2021年高考物理一轮复习考点过关检测题—12.9电磁感应综合—线框进出磁场问题
2021高考物理(新高考版)一轮复习考点考法精练:专题十二 电磁感应 (2)
专题十二电磁感应一、单项选择题(共6小题,18分)1.如图所示,在一固定水平放置的闭合铜圆环正上方,有一条形磁铁从静止开始下落,下落过程中始终保持竖直,起始高度为h,最后落在水平地面上.若不计空气阻力,重力加速度取g,下列说法正确的是()A.在磁铁整个下落过程中,圆环中的感应电流方向始终为顺时针方向(俯视圆环)B.磁铁落地时的速率一定等于√2gℎC.在磁铁整个下落过程中,磁铁的机械能不变D.在磁铁整个下落过程中,圆环受到磁铁的作用力总是竖直向下2.如图,两回路中各有一开关S 1、S2,且内回路中接有电源,外回路中接有灵敏电流计,下列操作及相应的结果可能实现的是()①先闭合S2,后闭合S1的瞬间,电流计指针偏转②S1、S2闭合后,在断开S2的瞬间,电流计指针偏转③先闭合S1,后闭合S2的瞬间,电流计指针偏转④S1、S2闭合后,在断开S1的瞬间,电流计指针偏转A.①②B.②③C.③④D.①④3.如图所示,线圈A内有竖直向上的磁场,磁感应强度B随时间均匀增大;等离子气流(由高温高压等电量的正、负离子组成)由左方连续不断地以速度v0射入P1和P2两平行正对极板间的匀强磁场中.发现两直导线a、b互相吸引,由此可以判断,P1、P2两极板间匀强磁场的方向为()A.垂直纸面向外B.垂直纸面向里C.水平向左D.水平向右4.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个用相同材料、相同粗细的导线绕制的单匝闭合正方形线圈1和2,其边长L1=2L2,在距磁场上界面h高处由静止开始自由下落,再逐渐完全进入磁场,最后落到地面,运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈1、2落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2,通过线圈截面的电荷量分别为q1、q2,不计空气阻力,则()A.v1<v2,Q1>Q2,q1>q2B.v1=v2,Q1=Q2,q1=q2C.v1<v2,Q1>Q2,q1=q2D.v1=v2,Q1<Q2,q1<q25.如图所示,质量m=0.15 kg、长度l=10 cm的金属棒ab用两个完全相同的弹簧水平悬挂在垂直纸面向里的匀强磁场中,弹簧劲度系数k=100 N/m,开关闭合,稳定后发现弹簧的伸长量均为Δx=1 cm,电流表的示数为5 A,重力加速度g=10 m/s2,则下列说法正确的是()A.N端是电源正极B.磁场的磁感应强度大小为0.1 TC.滑动变阻器的滑片左移,弹簧的长度变小D.仅使磁场反向,稳定后弹簧的伸长量为0.2 cm6.[新素材]如图甲所示为手机等用电器无线充电的原理图,如果圆形受电线圈的面积S=1×10-3 m2,线圈匝数为n=100,线圈的电阻为R=5 Ω,垂直于线圈平面的磁场的磁感应强度随时间的变化情况如图乙所示,若受电线圈给内阻为r=5 Ω的电池充电,则()图甲图乙A.受电线圈中产生的感应电动势大小为0.05 VB.0~1.0 s内受电线圈中的感应电流方向不变C.1.5 s时刻,受电线圈中的感应电流为零D.充电过程中,电池的发热功率为1.25 W二、多项选择题(共4小题,16分)7.如图甲所示,半径为r=1 m的电线圈处在匀强磁场中,磁场与线圈平面垂直,线圈的电阻R=10 Ω,磁场磁感应强度随时间变化的规律如图乙所示,以垂直线圈平面向里为磁场的正方向,则下列说法正确的是()A.0~1 s内线圈中产生的电流沿逆时针方向,大小为0.314 AB.0~2 s内感应电流的平均功率约为4.9 WC.2~3 s内感应电流的方向与3~4 s内感应电流方向相反D.4~5 s内通过线圈截面的电荷量为πC58.[2020河南洛阳尖子生第一次联考]如图,固定在同一水平面内的两根平行长直金属导轨间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动,运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直且良好接触).设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g,则此过程()A.杆的速度最大值为(F-μmg)RB2d2B.流过电阻R的电荷量为BdLR+rC.恒力F做的功与安培力做的功之和大于杆动能的变化量D.恒力F做的功与摩擦力做的功之和等于杆动能的变化量9.如图甲所示,粗糙绝缘斜面的倾角为θ=30°,斜面上放置一质量为1 kg、电阻为2 Ω、边长为1.0 m的正方形导线框MNQP,开始时导线框处于静止状态.在空间中施加方向垂直线框平面向上的匀强磁场,磁感应强度B随时间t按如图乙所示的规律变化,重力加速度大小g=10 m/s2.下列说法正确的是()A.在0~1 s内线框中产生的感应电流为0.5 AB.在3~4 s内通过线框的电荷量为0.1 CC.0~4 s内线框中产生的焦耳热为0.01 JD.在0~4 s内线框一直受到大小为5 N、方向沿斜面向上的摩擦力10.[2020江西南昌高三摸底]如图所示,两根平行光滑金属导轨固定在同一水平面内,其左端接有定值电阻R,建立Ox轴平行于金属导轨,在0≤x≤4 m的空间区域内存在着垂直导轨平面向下的磁场,磁感应强度B的大小随坐标x(以m为单位)的变化规律为B=0.8-0.2x(T),金属棒ab在外力作用下从x=0处沿导轨向右运动,ab始终与导轨垂直并接触良好,不计导轨和金属棒的电阻.设在金属棒从x1=1 m处经x2=2 m到x3=3 m的过程中,电阻R的电功率始终保持不变,则()A.金属棒做匀速直线运动B.金属棒运动过程中产生的电动势始终不变C.金属棒在x1与x2处受到磁场的作用力大小之比为3∶2D.金属棒从x1到x2与从x2到x3的过程中通过R的电荷量之比为5∶3三、非选择题(共4小题,50分)11.[2019浙江4月选考,10分]如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R 消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处.棒ab始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x图象下的“面积”代表力F 做的功,sin 37°=0.6)(1)磁感应强度B的大小;(2)外力F随位移x变化的关系式;(3)在棒ab整个运动过程中,电阻R产生的焦耳热Q.12.[2020江西七校联考,12分]如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO'下方有垂直于导轨平面向里的匀强磁场,磁感应强度大小为B=2 T.现将质量m=0.1 kg、电阻不计的金属杆ab从OO'上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.金属杆从静止开始到下落0.3 m的过程中,加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2.(1)求金属杆刚进入磁场时的速度大小v0;(2)求金属杆从静止开始到下落0.3 m的过程中,在电阻R上产生的热量Q;(3)在图丙的坐标系中,定性画出回路中电流随时间变化的图线,并说明图线与坐标轴围成的图形的面积表示的物理意义(以金属杆进入磁场时为计时起点).13.[14分]某同学设计了一套电磁弹射装置,如图所示,在水平木板上固定两根足够长的平行金属导轨,导轨间距为L=1 m,导轨的电阻不计,导轨处于方向竖直的匀强磁场中(图中虚线之间区域,未画出),磁场的磁感应强度大小为B=2 T,连接导轨的电源电动势为E=40 V,电容器的电容为C=1 F.小车底部固定一个与其前端和后端平齐、边长为L的正方形单匝导体线框,线框前后两边的电阻均为R=0.2 Ω,两侧边电阻不计且与导轨接触良好.小车与线框的总质量为m=1 kg,开始时小车处于静止状态.现将开关S接1,使电容器完全充电,再将S接至2,小车向左加速运动,在小车开始匀速运动时,将开关S拨回1,随后小车滑出磁场.不计小车在运动过程中的摩擦.求:(1)磁场的磁感应强度方向和小车开始运动时的加速度大小a;(2)小车在轨道上达到匀速时的速度大小v1;(3)小车出磁场过程中线框中产生的焦耳热Q.14.[2019云南昆明4月质检,14分]如图甲所示,ACD是固定在水平面上的半径为2r、圆心为O 的金属半圆弧导轨,EF是半径为r、圆心也为O的半圆弧,在半圆弧EF与导轨ACD之间的半圆环区域内存在垂直导轨平面向外的匀强磁场,磁感应强度大小B随时间t变化的图象如图乙所示.OA间接有电阻P,金属杆OM可绕O点转动,M端与轨道接触良好,OM与电阻P的阻值均为R,其余电阻不计.的位置不动,求这段时间内通过电阻P的感应电流大(1)0~t0时间内,OM固定在与OA夹角θ1=π3小和方向;到OC位置,求电阻P在这(2)t0~2t0时间内,OM在外力作用下以恒定的角速度逆时针转过θ2=π3段时间内产生的焦耳热Q;(3)2t0~3t0时间内,OM仍在外力作用下以恒定的角速度逆时针转动,3t0时转到OD位置,若2t0时匀强磁场开始变化(磁感应强度不为零),使得2t0~3t0时间内回路中始终无感应电流,求B随时间t变化的关系式,并在图乙中补画出这段时间内B随t变化的大致图象.1.D当条形磁铁靠近圆环时,穿过圆环的磁通量增加,根据楞次定律可知圆环中感应电流的方向为逆时针(俯视圆环),当条形磁铁远离圆环时,穿过圆环的磁通量减小,根据楞次定律可知圆环中感应电流的方向为顺时针(俯视圆环),A错误;若磁铁从高为h处做自由落体运动,其落地时的速率v=√2gℎ,但磁铁穿过圆环的过程中圆环内有电能产生,显然电能是从磁铁的机械能转化来的,故磁铁的落地速率一定小于√2gℎ,B错误;磁铁在整个下落过程中,由于受到磁场力的作用,机械能不守恒,C错误;根据楞次定律的推论“来拒去留”,可知磁铁在整个下落过程中,所受圆环对它的作用力始终竖直向上,而圆环受到磁铁的作用力总是竖直向下,D正确.2.D①先闭合S2,构成闭合电路,后闭合S1的瞬间,通过线圈A的电流增大,导致穿过线圈B的磁通量发生变化,从而产生感应电流,则指针发生偏转,故①正确;②S1、S2闭合,稳定后线圈B中没有磁通量的变化,因而线圈B中没有感应电流,在断开S2的瞬间,指针也不偏转,故②错误;③先闭合S1,后闭合S2的瞬间,穿过线圈B的磁通量没有变化,则不会产生感应电流,故③错误;④S1、S2闭合后,在断开S1的瞬间,导致穿过线圈B的磁通量发生变化,因而出现感应电流,故④正确.A、B、C三项错误,D项正确.3.B 线圈A 中磁场的方向向上增强时,由楞次定律可知,感应电流的磁场的方向向下,由安培定则知导线a 中的电流方向向下.