主动源在高频被动源面波测量中的应用
地下供排水管线探查及水表查找
地下供排水管线探查及水表查找一、地下供排水管线探查1、地下供排水管道探测方法对地下供排水管道的探测,根据不同的材质,不同的地球物理条件,采用不同的物探方法进行探测。
对导电性能较好的金属管线采用电磁法探测,对非金属管道采用电磁波法及高精度磁法进行探测。
电磁法:是利用天然电磁场或人工电磁场源对管线进行激发,在地下管线中产生电流,管线周围形成电磁场,然后采用仪器测量其分布特征,确定管线的空间位置。
该方法为本次工程的首选方法,即采用英国雷迪和日本富极探进口系列地下管线探测仪,根据管线的敷设状况,选择使用被动源的工频法、甚低频法,主动源的直接法、夹钳法、电偶极感应法、磁偶极感应法等。
电磁波法:即地质雷达探查方法,是通过安置在地表的发射天线向地下发射高频宽频短脉冲电磁波,电磁波在地下介质传播过程中遇到与周围介质电性不同的管线界面时产生反射并被接收天线记录下来,显示在屏幕上形成一道雷达记录。
当天线沿测线方向逐点移动探查时,各道记录按测点顺序排列在一起,形成一张探查雷达图像,通过分析雷达剖面图像中各反射波强度、波形特征及到达时间,可推断地下管线的分布状况。
该方法探查精度高,不受管线材质限制。
该方法主要用于对非金属管线的探测,另外还用于解决复杂地段的管线探测和对疑难点进行确认。
此外,个别地方还可采用机械探测方法以验证其它方法的精度和准确性。
2、地下管线探测原则则地下管线探测应遵循如下原则:从已知到未知;从简单到复杂;优先选用轻便、有效、快捷、成本低的方法;复杂条件下宜采用多种探测方式方法。
3、定位、定深方法3.1平面定位方法平面定位方法技术包括对地下管线的搜索和精确测定地下管线在地面投影位置。
在地下管线未知区域,首先可采用扫描搜索的方法确定管线位置,然后做进一步的追踪探查,精确测定管线的平面位置。
⑴未知区域管线搜索方法。
在地下管线未知区域,可采用被动源法进行网格状扫描搜索,以查找浅埋的金属管道和电缆,对深埋管线可采用主动源法搜索。
电法勘探简介
什么是电法勘探?电法勘探(electrical prospecting)是根据岩石和矿石电学性质(如导电性、电化学活动性、电磁感应特性和介电性,即所谓“电性差异”)来找矿和研究地质构造的一种地球物理勘探方法。
它是通过仪器观测人工的、天然的电场或交变电磁场,分析、解释这些场的特点和规律达到找矿勘探的目的。
电法勘探分为两大类。
研究直流电场的,统称为直流电法,包括有电阻率法、充电法、自然电场法和直流激发极化法等;研究交变电磁场的,统称为交流电法,包括有交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法等。
按工作场所的差别,电法勘探又分为地面电法、坑道和井中电法、航空电法、海洋电法等。
电法勘探的发展历史电法勘探方法可以追溯到19世纪初P.Fox在硫化金属矿上发现自然电场现象,至今已有100多年的历史。
我国电法勘探始于20世纪30年代,由当时北平研究院物理研究所的顾功叙光生所开创。
经过70余年的发展,我国的电法勘探无论在基础理论、方法技术和应用效果等方面都取得了巨大的进展,使电法成为应用地球物理学中方法种类最多、应用面最广、适应性最强的一门分支学科。
同时,经过广大地球物理工作者不懈努力,在深部构造、矿产资源、水文及工程地质、考古、环保、地质灾害、反恐等领域,电法已经和正在发挥着重要作用。
限于篇幅,本文仅对其中几种主要方法,如:高密度电法、激发极化法、CSAMT等作简要介绍,并就这些方法在水文和工程地质中的应用进行阐述,供广大水文和工程地质、工程物探人员参考电法勘探原理电法勘探是根据岩石和矿石电学性质(如导电性、电化学活动性、导磁性和介电性,即所谓“电性差异”)来找矿和研究地质构造的一组地球物理勘探方法。
它是通过仪器观测人工的、天然的电场或交变电磁场,分析、解释这些场的特点和规律,达到找矿勘探的目的。
电法勘探分为两大类研究直流电场的,统称为直流电法,就是研究与地质体有关的直流电场分布特点和规律来找矿和解决某些地质问题,包括电阻率法、充电法、自然电场法和直流激发极化法等研究交变电磁场的,统称为交流电法,就是研究与地体有关的交变电磁场的建立、分布、传播特点和规律来找矿和解决某些地质问题。
地下管线探测基本概念
管线敷设方式:是指管线(主要指地下管线)施工的方式或工艺。如
直埋、管道、沟道、隧道、综合管廊、沿墙、管架等等。
管线调查:是指对地下管线可见部分的调查、量测、记录、标示、作草图等
工作。 地下管线探测:是指对隐蔽的地下管线进行探查、定位、测深、标示、记录、作 草图等工作。
管线测量:是指对管线的特征点、附属设施的几何空间位置进行测量、记录、
噪音信号:特指非探测目标所带的所有信号的统称,即使是因感应
所产生的与目标信号相同频率的信号。有时可以利用噪音信号 辅助进行探测判断。
专业管线图:特指展示根据一定规则分类的具有一定比例尺的地下
管线图。
综合管线图:指展示某区域所有地下管线分布特征的具有一定比例
尺的地下管线图。
管线成果表:指描述地下管线测点、线段或线路的数据和信息的表
电磁波法工作原理
磁法仪器工作原理
磁法探测仪器主要是用来探测铁磁体(如金 属井盖、钢筋网等)。其工作原理如下,铁磁体 能够改变大地磁场或特定磁场的方向,从而通过 线圈探头与铁磁体的相对变化,感知磁异常情况, 间接获知地下铁磁体的位置和深度。
电磁感应法的前提条件 探测目标必须是导体,如金属管线、电 力电缆、通信电缆或者具备设置信标条 件的非金属管线。 电磁感应的二次场特征 在管线中传导的感应电流产生的二次场 磁力线平面与一次场的磁力线平面方向 基本垂直;二次场磁力线理论上为同心 圆,而一次场为椭圆;同心圆与水平面 相割时,其磁场强度沿垂直于管线的方 向分布为正态曲线,如右图。
信号加载:是指地下管线探测设备将设定的频率信号加载到目标管
线上构成回路的过程。
信号强度:是指地下管线探测设备接收机探测到的目标管线周围某
点的场强大小,可间接反映管线中特定频率的信号电流的大小 或信号异常的大小等信息,是探测地下管线的最重要依据。
电法勘探方法技术及应用
三、装置类型的选择
(一)中间梯度装置 中梯装置的一个主要优点,是敷设一次供电导线和供电电极A、B便能在 相当大的面积上测量,特别是还能用几台“远点启动”的接收机同时在该面 积上观测,因而具有较高的生产效率;此外,它在A、B间的中间地段测量, 接近水平均匀极化条件,故对各种形状、产状和相对导电性的极化体均可得 到相当大的异常;而且异常形态较简单,易于解释。 中梯装置的特点是供电电极距较大,这导致它的两大缺点:( 1)要求 较大的供电电流强度,这使得它的装备比较笨重。(2)电磁耦合干扰较强; 不过,在时间域观测中选用几百毫秒或更长的延时,可有效地降低这种干扰。 故在时间域激电法中,中梯装置应用最广。 在普查找矿中主要采用纵向中梯;而横向中梯主要用于解决某些专门问 题,如在普遍矿化背景上,划分良导电富集(矿)带和确定矿化体走向长度 等。
按工作场所,通常分为: 航空电法 地面电法 海洋电法 地下电法
TRIDEM固定翼三频航空电磁测量系统
IMPULSE直升机吊舱航空电磁测量系统
海洋电磁法系统
• 系统由发射机和接收机两大部分组成。
按建场方式,通常分为: 天然场源(被动源)电法 人工场源(主动源)电法
供电极距的大小 决定勘探深度
有覆盖层时中梯装置的激电异常
相对无覆盖层而言: 高阻覆盖层:异常幅度变大, 曲线变陡 低阻覆盖层:异常幅度变小, 曲线变缓
H=1,h0=6 1:u21=99 ,2:u21=4 3:u21=1, 4:u21=0.5
5:u21=0.25 6:u21=0.11
7:u21=0.042
测线与矿体走向斜交
频率域电磁测深的基本原理
天然电磁波
时间域电磁测深原理
早 期 信 号 反 映 浅 部 结 构
被动源面波法在城市居民区建筑间的应用
被动源面波法在城市居民区建筑间的应用邬健强 1,陈 松 1,徐俊杰 1,郑智杰 2, 3,刘永亮 2, 3,王 越4(1. 中国地质调查局武汉地质调查中心(中南地质科技创新中心), 湖北 武汉 430205;2. 中国地质科学院岩溶地质研究所/自然资源部、广西岩溶动力学重点实验室/联合国教科文组织国际岩溶研究中心,广西 桂林 541004;3. 广西平果喀斯特生态系统国家野外科学观测研究站, 广西 平果 531406;4. 武汉轻工大学马克思主义学院,湖北 武汉 430023)摘 要:城镇中的人文噪声和工业生产对传统的地球物理调查方法(重、磁、电、震)有极大的干扰限制,鉴于此,文章采用抗干扰能力强、受场地条件影响小的被动源面波法在城市居民区进行地下空间勘探的应用。
研究结果表明:(1)被动源面波法在城市地区地下空间勘探中是一种有效的物探方法,其施工排列灵活多变,适应性强且不受外界干扰;(2)根据扩展的空间自相关法(ESPAC )处理得到视横波速度剖面能有效地对地下土洞、岩溶破碎带及溶洞等进行响应;(3)结合多条网状测线剖面结果,绘制不同深度的视横波速度水平切片图能有效对地下空间结构进行评价。
关键词:被动源面波法;频散曲线;扩展的空间自相关法(ESPAC);视横波速度V x 中图分类号:P631.4 文献标识码:A 文章编号: 1001 − 4810 ( 2023 ) 06 − 1322 − 09开放科学 ( 资源服务 ) 标识码 ( OSID ):0 引 言随着城市的快速发展,人类对城市地面塌陷[1]和城市地下空间的关注不断提高。
地球物理方法作为能够直接感知地下介质结构的手段,越来越多地被应用于解决城市地区浅地表和地下空间的实际地质问题。
由于城镇中的人文噪声和工业生产而产生的各种电磁场等干扰,导致传统地球物理调查方法(重、磁、电、震)在人口密集的城市地区的应用受到极大限制,但是人文噪声却为被动源面波法提供了有效的震源。
主动源与被动源面波勘探方法对比分析与应用
源 面波勘 探 主要用 于 中深层 ,常常 被应 用 于地 质 分
层 、地下 异常检测 等 …。本文 以福 州地 铁象 山站 勘 探工程 为背景 ,基 于 面波 基 本理论 ,结 合 现场 工 作 经验 ,对 主动源 面 波与 被动 源 面波 勘探 方 法进 行 对 比与分 析 ,发挥 各 自的优 点 ,克服 缺 点 ,以期 在 工
时间差为 △ 或 相位差为 △ ,那 么相 邻道距 △ 内瑞 利 波的传播速度 为
=
程地质勘 察 中更好 发挥其作用 。
1 主动源面 波勘探
2 w f A x / a  ̄ o
( 1 )
在 测量范 围 N A x内 ,瑞利 波的传播速度 为 当地震 波传 播 到地 层介 质 分界 面 时 ,会 产 生 反
黄 真 萍 ,朱鹏 超 ,胡 艳
( 福州 大学 环 境 与 资 源 学 院 ,福 州 3 5 0 1 0 8 )
摘
要 :以福 州地铁 象山站勘探 工程 为背景 ,从瑞 利 面波基本 理论 出发 ,根据 现场试 验 、工程
实例 及 相 关 经 验 ,对 主 动 源 面 波 与被 动 源 面 波勘 探 方 法进 行 对 比 与 研 究 ,探 讨 各 方 法 特 点 和 工 程 应
黄 真 萍 ,等 :主 动 源 与 被 动 源 面 波 勘 探 方 法 对 比分 析 与 应 用
D O I : 1 0 . 1 3 3 7 9 / j . i s s n . 1 0 0 3 — 8 8 2 5 . 2 0 1 5 . 0 1 . o 4
主 动 源 与被 动பைடு நூலகம்源 面 波勘 探 方 法 对 比分 析 与应 用
牡丹江市勘察测绘研究院黑龙江牡丹江157000
牡丹江市勘察测绘研究院黑龙江牡丹江 157000发布时间:2022-08-21T05:28:09.733Z 来源:《建筑创作》2022年第1期作者:于文龙[导读] 精准实施地下管线探测并实施信息化管理能最大程度地促进管线职能的发挥。
本文在阐述地下于文龙牡丹江市勘察测绘研究院黑龙江牡丹江 157000摘要:精准实施地下管线探测并实施信息化管理能最大程度地促进管线职能的发挥。
本文在阐述地下管线探测管理重要性的基础上,就其基本的探测方式和信息化管理要点展开分析,期望能为地下管线的规划建设和应用管理提供有效支撑,提升城市综合服务质量。
关键词:地下管线;探测技术;管理;信息化作为城市发展的物质基础,地下管线对于城市服务功能的发挥具有积极作用。
现阶段,城市地下管线类型多样,整体布局较为复杂,这对于城市发展服务造成了较大影响;有必要做好地下管线探测工作,实施地下管线的信息化、高效化管理。
一、地下管线探测管理的重要性地下管线是市政工程项目建设管理的重要内容,在地下管线工程建设中,应系统化的开展地下管线探测,并实施相关管线的信息化管理。
从市城市发展服务过程来看,实施地下管线探测及信息化管理的重要性表现为:一方面,城市地下管线的类型多样,除供排水、电力电信管线外,燃气管线、工业管道等都是地下管线的重要组成部分,这些管线在城市能量输送、信息传输中起到至关重要的作用,其是城市发展服务的物质基础。
另一方面,在传统管理模式下,城市地下管线布局复杂,管道类型多样,这使得管理人员在实际管理中存在较大难度。
规范开展地下管线他侧,并实施信息化管理,能为地下管线的应用提供参考依据,降低地下管线管理的盲目性。
