五年级奥数分解质因数(一)学生版

合集下载

五年级奥数分解质因数

五年级奥数分解质因数
(请1用)上1面86的-方15法5=把3下1,面3的1是几质个数分,数用约3分1约。分得:155/186=5/6; (最2大)积2是212-×13877×=3441,=33043=42×17,用17约分得:221/187=13/11。 因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。
375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。 我1,们2可37以除先以把一2个16两分位解数质,因所数得,的再余写数成是两6数,相请乘写的出形适式合分于析这:个2条16件=的2^所3×有3两^3位=8数×。27=9×24,显然,216分可以买8分的画片27张,也 可(以2)买292分1-的1画87片=324,张3。4=2×17,用17约分得:221/187=13/11。 【37例5=题5×2】5×长5方×形3,的因面为积5是×357比5平5×方3米正,好已多知1它0,的所宽以比,长此少长10方米形,的长长和是宽5的×和5=是25多米少,米宽?是5×3=15米,它们的和是40米。
【练习2】 因80此-,2=这78三,个剩质下数两是个2质、数37的和和41是。78,而且要使它的积最大,只能是41和37。
(【2例)题242】1-把18175=53/148,6和342=221×/11877,约用分1。7约分得:221/187=13/11。 【因例此题 ,1掌】握三并个灵质活数应的用和分是解8质0,因这数三的个知数识的,积能最解大答可许以多是一多般少方?法不能解答的与积有关的应用题。
【思路导航】 三个质数相加的和是偶数,必有一个质数
是2。80-2=78,剩下两个质数的和是78, 而且要使它的积最大,只能是41和37。因此, 这三个质数是2、37和41。 最大积是2×37×41=3034

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】3⨯⨯⨯23753【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

五年级奥数基础教程-分解质因数

五年级奥数基础教程-分解质因数

小学数学奥数基础教程(五年级)分解质因数自然数中任何一个合数都可以表示成若干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的。

把合数表示为质因数乘积的形式叫做分解质因数。

例如,60=22×3×5, 1998=2×33×37。

例1 一个正方体的体积是13824厘米3,它的表面积是多少?分析与解:正方体的体积是“棱长×棱长×棱长”,现在已知正方体的体积是13824厘米3,若能把13824写成三个相同的数相乘,则可求出棱长。

为此,我们先将13824分解质因数:把这些因数分成三组,使每组因数之积相等,得13824=(23×3)×(23×3)×(23×3),于是,得到棱长是23×3=24(厘米)。

所求表面积是24×24×6=3456(厘米2)。

例2 学区举行团体操表演,有1430名学生参加,分成人数相等的若干队,要求每队人数在100至200之间,共有几种分法?分析与解:按题意,每队人数×队数=1430,每队人数在100至200之间,所以问题相当于求1430有多少个在100至200之间的约数。

为此,先把1430分解质因数,得1430=2×5×11×13。

从这四个质数中选若干个,使其乘积在100到200之间,这是每队人数,其余的质因数之积便是队数。

2×5×11=110,13;2×5×13=130,11;11×13=143,2×5=10。

所以共有三种分法,即分成13队,每队110人;分成11队,每队130人;分成10队,每队143人。

例3 1×2×3×…×40能否被90909整除?分析与解:首先将90909分解质因数,得 90909=33×7×13×37。

五年级奥数用分解质因数法解决问题

五年级奥数用分解质因数法解决问题

用分解质因数法解决问题用分解质因数的方法解决有关数学问题应用广泛,且趣味性强。

在解决有关整除问题时,一般先把数分解成质因数的连乘积,然后根据需要把某些质因数组合得到所需的因数,在组合时千万不要漏掉满足要求的解。

例1:有三个学生,他们的年龄恰好一个比另一个大2岁,而他们的年龄的乘积为2688.那么他们的年龄各是多少?变式训练:把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?例2:王老师带领同学们去种树,学生的人数恰好等分成四组。

已知老师和学生共种树539课,老师与学生每人中的树一样多,并且不少于10棵。

每人种了几棵树?变式训练:植树节那天,学校要求两位老师组织五年级的同学将893棵植栽完。

要求全部同学平均分成5组,老师和同学所种植的数量相同。

如果你是校长你会怎样安排植树。

你知道一共去植树的同学有多少位吗?例3:马鹏和李虎计算甲、乙两个大于1的自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407.那么,甲、乙两数的乘积应是多少?变式训练:甲、乙两个人计算自然数A和B的乘积,甲把B的个位数字看错了,得到的积是522;乙把B的十位数字看错了,得到的积是667.那么A,B两数的乘积是多少?例4:育才小学师生为贫困地区捐款1995元,这所学校共有35名教师,14个教学班,各班的学生人数相同,且多于30人,不超过45人。

