中考规律探索题训练含答案

合集下载

中考数学重难点突破专题一:规律探索型问题试题(含答案)

中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。

中考数学专题复习——规律探索(详细答案)

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。

中考规律探索型问题及答案

中考规律探索型问题及答案

规 律 探1.如图,下面是按照一定规律画岀的“数形图”,经观察可以发现:图A 比图A i 多岀2个“树枝”比图A 多岀4个“树枝”,图A 比图A 3多岀8个“树枝”,……,照此规律,图A 比图A2多岀“树枝”()D. 124【答案】C的代数式表示)OQQG O 0-O 0 0 5第1个图形 第2个图形0 Q0 0 0 0 90 0 O0 Q Q 9 0 Qoo oo • a C 殆彷0 4 0 0 0O第3个图形第4个图形【答案】n(n 1) 4或n 2 n 4 3.观察下列算式:2① 1 X 3 - 2 = 3 - 4 = -1 ② 2 X 4 - 3 2 = 8 - 9 = -1③ 3 X 5 - 4 2 = 15 - 16 = -1④ _________________________6.观察下面的变形规律:1 1 1 11 1 11----- =1 — — • ------------ = — — — • -------- =———1 2 223233434解答下面的问题:2.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆 (用含n(1 )请你按以上规律写出第 4个算式; 2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写岀的式子一定成立吗?并说明理由. 【答案】解:⑴4 6 5224 25 1 ;2⑵答案不唯一.如n n 2 n 11 ;2 2 2⑶ n n 2 n 1 n 2n n 2n 11.4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第 【答案】155. 先找规律,再填数: 22n n2n 1【答案】11006____ 个图形共有120个8.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答(1) _______________________________ 表中第8行的最后一个数是 ___________________ ,它是自然数 的平方,第8行共有 ____________________________ 个数;(2) ______________________________________________ 用含n 的代数式表示:第 n 行的第一个数是 _____ ,最后一个数是 _____________________________________________ ,第n 行共有____________ 个 数;(3)求第n 行各数之和.【解】(1) 64,8,15;(2) (n 1)2 1,n 2,2n 1;(3)第2行各数之和等于 3X 3 ;第3行各数之和等于 5X 7;第4行各数之和等于 7 X 7-13 ;类似的,第n(1 )若n 为正整数,请你猜想n(n 1)(2) (3) 证明你猜想的结论; 1 .求和: 丄+…+3 42009 2010【答案】 1(1)(2) 证明:n 1 n(n 1)n n(n 1)n 1 n n(n 1)1 n(n 1)(3) 原式=1+…+42009 2010 2010200920107.设 S ,=1g 丄,S 2=1厶 12 22 22丄,X3232■V …,S.=1 A4 n(n【答案】S n1 1~~2n=[1S= (用含n 的代数式表示,其中2n1 1 k 1 [1 占2 2 A 1 爲]2 21 n(n 1)1 n(n1 1 1 ‘ S =(1厂)+(1 厂)+(1 厂尸…+(1n(n 1))2小n 2n n 1接下去利用拆项法1 n(n 1)即可求和.n 1设 S .. .3则行各数之和等于(2n 1)(n2 n 1) = 2 n3 3n2 3n 1.「、 2 32012上乙“ _ 人— 2 3 2012 — 2 3 4 2013 e. — — 2013八9.求 1+2+2+2+…+2 的值,可令 S=1+2+2+2+…+2 ,则 2S=2+2+2+2+…+2,因此 2S- S=2 - 1.仿照以上推理,计算出1+5+52+53+…+5 2012的值为( )选C.个小正方形。

