测量,从而得到辐射强度按能量的分布, 即为“能谱”。
测量能谱的装置称为“能谱仪”。
闪烁探测器是利用带电粒子或非带电粒子与某些物质的相互作用下转化成为带电粒子对物质原子的激发,从而会产生发光效应的特性来测量射线的仪器。
它的主要优点是即能测量各种类型的带电粒子,又能探测中性粒子:即能测量粒子强度,又能测量粒子能量:并且探测效率高。
Y,又称Y粒子流,是能级跃迁蜕变时释放出的射线,是波长短于0.2埃的电磁波。
首先由科学家P.V.维拉徳发现,是继(I、后发现的第三种射线。
原子和核反应均可产生丫射线。
Y射线的波长比X射线要短,所以丫射线具有比还要强的穿透能力。
当Y射线通过物质并与相互作用时会产生光电效应、和正负电子对三种效应。
原子核释放出的Y与核外电子相碰时,会把全部能量交给电子,使电子成为光电子,此即光电效应。
γ射线的吸收实验报告
γ射线的吸收实验报告γ射线的吸收一、实验目的:1.了解γ射线在物质中的吸收规律。
2.掌握测量γ吸收系数的基本方法。
二、实验原理:1.窄束射线在物质中的吸收规律。
射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使射线的强度减弱。
准直成平行束的射线称为窄束射线,单能窄束射线在穿过物质时,其强度的减弱服从指数衰减规律,即:(1)其中为入射射线强度,为透射射线强度,x为射线穿透的样品厚度,为线性吸收系数。
用实验的方法测得透射率与厚度的关系曲线,便可根据(1)式求得线性吸收系数值。
为了减小测量误差,提高测量结果精度。
实验上常先测得多组与的值,再用曲线拟合来求解。
则:(2)由于射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数都有贡献,可得:(3)式中为光电效应的贡献,为康普顿效应的贡献,为电子对效应的贡献。
它们的值不但与光子的能量Er有关,而且还与材料的原子序数、原子密度或分子密度有关。
对于能量相同的射线不同的材料、也有不同的值。
医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如光透视,光CT技术,对肿瘤的放射性治疗等。
图1表示铅、锡、铜、铝材料对射线的线性吸收系数μ随能量E变化关系。
图中横座标以光子的能量与电子静止能量mc2的比值为单位,由图可见,对于铅低能射线只有光电效应和康普顿效应,对高能射线,以电子对效应为主。
为了使用上的方便,定义μm=μ/ρ为质量吸收系数,ρ为材料的质量密度。
则(1)式可改写成如下的形式:(4)式中xm=x·ρ,称为质量厚度,单位是g/cm2。
半吸收厚度x1/2:物质对射线的吸收能力也常用半吸收厚度来表示,其定义为使入射射线强度减弱到一半所需要吸收物质的厚度。
由(1)式可得:(5)显然也与材料的性质和射线的能量有关。
图2表示铝、铅的半吸收厚度与E的关系。
若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。
实验2 γ射线的吸收与物质吸收系数μ的测定实验报告
错误!未定义书签。=1.6983/cm
错误!未定义书签。=1.5699/cm
错误!未定义书签。=1.8537/cm
错误!未定义书签。=1.5843/cm
错误!未定义书签。=1.3041/cm
求平均值=(μ01+μ02+μ03+μ04+μ12+μ13+μ14+μ23+μ24+μ34)/10≈1.5638cm
本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,通过吸收片后的γ光子,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线在穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律,即
(1)
其中,I0、I分别是穿过物质前、后的γ射线强度,x是γ射线穿过的物质的厚度(单位cm),σr是光电、康普顿、电子对三种效应截面之和,N是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(μ=σrN,单位为cm)。显然μ的大小反映了物质吸收γ射线能力的大小。
5.依照上述步骤测量Al和Pb对137Cs的γ射线的质量吸收系数μAl、μPb。
6.整理仪器,经教师检查签字离开。
数据处理计算吸收系数μ
E=0.661MeV
对于Al,质量密度为2.70 g/cm2
块数
R
N
0
0
2812
7.94
1
2.57
1807
7.50
2
5.01
1315
7.18
3
7.46
900
6.80
与理论值1.213/cm比较,误差ε=29%
物质对伽马射线的吸收实验报告