此外,从长远发展的角度来看,实施地下管线的探测和信息化管理,能在保证城市地下管线正常运转的基础上,促进城市经济效益增长和可持续发展,满足人们社会生活的实际需要。
二、城市地下管线探测方法1、电磁感应法作为地下管线探的常用方式,电磁感应法需要在电磁发射机的支持下,向探测目标发射谐变电磁场,这样才能实现地下目标物及周围介质导电性、导磁性、介电性差异的有效检测,进而为地下管线类型和分布状况确定奠定良好基础(见图1)。
电法勘探 electrical prospecting
电法勘探electrical prospecting根据地壳中各种岩石和矿体之间存在的电磁学性质的差异,通过对电磁场观测,以探查地质构造和寻找有用矿产。
电法勘探主要利用岩石的导电性、介电性、导磁性和电化学性质(见岩石物理性质)。
当地下岩层和矿体的电学性质沿水平方向和垂直方向发生变化时,地面观测到的电磁场空间分布便相应地发生变化。
根据电磁场空间分布的异常特征,人们可以推断地质构造或矿体的存在状态,包括大小、形状、位置、埋藏深度和物性参数等,从而达到勘探的目的。
电法勘探的方法有许多种,常用的方法有电阻率法、充电法、激发极化法、自然电场法、大地电磁法和电磁感应法等。
电法勘探的应用范围很广,主要用于寻找金属和非金属矿床,勘查地下水和能源资源,并解决一些工程地质问题。
发展简史电法勘探自19世纪初开始实验研究。
1835年福克斯(R. W.Fox)用自然电场法找到了第一个硫化矿。
19世纪末期提出的利用人工场源的电阻率法,到20世纪初已较成熟。
20世纪初确立了电阻率法和温纳尔装置。
激发极化效应的电化学过程是1920年发现的,经各国学者的深入研究,形成了激发极化法。
电磁感应法于1917年提出,并于1925年首次获得找矿效果。
中国的电法勘探工作始于30年代,1949年以后才取得迅速发展。
1, 电阻率法此法利用岩石、矿石电阻率的差异,观测地面上人工电流场(稳定的或准稳定的)的分布规律。
许多国家用此法寻找石油、煤田、地下水和金属矿床,都取得一定成效。
图1为电阻率法原理示意。
由电源通过地面上一对金属电极A、B向地下输入强度为I的电流,使地中建立稳定电流场,在地面上另外两个测量电极M、N之间观测电位差△U,并按公式: ,计算视电阻率ρs。
通常以MN中点为测点,标示出ρs值,便知ρs沿测线的变化情况。
K称为电极排列系数,它与A、B、M、N四个电极的相对位置和间距有关。
对于一定的电极排列,K为常数。
当地下只有一种电阻率为ρ 的均匀各向同性介质时,ρs=ρ;当地下为非均匀介质时, ρs则取决于围岩、矿体、测点位置和电极排列等因素。
双源面波数据采集与处理系统及其应用效果
双 源 面 波 数 据 采 集 与 处 理 系 统 及 其 应 用 效 果
孙 秀容 ,夏 学礼 ,赵 东2 刘 洋 , 。
(. 1上海 申丰地质新技术应用研 究所有 限公 司 ,上海 210 ;2 骄佳技术公 司,加拿大 卡尔加 里 T A5Z 0 17 . 3 ; P
同时也 可以达到更大 的勘 探深度 ,取得良好 的地质效果 。对于同一场地 ,不 同类型观测 台阵 、不 同采集 日 间数据 寸 的被动源频散曲线 具唯一性 ;j  ̄ 的布设与空间位置无关 ,主动源面波采集数据重现性良好 。 q i Fj 关 键词 :主 动源 ;被 动源 ;面波 ;数据采集与处理系统
2 双源面波数据采集与处理 系统
双源 面波数据 采集与处 理系统 是主动源 面波和被 动 源面 波数据采 集和数 据处理 的集成 ,即在 同一系统 中实现 不同的功能。
的速度 ,质 点运动轨 迹为一 逆 向椭 圆 。依 据面 波的激 发方式 ,可分为主动源面波和被动源面 波。
2 1 双源面波数据采集系统 .
3 陕西能源职业技术学 院, 成 阳 7 2 0 ) . 1 0 0
摘 要 :双 源面波数据采 集与处理 系统融两种勘探 方法的硬件性 能和软件功 能于一体 ,既能采集与处 理被动源面 波数据 。同一测线上的 双源面波联合勘 探 ,既能兼顾 浅层勘探分辨 率的要求 ,
1 双源面波
瑞 利 波 是 一 种 沿地 表 传 播 的 特殊 弹性 波 ,在 振 动波 组 中能量最 强 、振 幅最大 ,且容 易识别 也易于 测
量 。这 种弹性 波 的速 度小于 同一 介质 中的纵波 和横波
面波勘探技术的研究现状及进展
Advances in Geosciences地球科学前沿, 2019, 9(9), 799-815Published Online September 2019 in Hans. /journal/aghttps:///10.12677/ag.2019.99086Research Status and Progress of SurfaceWave Exploration TechnologyGuangwen Wang1,2*, Haiyan Wang1,2#, Hongqiang Li3, Hongshuang Zhang1,2, Wenhui Li1,2, Xiaowei Zhang11Institute of Geology, Chinese Academy of Geological Sciences, Beijing2Deep Earth Dynamics Key Lab of Ministry of Natural Resources, Beijing3Chinese Academy of Geological Sciences, BeijingReceived: Sep. 5th, 2019; accepted: Sep. 19th, 2019; published: Sep. 26th, 2019AbstractSurface wave exploration technology has the characteristics of high detection accuracy, conve-nient construction and low cost. It has developed rapidly in recent decades and is widely used in shallow surface exploration. At present, there are many reviews of surface wave articles published at home and abroad, and different reviews focus on different points. This paper focuses on the Rayleigh surface wave exploration methods, domestic research status and application fields.Firstly, this paper introduces the basic process of surface wave exploration and several common surface wave exploration methods, and makes a brief comment on the advantages and disadvan-tages of each method. Secondly, according to the different sources, it focuses on the development process and current research status of surface wave. Then, according to the latest research progress and encounters of surface wave exploration, the possible development trend of surface wave exploration technology and some noticeable directions are discussed.KeywordsSurface Wave Exploration, Method Principle, Application Status, Progress面波勘探技术的研究现状及进展王光文1,2*,王海燕1,2#,李洪强3,张洪双1,2,李文辉1,2,张晓卫11中国地质科学院地质研究所,北京2深地动力学重点实验室(自然资源部),北京3中国地质科学院,北京收稿日期:2019年9月5日;录用日期:2019年9月19日;发布日期:2019年9月26日*第一作者。
资源、工程与环境地球物理
EditorialApplicationsProtectionSuping Peng a State Key Laboratory bSchool of Earth Sciences,Urbanization is an inevitable trend in the modernization of human society.The Chinese government has put forward a goal for urbanization in China in 2014,which focuses on the three tasks,y each containing 100million people.In the next 10years,China’s urbanization process will occur at the fastest rate in her his-tory.Earth’s near surface,which extends from the ground surface to a depth of nearly 100m,is the most complex,sensitive,and fragile part of the planet.The near surface provides the vast majority of nec-essary materials,along with substantial space for human living.Therefore,China’s urbanization relies on a ‘‘healthy”and sustainable near surface.With broad applications in environmental and engineering fields,geophysical techniques are of great significance in the sus-tainable development of the near surface.Geophysical techniques with high accuracy and high resolution (i.e.,centimeter to meter magnitude)are now available to solve various engineering and environmental problems.However,the increasing demands for resources,near-surface space usage,and environmental protection that come with the next wave of China’s urbanization require advanced noninvasive,nondestructive,and environmentally friendly geophysical techniques that can be used in a noisy urban environment and that possess higher accuracy and higher resolution.To promote the communication of new technical advances,developments,and applications in environmental and engineeringcessful example of a high-resolution technique using the wide-field electromagnetic method and the flow field fitting method in order to assess a complicated old goaf and unknown water distribution.Ground-penetrating radar (GPR)is a popular tool in near-surface geophysics;however,it is limited by its penetrating depth and by uneven ground surfaces in real-world applications.Here,John H.Bradford et al.introduce a