含答案 中考数学复习专题六 规律探索题

含答案  中考数学复习专题六  规律探索题

专题六 规律探索题类型一 数式规律1. 设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6,…,则a 1+a 2+a 3+…+a 2019+a 2020+a 2021=________.2. 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.则第5个台阶上的数x =________,从下到上前35个台阶上数的和=________.第2题图3. 将从1开始的连续奇数按如图所示的规律排列,例如:位于第4行第3列的数为27,则位于第32行第13列的数是________.第3题图4. 如图,下列各正方形中的四个数具有相同的规律,根据规律,x 的值为________.第4题图5. 已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2018=________(用含a 的代数式表示).6. 观察下列等式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1;(x -1)(x 4+x 3+x 2+x +1)=x 5-1;…根据以上规律,计算22020+22019+22018+…+23+22+2+1的结果是________,个位数字是________.7. 人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =5-12,b =5+12,得ab =1,记S 1=11+a +11+b ,S 2=11+a 2+11+b 2,…,S 10=11+a 10+11+b 10.则S 1+S 2+…+S 10=________. 8.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是________.第8题图9.观察下列等式:x 1=1+112+122=32=1+11×2; x 2=1+122+132=76=1+12×3; x 3=1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020-2021=________.10.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸巳;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法”中的________.类型二 图形变化规律1. 如图,在平面直角坐标系中,函数y =3x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 6的坐标为________,点A2022的坐标为________.第1题图2. 如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2,…,按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2,…,△A2020D2020A2021的面积为S2021,则S2021=________.第2题图3. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3,…,按此规律继续旋转,直到点P2020为止,则AP2020等于________.第3题图4. 已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O 为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的平面直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为________.第4题图5. 如图,在矩形ABCD 中,AB =1,BC =2,连接AC ,过点D 作DC 1⊥AC 于C 1;以C 1A 、C 1D 为邻边作矩形AA 1DC 1,连接A 1C 1,交AD 于O 1,过点D 作DC 2⊥A 1C 1于C 2,交AC 于M 1,以C 2A 1,C 2D 为邻边作矩形A 1A 2DC 2,连接A 2C 2,交A 1D 于O 2,过点D 作DC 3⊥A 2C 2于C 3,交A 1C 1于M 2;以C 3A 2,C 3D 为邻边作矩形A 2A 3DC 3,连接A 3C 3,交A 2D 于O 3,过点D 作DC 4⊥A 3C 3于C 4,交A 2C 2于M 3;…若四边形AO 1C 2M 1的面积为S 1,四边形A 1O 2C 3M 2的面积为S 2,四边形A 2O 3C 4M 3的面积为S 3,…,四边形A n -1O n C n +1M n 的面积为S n ,则S n =________.(结果用含正整数n 的式子表示)第5题图6. 如图,在平面直角坐标系中,菱形OABC 的边OC 在x 轴的正半轴上,且点C 的坐标为(2,0),∠OCB =45°,将菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,…,依此方式,绕点O 连续旋转2021次后得到菱形OA 2021B 2021C 2021,则点A 2021的坐标为________.第6题图7. 如图,在平面直角坐标系中,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-34x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2也落在直线y =-34x 上,以此进行下去…,若点B 的坐标为(0,3),则点B 21的纵坐标...为________.第7题图专题六 规律探索题类型一 数式规律1. 6667 【解析】∵a 1=1,a 2=6,a 3=1,a 4=6,a 5=5,a 6=6,a 7=1,a 8=6,a 9=1,a 10=0,…,即每10个数一循环,∴a 1+a 2+a 3+…+a 10=1+6+1+6+5+6+1+6+1+0=33,2021÷10=202……1,∴33×202+1=6667.2. -5;18 【解析】第1个至第4个台阶上数的和为-5+(-2)+1+9=3,∵任意相邻四个台阶上数的和都相等,∴-2+1+9+x =3,解得x =-5,则第5个台阶上的数x 是-5.由题意知,台阶上的数字每4个一循环,∵35÷4=8……3,∴从下到上前35个台阶上数的和为8×3-5-2+1=18.3. 2023 【解析】观察数字的变化,发现规律:第n 行,第n 列的数为2n (n -1)+1,∴第32行,第32列的数为2×32×(32-1)+1=1985,根据排列规律,偶数行的数从右往左依次增加2,∴第32行,第13列的数为1985+2×(32-13)=2023.4. 170 【解析】分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b ,b =a +1.∴a =8,b =9.∵9=2×4+1,20=3×6+2,35=4×8+3,∴x =18b +a =18×9+8=170.5. -a +1a 【解析】S 1=1a ,S 2=-1a -1=-a +1a ,S 3=-a a +1,S 4=-1a +1,S 5=-(a +1),S 6=a ,S 7=1a ,…,∴每6个数是一个循环,∵2018÷6=336……2,∴S 2018=S 2=-a +1a .6. 22021-1 ;1 【解析】根据题意得:(x -1)(x n +x n -1+…+x +1)=x n +1-1,∵(2-1)×(22020+22019+…+2+1)=22020+1-1,∴22020+22019+…+2+1=22021-1,∵21=2,个位数字是2,22=4,个位数字是4,23=8,个位数字是8,24=16,个位数字是6,25=32,个位数字是2,…,∵2021÷4=505……1,∴22021的个位数字是2,∴22021-1的个位数字是1. 7. 10 【解析】∵a =5-12,b =5+12,∴ab =5-12×5+12=1,∵S n =11+a n +11+b n =2+a n +b n (1+a n )(1+b n )=2+a n +b n 1+(ab )n +a n +b n =2+a n +b n2+a n +b n =1,∴S 1=S 2=S 3=…=S n =1,∴S 1+S 2+S 3+…+S 10=10.8. 556个 【解析】∵前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区最后一排座位数为20+2×(8-1)=34,∴前区座位数为(20+34)×8÷2=216,∵前区最后一排与后区各排的座位数相同,后区一共有10排,∴后区的座位数为10×34=340,∴该礼堂的座位总数是216+340=556个.9. -12021 【解析】x 1=1+11×2=1+1-12,x 2=1+12×3=1+12-13,x 3=1+13×4=1+13-14,…,x n =1+1n (n +1)=1+1n -1n +1,∴x 1+x 2+x 3+…+x n =1+1-12+1+12-13+1+13-14+…+1+1n -1n +1=n +1-1n +1,∴x 1+x 2+x 3+…+x 2020-2021=2020+1-12021-2021=-12021.10. 庚午年 【解析】公元纪年换算成干支纪年方法如下:天干算法:用公元纪年数减3,除以10(不管商数)所得余数,就是天干所对应的位数,地支算法:用公元纪年数减3,除以12(不管商数)所得余数,就是地支所对应的位数,2050-3=2047,2047÷10余数为7,∴天干为“庚”,2047÷12余数为7,∴地支为“午”,∴2050年为“庚午”年.类型二 图形变化规律1. (-27,27),(-31011,31011) 【解析】当x =1时,y =3x =3,∴点A 1的坐标为(1,3);当y =-x =3时,x =-3,∴点A 2的坐标为(-3,3);同理可得A 3(-3,-9),A 4(9,-9),A 5(9,27),A 6(-27,27),A 7(-27,-81),…,∴A 4n +1(32n ,32n +1),A 4n +2(-32n +1,32n +1),A 4n +3(-32n +1,-32n +2),A 4n +4(32n +2,-32n +2)(n 为自然数).∵2022=505×4+2,∴点A 2022的坐标为(-31011,31011).2. 24038· 3 【解析】∵四边形ABCD 是菱形,∴AB =AD =BC =CD =1,AD ∥BC ,AB ∥CD ,∵∠ABC =120°,∴∠BCD =60°,∴∠ADA 1=∠BCD =60°,∵DA 1=CD ,∴DA 1=AD ,∴△ADA 1为等边三角形,同理可得△A 1D 1A 2,…,△A 2020D 2020A 2021都为等边三角形,如解图,过点B 作BE ⊥CD 于点E ,∴BE =BC ·sin ∠BCD =32=A 1D ,∴S 1=12A 1D ·BE =34A 1D 2=34,同理可得,S 2=34A 2D 12=34×22=3,S 3=34A 3D 22=34×42=43,…,∴由此规律可得,S n =3·22n -4,∴S 2021=3×22×2021-4=24038· 3.第2题解图3. 2021+673 3 【解析】∵∠ACB =90°,∠B =30°,AC =1,∴AB =2,BC =3,∴将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3,…,∵2020÷3=673……1,∴AP 2020=673×(3+3)+2=2021+673 3.4. (3n -1,0) 【解析】根据题意得△A 1B 1C 1是等边三角形,∴A 1C 1=2,则点A 1的坐标是(1,0),B 1O =3,在Rt △A 2OB 1中,tan30°=B 1O A 2O ,得A 2O =3,则点A 2的坐标为(3,0),同理求出点A 3的坐标是(9,0),A 4的坐标是(27,0),…,即点A 3(32,0),A 4(33,0),…,∴点A n 的坐标为(3n -1,0)5. 9×4n -15n +1 【解析】∵在矩形ABCD 中,AB =1,BC =2,∴AC =5,∵DC 1⊥AC ,∴DC 1=AD ·CD AC =255,∴CC 1=CD 2-DC 21=12-(255)2=55,∴AC 1=455,∵四边形AA 1DC 1是矩形,∴AA 1=DC 1=255,∵DC 2⊥A 1C 1,∴∠AC 1A 1=∠C 1DM 1,∴tan ∠AC 1A 1=tan ∠C 1DM 1=AA 1AC 1=C 1C 2DC 2=12,∴由勾股定理可得C 1C 2=25,∴M 1C 2=15,∵点O 1是矩形AA 1DC 1对角线的交点,∴点O 1到AC 1的距离=12DC 1=55,∴S 1=S △AO 1C 1-S △C 1C 2M 1=12×455×55-12×15×25=925=9×152;同理可得A 1C 2=85,DC 2=45,C 2C 3=4525,M 2C 3=2525,点O 2到A 1C 1的距离=12DC 2=25,∴S 2=S △A 1O 2C 2-S △C 2C 3M 3=12×85×25-12×4525×2525=36125=9×453;同理可得S 3=9×4254,S 4=9×4355,…,以此类推可得S n =9×4n -15n +1.6. (0,-2) 【解析】如解图,∵四边形OABC 是菱形,且OC =2,∴OA =2,又∵∠OCB =45°,∴∠OAB =45°,∴A (-1,1),由旋转的性质得OA =OA 1=OA 2=…=OA 7= 2.∵菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,相当于将线段OA 绕点O 顺时针旋转45°得到线段OA 1,易知点A 与A 2关于y 轴对称,点A 2与A 4关于x 轴对称,点A 与点A 6关于x 轴对称,其余点均在x 轴、y 轴上,∴A (-1,1),A 1(0,2),A 2(1,1),A 3(2,0),A 4(1,-1),A 5(0,-2),A 6(-1,-1),A 7(-2,0),….∵360°÷45°=8,∴图形在旋转过程中每8次为一个循环,∵2021÷8=252……5,∴点A 2021的坐标与点A 5的坐标相同,∴点A 2021的坐标为(0,-2).第6题解图7. 3875 【解析】∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,将y =3代入y =-34x ,解得x =-4,即A (-4,3),∴OB =3,AB =4,OA =32+42=5,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=...=3,OA =O 1A =O 2A 1=...=5,AB =AB 1=A 1B 1=A 2B 2= (4)∴OB 1=OA +AB 1=5+4=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,-34a ),则OB 21=a 2+(-34a )2=129, 解得a =-5165或5165(舍),则-34a =-34×(-5165)=3875, 即点B 21的纵坐标为3875.。