近代物理实验报告指导教师:得分:实验时间:2009 年12 月14 日,第十六周,周一,第5-8 节实验者:班级材料0705 学号200767025 姓名童凌炜同组者:班级材料0705 学号200767007 姓名车宏龙实验地点:综合楼507实验条件:室内温度℃,相对湿度%,室内气压实验题目:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。
仪器组成如下图所示:实验目的:1.了解掌握射线与物质相互作用的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数实验原理简述:当原子核发生α和β衰变时,通常衰变到原子核的激发态,由于处于激发态的原子核是不稳定的,它要向低激发态跃迁,同时往往放出γ光子,这一现象称为γ衰变。
γ光子会与下列带电体发生相互作用,原子中的束缚电子,自由电子,库伦场及核子。
这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。
如右所示为为γ射线与物质相互作用的示意图图中的三种状况分别为: 1. 低能时以光电效应为主。
2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。
3. 若入射光子的能量超过1.02MeV ,则电子对的生成成为可能从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定实验目的:1.学习使用谱仪测定γ射线的能谱。
2.通过实验测定不同物质对γ射线的吸收比例,确定物质的吸收系数μ。
实验原理:1.γ射线能谱测定:γ射线是电磁波谱中能量较高的一种,具有较强的穿透力。
通过使用谱仪,可以测定γ射线的能量分布,也称为能谱。
2.γ射线的吸收与物质吸收系数μ的测定:当γ射线穿过物质时,会与物质中的原子相互作用,包括散射、吸收等过程。
吸收系数μ表示单位长度物质对γ射线的吸收能力,是一个与物质本身性质相关的参数。
实验步骤:1.连接γ射线源和能谱仪,打开仪器,并调整合适的工作电压和放大倍数。
2.调整谱仪下方的定位器,使得探测器能够垂直于γ射线的入射方向。
3.选择一种物质样品,如铅,将其放在射线路径上,并记录下γ射线的能谱。
4.移除铅样品,选择其他物质样品进行测量,如铝、铁等,依次记录下γ射线的能谱。
5.根据能谱中的峰值位置和峰值强度,分析γ射线经过不同物质时的吸收情况。
实验结果:1.γ射线能谱测定结果:通过测量,得到γ射线的能谱图,并标出不同能量区间的峰值。
2.γ射线的吸收与物质吸收系数μ的测定结果:根据能谱分析,得到不同物质对γ射线的吸收比例,计算出它们的吸收系数μ。
实验讨论:1.γ射线的能谱测定是否准确和完整。
2.不同物质对γ射线的吸收程度是否与预期一致。
3.吸收系数μ的大小是否符合物质的性质和密度等参数。
实验结论:1.γ射线能谱可以通过谱仪测定,并且能够分析出不同能量区间的峰值。
2.不同物质对γ射线的吸收比例不同,吸收系数μ也因此而有所差异。
3.本实验所测得的吸收系数μ结果应该与物质的性质和密度等参数相符合。
实验中可能存在的误差:1.谱仪的仪器误差。
2.样品的放置位置和角度不准确。
3.γ射线的能量分辨能力不够精确。
改进方案:1.使用更高精度的谱仪。
2.对样品的放置进行更精确的定位和角度调整。
3.使用具有更高能量分辨能力的γ射线源。
2-4 物质对伽马射线的吸收 实验报告
近代物理实验报告指导教师:得分:实验时间:2009 年12 月14 日,第十六周,周一,第5-8 节实验者:班级材料0705 学号200767025 姓名童凌炜同组者:班级材料0705 学号200767007 姓名车宏龙实验地点:综合楼507实验条件:室内温度℃,相对湿度%,室内气压实验题目:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。
仪器组成如下图所示:实验目的:1.了解掌握射线与物质相互作用的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数实验原理简述:当原子核发生α和β衰变时,通常衰变到原子核的激发态,由于处于激发态的原子核是不稳定的,它要向低激发态跃迁,同时往往放出γ光子,这一现象称为γ衰变。
γ光子会与下列带电体发生相互作用,原子中的束缚电子,自由电子,库伦场及核子。
这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。
如右所示为为γ射线与物质相互作用的示意图图中的三种状况分别为: 1. 低能时以光电效应为主。
2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。