reverse-time migration algorithm for GPR data in which the wavefield extrapolation is computed directly from the acquisition surface without the need for datuming.In case studies,the algorithm shows improvement over a processing sequence in which migration is performed after elevation statics.Active seismic techniques still play an important role in near-surface applications.Edward W.Woolery uses the SH-mode seismic-reflection imaging of earth-fill dams at two sites in the central United States to demonstrate the SH-mode seismic-reflection technique.Imaging the internal structural detail and geological foundation conditions of earth-fill embankment dams can improve the overall subsurface definition needed for remedial engineering in a cost-effective manner.Passive seismic techniques are receiving increasing attention in the near-surface community,and show great potential for solving environmental and engineering problems in urban environments.In this issue,Feng Cheng et al.demonstrate the feasibility of extending the frequency band of dispersion measurement by simultaneously imposing an active source during continuous pas-sive surface-wave observation.They also show that a short-dura-tion (i.e.,within 10min)passive surface-wave survey is feasible and stable in an urban environment using the multichannel analy-sis of passive surface waves method.Source location is a key element of such techniques,and its accuracy has a great impact on the performance of the techniques.Guangdong Song et al.present their results on the effects of geo-phone distribution,first-arrival time picking,and the velocityyThese tasks are:①grant urban residency to 100million people who have moved to cities from rural areas;②rebuild rundown areas and ‘‘villages”within cities where 100million people are currently living;and ③guide the process of urbanization for 100million people in the central and western regions.model on mine microseismic source location,and propose mea-sures to influence these factors.Case studies are presented in this issue that show the impor-tance of near-surface geophysics in infrastructure construction and environmental protection.Jeffrey G.Paine et al.present a case study of spatial discrimination of complex,low-relief Quaternary siliciclastic strata using airborne lidar and near-surface geophysics,and propose an optimal approach to identify lithologic and stratigraphic distribution in low-relief coastal-plain environments.We would like to thank the authors of each of the papers in this issue for their effort and time in preparing these manuscripts.We also thank the many peer reviewers,who have had a significant impact on the quality of this issue.S.Peng et al./Engineering4(2018)584–585585Engineering 2 (2016) xxx–xxxEditorial资源、工程与环境地球物理彭苏萍a ,夏江海b ,程久龙aa State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China bSchool of Earth Sciences, Zhejiang University, Hangzhou 310027, China城镇化是人类社会现代化的必然趋势,对此国家提出了“三个一亿人”的城镇化目标。
地下管线探测技术
野外定位技术
单一地下金属管线
并排管道的区分
管道与电缆的区分
用主动源与被动源各观测一次:
01
若被动源探测时有特征值相应,则说明有动力电缆或其 他有源电缆存在;
02
做主动源观测时,通常由电缆引起的信号强度与有一定 口径的管道引起的信号强度有一些差别。
钢筋网下的管线探测
将接收机提高一个高度,将灵敏度调到最小,接收微弱的管道响应信号。
RD系列
发射机 接收机
直接充电法
一端接在管线出露点,另 A
一端接在较远处的地面; 通过磁场的测量来探测 C
或者另一端接在同一管线 B
的另一个出露点。
H I 2 r
Hz
I
2
h2
x x2
Hx
I
2
h2
h x2
2.感应法
两种发射方式: 垂直发射线圈。
水平发射线圈;
示踪法
通常用于非金属管道的探测,测定其位置和深度。
第一章
地下管线探测
一、地下管线的种类及探测方法
地下管线种类:
地下管线探测特点:
01 环境复杂,干扰因素多;
02 管线种类繁多;
03
管线探测要求仪器具有连续追踪、快速定向、 定点和定深功能,同时要求立刻做出解释;
04
仪器要具有足够的探测深度,有较高的分辨率 和较强的抗干扰性能;
地下管线分类:
铸铁、钢材构成的金属
共天线
01.
t2 x2h2 /V
分体式天线
0 1 .t 1((x L /2 )2 h 2(x L /2 )2 h 2) V
铜管上雷达剖面
塑料管上雷达剖面
两根金属管线上的雷达剖面
主动源和被动源面波浅勘方法综述
主动源和被动源面波浅勘方法综述一、本文概述《主动源和被动源面波浅勘方法综述》一文旨在系统性地阐述与对比两种广泛应用在地球物理勘探中的面波探测技术——主动源面波法与被动源面波法。
该综述旨在为地质工程师、地球物理学家以及相关领域的科研人员提供一个全面理解这两种方法基本原理、适用条件、技术优势与局限性的平台,以便在实际工程勘察与科研项目中做出更为科学、合理的选择。
文章首先从理论层面解析主动源面波法与被动源面波法的核心概念。
主动源面波法,顾名思义,依赖于人工激发的地震信号作为探测手段,通常采用可控震源如气爆、锤击或振动台等设备产生低频地震波,这些波在地表传播过程中激发面波,通过接收并分析回传的面波信号来获取地下介质的剪切波速度结构信息。
而被动源面波法则是利用自然存在的微振动或背景噪声(如风、海浪、交通振动等)作为激发源,通过高灵敏度的地震仪记录这些振动在地表产生的面波,并运用相应的信号处理技术提取有用信息,同样用于反演地下介质的力学特性。
本文将详细探讨两种面波方法的应用场景与适用条件。
主动源面波法由于其可控性强、数据信噪比高,尤其适用于地质构造复杂、需要较高分辨率探测的地区,如城市地下空间探测、矿山地质勘查、大型工程场地评估等。
相比之下,被动源面波法以其无需人工激发、无干扰、连续监测的特点,在环境敏感区域、不宜进行人工震源操作的场所(如历史建筑附近、城市中心等)以及长期监测项目(如地壳稳定性监测、地震预警研究等)中展现出独特优势。
文中还将深入剖析两种方法的技术细节,包括数据采集策略、信号处理流程、面波频散曲线的提取与反演算法等。
针对主动源面波法,将讨论震源类型选择、激发参数优化、接收阵列设计以及多分量数据的联合处理等问题对于被动源面波法,则会关注噪声源特性分析、长时序数据的去噪与平均化处理、基于互相关函数或小波分析的面波提取技术等。
本文还将对两种方法的实际应用效果进行对比,通过列举典型工程案例,展示它们在解决特定地质问题时的效能差异与互补性。
主动滤波器与被动滤波器的区别
主动滤波器与被动滤波器的区别滤波器是电子领域中常见的一种电路器件,用于去除信号中的杂波干扰或选择性地增强特定频率范围的信号。
主动滤波器与被动滤波器是两种常见的滤波器类型,它们在结构、原理和性能上存在着明显的区别。
本文将重点介绍主动滤波器和被动滤波器之间的区别。
一、结构和原理1. 被动滤波器:被动滤波器是指没有自己独立的电源供给的滤波器。
它由被动元件组成,如电阻、电感和电容等,通过这些元件的相互组合来实现信号的滤波功能。
常见的被动滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
被动滤波器的工作原理基于被动元件的电性质和电路理论,不具备信号的放大能力。
2. 主动滤波器:主动滤波器是指具有自己独立的电源供给的滤波器。
它由被动元件和主动元件组成,主要包括放大器和被动滤波器部分。
主动滤波器通过放大器的放大作用,可以补偿被动滤波器在滤波过程中的信号衰减,并且还可以对信号进行放大、变换等处理。
主动滤波器的工作原理基于主动元件的放大和控制功能,具备较高的灵活性和性能。
二、性能优势1. 增益:主动滤波器具有放大器的增益作用,可以在滤波的同时放大信号的幅度。
这使得主动滤波器在实际应用中具备更高的灵敏度和适应范围。
2. 带宽:由于主动滤波器可以通过调整放大器的增益和频率响应,可以实现更宽的带宽范围。
而被动滤波器的带宽往往受限于系统的固有阻抗和频率特性。
3. 精度:主动滤波器可以通过使用精确的电流源和电压源来实现更高的滤波精度。
这使得主动滤波器在要求较高的信号处理场合,如音频和射频信号处理中具备优势。
4. 噪声:主动滤波器可以通过增加放大器的增益来抵消被动滤波器引入的噪声,从而在信号处理过程中降低噪声干扰的影响。
三、应用领域1. 被动滤波器:被动滤波器常用于简单的信号滤波任务,例如对语音信号和音频信号中的高频杂音进行去除、对直流信号的滤波等场合。
被动滤波器还广泛应用于无线通信系统、音频设备、自动控制系统等。
主动滤波器与被动滤波器的比较分析
主动滤波器与被动滤波器的比较分析滤波器是在电子领域中常用的设备,可以用于滤除信号中的杂波或特定频率的成分。
主动滤波器和被动滤波器是两种常见的滤波器类型,它们在结构、性能和应用方面存在一些差异。
本文将对主动滤波器和被动滤波器进行比较分析,以帮助读者更好地了解它们的特点和适用场景。
一、主动滤波器主动滤波器是一种采用主动器件(例如操作放大器)的滤波器。
它具有下列特点:1. 增益功能:主动滤波器能够通过操作放大器等主动器件提供额外的增益,以补偿滤波过程中的能量损耗,从而保持原始信号的幅度不变。
2. 较高的精确性:主动滤波器通常采用精密的电子元件和电路设计,具有较高的精确性和稳定性,能够提供精确的频率响应和滤波效果。