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)1.按一定规律排列的单项式:a,√2a2,√3a3,√4a4,√5a5,…,第n个单项式是( ) A.√n B.√n−1a n-1C.√n a n D.√n a n-12.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 0223.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2 025 B.2 023C.2 021 D.2 0194.根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121C.144 D.1695.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( ) A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n6.根据图中数字的排列规律,在第⑦个图中,a-b-c的值是( )A.62 B.64C.-66 D.-1907.将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是______________.8.根据图中数字的规律,则x+y的值是_______..例9.对于正整数a,我们规定:若a为奇数,则f(a)=3a+1;若a为偶数,则f(a)=a2=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,如f(15)=3×15+1=46,f(10)=102依此规律进行下去,得到一列数a1,a2,a3,a4,…,a n,…,(n为正整数),a1+a2+a3+…+a2 022=__________.参考答案1.C 2.A 3.B 4.B 5.A 6.A 7.(10,18) 8.593 9.4 725。

中考数学真题《规律探究题》专项测试卷(附答案)

中考数学真题《规律探究题》专项测试卷(附答案)

中考数学真题《规律探究题》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(26题)一 、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .542.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案 其中第①个图案中有2个圆圈 第①个图案中有5个圆圈 第①个图案中有8个圆圈 第①个图案中有11个圆圈 … 按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .263.(2023·云南·统考中考真题)按一定规律排列的单项式:23452345,a a a a a 第n 个单项式是( )A nB 11n n a --C n naD 1n na -4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 每个网格小正方形的边长均为1个单位长度 以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,05.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .26.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004C .2022D .20238.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .2029.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a =以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 .11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为点2023A 的坐标为 .18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .25.(2023·四川广安·统考中考真题)在平面直角坐标系中 点1234A A A A 、、、在x 轴的正半轴上 点123B B B 、、在直线()0y x =≥上 若点1A 的坐标为()2,0 且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为 .26.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .参考答案一 单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【答案】B【分析】根据各图形中木棍的根数发现计算的规律 由此即可得到答案. 【详解】解:第①个图案用了459+=根木棍 第①个图案用了45214+⨯=根木棍 第①个图案用了45319+⨯=根木棍 第①个图案用了45424+⨯=根木棍 ……第①个图案用的木棍根数是45844+⨯=根 故选:B .【点睛】此题考查了图形类规律的探究正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案其中第①个图案中有2个圆圈第①个图案中有5个圆圈第①个图案中有8个圆圈第①个图案中有11个圆圈… 按此规律排列下去,则第①个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律即可求解.=⨯-【详解】解:因为第①个图案中有2个圆圈2311=⨯-第①个图案中有5个圆圈5321=⨯-第①个图案中有8个圆圈8331=⨯-第①个图案中有11个圆圈11341…⨯-=所以第①个图案中圆圈的个数为37120故选:B.n-是解题的【点睛】本题考查了图形类规律探究根据前四个图案圆圈的个数找到第n个图案的规律为31关键.3.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a第n个单项式是()B1n-C n D1n-A【答案】C字母为a指数为1开始的自然数据此即可求解.【分析】根据单项式的规律可得【详解】解:按一定规律排列的单项式:2345,a第n n故选:C.【点睛】本题考查了单项式规律题找到单项式的变化规律是解题的关键.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中每个网格小正方形的边长均为1个单位长度以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【答案】A【分析】根据图象可得移动3次完成一个循环 从而可得出点坐标的规律()323n A n n --,.【详解】解:①()121A -, ()412A -, ()703A , ()1014A ,①()323n A n n --,①1003342=⨯-,则34n =①()1003134A , 故选:A .【点睛】本题考查了点的规律变化 解答本题的关键是仔细观察图象 得到点的变化规律. 5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =- 413a = 52a =…… 由此可得规律求解.【详解】解:①12a =①212312a +==-- 3131132a -==-+ 411121312a -==+51132113a +==- ……. 由此可得规律为按2 3- 12- 13四个数字一循环①20234505.....3÷= ①2023312a a ==- 故选A .【点睛】本题主要考查数字规律 解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π【答案】A【分析】曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+ 得到1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+ 得出半径 再计算弧长即可.【详解】解:由图可知 曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+∴112AD AA ==111BA BB == 1132CB CC == 112DC DD ==12122AD AA ==+2221BA BB ==+ 22322CB CC ==+ 2222DC DD ==+ ⋯⋯1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+故20232023A B 的半径为()202320231420231140452BA BB ==⨯⨯-+=∴20232023A B 的弧长90404540451802ππ=⨯=. 故选A【点睛】此题主要考查了弧长的计算 弧长的计算公式:180n rl π= 找到每段弧的半径变化规律是解题关键. 7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果. 【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ 122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ …2100200(100)1100101f ⨯==+ 1212100()11001011100f ⨯==+1(100)()2100f f += 11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+ 201=故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则 找到数字变化规律是解本题的关键. 9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 . 【答案】 15 45【分析】根据新定义 列举出前几个智慧优数 找到规律 进而即可求解.【详解】解:依题意 当3m = 1n =,则第1个一个智慧优数为22318-= 当4m = 2n =,则第2个智慧优数为224214-= 当4m = 1n =,则第3个智慧优数为224115-= 当5m = 3n =,则第5个智慧优数为225316-= 当5m = 2n =,则第6个智慧优数为225221-= 当5m = 1n =,则第7个智慧优数为225324-= ……6m =时有4个智慧优数 同理7m =时有5个 8m =时有6个12345621+++++=第22个智慧优数 当9m =时 7n = 第22个智慧优数为2297814932-=-= 第23个智慧优数为9,6m n ==时 2296813645-=-= 故答案为:15 45.【点睛】本题考查了新定义 平方差公式的应用 找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .【答案】1226C H【分析】根据碳原子的个数 氢原子的个数 找到规律 即可求解. 【详解】解:甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H ……碳原子的个数为序数 氢原子的个数为碳原子个数的2倍多2个十二烷的化学式为1226C H 故答案为:1226C H .【点睛】本题考查了规律题 找到规律是解题的关键. 12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数 等式的右边为这个数乘以这个数减1 即可求解. 【详解】解:①21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …①第n (n 为正整数)个等式是()21n n n n -=-故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律 找到规律是解题的关键.13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏. 【答案】10【分析】灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮” 确定1-100中 各个数因数的个数 完全平方数的因数为奇数个 从而求解.【详解】所有灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮”因数的个数为奇数的自然数只有完全平方数 1-100中 完全平方数为1 4 9 16 25 36 49 64 81 100 有10个数 故有10盏灯被按奇数次 为“亮”的状态 故答案为:10.【点睛】本题考查因数分解 完全平方数 理解因数的意义 完全平方数的概念是解题的关键. 14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).【答案】66n +/66n +【分析】当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根计算即可.【详解】解:当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根故第n 个图案需要火柴棍的根数为66n +. 故答案为:66n +.【点睛】本题考查了整式的加减的数字规律问题 熟练掌握规律的探索方法是解题的关键.15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯ ⋯ 可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯⋯①第(1)n n >个图案中有()22n +个白色圆片. 故答案为:()22n +.【点睛】此题考查图形的变化规律 通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素 然后推广到一般情况.解题关键是总结归纳出图形的变化规律. 16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为 点2023A 的坐标为 .【答案】 20232 ()202220222,2【分析】根据旋转角度为60︒ 可知每旋转6次后点A 又回到x 轴的正半轴上 故点2023A 在第四象限 且202320232OA = 即可求解.【详解】解:①AOB 为等边三角形 点A 的坐标为()1,0 ①1OA =①每次旋转角度为60︒ ①6次旋转360︒第一次旋转后 1A 在第四象限 12OA =第二次旋转后 2A 在第三象限 222OA =第三次旋转后 3A 在x 轴负半轴 332OA =第四次旋转后 4A 在第二象限 442OA =第五次旋转后 5A 在第一象限 552OA =第六次旋转后 6A 在x 轴正半轴 662OA =……如此循环 每旋转6次 点A 的对应点又回到x 轴正半轴①202363371÷=点2023A 在第四象限 且202320232OA =如图,过点2023A 作2023A H x ⊥轴于H在2023Rt OHA 中 202360HOA ∠=︒①202320232022202320231cos 2cos60222OH OA HOA =⋅∠=⨯︒=⨯=202320222023202320233sin 232A H OA HOA =⋅∠= ①点2023A 的坐标为()202220222,32.故答案为:20232 ()202220222,32.【点睛】本题考查图形的旋转 解直角三角形的应用.熟练掌握图形旋转的性质 根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =. 【答案】()()111n n -++【分析】根据已有的式子 抽象出相应的数字规律 进行作答即可. 【详解】解:①21312⨯+= 22413⨯+=23514⨯+=……①()()2211n n n ++=+①()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律. 19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标 从而可计算出1234,,,S S S S …的高 进而求出1234,,,S S S S … 从而得出123n S S S S +++⋯+的值.【详解】当1x =时 1P 的纵坐标为8 当2x =时 2P 的纵坐标为4 当3x =时 3P 的纵坐标为83当4x =时 4P 的纵坐标为2当5x =时 5P 的纵坐标为85…则11(84)84S =⨯-=- 2881(4)433S =⨯-=-3881(2)233S =⨯-=-481(2)2558S =⨯-=- (881)n S n n =-+ 1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ①12320238202320242532023S S S S ⨯+++⋯+==. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用 解题的关键是求出881n S n n =-+. 20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究 可发现第n 个数对的第一个数为:()11n n ++ 第n 个数对的第二个位:()211n ++ 即可求解.【详解】解:每个数对的第一个数分别为3 7 13 21 31 … 即:121⨯+ 231⨯+ 341⨯+ 451⨯+ 561⨯+ … 则第n 个数对的第一个数为:()2111n n n n ++=++ 每个数对的第二个数分别为5 10 17 26 37 … 即:221+ 231+ 241+ 251+ 261+… 则第n 个数对的第二个位:()221122n n n ++=++①第n 个数对为:()221,22n n n n ++++ 故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律 找出数字之间的排列规律 利用拐弯出数字的差的规律解决问题. 21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .【答案】20221⎛ ⎝⎭【分析】分别求出点点1B 的横坐标是1 点2B 的横坐标是1 点3B 2413⎛+= ⎝⎭找到规律 得到答案见即可.【详解】解:当0y = 0= 解得1x = ①点()11,0A ,①111A B C O 是正方形 ①11111OA A B OC === ①点()11,1B ①点1B 的横坐标是1当1y =时 1 解得1x =+①点21A ⎛⎫⎪ ⎪⎝⎭①2221A B C C 是正方形①2212211A B C C A C ===①点212B ⎛ ⎝⎭即点2B 的横坐标是1当2y =时 2= 解得)223x =①点34,23A ⎝⎭①3332A B C C 是正方形①33233243A B C C A C ===①点3B 2413⎛= ⎝⎭……以此类推,则点2023B 的横坐标是202231⎛ ⎝⎭故答案为:202231⎛ ⎝⎭【点睛】此题是点的坐标规律题 考查了二次函数的图象和性质 正方形的性质等知识 数形结合是是解题的关键.23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .【答案】 1024 202422024-+【分析】通过观察第一行数的规律为(2)n - 第二行数的规律为(2)1n n -++ 代入数据即可. 【详解】第一行数的规律为(2)n - ①第①行数的第10个数为10(2)1024-= 第二行数的规律为(2)1n n -++①第①行数的第2023个数为2023(2)- 第①行数的第2023个数为2023(2)2024-+ ①202422024-+故答案为:1024 202422024-+.【点睛】本题主要考查数字的变化 找其中的规律 是今年考试中常见的题型. 24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .。