如果每人平均捐款的钱数都是整元数,那么该校有学生多少人?平均每人捐款多少元?变式训练:有3250个橘子,平均分给一个幼儿园的小朋友,剩下10个。

已知每个小朋友分得的橘子数接近40个。

求这个幼儿园有多少名小朋友?提高训练:1.四年级某学生参加数学竞赛,他获得的名次、他的年龄、他得的分数的乘积是2910,这个学生得第几名,成绩是多少分?2.李老师带领同学去种树,学生恰好平均分成三组。

如果老师比每个学生多种5棵,则师生共种树511棵。

五年级奥数之分解质因数

五年级奥数之分解质因数

五年级奥数之分解质因数分解质因数例1:判断269和439是否为质数。

例2:已知两个质数的和为40,求这两个质数的乘积的最大值。

例3:求36和216的全部因数个数。

例4:求36和216的因数和。

例5: ___是一名中学生,他参加了全市的数学竞赛,满分为100分。

他表示:“我的名次、分数和年龄的乘积为3738.”求___的得分和名次。

例6: ___、___和___是三个好朋友,他们的年龄依次相差2岁。

已知他们的年龄之积为1680,其中年龄最大的上了初中,___和___在同一学校研究,且___不是年龄最小的。

求三个好朋友的年龄。

例7: 在连续九个自然数中,最多有几个质数?为什么?例8:将14、33、35、30、75、39、143、169这八个数平均分成两组,使得每组数的乘积相等。

例9:一个整数a与1080的乘积是一个完全平方数,求a的最小值和这个平方数。

例10:已知有三个自然数a、b、c,满足a×b=6,b×c=15,10.求a×b×c的值。

应用与拓展1.求两个质数和为45时,这两个质数的积。

2.求共有几个两位质数,将其十位数字和个位数字对调后仍为两位质数,并求它们的和。

3.求100以内所有只有三个因数的自然数的和。

4.将1008分解质因数,并求出其因数的个数和因数的和。

5.___参加小学数学竞赛,满分为100分。

他表示:“我的分数、年龄和名次的乘积为2134.”___的年龄、考试成绩和名次。

6.设a、b、c、d均为不同的质数,且满足a+b+c=d。

求a×b×c×d的最小值。

7.有九张卡片,上面分别写着数字1、2、3、4、5、6、7、8、9.甲、乙、丙各拿了三张卡片。

甲拿的三张卡片上的数字乘积为24,乙拿的三张卡片上的数字乘积为48,丙拿的三张卡片上的数字之和为21.求丙拿的是哪三张卡片。

8.在射箭运动中,运动员每射一箭的环数只能是1、2、3、4、5、6、7、8、9、10之一。

(完整版)五年级奥数分解质因数

(完整版)五年级奥数分解质因数

第二十三周分解质因数专题简析:一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

例题1把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。

例题2有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?练习二1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

2,四个连续奇数的和是19305,这个四奇数分别是多少?3,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。

甲说:“我的三个数的积是48。

”乙说:“我的三个数的和是16。

”丙说:“我的三个数的积是63。

”甲、乙、丙各拿了哪几张卡片?例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99练习三1,把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。

2,把39、45、49、56、60、70、78、84、91这八个数平分成三组,使两组四个数的乘积相等。

3,有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?例题4王老师带领一班同学去植树,学生恰好分成4组。

五年级奥数专题 质数、合数、分解质因数(学生版)

五年级奥数专题 质数、合数、分解质因数(学生版)

学科培优数学“质数、合数、分解质因数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

知识梳理一、质数与合数的基本概念1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数,也叫做素数2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数二、质数和合数的一些性质和常用结论1. 0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即,0和1,质数,合数。

2. 最小的质数是2,最小的合数是4。

3. 常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97其中2是唯一的偶数,5是唯一个位上数字是5的数,其余的数字个位只为1,3,7,94. 部分特殊数的分解:=⨯1000173137=⨯=⨯⨯1111141271=⨯100171113111337=⨯⨯=⨯⨯⨯⨯200733223=⨯⨯⨯1998233337199535719=⨯⨯⨯+==⨯⨯10101371337 2008222251=⨯⨯⨯200720084015511735. 质数的判定方法判断一个数是否是质数,可以采用“连续小质数试除法”。

例如:判断251是否是质数,可以从最小的质数2开始依次除251,直到所得的商比除数小为止,可以断定251是质数。

251÷2=125...1, 251÷3=83...2, 251÷5=50...1, 251÷7=35...6, (251)17=14…13,此时除数17>商14,由此说明251是质数。