3. 复杂的电源要求:主动滤波器需要外部电源供电以实现工作,因此在实际应用中需要考虑电源电压和电流等因素,增加了一定的复杂性。
4. 宽频带范围:由于主动滤波器采用主动器件进行放大和补偿,因此具有较宽的工作频带范围,能够满足更广泛的频率响应要求。
二、被动滤波器被动滤波器是一种只使用被动元件(例如电阻、电容、电感等)的滤波器。
它具有以下特点:1. 无增益功能:被动滤波器仅由被动元件组成,不具备增益功能,只能通过选择合适的电阻、电容和电感等元件参数来实现滤波效果。
2. 较低的精确性:由于被动滤波器不使用主动器件,其精度和稳定性相对较低,输出信号往往受到被动元件自身的误差、温度漂移等影响。
3. 简单的电源要求:被动滤波器不需要外部电源供电,只需滤波器内部元件的连接即可实现工作,因此电源要求相对较简单。
4. 有限的频带范围:被动滤波器受到使用的被动元件特性的限制,其工作频带范围相对较窄,往往适用于特定的频率范围。
三、比较与分析1. 成本方面:被动滤波器相对于主动滤波器来说,成本更低。
主动滤波器需要使用较为复杂的电子元件和电路设计,而被动滤波器可以仅使用较少的被动元件即可实现。
2. 精确性方面:主动滤波器由于使用精密的电子元件和电路设计,具有较高的精确性和稳定性;而被动滤波器受到被动元件自身误差的影响,精度相对较低。
基于主动源面波频散和HV确定浅地表横波速度的方法[发明专利]
专利名称:基于主动源面波频散和H/V确定浅地表横波速度的方法
专利类型:发明专利
发明人:胥鸿睿,漆乔木,尹晓菲,刘泽鹏
申请号:CN202210077648.3
申请日:20220124
公开号:CN114415234A
公开日:
20220429
专利内容由知识产权出版社提供
摘要:本发明涉及基于主动源面波频散和H/V确定浅地表横波速度的方法,包括步骤:利用高分辨率线性拉东变换技术从主动源地震记录中分离得到基阶模式瑞雷面波;应用反褶积和频率‑时间分析技术测量每一道记录的瑞雷面波的H/V和瑞雷面波在任意两地震道之间传播的相旅行时;基于任意两道之间的相旅行时测量结果,利用基于直射线理论的层析成像技术计算位于测线上每一个离散网格的瑞雷面波相速度;利用马尔科夫链‑蒙特卡洛算法联合反演瑞雷面波相速度和H/V,获得每一个网格下方的横波速度结构,并构建拟二维横波速度剖面。
本发明基于理论和实例测试验证了从主动源地震记录提取并联合反演面波相速度和H/V的技术的可靠性,证明本方案能更准确确定横波速度结构。
申请人:西南交通大学
地址:610031 四川省成都市二环路北一段111号
国籍:CN
代理机构:北京市领专知识产权代理有限公司
代理人:张玲
更多信息请下载全文后查看。
被动源面波勘探方法与应用
被动源面波勘探方法与应用赵东【摘要】被动源面波源于自然界和人类活动所产生的各种振动,通过分析被动源面波的频散特性可推断地下横波速度结构.介绍了被动源面波的特征及被动源面波勘探的基本流程;阐述了从被动源面波数据提取频散曲线的SPAC与F-K等两种方法,通过数字模拟对两种方法进行了对比;列举了采集被动源面波数据的技术要求;给出几个应用实例,说明其效果.【期刊名称】《物探与化探》【年(卷),期】2010(034)006【总页数】6页(P759-764)【关键词】被动源面波;空间自相关法;频率-波数法;数字模拟【作者】赵东【作者单位】骄佳技术公司,加拿大,卡尔加里,T3A,5P2【正文语种】中文【中图分类】P631.4地球表面存在一种微弱波动,它源于自然界和人类的各种活动。
自然界中的风、潮汐、气压变化、火山活动等都会产生震动;而人类活动产生的震动包括车辆移动、工厂机械运行,甚至人的行走等。
所有这些振动的能量将以波的形式向远处传播,其中含有各种体波,但能量传播的主要形式是面波,既所谓的被动源面波。
被动源面波具有如下特征:①在地球表面无论何时何地都存在;②源的空间分布、触发时间及源的强度是随机的;③在某一固定的位置,波的到来方向一般不确定;④频率一般较低;⑤被动源面波中携带有面波所固有的频散信息。
基于被动源面波的勘探方法就是从采集的被动源面波数据中提取面波的频散信息,并推断地下介质的速度结构。
被动源面波勘探的历史比较久,早在20世纪50年代,Aki(1957)就利用被动源测定覆盖层速度结构(当时的许多计算是由模拟电路实现的);1965年,Capon提出了新的方法并成功地定位核实验场位置。
随后,尤其在最近的20年中,由于硬件计算能力的不断提升和软件技术的发展,被动源面波分析方法也得到进一步完善。
如今,在美洲、欧洲和日本等国家和地区,被动源面波勘探在无损检测和场地评价中的应用日益广泛。
在世界上不同的地区和国家,被动源面波有不同的名称,在美洲,称为被动源面波(passive surface wave);在日本称为微动(microtremor);而在欧洲则是环境随机振动(ambient vibration);在我国,有时又叫作天然源。
燃气管网探测方法
燃气管线探查燃气管线探查方法及仪器的选择(1)、燃气管线探查随着管线探查技术的发展,燃气管线探测技术方法较多,常用方法有:电磁法、电磁波法、高精度磁测及机械法等。
针对燃气管道的专业特点,对隐蔽的地下管线均采用物探方法进行探测,特殊地段辅以其它方法手段。
电磁法:电磁法探测地下管线是以地下管线与周围介质的导电性及导磁性差异为主要物性基础。
根据电磁感应原理观测和研究电磁场空间与时间分布规律,从而达到寻找地下金属管线或解决其它地质问题的目的,该方法为本次地下管线探测的主要方法。
电磁波(地质雷达)法:是利用超高频电磁波探测地下介质分布的一种物探方法,可以探测地下的金属和非金属目标体。
在地下管线探测中,对于用电磁法探测难以奏效的金属、非金属管道,采用电磁波法探测会取得较好的探测效果。
磁法:金属燃气管道具有铁磁性,为磁法探测提供了基础,在周围干扰较小的情况下,高精度磁法是解决燃气管道疑难管线点探测的一种良好方法。
机械法:主要用于管线探查中的已知点及验证其它方法的精确度及准确度。
地下管线探测应遵循从已知到未知,从简单到复杂的原则,优先选用有效、快速、轻便的探测方法,复杂条件下宜采用综合方法。
(2)、仪器选择地下管线探查工作可采用电磁波频率范围宽、性能稳定、分辨率高的仪器进行探测。
如英国RD432PDL管线探测仪,RD433PDL—Ⅱ管线探测仪,美国SUBSITE75R管线探测仪及加拿大EKKOⅣ型探地雷达等仪器设备配合使用能够满足管线探测的技术要求。
(1) RD432PDL管线探测仪。
其工作频率为50Hz、512Hz、8kHz,该类仪器性能稳定,效率高,精度高,可用于金属燃气管道的探查。
探测方法主要采用直接法、感应法、夹钳法及被动源法。
(2) RD433PDL 、PXL—Ⅱ型管线探测仪。
工作频率为:512Hz、8kHz、33kHz、65kHz,应用范围广泛,操作方法与RD432PDL型相同。
由于其工作频带宽,可用其高频探测连通较差的金属管道,探测方法主要采用直接法、感应法、夹钳法及被动源法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ResearchApplied Geophysics—ArticleImposing Active Sources during High-Frequency Passive Surface-WaveMeasurementFeng Cheng a ,Jianghai Xia b ,⇑,Chao Shen c ,Yue Hu a ,Zongbo Xu d ,Binbin Mi aaSubsurface Imaging and Sensing Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,China bSchool of Earth Sciences,Zhejiang University,Hangzhou 310027,China cSchool of Measurement and Testing Engineering,China Jiliang University,Hangzhou 310018,China dDepartment of Geosciences,Boise State University,Boise,ID 83725,USAa r t i c l e i n f o Article history:Received 15October 2017Revised 24March 2018Accepted 16August 2018Available online 23August 2018Keywords:Passive surface wave Active surface wave High frequencyMixed-source surface wave Spatial autocorrelationMultichannel analysis of passive surface wavesa b s t r a c tPassive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement. In general, passive surface-wave methods cannot provide phase velocities up to several tens of hertz; thus, active surface-wave methods are often required in order to increase the frequency range. To reduce the amount of field work, we pro-pose a strategy for a high-frequency passive surface-wave survey that imposes active sources during con-tinuous passive surface-wave observation; we call our strategy ‘‘mixed-source surface-wave (MSW) measurement.” Short-duration (within 10 min) passive surface waves and mixed-source surface waves were recorded at three sites with different noise levels: namely, inside a school, along a road, and along a railway. Spectral analysis indicates that the high-frequency energy is improved by imposing active sources during continuous passive surface-wave observation. The spatial autocorrelation (SPAC) method and the multichannel analysis of passive surface waves (MAPS) method based on cross-correlations were performed on the recorded time sequences. The results demonstrate the flexibility and applicability of the proposed method for high-frequency phase velocity analysis. We suggest that it will be constructive to perform MSW measurement in a seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement.Ó 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license1.IntroductionSurface-wave methods are increasingly used as non-destructive,noninvasive,inexpensive,and accurate seismic-imaging methods in multiscale engineering and geological applications.In order to obtain an objective investigation depth and specific resolution,the frequencies of surface waves are critical for geotechnical applications due to their dispersive properties.The capability of sources to generate low-frequency surface waves with deeper penetration has recently been a subject of increasing interest [1].Two types of sources—active and passive—are generally used in surface-wave mon examples of active sources include a hammer,a dropped weight,and a harmonic shaker.Utilizing an active seismic source,the multichannel analysis of surface waves (MASW)method [2–6]can directly determine phase velocities from multichannel surface-wave data after transforming waveform data from the time-offset (t -x )domain into the frequency-velocity (f -v )domain.To increase the lateral resolution of surface-wave methods in heterogeneous environments,Hayashi and Suzuki [7]applied common midpoint cross-correlation analy-sis to MASW.Due to the difficulty in generating low-frequency energy,however,reasonably portable active sources are often lim-ited in their ability to sample deep soils.Passive surface waves such as those of microseisms (<0.6Hz,ocean-generated natural noise)and microtremors (>1Hz,cultural noise such as vehicle traffic,railways,or machinery)are typically of lower frequency.Therefore,passive surface-wave measurement would provide a wide range of penetration depths and,as a result,strong motivation to utilize such measurements.In fact,passive surface-wave utilization such as the microtremor survey method,which utilizes surface waves recorded at earthquake stations [8],has been intensively studied in ing microtremors and⇑Corresponding author.E-mail address:jhxia@ (J.Xia).assuming a dominant Rayleigh-wave energy contribution,shear-wave velocity (V s )can be derived by the inversion of spatial auto-correlation curves [9–11].Louie [12]presented the refraction microtremor method as a fast and effective passive seismic method based on the s -p transformation,or slant-stacking.Park et al.[13]introduced a strategy that combined the imaging dispersion of pas-sive surface waves with an active scheme based on phase-shifts measurement.Cheng et al.[14]improved this passive surface-wave method with azimuthal adjustment based on cross-correlations,resulting in the method known as multichannel anal-ysis of passive surface waves (MAPS).In addition,active and passive measurements have been com-bined in order to extend the investigation depth of surface waves without sacrificing near-surface resolution [1,11,15–17].However,when these two kinds of measurements (i.e.,dispersion images or curves)are roughly combined together,the result can be poten-tially inappropriate for further analysis,for two reasons:①The spatial resolution of the combined inverted V s will be ambiguous,because the spatial sampling interval in passive surface-wave mea-surement is usually several—or even ten—times greater than the interval used in active surface-wave measurement;and ②passive and active measurements can show a large discrepancy in the overlapping frequency range,because phase velocities that are determined through active measurement usually appear slower due to insufficient information in the low-frequency range [18],whereas passive measurement are interfered with by higher modes,aliasing,and body waves in the high-frequency range.If passive surface-wave methods are able to provide phase velocities up to several tens of hertz,then the active surface-wave method may not be necessary,and the amount of field work can be dramatically reduced.In this study,we propose a combined active-passive surface-wave method that imposes active sources during continuous passive surface-wave observation in order to obtain high-frequency passive surface-wave measurement;we call this kind of recording,which consists of passive surface waves (e.g.,microtremors)and an active-source shot,‘‘mixed-source surface-wave (MSW)measurement.”Passive surface-wave measurement using the spatial autocorrelation (SPAC)and MAPS methods,as well as active surface-wave measurement,were performed at three sites with different noise levels:namely,inside a school,along a road,and along a railway.As a preliminary work,the results presented here demonstrate the feasibility of the proposed combined active-passive surface-wave method in further extend-ing the frequency band of passive surface-wave measurement.2.Passive surface-wave methods 2.1.Spatial autocorrelationAki [9,19]proposed a technique to determine a phase velocity dispersion curve from microtremors recorded by a seismic array.He established that the SPAC coefficient q (r,w ),as a function of fre-quency for a given interstation distance,r ,and angular frequency,w ,averaged over many different azimuths,can be written as follows:q r ;w ðÞ¼J 0rw cð1Þwhere J 0is the zero-order Bessel function of the first kind and c is the phase velocity at frequency w at the site.The wavefield is assumed to consist of surface waves propagating with equal power in all directions.The phase velocity for each frequency can be obtained by inverting the observed SPAC coefficients.A common way of obtaining the phase velocity is to ensemble-average the observed cross-spectra and normalize the cross-spectra by the aver-aged power-spectra [20].Weemstra et al.[21]normalized thecross-spectra before the ensemble-average and obtained the SPAC coefficient as follows:q r ;w ðÞ¼R u x 1;w ðÞu Ãx 2;w ðÞ½ j u x 1;w ðÞk u x 2;w ðÞj()ð2Þwhere Áh i denotes the ensemble-average;R Á½ takes the real part of a complex argument;and u (x k ,w )is the power of the wavefield at the station x k .Following the theory developed by Aki [9]and further discussed by Asten [22],we use the SPAC coefficients to fit the zero-order Bessel function of the first kind (Eq.