中考数学规律探索题(整理全,含答案).doc

中考数学规律探索题(整理全,含答案).doc

A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。

中考规律探索题训练含答案

中考规律探索题训练含答案

规律探索一.选择题1.(2015第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A. 2015πB.3019.5πC.3018πD.3024π考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A.B.C.D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2,然后化简即可.解答:解:连结OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•日照,第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是()(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是,所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为. 故选C考点:探索规律7.(2015·,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是() A .(2014,0)B .(2015,-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1,∴半圆长度=π,∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•省市,第7题,3分)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l个圆和第2个圆,第3个圆和第4个圆,……,第l9个圆和第20个圆形成的所有圆环,则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【】A . 201521B . 201421C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-, 32211111222h =++=-, 42331111112222h =+++=-, (20152201420141111112222)h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45 ,2016是第63 个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.4. (2015•省江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);n =n 时,根数为:2n (n +1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·,第15题分)观察下列图形,它们是按一定规律排列的,依照此规律,第56个图形有个太阳。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

中考专题5(规律探索专题答案)

中考专题5(规律探索专题答案)

二、填空题1/2 3. 625 4,11 5, 6,5,101n n + 7, 121n -+8, n9, 111,22nn ⎛⎫- ⎪⎝⎭ 10, (4019, 3) 11, 2008 12, n 13,512,45. 14, 20092α15,46 16, 22(3)3(23)n n n +-=⨯+ 17, 12++n n 18, 37S 19, 6n +3或9+6(n -1) 20, 121-⎪⎭⎫ ⎝⎛n21, -10 22, 420 23, 750-24, 25, 3n+1 26, 121 27,ab 201021)(. 28, (12-n ,12-n ). 29, 31(1)n na n -- 30, 2(1)n n + 31, 21n n + 32, ()211n + 33, 3 35, 10,31n + 36, 23+n 37, ()13-n38, 39, 20 40, 670,3 41, (2)n n +或22n n +或2(1)1n +-42, 764x ;1(2)n n x -- 43, kk 212- 44, 45, 46,4或7或9或12或15_ 47,19748, 49,10.5 50,30, 199 三解答题 1,【答案】解:(1)①BD=CE ;②AM=AN ,∠MAN=∠BAC. (2)AM=k AN ,∠MAN=∠BAC.2,【答案】10,1010-+j i (第一空2分,第二空3分;答j i +-)1(10给3分,答ji n +-)1(给2分)3,【答案】(1)BE=AF ; (2)猜想∠BPF=120° . 4,【答案】解: 留下的矩形CDFE 是黄金矩形 。

5,【答案】29.解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m、n是任意正整数,且m>n,则11 n nm m+<+.若m、n是任意正实数,且m>n,则11 n nm m+<+.若m、n、r是任意正整数,且m>n;或m、n是任意正整数,r是任意正实数,且m>n,则n n rm m r+<+.若m、n是任意正实数,r是任意正整数,且m>n;或m、n、r是任意正实数,且m>n,则n n rm m r+<+.6,【答案】解:(1)22.5°,67.5°(2)45°,75°.(3)(9045)nn-︒=.(或3604590908nBn n︒︒∠=︒-=︒-)7,【答案】(1)6010 cm(2)需300个这样的菱形图案.。