根据同向电流相互吸引可知,b 中的电流方向也向下.b 中电流方向向下说明极板P 1相当于电源的正极,则正电荷在磁场中向上偏转,根据左手定则可知,P 1、P 2两极板间的匀强磁场的方向垂直于纸面向里.4.A 线圈从同一高度下落,到达磁场边界时具有相同的速度v ,切割磁感线产生感应电流,受到的安培力大小为F=B 2L 2v R,由电阻定律有R=ρ4LS(ρ为材料的电阻率,S 为导线的横截面积),线圈的质量为m=ρ0S ·4L (ρ0为材料的密度).当线圈的下边刚进入磁场时其加速度为a=mg -F m=g-Fm ,联立解得加速度a=g-B 2v16ρρ0,则知,线圈1和2进入磁场时,速度相同,加速度相同,线圈1由于边长较长还没有全部进入磁场时,线圈2已完全进入磁场,后做加速度为g 的匀加速运动,而线圈1仍先做加速度小于g 的变加速运动,完全进入磁场后才做加速度为g 的匀加速运动,所以落地速度关系为v 1<v 2.由能量守恒定律可得Q=mg (h+H )-12mv 2(H 为磁场区域的高度),因为m 1>m 2,v 1<v 2,所以可得Q 1>Q 2.根据q=ΔΦR=BL 2ρ4L S=BLS 4ρ∝L 知,q 1>q 2,A 正确.5.A 由于mg=1.5 N <2k Δx=2 N,故安培力方向竖直向下,根据受力分析,满足mg+BIl=2k Δx ,可得B=1 T,B 错误.根据左手定则,可知ab 棒中电流方向由b 指向a ,故N 端是电源正极,A 正确.滑动变阻器的滑片左移,接入电路的电阻减小,电流增大,故形变量变大,弹簧的长度变大,C 错误.仅使磁场反向,则mg=BIl+2k Δx',可得Δx'=0.5 cm,D 错误.6.B 受电线圈中产生的感应电动势大小为E=n ΔBΔt S=100×0.250.5×10-2×1×10-3 V =5 V,A 错误;0~0.5 s内受电线圈中的磁通量沿正方向减小,0.5~1.0 s 内受电线圈中的磁通量沿反方向增大,根据楞次定律可知,两个时间段内受电线圈中产生的感应电流方向相同,B 正确;由于受电线圈中的感应电动势恒定,因此1.5 s 时,受电线圈中的感应电流并不为零,C 错误;由于电池是非纯电阻元件,因此电池中除了有电热功率,还有将电能转化为化学能的功率,即有IE>I 2R+I 2r ,即I<E R+r=0.5 A,因此电池的发热功率P r =I 2r<(0.5)2×5 W =1.25 W,D 错误.7.AD 根据题意及楞次定律可知,0~1 s 内感应电流沿逆时针方向,感应电动势大小E 1=ΔΦΔt =ΔBΔt S=3.14 V,感应电流的大小I 1=E 1R =0.314 A,A 正确;0~2 s 内,电流的平均功率P=I 12R2=0.49 W,B 错误;根据楞次定律可知,2~3 s 内感应电流的方向与3~4 s 内感应电流的方向相同,均为顺时针方向,C 错误;4~5 s 内ΔB=2 T,则q=ΔΦΔt ·R Δt=ΔB ·πr 2R=π5 ,D 正确.8.BC杆的速度达到最大时,杆的加速度为零,则由平衡条件有F=μmg+BI max d ,I max =E max R+r,E max =Bdv max ,解得v max =(F -μmg )(R+r )B 2d 2,选项A 错误;由E —=ΔΦΔt、I —=E—R+r、q=I —Δt和ΔΦ=BLd 可得,流过电阻R 的电荷量为q=BdLR+r ,选项B 正确;对杆由动能定理可得W F +W 安+W 摩=ΔE k ,因W 摩<0,W 安<0,故恒力F 做的功与安培力做的功之和大于杆动能的变化量,恒力F 做的9.CD 由法拉第电磁感应定律知E=ΔBΔt S ,根据闭合电路欧姆定律可得,I=Er ,此处r 为导线框内阻,故在0~1 s内和在3~4 s内线框中产生的感应电流I=SΔBrΔt=0.05 A,A错误;在3~4 s内通过线框的电荷量q=IΔt=0.05 C,B错误;由题图乙可知,0~4 s内有感应电流通过的总时间t总=2 s,根据焦耳定律,则有Q=I2rt总=0.01 J,C正确;0~1 s内和3~4 s内穿过线框的磁通量发生变化,线框中产生感应电流,线框各边都受到安培力,根据矢量的合成法则,可知线框受到的安培力的合力为零,因此在0~4 s内,线框受到的摩擦力与重力沿斜面的分力大小相等、方向相反,即f=mg sin θ=5 N,D正确.10.BCD金属棒从x1=1 m处经x2=2 m到x3=3 m的过程中,电阻R的电功率始终保持不变,由电功率P=I2R可知,电阻中的电流I保持不变,根据闭合电路欧姆定律可知,金属棒中产生的感应电动势E=BLv保持不变,又B一直在减小,可知金属棒做加速运动,选项A错误,B正确;根据安培力公式,金属棒在x1处受到的安培力F1=B1IL=(0.8-0.2x1)IL (N)=0.6IL (N),在x2处受到的安培力F2=B2IL=(0.8-0.2x2)IL(N)=0.4IL(N),金属棒在x1处与x2处受到磁场的作用力大小之比为F1∶F2= 0.6IL (N)∶0.4IL (N)=3∶2,选项C正确;由E=ΔΦΔt ,I=ER,q=IΔt,联立解得q=ΔΦR,而B1=(0.8-0.2x1)T=0.6 T,B2=(0.8-0.2x2) T=0.4 T,B3=(0.8-0.2x3) T=0.2 T,ΔΦ12=B2+B12L(x2-x1)=0.5L(Wb),ΔΦ23=B3+B22L(x3-x2) =0.3L (Wb),所以金属棒从x1到x2与从x2到x3的过程中通过R的电荷量之比为5∶3,选项D正确.11.解析:(1)在x1=0.2 m处时,电阻R消耗的电功率P=(Blv1)2R(1分)此时v1=kx1=1 m/s解得B=√305T.(1分)(2)在无磁场区间0≤x<0.2 m内,有a=5 s-1×v=25 s-2×xF=25 s-2×xm+μmg cos θ+mg sin θ=(0.96+2.5x) N(1分)在有磁场区间0.2 m≤x≤0.8 m内,有安培力F A=(Bl)2vR=0.6x N(1分)F=(0.96+2.5x+0.6x) N=(0.96+3.1x) N.(1分)(3)上升过程中克服安培力做的功(梯形面积)W A1=0.6N2(x1+x2)(x2-x1)=0.18 J(1分)撤去外力后,设棒ab上升的最大距离为s,再次进入磁场时的速度为v',由动能定理有(mg sin θ+μmg cos θ)s=12m v22,其中v2=kx2=4 m/s(mg sin θ-μmg cos θ)s=12mv'2解得v'=2 m/s(1分)由于mg sin θ-μmg cos θ-(Bl)2v'R=0(1分)故棒ab再次进入磁场后做匀速运动下降过程中克服安培力做的功W A2=(Bl)2v'R(x2-x1)=0.144 J(1分)Q=W A1+W A2=0.324 J.(1分)12.解析:(1)进入磁场后,根据右手定则可知金属杆ab中电流的方向由a到b,由左手定则可知,杆ab 所受的安培力方向竖直向上.(1分)刚进入磁场时,由牛顿第二定律得mg-BI 0L=ma (1分) 其中a=-10 m/s 2,I 0=E0R =BLv 0R(1分)联立并代入数据解得v 0=1.0 m/s .(1分)(2)由题图乙知h=0.3 m 时,a=0,表明金属杆受到的重力与安培力平衡,设此时金属杆的速度为v 1,有BI 1L=mg ,其中I 1=E1R =BLv 1R(2分)联立并代入数据解得v 1=0.5 m/s(1分)从开始到下落 0.3 m 的过程中,由能量守恒定律有mgh=Q+12m v 12(1分)得到Q=0.287 5 J .(1分) (3)如图所示(2 分)面积的物理意义:某段时间内通过电阻的电荷量.(1 分)13.解析:(1)由左手定则可知,磁场的磁感应强度方向垂直水平面向上(1分) 小车在导轨上刚开始运动时,线框前后两边的电阻并联,则有I=E 12R=2ER (1分)小车开始运动时的加速度大小a=BIL m=2BLE mR=800 m/s 2.(1分)(2)充电完成后电容器的电荷量q=CE ①(1分) 放电加速过程应用动量定理有B。
2021年高考物理一轮复习考点过关检测题—12.7电磁感应综合—单杆在磁场中运动问题
2021年高考物理一轮复习考点过关检测题12.7 电磁感应综合—单杆在磁场中运动问题一、单项选择题1.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小2.如图所示,光滑平行金属导轨固定在倾角为θ的斜面上,导轨电阻忽略不计。
虚线ab 、cd 间距为l 且均与导轨垂直,在ab 、cd 之间的区域存在垂直于导轨所在平面向上的匀强磁场。
将质量均为m 的两根导体棒PQ 、MN 先后从导轨上同一位置由静止释放,释放位置与虚线ab 的距离为2l ,当导体棒PQ 进入磁场瞬间释放导体棒MN 。
已知导体棒PQ 进入磁场瞬间恰开始做匀速运动,两导体棒始终与导轨垂直且接触良好,重力加速度为g ,则整个过程回路中产生的焦耳热为( )A .sin mgl θB .2sin mgl θC .3sin mgl θD .无法确定3.如图所示,金属棒MN ,在竖直放置的两根平行导轨上无摩擦地下滑,导轨间串联一个电阻,磁感强度垂直于导轨平面,金属棒和导轨的电阻不计,设MN 下落过程中,电阻R 上消耗的最大功率为P ,要使R 消耗的电功率增大到4P ,可采取的方法是( )A .使MN 的质量增大到原来的2倍B .使磁感强度B 增大到原来的2倍C .使MN 和导轨间距同时增大到原来的2倍D .使电阻R 的阻值减到原来的一半4.如图所示,足够长的光滑平行金属导轨水平放置,间距为L ,两根完全相同的导体棒1、2垂直导轨放置并紧挨在一起,整个装置处于竖直向下的磁感应强度大小为B 的匀强磁场中,导体棒的电阻均为R ,质量均为m ,现给导体棒1水平向右的初速度v ,则在以后的运动过程中,两导体棒之间的最大距离为( )A .224mvRB L B .222mvR B LC .222mvR B LD .22mvR B L 5.如图所示,电阻不计的平行金属导轨与水平面成θ角,导轨与定值电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面。
2021版高考物理一轮复习单元质检九磁场(含解析)