五年级上册奥数质数、合数和分解质因数 (例题含答案)

五年级上册奥数质数、合数和分解质因数 (例题含答案)

第二讲质数、合数和分解质因数一、基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、例题例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。

例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。

∵17×23=391>11×29=319>3×37=111。

∴所求的最大值是391。

答:这两个质数的最大乘积是391。

例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

综上所述,连续九个自然数中至多有4个质数。

例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。

小学五年级奥数第23讲 分解质因数(一)(含答案分析)

小学五年级奥数第23讲 分解质因数(一)(含答案分析)

第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?练习一1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、991、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。

□□×□□=12882、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?例题4 王老师带领一班同学去植树,学生恰好分成4组。

如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?1、3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。

已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。

2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。

小青买的电影票是几排几座?例题5 下面的算式里,□里数字各不相同,求这四个数字的和。

小学奥数 分解质因数 知识点+例题+练习 (分类全面)

小学奥数 分解质因数 知识点+例题+练习 (分类全面)
□□×□□=1288
例6、三个质数的和是80,这三个数的积最大可以是多少?
巩固、如果A+B=70,A×B=1161,那么A-B等于多少?
巩固、把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。甲说:“我的三个数的积是48。”乙说:“我的三个数的和是16。”丙说:“我的三个数的积是63。”问甲、乙、丙各拿了哪几张卡片?
例7、一个两位数除310余37,这个数可以是( )或( )。
巩固、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。
巩固、5100除以一个三位数,余数是95,这个三位数最大是多少?
例8、小明用60元买了一种画片若干张,如果每张画片的价钱便宜1元钱,那么他还能多买3张。问小明买了多少张画片?
例1、把18个苹果平均分成若干份,每份大于1个,小于18个。一共有多少种不同的分法?
巩固、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?
巩固、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?
例2、写出若干个连续的自然数,使它的积是15120。
巩固、有三个连续的自然数,乘积是39270立方厘米,求这个三个数的和。
巩固、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?
例3、将下面八个数平均分成两组,使这两组数的乘积相等。
2、5、14、24、27、55、56、99
巩固、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
教学内容
分解质因数
教学目标
掌握分解质因数相关题型
重点
分解质因数
难点

五年级奥数基础教程分解质因数小学

五年级奥数基础教程分解质因数小学

五年级奥数基础教程分解质因数小学自然数中任何一个合数都可以表示成若干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的。

把合数表示为质因数乘积的形式叫做分解质因数。

例如,60=22×3×5, 1998=2×33×37。

例1 一个正方体的体积是13824厘米3,它的表面积是多少?分析与解:正方体的体积是“棱长×棱长×棱长”,现在已知正方体的体积是13824厘米3,若能把13824写成三个相同的数相乘,则可求出棱长。

为此,我们先将13824分解质因数:把这些因数分成三组,使每组因数之积相等,得13824=(23×3)×(23×3)×(23×3),于是,得到棱长是23×3=24(厘米)。

所求表面积是24×24×6=3456(厘米2)。

例2 学区举行团体操表演,有1430名学生参加,分成人数相等的若干队,要求每队人数在100至200之间,共有几种分法?分析与解:按题意,每队人数×队数=1430,每队人数在100至200之间,所以问题相当于求1430有多少个在100至200之间的约数。

为此,先把1430分解质因数,得1430=2×5×11×13。

从这四个质数中选若干个,使其乘积在100到200之间,这是每队人数,其余的质因数之积便是队数。

2×5×11=110,13;2×5×13=130,11;11×13=143,2×5=10。

所以共有三种分法,即分成13队,每队110人;分成11队,每队130人;分成10队,每队143人。

例3 1×2×3×…×40能否被90909整除?分析与解:首先将90909分解质因数,得 90909=33×7×13×37。

五年级奥数分解质因数

五年级奥数分解质因数
第7页/共13页
【练习3】 1,一个长方体的长、宽、高是三个连续的自然数。已知这个长方体的体积是 9240立方厘米,那么,这个长方体的表面积是多少? 2,老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3 支。每支钢笔原价多少元? 3,王老师带同学们擦玻璃,同学们恰好平均分成3组。如果师生每人擦的块数同 样多,一共擦111块,那么,平均每人擦了多少块?
第4页/共13页
【例题2】长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多 少米? 【思路导航】 这ห้องสมุดไป่ตู้题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。 375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25 米,宽是5×3=15米,它们的和是40米。
谢谢您的观看!
第13页/共13页
第9页/共13页
【练习4】 请用上面的方法把下面的几个分数约分。 46/69 143/117 247/323 161/253
第10页/共13页
【例题5】 小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱, 那么他还能多买3张。小明买了多少张画片? 【思路导航】 根据题意可知:画片的单价×张数=216分,它们乘积的质因数和216的质因数相 同。我们可以先把216分解质因数,再写成两数相乘的形式分析: 216=2^3×3^3=8×27=9×24,显然,216分可以买8分的画片27张,也可以 买9分的画片24张。所以,小明买了24张画片,符合题意。
许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分 解质因数的方法求解。因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关 的应用题。