中考数学《规律探索》专题复习试题含解析

中考数学《规律探索》专题复习试题含解析

中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。

中考《规律探索》题训练含答案

中考《规律探索》题训练含答案

规律探索一.选择题1.(2015湖南邵阳第10题3分)如图.在矩形ABCD中.已知AB=4.BC=3.矩形在直线上绕其右下角的顶点B 向右旋转90°至图①位置.再绕右下角的顶点继续向右旋转90°至图②位置.….以此类推.这样连续旋转2015次后.顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长.发现每4次循环.找到规律然后计算即可.解答:解:转动一次A的路线长是:.转动第二次的路线长是:.转动第三次的路线长是:.转动第四次的路线长是:0.转动五次A的路线长是:.以此类推.每四次循环.故顶点A转动四次经过的路线长为:+2π=6π.2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用.发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列.并按如下规律分组:(1).(3.5.7).(9.11.13.15.17).(19.21.23.25.27.29.31).….现有等式A m=(i.j)表示正奇数m是第i组第j个数(从左往右数).如A7=(2.3).则A2015=()A.(31.50)B.(32.47)C.(33.46)D.(34.42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数.然后判断第1008个数在第几组.再判断是这一组的第几个数即可.解答:解:2015是第=1008个数.设2015在第n组.则1+3+5+7+…+(2n﹣1)≥1008.即≥1008.解得:n≥.当n=31时.1+3+5+7+…+61=961;当n=32时.1+3+5+7+…+63=1024;故第1008个数在第32组.第1024个数为:2×1024﹣1=2047.第32组的第一个数为:2×962﹣1=1923.则2015是(+1)=47个数.故A2015=(32.47).故选B.点评:此题考查数字的变化规律.找出数字之间的运算规律.利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中.正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置.其中点B1在y轴上.点C1、E1、E2、C2、E3、E4、C3……在x轴上.已知正方形A1B1C1D1 的边长为1.∠B1C1O=60°.B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A. B. C. D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海.第12 题3分)如图.正六边形A1B1C1D1E1F1的边长为2.正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切.…按这样的规律进行下去.A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1.OD1.OD2.如图.根据正六边形的性质得∠E1OD1=60°.则△E1OD1为等边三角形.再根据切线的性质得OD2⊥E1D1.于是可得OD2=E1D1=×2.利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2.然后化简即可.解答:解:连结OE1.OD1.OD2.如图.∵六边形A1B1C1D1E1F1为正六边形.∴∠E1OD1=60°.∴△E1OD1为等边三角形.∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.∴OD2⊥E1D1.∴OD2=E1D1=×2.∴正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份.依次连接各分点所得的多边形是这个圆的内接正多边形.这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照 .第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1.8.28.56.70.56.28.8.1;第9个式子系数分别为:1.9.36.84.126.126.84.36.9.1;第10个式子系数分别为:1.10.45.120.210.252.210.120.45.10.1.则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式.熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式.探究其规律:x .3x 2.5x 3.7x 4.9x 5.11x 6.…. 按照上述规律.第2015个单项式是( ) (A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数.即系数为(2n -1).而后面因式x 的指数是连续自然数.因此关于x 的单项式是.所以第2015个单项式的系数为2×2015-1=4029.因此这个单项式为.故选C考点:探索规律7.(2015·河南.第8题3分)如图所示.在平面直角坐标系中.半径均为1个单位长度的半圆O 1.O 2.O 3.… 组成一条平滑的曲线.点P 从原点O 出发.沿这条曲线向右运动.速度为每秒2个单位长度.则第2015秒时.点P 的坐标是( )A .(2014,0)B .(2015.-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1.∴半圆长度=π. ∴第2015秒点P 运动的路径长为:2π×2015. ∵2π×2015÷π=1007…1.∴点P 位于第1008个半圆的中点上.且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015.纵坐标为-1.∴点P (2015.-1) .第8题图”中的“○”的个数.若第n个“龟图”中有245个“○”.则n=()A.14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○.第二个图形有:2×1+5=7个○.第三个图形有:3×2+5=11个○.第四个图形有:4×3+5=17个○.由此可得第n个图形有:[n(n﹣1)+5]个○.则可得方程:[n(n﹣1)+5]=245解得:n1=16.n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律.通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.注意公式必须符合所有的图形.8. (2015•四川省宜宾市.第7题.3分)如图.以点O为圆心的20个同心圆.它们的半径从小到大依次是1、2、3、4、……、20.阴影部分是由第l个圆和第2个圆.第3个圆和第4个圆.…….第l9个圆和第20个圆形成的所有圆环.则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•浙江宁波.第10题4分)如图.将△ABC 沿着过AB 中点D 的直线折叠.使点A 落在BC 边上的A 1处.称为第1次操作.折痕DE 到BC 的距离记为1h ;还原纸片后.再将△ADE 沿着过AD 中点D 1的直线折叠.使点A 落在DE 边上的A 2处.称为第2次操作.折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去.经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h .若1h =1.则2015h 的值为【 】A .201521 B .201421 C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质.DE 是△ABC 的中位线.D 1E 1是△A D 1E 1的中位线.D 2E 2是△A 2D 2E 1的中位线.… ∴21111122h =+=-. 32211111222h =++=-.42331111112222h =+++=-.…20152201420141111112222h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1.3.6.10.15.21.…叫做三角形数.其中1是第一个三角形数.3是第2个三角形数.6是第3个三角形数.…依此类推.那么第9个三角形数是 45 .2016是第 63 个三角形数.4. (2015•四川省内江市.第16题.5分)如图是由火柴棒搭成的几何图案.则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1.2.3.….所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1.根数为:4=2×1×(1+1);n=2.根数为:12=2×2×(2+1);n=3.根数为:24=2×3×(3+1);n =n 时.根数为:2n (n +1).点评: 本题是一道找规律的题目.这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化.是按照什么规律变化的.5.(2015·深圳.第15题 分)观察下列图形.它们是按一定规律排列的.依照此规律.第56个图形有 个太阳。