单元质检九磁场(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分)1.(2019·河南郑州模拟)如图所示,两根无限长导线均通以恒定电流I,两根导线的直线部分和坐标轴非常接近,弯曲部分是以坐标原点O为圆心、半径相同的一段圆弧,规定垂直于纸面向里的方向为磁感应强度的正方向,已知直线部分在原点O处不形成磁场,此时两根导线在坐标原点处的磁感应强度为B,下列四个选项中均有四根同样的、通以恒定电流I的无限长导线,O处磁感应强度也为B的是()2.(2019·江西南昌模拟)奥斯特在研究电流的磁效应实验时,将一根长直导线南北放置在小磁针的正上方,导线不通电时,小磁针在地磁场作用下静止时N极指向北方。
现在导线中通有由南向北的恒定电流I,小磁针转动后再次静止时N极指向()A.北方B.西方C.西偏北方向D.北偏东方向3.(2019·浙江杭州月考)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是()4.在绝缘圆柱体上a、b两个位置固定有两个金属圆环,当两环通有图示电流时,b处金属圆环受到的安培力为F1;若将b处金属圆环移动位置c,则通有电流为I2的金属圆环受到的安培力为F2。
今保持b处于金属圆环原来位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力()A.大小为|F1-F2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右5.(2019·福建漳州模拟)不计重力的两个带电粒子1和2经小孔S 垂直于磁场边界,且垂直于磁场方向进入匀强磁场,在磁场中的轨迹如图所示。
2021届高考一轮物理:磁场含答案
2021届高考一轮物理:磁场含答案一轮:磁场**一、选择题1、三根在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I,方向如图所示。
a、b和c三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等。
将a、b和c处的磁感应强度大小分别记为B 1、B2和B3,下列说法中正确的是( )A.B1=B2<B3B.B1=B2=B3C.a和b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里D.a处磁场方向垂直于纸面向外,b和c处磁场方向垂直于纸面向里2、(多选)如图为通电螺线管。
A为螺线管外一点,B、C两点在螺线管的垂直平分线上,则下列说法正确的是( )A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)( )A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场。
闭合开关S后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调换图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2。
忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为( )A.kIL(x1+x2) B.kIL(x2-x1) C.k2IL(x2+x1) D.k2IL(x2-x1)5、两相邻匀强磁场区域的磁感应强度大小不同、方向平行。
2021届高考(一轮)物理:电磁感应含答案
2021届高考(一轮)物理:电磁感应含答案**电磁感应**一、选择题1、矩形导线框固定在匀强磁场中,如图甲所示。
磁感线的方向与导线框所在平面垂直,规定磁场的正方向为垂直纸面向里,磁感应强度B随时间t变化的规律如图乙所示,则()甲乙A.从0~t1时间内,导线框中电流的方向为a→b→c→d→aB.从0~t1时间内,导线框中电流越来越小C.从0~t2时间内,导线框中电流的方向始终为a→d→c→b→aD.从0~t2时间内,导线框bc边受到的安培力越来越大2、(双选)如图所示,水平放置的粗糙U形框架上接一个阻值为R0的电阻,放在垂直纸面向里、磁感应强度大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是()A.此时AC两端电压为U AC=2BL vB.此时AC两端电压为U AC=2BL v R0 R0+rC.此过程中电路产生的电热为Q=Fd-12m v2D.此过程中通过电阻R0的电荷量为q=2BLdR0+r3、如图所示,条形磁铁以速度v向螺线管靠近,下面几种说法中正确的是()A.螺线管中不会产生感应电流B.螺线管中会产生感应电流C.只有磁铁速度足够大时,螺线管中才能产生感应电流D.只有在磁铁的磁性足够强时,螺线管中才会产生感应电流4、(双选)如图所示,灯泡A、B与定值电阻的阻值均为R,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B两灯亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中正确的是()A.B灯立即熄灭B.A灯将比原来更亮一下后熄灭C.有电流通过B灯,方向为c→dD.有电流通过A灯,方向为b→a5、(多选)如图所示,条形磁铁位于固定的半圆光滑轨道的圆心位置。
一半径为R、质量为m的金属球从半圆轨道的一端沿半圆轨道由静止下滑。
重力加速度大小为g。
下列说法正确的是()A.金属球会运动到半圆轨道的另一端B.由于金属球没有形成闭合电路,所以金属球中不会产生感应电流C.金属球受到的安培力做负功D.系统产生的总热量为mgR6、(多选)如图所示,一金属棒AC在匀强磁场中绕平行于磁感应强度方向的轴(过O点)匀速转动,OA=2OC=2L,磁感应强度大小为B、方向垂直纸面向里,金属棒转动的角速度为 ω、电阻为r ,内、外两金属圆环分别与C 、A 良好接触并各引出一接线柱与外电阻R 相接(没画出),两金属环圆心皆为O 且电阻均不计,则( )A .金属棒中有从A 到C 的感应电流B .外电阻R 中的电流为I =3BωL 22(R +r)C .当r =R 时,外电阻消耗功率最小D .金属棒AC 间电压为3BωL 2R 2(R +r)7、(多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt(常量k>0)。
2021年高考物理一轮复习考点过关检测题—12.9电磁感应综合—线框进出磁场问题
2021年高考物理一轮复习考点过关检测题12.9 电磁感应综合—线框进出磁场问题一、单项选择题1.如图所示,在粗糙绝缘水平面上有一正方形闭合金属线框abcd,其边长为L、质量为m,金属线框与水平面的动摩擦因数为μ。
虚线框a b c d''''内有一匀强磁场,磁场方向竖直向下。
开始时金属线框的ab 边与磁场的d c''边重合。
现使金属线框以初速度v0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc边与磁场区域的边d c''距离为L。
在这个过程中,金属线框产生的焦耳热为()A.12mv2+μmgL B.12mv2-μmgLC.12mv2+2μmgL D.12mv2-2μmgL2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用时间t拉出,外力所做的功为W1,外力的功率为P1,通过导线截面的电荷量为q1;第二次用时间3t拉出,外力所做的功为W2,外力的功率为P2,通过导线截面的电荷量为q2,则()A.W1=W2,P1= P2,q1<q2B.W1=3W2,P1=3P2,q1=q2C.W1=3W2,P1= 9P2,q1=q2D.W1=W2,P1= 9P2,q1=3q23.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示。
t=0时刻对线框施加一水平向右的外力,让线框从静止开始做匀加速直线运动穿过磁场,外力F随时间t变化的图象如图乙所示。
已知线框质量m=1kg、电阻R=1Ω,以下说法不正确的是()A.线框边长为1mB.匀强磁场的磁感应强度为TC.线框穿过磁场的过程中,通过线框的电荷量为2CD.线框做匀加速直线运动的加速度为1m/s24.如图,空间中存在一匀强磁场区域,磁感应强度大小为B,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面,间距为2L,纸面内磁场上方有一个质量为m、电阻为R的正方形导线框abcd,边长为L,其上、下两边均与磁场边界平行,若线框从上边界上方某处自由下落,恰能匀速进入磁场,则()A.线框释放处距离磁场上边界的高度为22222m gR hB L =B.线圈进入磁场的过程中机械能的减少量为mgLC.线圈进入磁场的过程中流过线圈横截面的电量为BL RD.线圈的ab5.如图所示,边长为L的单匝均匀金属线框置于光滑水平桌面上,在拉力作用下以恒定速度通过宽度为D(D>L)、方向竖直向下的有界匀强磁场。
(四川)2021届高考一轮(人教)物理:电磁感应含答案
(四川)2021届高考一轮(人教)物理:电磁感应含答案一轮:电磁感应一、选择题1、如图所示,正方形线框的左半侧处在磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN恰与磁场边缘平齐。
若第一次将线框从磁场中以恒定速度v1向右匀速拉出,第二次以线速度v2让线框绕轴MN匀速转过90°。
为使两次操作过程中,线框产生的平均感应电动势相等,则()A.v1∶v2=2∶π B.v1∶v2=π∶2C.v1∶v2=1∶2 D.v1∶v2=2∶12、如图所示的装置中,cd杆原来静止,当ab杆做如下哪种运动时,cd杆将向右移动()A.向右匀速运动B.向右减速运动C.向左加速运动D.向左减速运动3、在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化4、如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒与磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为ε'.则ε'ε等于()A.12B.22C.1 D. 25、如图所示,绝缘光滑水平面上有两个离得很近的导体环a、b。
将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动()A.a、b将相互远离B.a、b将相互靠近C.a、b将不动D.无法判断6、(多选)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音。
2021年高考物理一轮复习考点过关检测题—12.10电磁感应综合—感生电动势问题