3. 若入射光子的能量超过1.02MeV ,则电子对的生成成为可能从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。
物质对伽马射线的吸收实验报告
物质对伽马射线的吸收实验报告近代物理实验报告指导教师:得分:实验时间:2009 年12 ⽉14 ⽇,第⼗六周,周⼀,第5-8 节实验者:班级材料0705 学号200767025 姓名童凌炜同组者:班级材料0705 学号200767007 姓名车宏龙实验地点:综合楼507实验条件:室内温度℃,相对湿度%,室内⽓压实验题⽬:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;⾼压电源;放⼤器;多道脉冲幅度分析器;吸收⽚若⼲。
仪器组成如下图所⽰:实验⽬的:1.了解掌握射线与物质相互作⽤的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数实验原理简述:当原⼦核发⽣α和β衰变时,通常衰变到原⼦核的激发态,由于处于激发态的原⼦核是不稳定的,它要向低激发态跃迁,同时往往放出γ光⼦,这⼀现象称为γ衰变。
γ光⼦会与下列带电体发⽣相互作⽤,原⼦中的束缚电⼦,⾃由电⼦,库伦场及核⼦。
这些类型的相互作⽤可以导致下列三种过程的⼀种发⽣:光⼦完全吸收、弹性散射、⾮弹性散射。
如右所⽰为为γ射线与物质相互作⽤的⽰意图图中的三种状况分别为: 1. 低能时以光电效应为主。
2. 光⼦可以被原⼦或单个电⼦散射到另⼀⽅向,其能量可损失也可不损失。
3. 若⼊射光⼦的能量超过1.02MeV ,则电⼦对的⽣成成为可能从上⾯的讨论可以清楚地看到,当γ光⼦穿过吸收物质时,通过与物质原⼦发⽣光电效应、康普顿效应和电⼦对效应能量损失,γ射线⼀旦与吸收物质原⼦发⽣这三种相互作⽤,原来能量为的光⼦就消失,或散射后能量改变、偏离原来的⼊射⽅向;总之,⼀旦发⽣相互作⽤,就从原来的⼊射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发⽣相互作⽤的光⼦穿过吸收层,其能量保持不变,因⽽没有射程概念可⾔,但可⽤“半吸收厚度”来表⽰γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光⼦,仅由未经相互作⽤或未经碰撞的光⼦组成。
2-4 物质对伽马射线的吸收 实验报告
近代物理实验报告指导教师:得分:实验时间:2009 年12 月14 日,第十六周,周一,第5-8 节实验者:班级材料0705 学号200767025 姓名童凌炜同组者:班级材料0705 学号200767007 姓名车宏龙实验地点:综合楼507实验条件:室内温度℃,相对湿度%,室内气压实验题目:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。
仪器组成如下图所示:实验目的:1.了解掌握射线与物质相互作用的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数实验原理简述:当原子核发生α和β衰变时,通常衰变到原子核的激发态,由于处于激发态的原子核是不稳定的,它要向低激发态跃迁,同时往往放出γ光子,这一现象称为γ衰变。
γ光子会与下列带电体发生相互作用,原子中的束缚电子,自由电子,库伦场及核子。
这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。
如右所示为为γ射线与物质相互作用的示意图图中的三种状况分别为: 1. 低能时以光电效应为主。
2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。
3. 若入射光子的能量超过1.02MeV ,则电子对的生成成为可能从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。
伽马射线的吸收
伽马射线的吸收一、原始数据的记录如下:则放射性计数~电压作Fig1图如下:电压/V (阈值)计数Fig1:计数与电压关系(找阈值)所以可得阈值电压=5.3V 。
以下实验电压值的设定都在5.3V 。
二、不同材料、厚度对γ射线吸收记录。
1.实验条件参数:电压设置为阈值5.3V ,时间设为30s 时,在好的几何则Fe 片厚度/mm~计数率ln 值作Fig2图如下:计数率的半对数lnFe 片的厚度/mmFig2:Fe 片的γ射线吸收由此得直线方程为:y=8.19626-0.05645x 。
计数率n 与该时刻的γ射线的强度的关系,可以用n 与材料的厚度x 的关系来代替。