(1))in order to perform an inversion to obtain a one-dimensional (1D)phase velocity disper-sion curve by defining the fitting residual,e ,as follows:ec i ;w j ÀÁ¼q r ;w ðÞÀJ 0rw jc ið3ÞWe then use a grid search over the phase velocity from 100to 1000m Ás À1and the frequency from 1to 30Hz in order to find the minimum L1-norm residual (step size 1m Ás À1and 0.5Hz,respectively).In the ideal case of an isotropic noise wavefield,azimuthal aver-aging would not be needed in Eq.(2).For a real-world application,if the source distribution changes sufficiently over a certain time-span,then averaging over this time-span is similar to averaging over the azimuth for a fixed source distribution [23,24].That means that it is possible to expand the applications of this method to a linear array with a fixed active source.The following applica-tions will demonstrate the feasibility of this assumption.2.2.Multichannel analysis of passive surface wavesThe MASW scheme has been applied to roadside traffic noise in order to determine low-frequency dispersion information [13].In order to reduce azimuthal effects and spatial aliasing in passive surface-wave measurement,Cheng et al.[14]improved this method with cross-correlations.In this preliminary work,only the inline plane-wave propagation case (Fig.1)will be taken into account for the following field-data application.Interested readers are also referred to the articles cited in Ref.[14].Receivers were installed on the road shoulder and used to detect plane waves propagating in the pavement.The active sources were imposed at the end of the receiver line.Our expectation was that high-frequency energy would be detected and improved by imposing active sources during continuous passive surface-wave (e.g.,traffic noise)observation.According to Cheng et al.[14],the relative dispersion energy matrix in the inline plane-wave propagation case can be calculated as follows:E f ;v ðÞ¼ X N À1j ¼1X N k ¼j þ1exp i 2p fx jk v C þjk f ðÞþC Àjk f ðÞ2 ð4Þwhere E (f ,v )is the relative dispersion energy matrix for a particularfrequency f and a scanning phase velocity v ;C þjk f ðÞand C Àjk f ðÞare the Fourier transformation of the causal and the acausal parts oftheFig.1.Inline plane-wave propagation with active source imposing.686 F.Cheng et al./Engineering 4(2018)685–693cross-correlation between traces j and k of the whitened records,respectively;x jk corresponds to the distance between traces j and k ;and N is the total trace number.To improve the quality of the relative dispersion energy matrix,we followed the seismic noise interferometry processing described by Cheng et al.[25],which contains single-station data preparation (splitting,removing mean,removing trend,band-pass filter,tempo-ral normalization,and spectral normalization),cross-correlation between a pair of stations,and signal to noise ratio (SNR)weighted stacking.3.MSW measurement at three sitesAs described above,the SPAC method and the MAPS method were applied to three sites:namely,inside a school,along a road,and along a railway.We roughly classified the passive surface waves (e.g.,traffic noise)in the common urban areas into three levels:light (L),moderate (M),and strong (S).The three field-data examples can be regarded as the corresponding representa-tions of these three noise levels.In this section,we describe how to impose active sources for MSW measurement,and examine its applicability to high-frequency phase velocity analysis.3.1.Site 1:L-level passive surface wavesA combined active-passive surface-wave experiment was per-formed in the backyard of the Institute of Geophysics and Geomat-ics at the China University of Geosciences,in the city of Wuhan,China (Fig.2).A 48-channel active-source shot gather was col-lected.The source was a 6.3kg hammer vertically impacting a 6in (1in =2.54cm)plate (the red rectangle in Fig.2).Meanwhile,a comparable linear array with 15RefTek digitizers (the red ellipse in Fig.2)was synchronously deployed.Unfortunately,several dig-itizers were not connected well,and only nine digitizers worked well until the end of the experiment.All the receivers were 4.5Hz vertical-component geophones.The trace intervals of the active and passive measurements were 0.5and 1.5m,respectively,and the sampling rates were 0.25and 8.0ms,respectively.It is clear that the Rayleigh wave is fully developed and is recorded from 0.03to 0.3s in Fig.3(a).The dispersion image (Fig.3(b))was generated by applying a high-resolution linear Radon transform [26]to the original active-source shot.The dis-persion image indicates a good dispersion energy within the valid wavenumber zone restricted by the two dashed lines between theNyquist wavenumber (1/(2Ád x ))and the minimum wavenumber (1/(N Ád x )).Obviously,the active surface-wave measurement is limited in its ability to sample deep soils (>10m)due to the lack of low-frequency (<20Hz)information.To compensate for the shortage of low-frequency information in the active surface-wave measurement,the recorded passive sur-face waves were utilized and analyzed.Note that we separated the continuous time sequences into two 10min subsets;the former subset consists exclusively of ‘‘quiet”passive surface waves,whereas the latter subset contains several active-source shots with a hammer—namely,MSW.Fig.4displays two typical 10s time sequences for each of both subsets,respectively.An active-source shot event is noticeable in the right panel between 8.5s and 9.0s.The SPAC method was applied to both the preprocessed pas-sive surface-wave data and the preprocessed MSW data.The obtained dispersion energy images (Fig.5(a)and (b))demonstratebined active-passive surface-wave experiment in the backyard of the Institute of Geophysics andGeomatics.Fig.3.