2021年高考物理一轮复习考点过关检测题12.10 电磁感应综合—感生电动势问题一、单项选择题1.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R 。
金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下(方向不变),现使磁感应强度随时间均匀减小,ab 始终保持静止。
下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .电阻R 的热功率逐渐变小C .ab 所受的安培力逐渐减小D .ab 所受的静摩擦力保持不变2.如图甲所示,直径为0.4m 、电阻为0.1Ω的闭合铜环静止在粗糙斜面上,CD 为铜环的对称轴,CD 以下部分的铜环处于磁感应强度B 方向垂直斜面且磁感线均匀分布的磁场中,若取向上为磁场的正方向,B 随时间t 变化的图像如图乙所示,铜环始终保持静止,取π3=,则( )A .2s t =时铜环中没有感应电流B . 1.5s t =时铜环中有沿逆时针方向的感应电流(从上向下看)C . 3.5s t =时铜环将受到大小为34.810N -⨯、沿斜面向下的安培力D .1~3s 内铜环受到的摩擦力先逐渐增大后逐渐减小3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a 、b ,垂直放置在磁感应强度为B 的匀强磁场中,a 的边长为L ,b 的边长为2L 。
当磁感应强度均匀增加时,不考虑线圈a 、b 之间的影响,下列说法正确的是( )A .线圈a 、b 中感应电动势之比为E 1∶E 2=1∶2B .线圈a 、b 中的感应电流之比为I 1∶I 2=1∶2C .相同时间内,线圈a 、b 中产生的焦耳热之比Q 1∶Q 2=1∶4D .相同时间内,通过线圈a 、b 某截面的电荷量之比q 1∶q 2=1∶44.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。
如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电量为+q 的小球。
2021年高考物理一轮复习考点过关检测题—12.9电磁感应综合—线框进出磁场问题
2021年高考物理一轮复习考点过关检测题12.9 电磁感应综合—线框进出磁场问题一、单项选择题1.如图所示,在粗糙绝缘水平面上有一正方形闭合金属线框abcd,其边长为L、质量为m,金属线框与水平面的动摩擦因数为μ。
虚线框a b c d''''内有一匀强磁场,磁场方向竖直向下。
开始时金属线框的ab 边与磁场的d c''边重合。
现使金属线框以初速度v0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc边与磁场区域的边d c''距离为L。
在这个过程中,金属线框产生的焦耳热为()A.12mv2+μmgL B.12mv2-μmgLC.12mv2+2μmgL D.12mv2-2μmgL2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用时间t拉出,外力所做的功为W1,外力的功率为P1,通过导线截面的电荷量为q1;第二次用时间3t拉出,外力所做的功为W2,外力的功率为P2,通过导线截面的电荷量为q2,则()A.W1=W2,P1= P2,q1<q2B.W1=3W2,P1=3P2,q1=q2C.W1=3W2,P1= 9P2,q1=q2D.W1=W2,P1= 9P2,q1=3q23.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示。
t=0时刻对线框施加一水平向右的外力,让线框从静止开始做匀加速直线运动穿过磁场,外力F随时间t变化的图象如图乙所示。
已知线框质量m=1kg、电阻R=1Ω,以下说法不正确的是()A.线框边长为1mB.匀强磁场的磁感应强度为TC.线框穿过磁场的过程中,通过线框的电荷量为2CD.线框做匀加速直线运动的加速度为1m/s24.如图,空间中存在一匀强磁场区域,磁感应强度大小为B,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面,间距为2L,纸面内磁场上方有一个质量为m、电阻为R的正方形导线框abcd,边长为L,其上、下两边均与磁场边界平行,若线框从上边界上方某处自由下落,恰能匀速进入磁场,则()A.线框释放处距离磁场上边界的高度为22222m gR hB L =B.线圈进入磁场的过程中机械能的减少量为mgLC.线圈进入磁场的过程中流过线圈横截面的电量为BL RD.线圈的ab5.如图所示,边长为L的单匝均匀金属线框置于光滑水平桌面上,在拉力作用下以恒定速度通过宽度为D(D>L)、方向竖直向下的有界匀强磁场。
【新高考】2021高考物理人教版一轮复习:《磁场》检测题 (含解析)
《磁场》检测题(本试卷满分100分)一、单项选择题(本题包括8小题,每小题3分,共24分)1.下列说法正确的是()A.将通电直导线放在某处,若通电直导线所受安培力为零,则该处的磁感应强度为零B.某点的磁场方向,与放在该点的极短的通电导线所受安培力的方向可以成任意夹角C.某点的磁场方向,与放在该点的小磁针北极受到的磁场力的方向相同D.给两平行直导线通以方向相反的电流时,两通电导线通过磁场相互吸引2.[2019·贵州遵义模拟]有四条垂直于纸面的长直固定导线,电流方向如图所示,其中a、b、c三条导线到d导线的距离相等,三条导线与d的连线互成120°角.四条导线的电流大小都为I,其中a导线对d 导线的安培力大小为F.现突然把c导线的电流方向改为垂直于纸面向外,电流大小不变.此时d导线所受安培力的合力大小为() A.0 B.FC.3F D.2F3.如图所示是早期发明的一种电流计,它是根据奥斯特实验现象中小磁针的偏转来计量电流的,缺点是精确度不高、易受外界干扰.接通电流前,位于环形导线中央的小磁针仅在地磁场的作用下处于静止状态,调整电流计的方位,使环形导线与小磁针共面.当给环形导线通以恒定电流I后,小磁针偏转α角;当给环形导线通以恒定电流kI时,小磁针偏转β角.若已知环形电流圆心处的磁感应强度与通电电流成正比,则关于这种电流计,下列说法正确的是() A.该电流计的测量结果与地磁场的竖直分量有关B.该电流计在地球上不同位置使用时,所标刻度均相同C.小磁针偏转角满足关系式sin β=k sin αD.小磁针偏转角满足关系式tan β=k tan α4.如图甲所示,一条形磁铁P固定在水平桌面上,以P的右端点为原点,中轴线为x轴建立一维坐标系.将一灵敏的小磁针Q放置在x轴上的不同位置,设Q与x轴之间的夹角为θ.实验测得sin θ与x之间的关系如图乙所示.已知该处地磁场方向水平,磁感应强度大小为B0.下列说法正确的是()A.P的右端为S极B.P的中轴线与地磁场方向平行C.P在x0处产生的磁感应强度大小为B0D.x0处合磁场的磁感应强度大小为2B05.两种不计重力的带电粒子M和N,以相同的速率经小孔S垂直进入匀强磁场,运动半周后飞出磁场,其半圆轨迹如图中虚线所示,下列表述正确的是()A.M带正电荷,N带负电荷B.洛伦兹力对M、N做正功C.M的比荷小于N的比荷D.M在磁场中的运动时间小于N在磁场中的运动时间6.如图所示,一质量为m、长度为L的导体棒AC静止于两平行的水平导轨上且与两导轨垂直,通过AC的电流为I,匀强磁场的磁感应强度为B,方向与导轨平面成θ角斜向下且垂直于AC,下列说法正确的是()A.AC受到的安培力大小为BIL sin θB.AC可能不受摩擦力作用C .AC 受到的安培力与摩擦力平衡D .AC 所受的支持力大小为BIL cos θ+mg ,摩擦力大小为BIL sin θ7.如图所示,将长度为L 的直导线放置在y 轴上,当导线内通以大小为I ,沿y 轴负方向的电流时,测得其受到的安培力大小为F ,方向沿x 轴正方向,则匀强磁场的磁感应强度可能为( )A .沿z 轴正方向,大小为2F ILB .平行于xOy 平面方向,大小为2F ILC .平行于xOy 平面方向,大小为F ILD .平行于zOy 平面方向,大小为4F IL8.如图所示,圆形区域半径为R ,区域内有一垂直纸面的匀强磁场.磁感应强度的大小为B ,P 为磁场边界上的最低点.大量质量均为m ,电荷量绝对值均为q 的带负电粒子,以相同的速率v 从P 点沿各个方向射入磁场区域.粒子的轨道半径r =2R ,A 、C 为圆形区域水平直径的两个端点,粒子重力不计,空气阻力不计,则下列说法不正确的是( )A .粒子射入磁场的速率为v =2qBR mB .粒子在磁场中运动的最长时间为t =πm 3qBC .不可能有粒子从C 点射出磁场D .若粒子的速率可以变化,则可能有粒子从A 点水平射出二、多项选择题(本题共4小题,每小题4分,共16分)9.如图所示,纸面内A 、B 两点之间连接有四段导线分别为ACB 、ADB 、AEB 和AFB ,四段导线的粗细、材料均相同,匀强磁场垂直于纸面向里.现给A 、B 两端加上恒定电压,则下列说法正确的是( )A .四段导线受到的安培力的方向相同B .四段导线受到的安培力的大小相等C .ADB 段导线受到的安培力最大D .AEB 段导线受到的安培力最小10.[2019·山西太原五中模拟]图中直流电源电动势为E =1 V ,电容器的电容为C =1 F .两根固定于水平面内的光滑平行金属导轨间距为l =1 m ,电阻不计.一质量为m =1 kg 、电阻为R =1 Ω的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触.首先开关S 接1,使电容器完全充电.然后将S 接至2,MN 开始向右加速运动,导轨间存在垂直于导轨平面、磁感应强度大小为B =1 T 的匀强磁场(图中未画出).当MN 达到最大速度时离开导轨,则( )A .磁感应强度垂直纸面向外B .MN 离开导轨后电容器上剩余的电荷量为0.5 CC .MN 的最大速度为1 m/sD .MN 刚开始运动时加速度大小为1 m/s 211.[2019·广东湛江模拟]如图所示,在空间有一坐标系xOy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B .一质量为m 、电荷量为q 的质子(不计重力)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x 轴上的Q 点(图中未画出),则( )A .质子在区域Ⅰ中运动的时间为2πm 3qBB .质子在区域Ⅰ中运动的时间为πm 3qBC .质子在区域Ⅱ中运动的时间为πm 2qBD .质子在区域Ⅱ中运动的时间为πm 4qB12.