故:x n n x en n μμ-=⇒-⋅=00ln lnx n x n n 05645.019626.8ln ln ln 0-=⇒-=μ:因此上述直线是 05645.0=μγ线性吸收系数所以射线的对Fe12790.1205645.02ln 2ln 21-===mm d Fe μγ半吸收厚度射线的对()%12.9%100%100108821108821-118749-118749108821s 30359.362719626.819626.8ln 000=⨯=⨯===⇒=理论值理论值实验值。
不加任何挡板的情况下。
而实验所测为的计数为则;率,由该直线所计算出理论相对偏差ηe n n n2.实验条件参数:电压设置为阈值5.3V ,时间设为30s 时,在好的几何则Pb 片厚度/mm~计数率ln 值作Fig3图:由此得直线方程为:y=8.23732-0.10771x 。
x n x n n 10771.023732.8ln ln ln 0-=⇒-=μ:因此上述直线是Pb 片的厚度/mmFig3:Pb 片的γ射线吸收计数率的半对数ln同理可得:10771.0b =μγ线性吸收系数所以射线的对P14353.610771.02ln 2ln b 21-===mm d P μγ半吸收厚度射线的对()%73.4%100%10011338113382-118749-118749113382s 30398.377923732.823732.8ln 000=⨯=⨯===⇒=理论值理论值实验值。
γ射线在物质中的吸收
γ射线在物质中的吸收一、实验的目的和意义γ射线的测量在核辐射探测工作中占有非常重要的地位。
例如,在核物理研究中,测量原子核激发能级、核衰变纲图、短核的寿命以及进行核反应实验等都离不开γ射线的测量;同时,在放射性矿石分析、测定堆燃料元件的燃耗、实现某些裂变产物的流线分析以及在环境保护工作中分析污染物成分或进行活化分析等也都离不开γ射线的测量。
因此,研究γ射线与物质的相互作用、γ射线在物质中的衰变规律、吸收物质的吸收系数以及学习γ射线探测器的使用等就显得特别重要。
当γ射线穿过物质时,其注量率(单位时间内进入单位截面积小球的粒子数)将逐渐衰减。
对于单能窄束γ射线,在物质中符合负指数衰减规律。
本实验利用放射性核素137Cs衰变产生的γ光子(能量0.662MeV),经准直器准直后,通过观察γ探测器上(半导体高纯锗探测器)的计数的变化,研究其在不同物质中的衰减规律,计算出不同物质的吸收系数。
本实验的目的是学习γ探测器(半导体高纯锗探测器)的工作原理和使用方法;并在此基础上,利用半导体高纯锗探测器验证单能窄束γ射线在穿过物质时遵守指数衰减规律,并由此计算出各吸收物质的吸收系数。
通过实验要求学生掌握以下知识:1.学习半导体高纯锗探测器的设置和使用方法2.学会手工和电脑绘制物质厚度-计数的关系曲线3.掌握物质吸收系数的测量和计算方法4.比较不同吸收物质间吸收曲线的差异二、实验原理(1)γ射线的吸收当γ射线穿过物质时,γ射线与物质相互作用的主要三种形式:光电效应、康普顿效应和形成电子对效应。
这三种主要作用形式发生的几率(反应截面)与光子能量、吸收物质的原子序数如图8.1所示。
一般来说,低能量的光子与物质作用的主要形式是光电效应;中等能量的光子与物质作用的主要形式是康普顿效应;高能量的光子与物质作用的主要形式是形成电子对效应。
(2)窄束当γ射线穿过一定厚度的物质时,有些与物质发生了相互作用,有些则没有。
如果光子与物质发生光电效应或电子对效应,则光子完全被物质吸收;如果发生康普顿效应,则光子被散射,部分能量被吸收,散射光子亦可能穿过物质层。
2-4 物质对伽马射线的吸收 实验报告
近代物理实验报告指导教师:得分:实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节实验者:班级材料0705 学号 5 姓名童凌炜同组者:班级材料0705 学号 7 姓名车宏龙实验地点:综合楼 507实验条件:室内温度℃,相对湿度 %,室内气压实验题目:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。
仪器组成如下图所示:实验目的:1.了解掌握射线与物质相互作用的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数4.实验原理简述:当原子核发生α和β衰变时,通常衰变到原子核的激发态,由于处于激发态的原子核是不稳定的,它要向低激发态跃迁,同时往往放出γ光子,这一现象称为γ衰变。
γ光子会与下列带电体发生相互作用,原子中的束缚电子,自由电子,库伦场及核子。
这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。