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题规律探索题类型一数式规律1. (2023鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22023的个位数字是()A. 8B. 6C. 4D. 22. (2023泰安)将从1开始的连续自然数按以下规律排列:…若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是________.3. (2022怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是________.4. (2023张家界)有一组数据:a1=31×2×3,a2=52×3×4,a3=73×4×5,…,a n=2n+1n(n+1)(n+2).记S n=a1+a2+a3+…+a n,则S12=________.5. (2023达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,…,S100=1001+a100+1001+b100,则S1+S2+…+S100=________.6. (2023安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2,…按照以上规律,解决下列问题:(1)写出第5个等式:____________________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.类型二图形规律考向1累加型7. (2023重庆B卷)把菱形按如图所示的规律拼图案,其中第①个图案中有1个菱形,第①个图案中有3个菱形,第①个图案中有5个菱形,…,按此规律排列下去,则第①个图案中菱形的个数为()第7题图A. 15B. 13C. 11D. 98. (2023济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点…按照此规律,第一百幅图中圆点的个数是()第8题图A. 297B. 301C. 303D. 4009. (2023青海省卷)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料________根.第9题图源自人教七上P70第10题10. (2022常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为________.(用含n的代数式表示)第10题图11. (2023遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.第11题图12. (2023德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:第12题图其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,…图①的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图①中第五个正六边形数是________.考向2成倍递变型13. (2023威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,①AOB =①BOC =①COD =…=①LOM =30°.若S ①AOB =1,则图中与①AOB 位似的三角形的面积为( )第13题图A. (43 )3B. (43 )7C. (43 )6D. (34)6 14. (2023荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n C n D n 的面积是( )A. ab 2nB. ab 2n -1C. ab 2n +1 D. ab22n第14题图15. (2023烟台)如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( ) A. (22 )5 B. (22 )6 C. (2 )5 D. (2 )6第15题图16. (2023广安)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2…是由多段90°的圆心角所对的弧组成的.其中,弧DA 1的圆心为A ,半径为AD ;弧A 1B 1的圆心为B ,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2023D2023的长是________(结果保留π).第16题图17. (2023绥化)如图,①AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1①OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2①OA交射线OB 于K2,在射线OA上截取P2P3,使P2P3=P2K2;…;按照此规律,线段P2023K2023的长为________.第17题图考向3周期变化型18. (2023玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2023秒钟后,两枚跳棋之间的距离是()A. 4B. 23C. 2D. 0第18题图19. (2023河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O 重合,AB①x轴,交y轴于点P.将①OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A. (3,-1)B. (-1,-3)C. (-3,-1)D. (1,3)第19题图20. (2023毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4);…;按此做法进行下去,则点A10的坐标为________.第20题图类型三与函数图象结合21. (2023龙东地区)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=3x交于点B1,B2,B3,B4…记①OA1B1,①OA2B2,①OA3B3,①OA4B4…的面积分别为S1,S2,S3,S4…则S2023=________.第21题图22. (2022菏泽)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ①OA ,交x 轴于点B ;作BA 1①OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1①A 1B 交x 轴于点B 1;再作B 1A 2①BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2022的横坐标为________.第22题图23. (2023盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l 1:y =12x +1与y 轴交于点A ,过点A 作x 轴的平行线交直线l 2:y =x 于点O 1,过点O 1作y 轴的平行线交直线l 1于点A 1,以此类推,令OA =a 1,O 1A 1=a 2,…,O n -1A n -1=a n ,若a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,则S 的最小值为________.第23题图类型四 与实际问题结合24. (2022安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图①表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图①);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图①);以此类推.第24题图【规律总结】(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______(用含n的代数式表示);【问题解决】(3)现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?参考答案与解析1. C 【解析】21=2,22=4,23=8,24=16,25=32,则2的1,2,3,4次方的个位上的数分别为2,4,8,6,每4个一次循环,而22022中2022÷4=550……2,∴个位上的数为4.2. (10,18) 【解析】按照规律可得每一行的最后一个数为行数的平方,第n 行有(2n -1)个数.∵92=81,102=100,∴99是第10行,第18个数,∴表示99的有序数对是(10,18).3. m 2-m4.201182 【解析】∵a n =2n +1n (n +1)(n +2) =n +n +1n (n +1)(n +2) =n n (n +1)(n +2) +n +1n (n +1)(n +2) =1(n +1)(n +2) +1n (n +2) =1n +1 -1n +2 +12 (1n -1n +2),∴S 12=12 -13 +13 -14 +…+113 -114 +12 ×(1-13 +12 -14 +…+112 -114 )=12 -114 +12 ×(1+12 -113 -114 )=12 +12 +14 -126 -114 -128 =201182. 5. 5050 【解析】∵a =5-12 ,b =5+12 ,∴ab =1,∵S 1=11+a +11+b =2+a +b 1+a +b +ab =2+a +b 2+a +b =1,S 2=21+a 2 +21+b 2 =2(2+a 2+b 2)1+a 2+b 2+a 2b 2 =2(2+a 2+b 2)2+a 2+b 2=2,…,S 100=1001+a 100 +1001+b 100 =100(2+a 100+b 100)1+a 100+b 100+a 100b 100 =100(2+a 100+b 100)2+a 100+b 100=100,∴S 1+S 2+…+S 100=1+2+…+100=100×(100+1)2=5050. 6. 解:(1)(2×5+1)2=(6×10+1)2-(6×10)2;(2)(2n +1)2=[2n (n +1)+1]2-[2n (n +1)]2.证明:等式左边=4n 2+4n +1,等式右边=4n 2(n +1)2+1+4n (n +1)-4n 2(n +1)2=4n (n +1)+1=4n 2+4n +1,∴左边=右边,∴等式成立.7. C 【解析】经分析可得,第个图案的菱形个数为2n -1,∴第⑥个图案中菱形个数为2×6-1=11(个).8. B 【解析】第一幅图中圆点的个数是4=1×3+1;第二幅图中圆点的个数是7=2×3+1;第三幅图中圆点的个数是10=3×3+1;第四幅图中圆点的个数是13=4×3+1;…;按照此规律,第n 幅图中圆点的个数是3n +1,∴第一百幅图中圆点的个数是3×100+1=301.9. n (n +1)2【解析】∵第1个图中有木料1根,第2个图中有木料1+2=3根,第3个图中有木料1+2+3=6根,第4个图中有木料1+2+3+4=10根,…,∴第n 个图中有木料1+2+3+4+…+n =n (n +1)2根. 10. 2n 2+2n 【解析】观察图形可知:第一个图形由1个小正方形组成,所有线段的和为4×1=2×2×1, 第二个图形由4个小正方形组成,所有线段的和为6×2=2×3×2, 第三个图形由9个小正方形组成,所有线段的和为8×3=2×4×3, 第4个图形由16个小正方形组成,所有线段的和为10×4=2×5×4,…由此发现规律是:第n 个图形由n 2个小正方形组成,所有线段的和为2(n +1)·n =2n 2+2n .11. 127 【解析】第一代勾股树中正方形个数=20+21;第二代勾股树中正方形个数=20+21+22;第三代勾股树中正方形个数=20+21+22+23;第四代勾股树中正方形个数=20+21+22+23+24,…,∴第六代勾股树中正方形个数=20+21+22+23+24+25+26=127.12. 45 【解析】由题图可知,题图④前三层点数分别是:1=4×1-3,5=4×2-3,9=4×3-3,…,∴第n 层的点数是4n -3,∴第n 个正六边形数是1+5+9+…+4n -3=4×1-3+4×2-3+4×3-3+…+4n -3=2n 2-n ,∴题图④中第五个正六边形数是2×52-5=45.13. C 【解析】在Rt △AOB 中,∠AOB =30°,∵cos ∠AOB =OA OB ,∴OB =23OA .同理可得OC =23 OB ,∴OC =(23 )2OA ,…,∴OG =(23)6OA ,由题图可知△GOH 与△AOB 位似且位似比为(23 )6.∵S △AOB =1,∴S △GOH =[(23 )6]2=(43 )6. 14. A 【解析】第一次操作后S 四边形A 1B 1C 1D 1=12 S 矩形ABCD =12ab ,第二次操作后S 四边形A 2B 2C 2D 2=12 S 四边形A 1B 1C 1D 1=12 ×12 ab =ab 22 ,第三次操作后S 四边形A 3B 3C 3D 3=12S 四边形A 2B 2C 2D 2=ab 23 ,…,第n 次操作后S 四边形A n B n C n D n =ab 2n . 15. C 【解析】∵正方形ABCD 边长为1,∴AB =BC =1,∴AC =2 ,∴以AC 为边作第2个正方形ACEF 的边长为2 ;∵CF 是正方形ACEF 的对角线,∴CF =2 ×2 =(2 )2=2,∴以CF 为边作第3个正方形FCGH 的边长为2;又∵GF 是正方形FCGH 的对角线,∴GF =2 ×2 ×2 =(2 )3=22 ,以GF 为边作第4个正方形FGMN 的边长为22 ,…∴依此规律可知下一个正方形的边长是原来正方形边长的2 倍,即第n 个正方形的边长为(2 )n -1,∴第6个正方形的边长为(2 )5.16. 2022π 【解析】由题图可知,题图中由一段90°的弧组成的,弧所在圆的半径每次增加12 ,则弧C 1D 1的半径=12 ×4=12 ×4×1,弧C 2D 2的半径=12 ×8=12×4×2,弧C 3D 3的半径=12 ×12=12 ×4×3…,弧C 2022D 2022的半径=12×4×2022=4044,∴弧C 2022D 2022的长=90π180×4044=2022π. 17. 3 (1+3 )2022 【解析】∵∠AOB =60°,OP 1=1,∴P 1K 1=3 OP 1=3 ,∴P 1P 2=P 1K 1=3 ,∴OP 2=1+3 .∵P 2K 2=3 OP 2,∴P 2K 2=3 (1+3 ),∴OP 3=(1+3 )2,∴P 3K 3=3 OP 3=3 (1+3 )2,…,∴依此规律可得P 2023K 2023=3 (1+3 )2022.18. B 【解析】根据两枚跳棋跳动规则可知,红跳棋每过6秒钟跳动回顶点A ,黑跳棋每过18秒钟跳动回顶点A ,∵2022÷6=337,∴经过2022秒后,红跳棋在顶点A 处;∵2022÷18=112……6,6÷3=2,∴经过2022秒钟后,黑跳棋在顶点E 处.如解图,连接AE ,过点F 作FG ⊥AE 于点G ,∵六边形ABCDEF 是边长为2的正六边形,∴∠AFE =120°,FE =AF ,∴∠F AE =30°,∴AG =EG =AF ·cos 30°=2×32 =3 ,∴AE =23 ,即两枚跳棋之间的距离是23 .第18题解图19. B 【解析】如解图,连接OB ,∵AB ∥x 轴,∴AB ⊥y 轴,∵六边形ABCDEF 是正六边形,点O 是中心,∴OB =OA ,∠AOB =60°,∴∠AOP =30°,AP =12AB =1,∴OP =3 ,∴点A (1,3 ),将△AOP 绕点O 顺时针每次旋转90°,则第1次结束点A 的坐标为(3 ,-1),第2次结束点A 的坐标为(-1,-3 ),第3次结束点A 的坐标为(-3 ,1),第4次结束点A 的坐标为(1,3 ),…,∴每4次一个循环,∵2022=4×505+2,∴第2022次旋转结束时,相当于第2次结束,∴点A 的坐标为(-1,-3 ).第19题解图20. (-1,11) 【解析】由图象可知,A 5(5,1),将点A 5向左平移6个单位,再向上平移6个单位,可得A 6(-1,7),将点A 6向左平移7个单位,再向下平移7个单位,可得A 7(-8,0),将点A 7向右平移8个单位,再向下平移8个单位,可得A 8(0,-8),将点A 8向右平移9个单位,再向上平移9个单位,可得A 9(9,1),将点A 9向左平移10个单位,再向上平移10个单位,可得A 10(-1,11).21. 240433 【解析】∵S 1=1×32 = 20×32 ,S 2=2×232 = 22×32,… ,依此规律可得S n = 22(n -1)×32 ,∴S 2023= 22×(2023-1)×32= 240433 . 22. 2021 +2022 【解析】∵点A 是函数y =x 与y =1x的图象在第一象限的交点,∴点A 的坐标为(1,1),又∵AB 垂直于直线y =x ,∴点B 坐标为(2,0),又∵BA 1∥OA ,∴BA 1的解析式为y =x -2,与y =1x 联立,解得x =1+2 (负值已舍),即点A 1的横坐标为1+2 ;同理可得B 1的横坐标为22 ,∵B 1A 2∥BA 1,∴B 1A 2的解析式为y =x -22 ,与y =1x 联立,解得A 2的横坐标为2 +3 (负值已舍);…;依此按规律可得A 2021的横坐标为2021 +2022 .23. 2 【解析】由题可得a 1=OA =1,而y =x 与y 轴的正方向的夹角是45°,O 1A ⊥y 轴,∴O 1A =OA =1,∴ 点O 1的横坐标是1,对于y =12 x +1,当x =1时,y =32,∴a 2=O 1A 1=12 ,∴tan ∠A 1AO 1=O 1A 1O 1A =12 ,依次得出A 1O 2=A 1O 1=12 ,a 3=A 2O 2=12 A 1O 2=(12)2,…,可以得出A n -1O n -1=(12 )n -1,∴a 1+a 2+…+a n -1+a n =1+12 +…+(12 )n -2+(12)n -1①,①×2得2×(a 1+a 2+…+a n -1+a n )=2+1+12 +…+(12 )n -3+(12)n -2②,②-①得a 1+a 2+…+a n -1+a n =2-(12 )n -1,∴S ≥2-(12)n -1,∴S 的最小值是2. 24. 解:(1)2;【解法提示】观察题图②与题图③,每增加1块正方形地砖,则增加2块等腰直角三角形地砖.(2)2n +4;【解法提示】在题图②中,正方形地砖1块,等腰直角三角形地砖(4+2)块;在题图③中,正方形地砖2块,等腰直角三角形地砖(4+2×2)块;正方形地砖若有3块,则等腰直角三角形地砖(4+2×3)块;…;依此按规律可得正方形地砖若有n 块,则等腰直角三角形地砖有(4+2n )块.(3)设需要正方形地砖n块,∴2n+4≤2021,解得n≤1008.5,∵n为正整数,∴n最大取1008,答:需要正方形地砖1008块.。