在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图所示.不计重力的影响,则下列关系一定成立的是( )A .若r <2m v qB ,则0°<θ<90°B .若r ≥2m v qB ,则t ≥πm qBC .若t =πm qB ,则r =2m v qBD .若r =2m v qB ,则t =πm qB三、非选择题(本题包括6小题,共60分)13.(8分)如图所示,在空间中存在垂直纸面向里的磁感应强度为B 的匀强磁场,其边界AB 与CD 之间的宽度为d ,在左边界的Q 点处有一质量为m 、带电荷量为-q 的粒子沿与左边界夹角为30°的方向射入磁场,粒子重力不计.(1)求带电粒子能从AB 边界飞出的最大速度;(2)若带电粒子能垂直CD 边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,求极板间电压及整个过程中粒子在磁场中运动的时间;(3)若带电粒子的速度是(2)中的3倍,并可以从Q 点沿纸面各个方向射入磁场,求粒子从出发点到打到CD 边界的最高点位置之间的距离.14.(10分)如图1所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E>0表示电场方向竖直向上.t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点.Q为线段N1N2的中点,重力加速度为g.上述d、E0、m、v、g为已知量.(1)求微粒所带电荷量q和磁感应强度B的大小;(2)求电场变化的周期T;(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值.15.(8分)如图所示,金属平板MN垂直于纸面放置,MN板中央有小孔O,以O为原点在纸面内建立xOy直角坐标系,x轴与MN板重合.O点下方的热阴极K通电后能持续放出初速度近似为零的电子,在K与MN板间加一电压,从O点射出的电子速度大小都是v0,方向在纸面内,且关于y轴对称,发射角为2θ(弧度).已知电子电荷量为e,质量为m,不计电子间的相互作用及重力的影响.(1)求K 与MN 间的电压的大小U 0.(2)若x 轴上方存在范围足够大的垂直纸面向里的匀强磁场,电子打到x 轴上落点范围长度为Δx ,求该磁场的磁感应强度大小B 1和电子从O 点射出后再回到x 轴的最短时间t .16.(11分)[2019·吉林松原第四次调研]如图所示,在直角坐标系xOy 中,第一象限内有沿y 轴负方向的匀强电场,场强大小为E ,第四象限内有垂直xOy 平面向外的匀强磁场,磁感应强度大小为B .现有一带正电的粒子从y 轴上坐标为(0,h )的P 点,沿x 轴正方向射入第一象限,能通过x 轴上坐标为(7h,0)的Q 点.已知粒子的比荷满足关系:q m =2EB 2h ,不计粒子重力,求粒子在P 点入射速度的所有可能值(用E ,B 表示).17.(11分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区域,磁场方向垂直纸面向里,在边界上固定两长度为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔分别为S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子从S 1处由静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2,且垂直于边界进入右侧磁场区域.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v .(2)为使粒子不与极板相撞,求磁感应强度大小应满足的条件.(3)若磁感应强度大小B =8πm 7qT 0,在已保证粒子未与极板相撞的情况下,求粒子再次到达S 2所需要的时间和再次到达S 2时的速度.18.(12分)如图所示,在平面直角坐标系xOy 的第一象限中,有沿y 轴负方向的匀强电场,第二象限有一半径为r =L 的圆形匀强磁场区域Ⅰ,与坐标轴分别相切于P 点和M 点,在第三、四象限存在着另一匀强磁场区域Ⅱ.在P 点有比荷均为k 、速率均为v 0的同种粒子a 、b ,分别从与x 轴正方向成90°角和120°角的方向进入圆形匀强磁场区域Ⅰ,已知粒子a 恰好垂直于y 轴经M 点进入电场,经坐标为( 2L,0)的N 点进入第四象限后恰能到达坐标原点,不计粒子重力,求:(1)圆形匀强磁场区域Ⅰ的磁感应强度大小及匀强电场的电场强度的大小;(2)粒子a 由P 点开始运动到第一次离开磁场区域Ⅱ所用的时间;(3)粒子b 第一次离开磁场区域Ⅱ时的位置的横坐标x .磁针的N 极沿x 轴正方向.由题图乙可知,开始时小磁针的N 极背离O 点,所以O 点处的磁极是条形磁铁P 的N 极,选项A 错误.由以上分析可知,P 的中轴线与地磁场方向垂直,选项B 错误.由题图乙可知,x 0处sin θ=22,即θ=45°,设P 在x 0处产生的磁感应强度大小为B P ,tan 45°=B 0B P,所以B P =B 0,选项C 正确.x 0处合磁场的磁感应强度大小为B =B 0sin 45°=2B 0,选项D 错误.5.C 由左手定则判断出N 带正电荷,M 带负电荷,故A 项错误;因洛伦兹力始终与运动的方向垂直,所以洛伦兹力不做功,故B 项错误;粒子在磁场中运动,洛伦兹力提供向心力,有q v B =m v 2r ,则比荷为q m =v Br ,即在相同速率的情况下,轨迹半径大的粒子比荷小,故C 项正确;粒子在磁场中运动半周,即运动时间为周期的一半,而周期为T =2πr v ,由图可知,M 在磁场中的运动时间大于N 的运动时间,故D 项错误.6.D匀强磁场的磁感应强度方向与导体棒AC 是垂直的,故AC 所受的安培力大小F 安=BIL ,A 项错误.安培力方向既垂直于导体棒也垂直于磁场,根据左手定则判断出其方向,作出导体棒AC 的受力示意图(从A 看向C 的平面图)如图所示.由于重力和支持力在竖直方向上,而安培力有水平方向上的分力,若没有摩擦力,则这三个力无法平衡,所以导体棒一定会受到水平向左的摩擦力,B 项错误.由图可知,安培力的方向不在水平方向,故无法与摩擦力平衡,C 项错误.将安培力在水平方向上和竖直方向上分解,根据平衡条件可得支持力大小F N =BIL cos θ+mg ,摩擦力大小F f =BIL sin θ,D 项正确.7.D 已知电流沿y 轴负方向,安培力方向沿x 轴正方向,根据左手定则知匀强磁场的磁感应强度方向平行于zOy 平面内,设磁场与导线的夹角为α,则0°<α≤90°,当α=90°时,由F =BIL sin α可知,B有最小值为B min =F IL ,当0°<α<90°时,B >F IL ,所以B =2F IL 和B =4F IL 是可能的,故A 、B 、C 三项错误,D 项正确.BD 质子在两个磁场中由洛伦兹力提供向心力,均做匀速圆周运动,其轨迹如图所示.根据圆的对称性及题设可知,质子到达OP 上的A 点时速度方向水平向右,与x 轴平行,质子在匀强磁场区域Ⅰ中轨迹对应的圆心角为60°,所以质子在匀强磁场区域Ⅰ中运动的时间为t 1=16T =16×2πm qB =πm 3qB ,故A 错误,B 正确;设在区域Ⅰ中的轨迹半径为r 1,在区域Ⅱ中的轨迹半径为r 2,由几何知识知△OAO 1为等边三角形,则r 2=r 1sin 30°,根据牛顿第二定律得q v B =m v 2r 1,q v B 2=m v 2r 2,联立解得B 2=2B ,由题设及几何知识可得在区域Ⅱ中轨迹对应的圆心角为90°,所以质子在区域Ⅱ中运动的时间为t 2=14T 2=14×2πm qB 2=πm4qB ,故C错误,D 正确.12.AD 粒子在磁场中运动时,洛伦兹力提供向心力,有q v B =m v 2R ,得粒子在磁场中运动的半径R =m v qB ,粒子运动的周期T =2πR v =2πmqB .若r <2R =2m v qB ,则粒子运动的轨迹如图1所示,粒子从第一象限射出磁场,射出磁场后做直线运动,所以0°<θ<90°,选项A 正确.若r ≥2R =2m vqB ,则粒子运动的轨迹如图2所示,粒子一定是垂直于x 轴经过P 点,所以粒子在第一象限中运动的时间是半个周期,t =12T =πmqB ,故选项B 、C 错误,D 项正确.13.答案:(1)2(2-3)Bqd m (2)2πm3Bq (3)2d解析:(1)当粒子运动到右边界,其轨迹恰好与CD 边相切时,所对应的速度是能从AB 边界飞出的最大速度,其轨迹如图甲所示,设其轨道半径为R ,最大速度为v max 由几何关系得:R +R cos30°=d 由洛伦兹力提供向心力得:Bq v max =m v 2maxR由以上两式解得:v max =2(2-3)Bqdm(2)粒子的运动轨迹如图乙所示,由几何关系知粒子此时的轨道半径为:R 2=dcos30° 设这时粒子在磁场中运动的速度大小为v 2,由洛伦兹力提供向心力得:Bq v 2=m v 22R 2粒子进入电场在电场中运动,由动能定理得: 12m v 22=qU解得极板间电压U =B 2qd 22m cos 230°=2B 2qd 23m粒子不碰到右极板所加电压满足的条件为U ≥2B 2qd 23m 因粒子转过的圆心角为60°,所用时间为T6,而周期T =2πm Bq因返回通过磁场所用时间相同,所以总时间t =2×T 6=2πm 3Bq(3)当粒子速度为(2)中的3倍时,即v 3=3v 2,根据Bq v 3=m v 23R 3解得R 3=2d当粒子沿BA 方向进入磁场时,打在DC 边上的点为最高点,如图丙,由几何关系可得粒子能打到CD 边界的最高点位置与Q 点的距离为:l =R 3=2d .14.答案:(1)mg E 0 2E 0v (2)d 2v +πvg (3)(2π+1)v 2g解析:(1)微粒做直线运动时,有 mg +qE 0=q v B ①微粒做圆周运动时,有mg =qE 0 ②联立①②得q =mgE 0③B =2E 0v . ④(2)设微粒从N 1点运动到Q 点的时间为t 1,做匀速圆周运动的周期为t 2,则d2=v t 1 ⑤q v B =m v 2R ⑥2πR =v t 2 ⑦ 联立③④⑤⑥⑦得t 1=d2v ,t 2=πv g ⑧电场变化的周期T =t 1+t 2=d 2v +πvg . ⑨ (3)若微粒能完成题述的运动过程,要求d ≥2R ⑩联立③④⑥得R =v 22g ⑪设N 1Q 段直线运动的最短时间为t min ,由⑤⑩⑪得t min =v2g ⑫因t 2不变,所以T 的最小值为T min =t min +t 2=(2π+1)v2g .15.