如右所示为为γ射线与物质相互作用的示意图图中的三种状况分别为: 1. 低能时以光电效应为主。
2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。
3. 若入射光子的能量超过,则电子对的生成成为可能从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代物理实验报告指导教师:得分:实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节实验者:班级材料0705 学号 5 姓名童凌炜同组者:班级材料0705 学号 7 姓名车宏龙实验地点:综合楼 507实验条件:室内温度℃,相对湿度 %,室内气压实验题目:物质对伽马射线的吸收实验仪器:(注明规格和型号)射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。
仪器组成如下图所示:实验目的:1.了解掌握射线与物质相互作用的性质和特点2.学习掌握物质对射线的吸收规律3.测量射线在不同物质中的吸收系数4.实验原理简述:当原子核发生α和β衰变时,通常衰变到原子核的激发态,由于处于激发态的原子核是不稳定的,它要向低激发态跃迁,同时往往放出γ光子,这一现象称为γ衰变。
γ光子会与下列带电体发生相互作用,原子中的束缚电子,自由电子,库伦场及核子。
这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。
如右所示为为γ射线与物质相互作用的示意图图中的三种状况分别为:1. 低能时以光电效应为主。
2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。
3. 若入射光子的能量超过,则电子对的生成成为可能从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。
γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。
本实验研究的主要是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。
射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。
射线强度随物质厚度的衰减服从指数规律,即xe I I μ-=0I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++=γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。
如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。
实际中通常用质量厚度)(2-⋅⋅=cm g x R m ρ来表示吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρμ/0)(m R m e I R I -=计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +-=ρμ将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示.并且可以从这条直线的斜率求出1212m m R R InN InN --=-ρμ 而物质对射线的吸收也可用“半吸收厚度”表示,记作μμ693.022/1==In d实验步骤简述:1 准备1.1 在教师指导下,熟悉整套实验装置。
1.2 检查仪器线路连接是否正确。
开启总电源,开启计算机。
1.3 放大盒前面板的HV 钮反时针扭转到最小,开通放大盒电路,慢慢顺时针转动HV 钮,按放大盒面板上的HV 值加高压。
稳定15min 。
1.4 取下放射源Cs 137一枚。
1.5打开并放好放射源Cs 137,探测器对准放射源。
1.6 熟悉计算机软件的使用。
1.72测量铝对γ射线的吸收 2.1 在闪烁探测器和放射源之间加上4片已知质量厚度的铝吸收片。
2.2 调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。
2.3 启动计数器,探测到设定时间。
2.4 记录峰道值和峰的“净面积“;记录吸收片的总质量厚度。
2.5依次一片片取下铝吸收片,重复和,测量3片、2片、1片和没有铝片时γ对射线的吸收。
2.63 测量铅对射线的吸收3.1 将铝片换成铅片,重复步骤2全部,测量铅对γ射线的吸收。
3.2 4 结束实验4.1 关闭计算机。
4.2 慢慢旋转放大盒前面板上的HV 钮反时针扭转到最小。
电压降为0后,关闭放大盒电源。
