中考规律探索题训练含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律探索

一. 选择题

1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()

考点:旋转的性质;弧长的计算..

专题:规律型.

分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.

解答:解:转动一次A的路线长是:,

转动第二次的路线长是:,

转动第三次的路线长是:,

转动第四次的路线长是:0,

转动五次A的路线长是:,

以此类推,每四次循环,

故顶点A转动四次经过的路线长为:+2π=6π,

2015÷4=503余3

顶点A转动四次经过的路线长为:6π×504=3024π.

故选:D.

点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.

2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()

A.(31,50)B.(32,47)C.(33,46)D.(34,42)

考点:规律型:数字的变化类.

分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.

解答:解:2015是第=1008个数,

设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,

即≥1008,

解得:n≥,

当n=31时,1+3+5+7+…+61=961;

当n=32时,1+3+5+7+…+63=1024;

故第1008个数在第32组,

第1024个数为:2×1024﹣1=2047,

第32组的第一个数为:2×962﹣1=1923,

则2015是(+1)=47个数.

故A2015=(32,47).

故选B.

点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.

3.(2015湖北鄂州第10题3分)

在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()

A. B. C. D.

【答案】D.

考点:1.正方形的性质;2.解直角三角形.

4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()

A.B.C.D.

考点:正多边形和圆..

专题:规律型.

分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形

A10B10C10D10E10F10的边长=()9×2,然后化简即可.

解答:解:连结OE1,OD1,OD2,如图,

∵六边形A1B1C1D1E1F1为正六边形,

∴∠E1OD1=60°,

∴△E1OD1为等边三角形,

∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,

∴OD2⊥E1D1,

∴OD2=E1D1=×2,

∴正六边形A2B2C2D2E2F2的边长=×2,

同理可得正六边形A3B3C3D3E3F3的边长=()2×2,

则正六边形A10B10C10D10E10F10的边长=()9×2=.

故选D.

点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.

5.(2015•山东日照,第11题3分)观察下列各式及其展开式:

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

请你猜想(a+b)10的展开式第三项的系数是()

A.36 B.45 C.55 D.66

考点:完全平方公式..

专题:规律型.

分析:归纳总结得到展开式中第三项系数即可.

解答:解:解:(a+b)2=a22+2ab+b2;

(a+b)3=a3+3a2b+3ab2+b3;

(a+b)4=a4+4a3b+6a2b2+4ab3+b4;

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;

(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;

(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;

第8个式子系数分别为:1,8,28,56,70,56,28,8,1;

第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;

第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,

则(a+b)10的展开式第三项的系数为45.

故选B.

点:此题考查了完全平方公式,熟练掌握公式是解本题的关键

相关文档
最新文档