小学数学培优 分解质因数(一).教师版与学生版都有

小学数学培优 分解质因数(一).教师版与学生版都有

1. 能够利用短除法分解2.整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. (2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123ka a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数. 分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空 【关键词】走美杯,决赛,5年级,决赛,第2题,10分 【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少? 【考点】分解质因数 【难度】1星 【题型】填空 【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.五年级奥数分解质因数(一)学生

2.整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”
一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.
(2).互质数:公约数只有1的两个自然数,叫做互质数.
(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.
例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.
(4).分解质因数的方法:短除法 例如:212263
,(┖是短除法的符号) 所以12223=⨯⨯;
二、唯一分解定理
任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<
<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.
分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.
三、部分特殊数的分解
111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.
知识点拨
教学目标
5-3-4.分解质因数(一)
例题精讲
模块一、分解质因数
【例 1】分解质因数20034= 。

【例 2】三个连续自然数的乘积是210,求这三个数是多少?
【例 3】两个连续奇数的乘积是111555,这两个奇数之和是多少?
【巩固】已知两个自然数的积是35,差是2,则这两个自然数的和是_______.
【例 1】今年是2010年,从今年起年份数正好为三个连续正整数乘积的第一个年份是。

【例 2】如果两个合数互质,它们的最小公倍数是126,那么,它们的和是.
【例 3】4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?
【例 4】已知5个人都属牛,它们年龄的乘积是589225,那么他们年龄的和为多少?
【例 5】如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是___________。

【例 6】2004720
⨯⨯的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和最小是多少?
【例 7】A是乘积为2007的5个自然数之和,B是乘积为2007的4个自然数之和。

那么A、B两数之差的最大值是。

【例 8】(老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们
四个人年龄的乘积是48384。

问他们四个人的年龄各是几岁?
【例 9】甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数?
【例 10】四个连续自然数的乘积是3024,这四个自然数中最大的一个是多少?
【例 11】植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法()。

A、3种
B、7种
C、11种
D、13种
【例 12】a、b、c、d、e这五个无数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300.那么,这五个数中从小大大排列第2个数的平方是
___________。

A.1 B. 3 C. 5 D. 10
【例 13】a、b、c、d、e这五个数各不相同,他们两两相乘后的积从小到大排列依次为:0.3、
0.6、1.5、1.8、2、5、6、10、12、30。

将这五个数从小到大排成一行,那么,左起
第2个数是_________。

(A)0.3 (B)0.5 (C)1 (D)1.5
【例 14】将1~9九个自然数分成三组,每组三个数.第一组三个数的乘积是48,第二组三个数的乘积是45,第三组三个数字之和最大是多少?
【例 15】一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?
【例 16】一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么
这个长方体的表面积是多少平方厘米?
【例 17】如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?
【例 18】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?
【例 19】如果一个数,将它的数字倒排后所得的数仍是这个数,我们称这个数为回文数.如年份数1991,具有如下两个性质:①1991是一个回文数.②1991可以分解成一个
两位质数回文数和一个三位质数回文数的积.在1000年到2000年之间的一千年
中,除了1991外,具有性质①和②的年份数,有哪些?
【例 20】有一种最简真分数,它们的分子与分母的乘积都是140.如果把所有这样的分数从小到大排列,那么第三个分数是多少?
【例 21】纯循环小数0.abc写成最简分数时,分子和分母的和是58,则三位数abc
_________
模块二、分解质因式
【例 22】三个质数的乘积恰好等于它们和的11倍,求这三个质数.
【例 23】三个质数的乘积恰好等于它们的和的7倍,求这三个质数.
【例 24】如图,长方形周长为20,面积为24。

另一个长方形,面积为20,周长为24。

它的长是,宽是。

6
4
【例 25】在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?
【例 26】两个不同的两位质数接起来可以得到一个四位数,比如由17,19可得到一个四位数1719,由19,17也可得到一个四位数1917.已知这样的四位数能被这两个两位质数
的平均数所整除,试写出所有这样的四位数。

相关文档
最新文档