答案:(1)m v 22e (2)2m v 0(1-cos θ)e ·Δx (π-2θ)·Δx 2v 0(1-cos θ)解析:(1)由动能定理有eU 0=12m v 20-0解得U 0=m v 202e .(2)如图甲所示,从O 点射出的电子落在x 轴上PQ 间,设电子在磁场中做圆周运动的轨迹半径为r 1,由几何关系有Δx =2r 1-2r 1cos θ由向心力公式有e v 0B 1=m v 20r 1解得B 1=2m v 0(1-cos θ)e ·Δx最短路程为s min =2⎝ ⎛⎭⎪⎫π2-θr 1则有t =s min v 0=(π-2θ)·Δx 2v 0(1-cos θ).16.答案:9E B ,7E B ,11E B ,3EB解析:设粒子入射的速度为v 0,粒子从P 点到达x 轴上a 点,历时t ,水平位移x 1,粒子做类平抛运动,有h =qE2m t 2,x 1=v 0t粒子到达a 点时竖直方向速度大小为v y =qEm t粒子到达a 点速度大小为v =v 20+v 2y到达a 点时,粒子速度v 与x 轴正向夹角为θ,从a 点经磁场做半径为r 的匀速圆周运动,回到x 轴上b 点,b 、a 之间的水平距离为x 2,如图,根据q v B =m v 2r ,x 2=2r sin θ要粒子通过x 轴上坐标为(7h,0)的Q 点(不穿出y 轴),需满足x 1≥r +r sin θ又sin θ=v y v ,q m =2E B 2h 联立以上各式解得v 0≥8E3B①若通过Q 点时粒子速度方向为右下,则需满足 7h =(2n -1)x 1-(n -1)x 2(n =1,2,3,…) 解得v 0=[7+2(n -1)]E(2n -1)B当n =1时,v 0=7EB当n =2时,v 0=3EB②若通过Q 点时粒子速度方向为右上,则需满足 7h =(2n -1)x 1-nx 2(n =1,2,3,…) 解得v 0=(7+2n )E(2n -1)B当n =1时,v 0=9EB当n =2时,v 0=11E3B综上所述,粒子入射速度有4个可能值,分别为:9E B ,7E B ,11EB ,示,则PNM ′O ′为菱形,由于PN 竖直,M ′O ′也竖直,则粒子离开磁场时,速度方向一定沿x 轴正方向.由图可知粒子b 到达y 轴的坐标y b =L +L sin(120°-90°)=32L 设粒子b 离开电场时的速度大小为v ′,与x 轴正方向的夹角为α′.则qE ×32L =12m v ′2-12m v 20,cos α′=v 0v ′32L =12×qE m t ′2设粒子在磁场区域Ⅱ中做圆周运动的半径为R ′,则q v ′B ′=m v ′2R ′粒子b 第一次离开磁场区域Ⅱ时的位置的横坐标为 x =v 0t ′-2R ′sin α′ 联立解得x =0。
2021届高考物理一轮巩固练习:电磁感应含答案
2021届高考物理一轮巩固练习:电磁感应含答案复习:电磁感应一、选择题1、如图所示,两根相距为l的平行直导轨ab、cd,b、d间连有一固定电阻R,导轨电阻可忽略不计。
MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R。
整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面(垂直纸面向里)。
现对MN施力使它沿导轨方向以速度v水平向右做匀速运动。
令U表示MN两端电压的大小,下列说法正确的是()A.U=12Bl v,流过固定电阻R的感应电流由b经R到dB.U=Bl v,流过固定电阻R的感应电流由d经R到bC.MN受到的安培力大小F A=B2l2v2R,方向水平向右D.MN受到的安培力大小F A=B2l2vR,方向水平向左2、如图所示为安检门原理图,左边门框中有一通电线圈,右边门框中有一接收线圈.工作过程中某段时间通电线圈中存在顺时针方向均匀增大的电流,则()A.无金属片通过时,接收线圈中的感应电流方向为顺时针B.无金属片通过时,接收线圈中的感应电流增大C.有金属片通过时,接收线圈中的感应电流方向为顺时针D.有金属片通过时,接收线圈中的感应电流大小发生变化3、(多选)磁悬浮高速列车在我国已投入运行数年。
如图所示就是磁悬浮的原理,图中A是圆柱形磁铁,B是用高温超导材料制成的超导圆环。
将超导圆环B水平放在磁铁A上,它就能在磁力的作用下悬浮在磁铁A的上方空中,则()A.在B放入磁场的过程中,B中将产生感应电流;当稳定后,感应电流消失B.在B放入磁场的过程中,B中将产生感应电流;当稳定后,感应电流仍存在C.若A的N极朝上,B中感应电流的方向为顺时针方向(从上往下看)D.若A的N极朝上,B中感应电流的方向为逆时针方向(从上往下看)4、如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力所做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则()A.W1<W2,q1<q2B.W1<W2,q1=q2C.W1>W2,q1=q2D.W1>W2,q1>q25、如图所示,ab为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a 点在纸面内转动;S为以a为圆心位于纸面内的金属环;在杆转动过程中,杆的b端与金属环保持良好接触;A为电流表,其一端与金属环相连,一端与a 点良好接触。
2021届高三物理一轮复习电磁学电磁感应电磁感应中的能量转化线框进出磁场类问题专题练习
1 / 72021届高三物理一轮复习电磁学电磁感应电磁感应中的能量转化线框进出磁场类问题专题练习一、填空题1.如图所示,单匝线圈ABCD 在外力作用下以速度v 向右匀速进入匀强磁场,第二次又以速度2v 匀速进入同一匀强磁场.则:第一次进入与第二次进入时线圈中产生的电动势之比为______ ;第一次进入与第二次进入过程中通过导线横截面电荷量之比为______ .2.如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落,它的上下两边始终保持水平,途中恰好匀速穿过一个有理想边界的匀强磁场区域,则线框在此过程中产生的电热为__________。
3.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R.把线圈放在匀强磁场时,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q ,由此可知,被测磁场的磁感应强度B=___________.4.如图甲、乙、丙所示,边长为a 的等边三角形区域内有匀强磁场,磁感应强度B 的方向垂直纸面向外。
边长为a 的等边三角形导体框架EFG ,在0t =时恰好与磁场区域的边界重合,而后以周期T 绕其中心沿顺时针方向匀速旋转,于是在框架EFG 中有感应电流。
规定电流按E →F →G →E 方向流动时电流强度取正,反向流动时取负。
设框架EFG 的总电阻为R ,则从0t =到16T t =时间内平均电流强度I 1=_______;从0t =到22T t =时间内平均电流强度I 2=_______。
5.电阻为R 的矩形线框abcd ,边长ab=L.bd=H ,质量为m ,自某一高度自由下落,恰好能匀速通过一匀强磁场,磁场与线框平面垂直,磁场区域的宽度为H ,则线框穿过磁场区域的过程中产生的焦耳热为________.6.把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图),第一次速度为1V ,第二次速度为2V ,且212V V =,则两情况下拉力的功之比12:W W =________,拉力的功率之比12:P P =________,线圈中产生的焦耳热之比12:Q Q =________.7.如图()a 所示,长为L 宽为h 的矩形闭合线圈竖直固定在小车上,其中0.04h m =,线圈电阻51.610R -=⨯Ω,线圈与小车总质量1.m kg =它们在光滑水平面上,以0 1.0/v m s =的初速度进入与线圈平面垂直、磁感应强度为B 、宽度为d 的水平有界匀强磁场,磁场方向垂直纸面向里,已知小车运动的速度ν随位移s 变化的s ν-图象如图()b 所示.已知L d <,则d =______m .B =______.T某空间存在以ab .cd 为边界的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向里,区域宽为L 1,现有一矩形线框处在图中纸面内,它的短边与ab 重合,长度为L 2,长边长度为2L 1,某时刻线框以初速度v 0沿与ab 垂直的方向进入磁场区域,同时某人对线框施以作用力,使它的速度大小和方向保持不变.设该线框的电阻为R ,则从线框开始进入磁场到完全离开磁场的过程中,人对线框作用力做的功等于___.3 / 79.如图所示,一无限长通电直导线固定在光滑水平面上,金属环质量为0.02kg ,在该平面上以02/v m s 、与导线成60°角的初速度运动,其最终的运动状态是__________,环中最多能产生__________J 的电能.10.如图所示,在光滑的绝缘水平面上,一个半径为10 cm 、电阻为1.0 Ω、质量为0.1 kg 的金属环以10 m/s 的速度冲入一有界磁场,磁感应强度为B =0.5T 。
2021届高考物理一轮复习易错题型专训(12)电磁感应
2021届高考物理一轮复习易错题型专训(12)电磁感应1.如图所示,闭合导线框匀速穿过垂直纸面向里的匀强磁场区域,磁场区域宽度大于线框尺寸,规定线框中逆时针方向的电流为正,则线框中电流i 随时间t 变化的图象可能正确的是( )A. B.C. D.2.如图甲所示,一个匝数100n =的圆形导体线圈,面积210.4m S =,电阻1r =Ω。
在线圈中存在面积220.3m S =的垂直线圈平面向外的匀强磁场区域,磁感应强度B 随时间t 变化的关系如图乙所示。
有一个2R =Ω的电阻,将其两端a b 、分别于图甲中的圆形线圈相连接,b 端接地,则下列说法正确的是( )A.圆形线圈中产生的感应电动势6V E =B.在0~4s 时间内通过电阻R 的电荷量8C q =C.设b端电势为零,则a端的电势3Vϕ=aD.在0~4s时间内电阻R上产生的焦耳热18JQ=3.纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直于纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化。
一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω。
0t=时,OA恰好位于两圆的公切线上,如图所示。