(a)A shot gather with 48vertical-component geophones of 4.5Hz each at 0.5m intervals with a sampling rate of 0.25ms;(b)the normalized dispersion energy image.F.Cheng et al./Engineering 4(2018)685–693687that passive surface-wave measurement is able to obtain disper-sion information at lower frequencies.Moreover,they indicate that MSW measurement (Fig.5(b))extends the high-frequency limit of the original passive surface-wave measurement from 30to 55Hz (Fig.5(a)).Thus,active surface-wave measurement fieldwork can be avoided,given the full-frequency band that is provided by MSW measurement.Spectral analysis was performed in order to further demon-strate the feasibility of MSW measurement on high-frequency phase velocity analysis.The results indicate that imposing active sources during continuous passive surface-wave observation clearly improved the higher frequency energy of the recorded time sequences at this site (Fig.6(a)and (b)),and consequently allowsthe possibility of high-frequency dispersion analysis with MSW pared with the MSW spectrum (Fig.6(b)),the active surface-wave spectrum appears to be seriously distorted at low frequencies (<15Hz)(Fig.6(c)).We verified the accuracy of the passive surface-wave measure-ment using active surface-wave measurement.Because the funda-mental model of active measurement in the high-frequency range (35Hz <f <55Hz)is missing,we compared the passive measure-ment with the inverted active dispersion curve (black triangles in Fig.7(a)).The largest misfit between the inverted active-source dispersion curve and the MSW measurement is about 7%,which demonstrates the accuracy of the proposed method.The picked dispersion curve (gray diamonds in Fig.7(a))was inverted to obtain the 1D V s profile (as shown in Fig.7(b))using the Levenberg-Marquardt method [4,6,27,28].3.2.Site 2:M-level passive surface wavesThis test was carried out in the city of Changsha,China.A linear array of 12vertical-component receivers of 2.5Hz each was deployed on the road shoulder along the Xiaoxiang Road.The trace interval was fixed at 5m and the sampling rate was 2ms.The sur-vey line parallels the river and road.To examine the effects of imposing active sources on passive surface-wave measurement,traffic noise was continuously recorded for 10min and active sources were sequentially imposed five times during the last 5min of the recording.The source was a 10kg hammer vertically impacting a 6in plate.Fig.8shows two typical time sequences from 18to 28s for each of these two 5min noise data subsets,respectively.Several linear events generated by vehicles can be distinguished in Fig.8(a).AnFig.5.The obtained dispersion energy images using the SPAC method with (a)the ‘‘quiet”passive surface-wave data and (b)the mixed-source surface-wavedata.Fig.6.Spectral analysis of (a)the ‘‘quiet”passive surface waves,(b)the MSW,and (c)the active shot gather.All of the average power spectra were normalized in the frequency band from 1to 60Hz.Fig.4.(a)One 10s segment of the ‘‘quiet”passive surface waves over a 10min period;(b)one 10s segment of the MSW over a 10min period.688 F.Cheng et al./Engineering 4(2018)685–693active-source shot event is noticeable in Fig.8(b)between 26and 27s,as the black arrow indicates,but suffers strong attenuation at the far offsets.Unlike the ‘‘quiet”environment at Site 1,the active surface-wave measurement gave a poor performance due to serious interference from traffic noise and the strong soil attenuation.We do not present it here.We also found that the imposed active sources did not significantly improve the high-frequency (>20Hz)energy,because the active-source energy was buried in the powerful traffic noise.However,compared with the absolute amplitude of the original passive surface wave (Fig.9(a)),the abso-lute amplitude of the MSW (Fig.9(b))still appears to be generally higher,especially in the frequency range from 8to 18Hz.The SPAC method (Fig.10(a)and (b))and MAPS method (Fig.10(c)and (d))were performed on both the passive surface-wave data and the MSW data.The acceptable dispersion curves of the above measurements (Fig.10(e))were picked out and fitted well with each other,which corroborated the validity of these pared with the passive surface wave,the MSW presents better applicability for high-frequency (>10Hz)dispersion analysis.In addition,incoherent energy,which polluted the dispersion image(Fig.10(c))at high frequencies from 14to 18Hz,was significantly suppressed in the MSW measurement (Fig.10(d));the effect of the coherent energy is discussed later in this paper.3.3.Site 3:S-level passive surface wavesThis test was carried out in the city of Yueyang,China.A linear array with 12vertical-component receivers of 4.5Hz each was deployed along the railway from Beijing to Guangzhou,which is one of the busiest railways in China.The trace interval was fixed at 10m and the sampling rate was 2ms.In this test,three kinds of noise subsets were recorded and analyzed.The first subset con-sisted of only ‘‘quiet”ambient noise;during the second observa-tion,a passenger train and a freight train sequentially passed;and the third subset consisted of four shots with active sources.The source was a 20kg rock that was found locally.Fig.11displays the complete noise records of each subset.It is easy to distinguish the arrivals and loads of the two trains (Fig.11(b)).Spectral analysis was performed on each subset (Fig.12),andFig.7.(a)Comparison of the dispersion measurements for active (gray diamonds),passive (plus symbols),mixed-source (cross symbols),and inverted by active surface-wave measurement (black triangles);(b)inverted 1D V s profile (the red line)and its initial model (the black line)by active surface-wavemeasurement.Fig.8.