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

2. 小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.2016【答案】D。

【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数。

故选D。

3.边长为a的等边三角形,记为第1个等边三角形。

取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。

取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。

取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。

则第6个正六边形的边长是【】A.511a32⎛⎫⨯ ⎪⎝⎭B.511a23⎛⎫⨯ ⎪⎝⎭C.611a32⎛⎫⨯ ⎪⎝⎭D.611a23⎛⎫⨯ ⎪⎝⎭【答案】A。

中考规律题探索

中考规律题探索

中考规律题探索一、数字有关的规律题: 1、(2013,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有.(请填入方块上的字母)2、(2013•乐山)对非负实数x “四舍五入”到个位的值记为<x >,即当n 为非负整数时,若n-12 ≤x <n+ 12,则<x >=n,如<0.46>=0,<3.67>=4,给出下列关于<x >的结论: ① <1.493>=1, ② <2x >=2<x >, ③ 若<12x -1>=4,则实数x 的取值范围是9≤x <11, ④ 当x ≥0,m 为非负整数时,有<m+2013 x >= m+<2013x >, ⑤ <x +y>=<x >+<y>. 其中,正确的结论有(填写所有正确的序号)。

3、(2013•沈阳)有一组等式:12+22+22=32,请观察它们的构成规律,用你发现的规律写出第8个等式为_________ 4、(2013•乌鲁木齐)如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( B )A .B .C .D .5、(2013•黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。

而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。

中考规律探索题及答案

中考规律探索题及答案

精心整理探索规律题类型一数字规律1、下面是按一定规律排列的一列数:??,那么第n个数??、观察下列等式:,,,,,,猜想,的个位数字是__观察等式:,,,,,可得,位数字是,次方的个位数字是,,,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为又因为,所以的个位数字相同为故本题正确答案为律性,若把第一个三角形数记为,第二个三角形数记为,第n个三角形数记为,则.答案解:,═,,═,═,…,则,:,,,,,即、,然后计算可得、按一定规律排列的一列数:,,,,,察,按照此规律对应的数字应为解析将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。

故本题正确答案为。

考点规律探索。

5、如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的?,一般地,用含有m,n的代数式表示y,即?.?,,,?,:63;右上数字(,,,,,,它们是按一定规律排列的,依照此规律,第个数据是由数据,,,,,数个数据为正数,所以数据中带有这个因式,将化成,则这组数据变成,,,母的平方再加,所以这组数据中第个分数为,将代入可得出分数。

故本题正确答案为。

7、“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示示()A.C n H2n+2B.C n H2nC.C n H2n-2D.C n H n+3答案此题答案为:A.解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,“①,③,④(2)由(1)可以猜测与?(n为正整数)的大小关系:当n时,;当n时,;????(3)根据上面的猜想,可以知道:(填“”、“”或“=”).答案<<>>≤2≥3>解:(1)①,,故;③,,④,,①②④当时,当时,.:;.(3),.由,1、(11·曲靖)将一列整式按某种规律排成x,-2x2,4x3,-8x4,16x 5…则排在第六个位置的整式为________.答案-32解析符号的规律:n为奇数时,单项式为正号,n为偶数时,符号为负号;系数的绝对值的规律:第n个对应的系数的绝对值是2n-1.指数的规律:第n个对应的指数是n.解:根据分析的规律,得:第六个位置的整式为:-25x6=-32x6.故答案为:-32x6.、已知,,,,(为正整数,且,),则,,可以整除,所以。