若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是( )A. B.C. D.4.如图所示,边长为L的菱形由两个等边三角形abd和bcd构成,在三角形abd内存在垂直纸面向外的磁感应强度为B的匀强磁场,在三角形bcd内存在垂直纸面向里的磁感应强度也为B的匀强磁场.一个边长为L的等边三角形导线框efg在纸面内向右匀速穿过磁场,顶点e始终在直线ab上,底边gf始终与直线dc重合.规定逆时针方向为电流的正方向,在导线框通过磁场的过程中,感应电流随位移变化的图象是( )A. B.C. D.5.如图所示,光滑金属导轨ab 和cd 构成的平面与水平面成θ角,导轨间距22d ac b L L L ==,导轨电阻不计.两金属棒MN PQ 、垂直导轨放置,与导轨接触良好.两棒质量22PQ MN m m m ==,电阻22PQ MN R R R ==,整个装置处在垂直导轨向上的磁感应强度为B 的匀强磁场中,金属棒MN 在平行于导轨向上的拉力F 作用下沿导轨以速度v 向上匀速运动,PQ 棒恰好以速度v 向下匀速运动.则( )A.MN 中电流方向是由M 到NB.匀速运动的速度v 的大小是22sin mgR B L θ C.在MN PQ 、都匀速运动的过程中,3sin F mg θ=D.在MN PQ 、都匀速运动的过程中,2sin F mg θ=6.如图所示,abcd为一边长为l的正方形导线框,导线框位于光滑水平面内,其右侧为一匀强磁场区域,磁场的边界与线框的边cd平行,磁场区域的宽度为2l,磁感应强度为B,方向竖直向下。
2021年高考物理一轮复习考点过关检测题—12.11电磁感应综合—磁悬浮列车类问题
2021年高考物理一轮复习考点过关检测题12.11 电磁感应综合—磁悬浮列车类问题一、选择题1.如图所示为磁悬浮列车模型,质量M=2kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。
位于磁场中的正方形金属框ABCD为动力源,其质量m=2kg,边长为1m,电阻为116Ω,与绝缘板间的动摩擦因数μ2=0.2.OO'为AD、BC的中点。
在金属框内有可随金属框同步移动的磁场,CDOO'区域内磁场如图a所示,CD恰在磁场边缘以外;BAOO'区域内磁场如图b所示,AB恰在磁场边缘以内(g=10m/s2)。
若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()A.若金属框固定在绝缘板上,金属框的加速度为2m/s2B.若金属框固定在绝缘板上,金属框的加速度为1m/s2C.若金属框不固定,金属框的加速度为6m/s2,绝缘板的加速度为1m/s2D.若金属框不固定,金属框的加速度为2m/s2,绝缘板仍静止2.我国研发的磁悬浮高速实验样车在2019年5月23日正式下线,在全速运行的情况下,该样车的时速达到600千米。
超导体的抗磁作用使样车向上浮起,电磁驱动原理如图所示,在水平面上相距l的两根平行导轨间,有垂直水平面前等距离分布的匀强磁场,磁感应强度大小均为B,每个磁场的宽度都是l,相间排列。
固定在样车下方宽为l、阻值为R的导体线框abcd悬浮在导轨上方,样车运行过程中所受阻力恒为f,当磁场以速度v0向右匀速运动时,下列说法正确的是()A .样车速度为零时,受到的电磁驱动力大小为2204B l v RB .样车速度为零时,线圈的电热功率为22202B l v RC .样车匀速运动时,克服阻力做功的功率为20224Rf fv B l- D .样车匀速运动时,速度大小为0222Rf v B l- 3.某种超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力。
2021届高考物理一轮复习专题电磁感应综合检测
2021届高考物理一轮复习专题电磁感应综合检测一、选择题(1~5题为单项选择题,6~9题为多项选择题)1.如图1所示,矩形导线环水平放置,O是矩形两组对边中点连线ab、cd的交点,在线ab上右侧放有垂直环面的通电导线,电流方向垂直纸面向外,则能使导线环中产生感应电流的是( )图1A.突然加大通电直导线中的电流B.让导线环在纸面内绕O点沿顺时针转动C.让导线环以ab为轴转动D.让导线环沿ab方向向直导线靠近2.(2021·福建质检)法拉第在1831年发觉了“磁生电”现象。
如图2所示,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用导线连通,导线下面平行放置一个小磁针。
实验中可能观看到的现象是( )图2A.用一节电池作电源小磁针不偏转,用十节电池作电源小磁针会偏转B.线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针会偏转C.线圈A和电池连接瞬时,小磁针会偏转D.线圈A和电池断开瞬时,小磁针不偏转3.(2021·石家庄调研)如图3所示电路中,A、B、C为完全相同的三个灯泡,L是一直流电阻不可忽略的电感线圈。
a、b为线圈L的左右两端点,原先开关S是闭合的,三个灯泡亮度相同。
将开关S断开后,下列说法正确的是( )图3A.a点电势高于b点,A灯闪亮后缓慢熄灭B.a点电势低于b点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.a点电势低于b点,B、C灯可不能闪亮只是缓慢熄灭4.在绝缘圆柱体上a、b两位置固定有两个金属圆环,当两环通有如图4所示电流时,b处金属圆环受到的安培力为F1;若将b处金属圆环移到位置c,则通有电流为I2的金属圆环受到的安培力为F2。
今保持b处金属圆环位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力( )图4A.大小为|F1+F2|,方向向左B.大小为|F1+F2|,方向向右C.大小为|F1-F2|,方向向左D.大小为|F1-F2|,方向向右5.如图5所示,矩形线圈abcd位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B随时刻t变化的规律如图6所示。
2021年高考物理一轮复习 第九章 电磁感应高频考点真题验收全通关
2021年高考物理一轮复习第九章电磁感应高频考点真题验收全通关高频考点一:电磁感应现象楞次定律1.(多选)(xx·全国卷Ⅱ)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。
下列叙述符合史实的是( )A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化2.(多选)(xx·海南高考)如图1所示,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内。
在金属框接通逆时针方向电流的瞬间( )图1A.两小线圈会有相互靠拢的趋势B.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向3.(xx·海南高考)如图2所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过。
现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ。
设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则( )图2A.T1>mg,T2>mgB.T1<mg,T2<mgC.T1>mg,T2<mgD.T1<mg,T2>mg4.(xx·四川高考)如图3所示,在铁芯P上绕着两个线圈a和b,则( )图3A.线圈a输入正弦交变电流,线圈b可输出恒定电流B.线圈a输入恒定电流,穿过线圈b的磁通量一定为零C.线圈b输出的交变电流不对线圈a的磁场造成影响D.线圈a的磁场变化时,线圈b中一定有电场高频考点二:法拉第电磁感应定律5. (多选)(xx·江苏高考)如图4所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来。
2021年高考物理一轮复习考点过关检测题—12.1电磁感应现象和楞次定律
2021年高考物理一轮复习考点过关检测题12.1 电磁感应现象和楞次定律一、单项选择题1.用如图所示的实验装置研究电磁感应现象,下列说法中正确的是()A.当把磁铁N极向下插入线圈时,电流表指针不发生偏转B.当把磁铁S极从线圈中拔出时,电流表指针不发生偏转C.保持磁铁在线圈中相对静止时,电流表指针不发生偏转D.若磁铁和线圈一起以同一速度向上运动,电流表指针发生偏转2.下图中在图示位置能产生感应电流的是()A.B.C.D.3.如图甲所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。
已知在t=0到t=t1的时间间隔内,直导线中电流i随时间的变化如图乙所示。
(设电流i 的正方向与甲图中箭头所示方向相同)则在t=0到t=t1的时间内,线框中的感应电流的方向为()A.沿顺时针方向B.沿逆时针方向C.先沿顺时针方向,后沿逆时针方向D.先沿逆时针方向,后沿顺时针方向4.如图所示,一水平放置的圆形通电线圈1固定,另一较小的圆形线圈2从1的正上方下落,在下落过程中两线圈平面始终保持平行共轴,则线圈2从正上方落至1的正下方过程中,从上往下看,线圈2中的感应电流为()A.无感应电流B.始终有顺时针方向的感应电流C.先是顺时针方向,后是逆时针方向的感应电流D.先是逆时针方向,后是顺时针方向的感应电流5.如图所示,矩形线框abcd与长直导线在同一平面内,直导线中通有向上的恒定电流I.当矩形线框从长直导线的右侧运动到左侧的过程中线框内感应电流的方向为()A.先dcba,后一直abcd B.先dcba,再abcd,后dcbaC.先abcd,后一直dcba D.先abcd,再dcba,后abcd6.如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd,沿纸面由位置1(左)匀速运动到位置2(右),则()A.导线框进入磁场时,感应电流方向为a→b→c→d→aB.导线框离开磁场时,感应电流方向为a→d→c→b→aC.导线框离开磁场时,受到的安培力方向水平向右D.导线框进入磁场时,受到的安培力方向水平向左7.如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a()A.顺时针加速旋转B.顺时针减速旋转C.逆时针加速旋转D.逆时针减速旋转8.如图,软铁环上绕有M、N两个线圈,线圈M与电源、开关S相连,线圈N与电阻R连接成闭合电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考物理一轮复习考点过关检测题12.9 电磁感应综合—线框进出磁场问题一、单项选择题1.如图所示,在粗糙绝缘水平面上有一正方形闭合金属线框abcd,其边长为L、质量为m,金属线框与水平面的动摩擦因数为μ。