4.3 将全部放射源放回库房,关闭总电源。
4.4 充分吸收后,结束本次实验。
经教师同意后,可以离开实验室。
原始数据、 数据处理及误差计算:实验中获得的原始数据如下, 其中峰净面积已经由软件自动按照TPA 法计算完成 Al 样品:R/g*cm-2 0 N 63464801414333532970ln(N)Lf,Rf560,707 553,707 564,706 572,708 548,676R/g*cm-2 0 N 63465198421735702785ln(N)Lf,Rf560,707 560,701 561,705 552,691 593,730吸收系数的计算:1. Al 样品1.1 作图法计算1.2 由于有关系式0InN R InN m +-=ρμ存在, 以lnN 为应变量, 质量厚度R 为自变量, 则函数图像的斜率ρμ-=k 将lnN 和R 画出函数图像, 如下所示:从图中取两个点, 可以读出直线的斜率为k1= 1.3 最小二乘法计算1.4 从获得的实验数据看, 曲线的拟合方程必然是一个y 轴截距>0, 而斜率<0的直线方程 1.5 而实验数据中包含截距值, 故将每一个y 值减去截距, 使的直线变为过原点的形式, 以简化而计算斜率。
1.6 计算斜率的公式为如右所示: 1.7 过程量如下所示 N12345SUMy' 0x*y 0x^2 0得到最终的拟合斜率值为k1’=又吸收系数ρμk -=, 其中Al 的密度为可以得到, 由作图法得到的吸收系数值为μ= 而通过最小二乘法得到的吸收系数值为 μ’= 取两者的平均值,μ’’= 得到半吸收厚度cmIn d Al 1777.3693.022/1===μμ2. Pb 样品(与Al 样品的计算处理方法相同, 故文字说明略, 只留计算部分) 2.1 作图法计算2.2从图中取两个点, 可以读出直线的斜率为k2=最小二乘法计算得到最终的拟合斜率值为k1’=又吸收系数ρμk -=, 其中Pb 的密度为可以得到, 由作图法得到的吸收系数值为μ= 而通过最小二乘法得到的吸收系数值为 μ’= 取两者的平均值,μ’’= 得到半吸收厚度cmIn d Pb 56055.0693.022/1===μμ思考题, 实验感想, 疑问与建议:1. 什么叫γ吸收 为什么说γ射线通过物质时没有射程的概念 谈谈对γ涉嫌与物质相互作用机制的认识。
2. 当γ射线穿过物质时,与物质作用发生光电效应、康普顿效应和电子对效应(当γ射线的能量大于),γ射线损失其能量,γ射线与物质的原子一旦发生上述三种相互作用,原来为Eγ的光子就消失,或散射后能量改变并偏离原来的入射方向。
γ射线通过物质时其强度会逐渐减弱,这种现象称为γ射线的吸收。
3.4. 因为γ射线穿过物质时, 强度逐渐减弱, 按照指数规律衰减; 而不与物质发生相互作用的光子穿过吸收层, 其能量保持不变, 因而没有射程的概念可言。
5.6. γ射线与物质相互作用的实质, 就是其光子与物质的原子及电子发生光电效应、康普顿效应和电子对效应。
7.8. 通过对几种不同物质的吸收系数计算, 谈谈在辐射的屏蔽防护方面材料选择的问题。
9. 由实验的计算结果可见, Pb 的半吸收厚度远小于Al , 说明Pb 的吸收能力比Al 强, 可以推测可能存在这样的规律, 原子量越大的元素作为吸收材料时, 对射线的吸收能力越好。
因此防护射线时应当使用重金属材料, 实际生活中常用的是铅板。
10.11. 物质对γ射线的吸收系数与哪些因素有关?12. 根据吸收系数的表达式, 可以看出, 吸收系数和入射γ射线的能量, 以及吸收物质的原子序数有关。
13.14. 分析三种不同的本底扣除方法对实验结果误差的影响及原因。
15. TPA 法, 以直线扣除本底, 该方法下最终实验结果的误差受到本地扣除和峰面积的影响较大, 应为将两边边界只能较大一部分的不属于光电效应峰的计数值作为峰值计入了最终的峰面积。
16. Covell 法。
这种方法在峰的前后沿上去对称地选取边界道, 并连接以直线, 将直线一下的面积作为本底值扣除。
这样的方法对最终结果的误差影响比TPA 法要小, 但是与边界道的选取很有关系, 因此也存在一定的不准确度。
17. Wasson法,这种方法可以认为是TPA和Covell法的综合,相比于前两者,提高了峰面积与本底值的比值的准确度,但是受到分辨率的影响较大。
18.19.实验感想与体会。
20.通过本次试验,我较好地了解了γ射线通过物质时相互作用和吸收的基本原理及其性质。
并且认识到了γ射线和其他两种射线的物质作用性质不同之处。
21.另外,该实验中,避开了不易测量的射线强度/能量,而转为测量不同能量值上的光子计数,是的试样的操作过程变得简单,而通过后期的数学计算来获得最终的结果。
思路巧妙,值得借鉴。
22.原始记录及图表粘贴处:(见附页)。