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。

中考数学探索规律试题及答案

中考数学探索规律试题及答案

中考数学专题三 探索型试题(时间:90分 满分:100分) 一、选择题(每题3分,共21分)1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( ).2.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n3.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 …输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是 ( ) A.618 B.638 C.658 D.6784.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )A.25B. 66 C . 91 D. 1205.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2B .4n cm 2C .41-n cm 2D .n )41( cm 26.如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是( )A .B .C .D .7.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的(第18A 1A 2 A 3A 4(第1题图) B (1)(2)(3)“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{1923234=+=+y x y x 类似地,图3-2所示的算筹图我们可以表述为 ( )A .2114327x y x y +=⎧⎨+=⎩,.B .2114322x y x y +=⎧⎨+=⎩,.C .3219423x y x y +=⎧⎨+=⎩,.D .264327x y x y +=⎧⎨+=⎩,.二、填空题(每题4分,共28分)8.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,….根据你发现的规律,第n(n ≥1的整数 个式子是____.9.观察下列各式:11111112,23,34, (334455)+=+=+= 请你将发现的规律用含自然数n(n ≥1)的等式表示出来 .10.如图4,∠AOB=45°,过OA 上到点O 的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4….观察图中的规律,求出第10个黑色梯形的面积S 10= . 11.下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”.12.如图,把一个面积为1的正方形等分成两个面积为21矩形,接着把面积为21的矩形等分成两个面积为41的矩形,再把面积为41的矩形分成两个面积为81的矩形,如此进行下去,是利用图形揭示的规律计算:=+++++++25611281641321161814121 .xy AB MO 1 O 2O 3 132116181412图3-2图3-1F图12-313.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)L 根据这个规律探索可得,第100个点的坐标为____________.14.如图,在直角坐标系中,一直线l经过点M 与x 轴,y 轴分别交于A 、B 两点,且MA =MB ,则△ABO 的内切圆⊙O1的半径1r = ;若⊙O2与⊙O1、l 、y 轴分别相切,⊙O3与⊙O2、l 、y 轴分别相切,…,按此规律,则⊙O2009的半径r 2009= . 二、解答题(共51分)15.(8分).已知△ABC 内接于⊙O ,过点A 作直线EF.(1)如图①,AB 是直径,要使EF 是⊙O 的切线,还要添加的条件是(只需要写出三种情况)① ,或② ,或③ .(2)如图②,AB 为非直径的弦,∠EAB=∠B,试证明E F 是⊙O 的切线.16.(10分)在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).B图12-1图12-2发现像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.应用 去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?17.(10分)已知等边△OAB 的边长为a ,以AB 边上的高OA 1 为边,按逆时针方向作等边△OA 1B 1,A 1B 1与OB 相交于点A 2. (1)求线段OA 2的长;(2)若再以OA 2为边按逆时针方向作等边△OA 2B 2, A 2B 2与OB 1相交于点A 3,按此作法进行下去,得到 △OA 3B 3,△OA 4B 4,┉,△OA n B n ,(如图), 求△OA 6B 6,的周长.18.(10分)、如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点. ⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________;图12-DE AB CF HM图③图②图①BMP P E ED DB C B C A A N M P E D C A ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由.19.(13分)、操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:(1)线段BM 、MN 、NC 之间的关系,并加以证明.(2)若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.中考数学专题三 探索型试题答案 1.B 2.A 3.C 4.C 5.C 6.A 7.A 8.n n na 1)1(+- 9.21)1(21++=++n n n n 10.76 解析:阴影部分的面积=上+下 ,上=4n+1 ,下=4n+3 (n ≥0的整数)当n=9时,上=37,下=39 ∴S 10=37+39=76 11.80.图(2)比图(1)多:2=21 ; 图(3)比图(2)多:22+1=22+2;图(4)比图(3)多:23+21; 图(5)比图(4)多:24+22;图(6)比图(5)多:25+23; 图(7)比图(6)多:26+2412.256255解析:=+++++++256112816413211618141211-2562552561=. 13.(14,8)解析:从两方面考虑:①从每一列坐标个数分析: 第一列:1个;第二列2个;第三列3个;第四列5个;……,第十三列有13个.1至13列共有:91122131=⨯+. ②横坐标是偶数时上升,横坐标是奇数时下降.第100个数横坐标是14,应上升,纵坐标应是第9个数,坐标应为(14,8). 14.131-=r 20082009313-=r 解析:如图13-1 tan ∠MOA=331=, ∴∠MOA=300 ∴∠BAO=300∴OM=AM=2 ∴AB=4,OB=2 ,OA=32 ∴322)3224(1⨯=++r ∴131-=r如图13-2在Rt △O 1O 2M 中, ∠O 1O 2M=300∴O 1O 2=2O 1M ∴)(22121r r r r -=+ ∴1231r r = 同理:2331r r = ∴123)31(r r = … ∴)13()31()31(2008120082009-==r r 15.解析:(1)①∠CAE=∠B,②A B ⊥EF,③∠BAC+∠CAE=900④∠C=∠FAB ⑤∠EAB=∠FAB(2)连结AO,并延长交⊙O 于H ,连结HC,∵AH 是⊙O 的直径,∴∠H+∠HAC=900. ∵∠H=∠B,∠EAC=∠B ,∴∠H=∠CAE∴∠EAC+∠HAC=900,∴HA ⊥EF ∴EF 是⊙O 的切线. 16. 探索(1)a (2)2a理由:∵CD =BC ,AE =CA ,BF =AB∴由(2)得 S △ECD =2a ,S △F AE =2a ,S △DBF =2a ,∴S 3=6a .(3)6a ; 7.(72-7)×10=420(平方米);或⨯⨯+⨯6610610=420(平方米). 18.解:(1)∵△ABC 是等边三角形 ∴AB =BC ,∠ABE =∠BCD =60°∵BE =CD ∴△ABE ≌△BCD ∴∠BAE =∠CBD ∴∠APD =∠ABP +∠BAE =∠ABP +∠CBD =∠ABE =60° (2)90°,108° (3)能.如图,点E 、D 分别是正n 边形ABCM …中以C 点为顶点的相邻两边上的点,且BE =CD ,BD 与AE 交于点P ,则∠APD 的度数为nn ︒-180)2(19、解:BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连结DM 1∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°, ∵∠BDC=1200 BD=DC ∴∠DBC =∠DCB =30°∴∠ABD =∠ACD =90°∴∠DCM=900∵BD =CD △∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1∴∠MDM 1=(120°-∠MDB )+∠M 1DC =120° 又∵∠MDN =60°∴∠M 1DN =∠MDN =60° ∴△MDN ≌△M 1DN ∴MN =NM 1=NC +CM 1=NC +MB (2) CN -BM =MN证明:如图,在CN 上截取 CM 1=BM ,连结DM 1 ∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵∠BDC=1200BD=DC ∴∠DBC =∠DCB =30° ∴∠DBM =∠DCM 1=90° ∵BD =CD∴Rt △BDM ≌Rt △CDM 1∴∠MDB =∠M 1DC DM =DM 1 ∵∠BDM +∠BDN =60°∴∠CDM 1+∠BDN =60°第26题M 1N MD C B A17∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°∴∠M1DN=∠MDN∵ND=ND∴△MDN≌△M1DN∴MN=NM1=NC-CM1=NC-MB.M1NMD CBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律探索一. 选择题1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A. B. C. D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2,然后化简即可.解答:解:连结OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照,第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) (A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是,所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为.故选C考点:探索规律7.(2015·河南,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1,∴半圆长度=π, ∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•四川省宜宾市,第7题,3分)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l个圆和第2个圆,第3个圆和第4个圆,……,第l9个圆和第20个圆形成的所有圆环,则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】A .201521 B .201421 C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,… ∴21111122h =+=-, 32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 45 ,2016是第 63 个三角形数.4. (2015•四川省内江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);n =n 时,根数为:2n (n +1).点评: 本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·深圳,第15题 分)观察下列图形,它们是按一定规律排列的,依照此规律,第56个图形有 个太阳。

相关文档
最新文档