虚线框a b c d''''内有一匀强磁场,磁场方向竖直向下。
开始时金属线框的ab 边与磁场的d c''边重合。
现使金属线框以初速度v0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc边与磁场区域的边d c''距离为L。
在这个过程中,金属线框产生的焦耳热为()A.12mv2+μmgL B.12mv2-μmgLC.12mv2+2μmgL D.12mv2-2μmgL2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用时间t拉出,外力所做的功为W1,外力的功率为P1,通过导线截面的电荷量为q1;第二次用时间3t拉出,外力所做的功为W2,外力的功率为P2,通过导线截面的电荷量为q2,则()A.W1=W2,P1= P2,q1<q2B.W1=3W2,P1=3P2,q1=q2C.W1=3W2,P1= 9P2,q1=q2D.W1=W2,P1= 9P2,q1=3q23.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示。
t=0时刻对线框施加一水平向右的外力,让线框从静止开始做匀加速直线运动穿过磁场,外力F随时间t变化的图象如图乙所示。
已知线框质量m=1kg、电阻R=1Ω,以下说法不正确的是()A.线框边长为1mB.匀强磁场的磁感应强度为TC.线框穿过磁场的过程中,通过线框的电荷量为2CD.线框做匀加速直线运动的加速度为1m/s24.如图,空间中存在一匀强磁场区域,磁感应强度大小为B,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面,间距为2L,纸面内磁场上方有一个质量为m、电阻为R的正方形导线框abcd,边长为L,其上、下两边均与磁场边界平行,若线框从上边界上方某处自由下落,恰能匀速进入磁场,则()A.线框释放处距离磁场上边界的高度为22222m gR hB L =B.线圈进入磁场的过程中机械能的减少量为mgLC.线圈进入磁场的过程中流过线圈横截面的电量为BL RD.线圈的ab5.如图所示,边长为L的单匝均匀金属线框置于光滑水平桌面上,在拉力作用下以恒定速度通过宽度为D(D>L)、方向竖直向下的有界匀强磁场。
在整个过程中线框的ab边始终与磁场的边界平行,若以F表示拉力大小、以U ab表示线框ab两点间的电势差、I表示通过线框的电流、P表示拉力的功率,则下列反映这些物理量随时间变化的图像中可能正确的是()A.B.C.D.6.如图所示,区域Ⅰ、Ⅰ均为匀强磁场,磁感强度大小都为B=5T,方向如图。
两磁场中间有宽为S=0.1m 的无磁场区Ⅰ。
有一边长为L=0.3m、电阻为R=10Ω的正方形金属框abcd置于区域Ⅰ,ab边与磁场边界平行。
现拉着金属框以v=2m/s的速度向右匀速移动,从区域Ⅰ完全进入区域Ⅰ,则此过程中下列说法正确的是()A.金属框中的最大电流为0.3AB.金属框受到的最大拉力为0.9NC.拉力的最大功率为3.6WD.拉力做的总功为0.18J7.如图所示,两条平行虚线之间存在匀强磁场,虚线间的距离为l,磁场方向垂直纸面向外,abcd是位于纸面内的梯形线圈,其中ad=H、bc=h,ad与bc间的距离也为l,t=0时刻,bc边与磁场区域边界重合。
现令线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域.取沿a→b→c→d→a的感应电流为正,则在线圈穿越磁场区域的过程中感应电流I随时间t变化的图线可能是()A.B.C.D.8.边长为L的正方形金属框在水平恒力F作用下运动,穿过方向如图所示的有界匀强磁场区域。
磁场区域的宽度为d(d>L)。
已知ab边进入磁场时,线框的加速度恰好为零。
则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,有()A.产生的感应电流方向相同B.所受的安培力F方向相反C.进入磁场过程的时间等于穿出磁场过程的时间D.进入磁场过程的发热量少于穿出磁场过程的发热量9.一个边长为L的正方形导线框在倾角为θ的光滑斜面上由静止开始沿斜面下滑,随后进入虚线下方垂直于斜面向上的匀强磁场中。
如图所示,斜面以及虚线下方的磁场往下方延伸到足够远。
下列说法正确的是()A.线框进入磁场的过程,b点的电势比a点高B.线框进入磁场的过程一定是减速运动C.线框中产生的焦耳热小于线框减少的机械能D.线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量相等10.如图所示,在光滑水平面上有宽度为d 的匀强磁场区域,边界线MN 平行于PQ ,磁场方向垂直平面向下,磁感应强度大小为B ,边长为L (L <d )的正方形金属线框,电阻为R ,质量为m ,在水平向右的恒力F 作用下,从距离MN 为2d处由静止开始运动,线框右边到MN 时速度与到PQ 时的速度大小相等,运动过程中线框右边始终与MN 平行,则下列说法正确的是( )A .线框在进磁场和出磁场的过程中,通过线框横截面的电荷量不相等B C .线框进入磁场过程中一直做加速运动D .线框右边从MN 运动到PQ 的过程中,线框中产生的焦耳热小于Fd 二、多项选择题11.如图甲,在光滑绝缘水平面上的MN 、OP 间存在一匀强磁场,一单匝正方形闭合线框自t=0开始,在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速直线运动穿过磁场区域,外力F 随时间t 变化的图象如图乙所示,已知线框质量为0.5Kg ,电阻R=1 ,线框穿过磁场过程中,外力F 对线框做功73J ,下列说法正确的是( )A .线框匀加速运动的加速度a=2m/s 2B .磁场的宽度为1mC .匀强磁场的磁感应强度为2TD .线框在穿过磁场过程中,线框上产生的热量为1.0J12.如图所示,边长为l 、质量为m 、电阻为R 的正方形金属线框abcd 放在光滑绝缘的水平面上,边长为L 的正方形区域内有垂直于水平面向下的匀强磁场,L >l ,两个正方形均关于MN 对称。
给金属线框一个向右的初速度v 0使线框向右穿过磁场区域,线框运动过程中始终关于MN 对称,线框穿过磁场后的速度为012v ,磁场的磁感应强度为大小为B ,则下列说法正确的是( )A .线框进入磁场过程中感应电流沿abcda 方向B .线框进入磁场过程中通过线框截面的电量为2Bl RC .线框完全进入磁场后的速度等于034v D .线框进入磁场过程克服安培力做功是出磁场过程克服安培力做功的75倍13.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。
斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。
第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。
第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。
两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =mC .12:9:10Q Q =D .12:6:5t t =14.如图所示,有一边长为l 的正方形导线框,质量为m ,由高h 处自由落下,其下边ab 进入匀强磁场区域后,线框开始做减速运动,直到其上边cd 刚穿出磁场时,速度减小为ab 边刚进入磁场时速度的一半,此匀强磁场的宽度也是l ,则下列结论正确的是( )A .线框穿过磁场区域时做匀减速直线运动B .线框穿过磁场区域时加速度方向先向上后向下C .线框进入磁场时的加速度大于穿出磁场时的加速度D .线框穿过磁场区域的过程中产生的焦耳热为3(24mg l h ⎫+⎪⎭15.如图所示,在光滑的水平面上方,有两个磁感应强度大小均为B 、方向相反的水平匀强磁场,PQ 为两个磁场的边界,磁场范围足够大。
一个边长为a 、质量为m 、电阻为R 的金属正方形线框,以速度v 垂直磁场方向从实线Ⅰ位置开始向右运动,当线框运动到分别有一半面积在两个磁场中的Ⅱ位置时,线框的速度为2v。
下列说法正确的是( )A .在位置Ⅱ时线框中的电功率为222B a v RB .此过程中线框产生的内能为38mv 2C .在位置Ⅱ时线框的加速度为222B a vmRD .此过程中通过线框截面的电量为22Ba R三、解答题16.如图所示,光滑的水平桌面上,质量0.1kg ,电阻为0.1Ω的正方形单匝线圈abcd 的边长为0.2m ,bc 边与匀强磁场边缘重合。
磁场的宽度等于线圈的边长,磁感应强度大小为0.5T ,线圈以8m/s 的初速度向右开始穿过磁场区域。
刚出磁场时速度刚好为0,求线圈在上述过程中 (1)刚进磁场时感应电流的大小和方向;(2)刚进磁场时的加速度大小和感应电流产生的热量Q ; (3)流过线框的电荷量q 。
17.在质量为08kg .M =的小车上竖直固定一个质量为0.2kg m =、高0.05m h =、总电阻100ΩR =、100n =匝的矩形闭合线圈,且小车与线圈的水平长度均为l 。
现在线圈和小车一起在光滑的水平面上运动,速度为110m/s v =,随后穿过与线圈平面垂直的磁感应强度 1.0T B =的水平有界匀强磁场,如图甲所示。
已知小车(包括线圈)运动的速度v 随车的位移x 变化的v -x 图像如图乙所示。
求: (1)小车的水平长度l 和磁场宽度d ;(2)当小车位移10cm x =时,小车的加速度a ; (3)小车通过磁场的过程中线圈电阻产生的焦耳热Q 。
18.如图所示,用质量为m、电阻为R的均匀导线做成边长为L的单匝正方形线框MNPQ,线框每一边的电阻都相等.将线框置于光滑绝缘的水平面上.在线框的右侧存在竖直方向的有界匀强磁场,磁场边界间的距离为2L,磁感应强度为B.在垂直MN边的水平拉力作用下,线框以垂直磁场边界的速度v匀速穿过磁场.在运动过程中线框平面水平,且MN边与磁场的边界平行.求(1)线框MN边刚进入磁场时,线框中感应电流的大小;(2)线框MN边刚进入磁场时,M、N两点间的电压U MN;(3)在线框从MN边刚进入磁场到PQ边刚穿出磁场的过程中,水平拉力对线框所做的功W.19.均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R。