(a)One 10s segment of the passive surface waves from vehicles over a 5min period;(b)one 10s segment of the MSW over a 5min period.The black arrow indicates the active-source shotevent.Fig.9.The average power spectra of (a)the passive surface waves and (b)the MSW.F.Cheng et al./Engineering 4(2018)685–693689Fig.10.(a),(b)The obtained dispersion energy images using the SPAC method;(c),(d)the obtained dispersion energy images using the MAPS method;(e)the pickeddispersion curves from(a)to(d).(a)and(c)show the dispersion measurements from the passive surface waves,while(b)and(d)show the measurements from theMSW.Fig.11.(a)‘‘Quiet”passive surface waves over a5min period;(b)passive surface waves over a5min period,with two trains passing by;(c)MSW over a5min period,with four rockshots.Fig.12.Power spectra of each trace of the‘‘quiet”passive surface waves(gray lines),MSW(white lines),and passive surface waves with trains passing by(black lines).690 F.Cheng et al./Engineering4(2018)685–693indicates that the imposed active sources indeed improved the high-frequency(>5Hz)energy of the MSW(white lines),com-pared with the‘‘quiet”noise(gray lines).The train noise(black lines)showed the highest energy in the frequency range from5 to10Hz,but the powerful high-frequency energy was greatly attenuated above10Hz due to the trains’rapid departure.Note that the MSW displays great amplitudefluctuations among these traces with different offsets at high frequency(>18Hz),which reveals the effects of geometrical spreading and attenuation.Dispersion energy images of each subset were obtained using the MAPS method(Fig.13(a)–(c))and the SPAC method(Fig.13(d)–(f)), respectively.The acceptable dispersion curves of the above mea-surements(Fig.13(g))were picked out andfitted well with each other,which corroborated the validity of these -pared with the‘‘quiet”noise(Fig.13(a)and(d)),the MSW presents better applicability to high-frequency(>8Hz)dispersion analysis (Fig.13(b)and(e)).Although the train noise shows higher amplitude (Fig.12),the rapid attenuation of the coherent signals athighFig.13.(a)–(c)The obtained dispersion energy images using the MAPS method;(d)–(f)the obtained dispersion energy images using the SPAC method;(g)the picked dispersion curves from(a)to(f).(a)and(d)show the dispersion measurements from the‘‘quiet”passive surface waves;(b)and(e)show the measurements from the MSW;(c)and(f)show the measurements from the passive surface waves with trains passing by.F.Cheng et al./Engineering4(2018)685–693691frequency(>10Hz)makes it extremely difficult to utilize this kind of passive surface wave for high-frequency dispersion analysis (Fig.13(c)and(f)),which is discussed later.4.DiscussionSpatial aliasing should always be taken into consideration dur-ing passive surface-wave measurement.Utilizing cross-correlations,Cheng et al.[14]demonstrated the advantage of MAPS in suppressing spatial pared with using passive surface waves,we found that the MSW measurement was able to further reduce the effect of spatial aliasing.For example,the MSW measurement(Fig.5(b))displays less phase velocity distur-bance than the passive surface-wave measurement(Fig.5(a))at low frequencies beyond the valid wavenumber zone.In addition, it is easy tofind an aliasing energy trend from7to20Hz(Fig.13 (a)),whereas the aliasing energy is significantly suppressed in the MSW measurement(Fig.13(b)).The suppression results from the effect of the coherent energy that is introduced by the active-source shots.It is noticeable that the temporal normalization option during preprocessing will only operate on the amplitude of passive surface waves;it will not affect the coherent phase[29].Long-duration records used for passive surface-wave measure-ment not only provide high SNR,but also broaden the period range in which dispersion measurements can be made[30].However, our results indicate that it is possible to utilize ultrashort-duration records(e.g.,several seconds or minutes)for a passive surface-wave survey,rather than long-duration records over sev-eral hours or days.Although the use of ultrashort-duration records is beyond the scope of the present work,we suggest that short-duration records will be beneficial in amplifying the coherent energy effect of active-source shots for the MSW measurement due to the SNR weighted stacking operation[25].The point we wished to emphasize in this paper is that it is pos-sible to obtain higher frequency dispersion information for passive surface-wave methods by imposing active sources during continu-ous passive surface-wave observation.Therefore,we did not pay much attention to retrieving low-frequency information using pas-sive surface waves in this context.Note that it was difficult to obtain low-frequency(<5Hz)phase velocities at Site3from MSW and train noise(Fig.13(b),(c),(e),and(f))because the pow-erful sources generated more near-field effects and scatter[31], and ultrashort-duration records(5min)might be insufficient to ensemble-average this incoherent noise in such a low-frequency range.However,dispersion measurements within the valid wavenumber zone still showed a good performance.This indicates that a longer alignment spread—namely,lowering the lower limit of the wavenumber—is required in order to obtain sufficient depth coverage[32].Three sites with totally different noise environments were used to demonstrate theflexibility and applicability of the MSW mea-surement in high-frequency phase velocity analysis.The MSW measurement can also beflexibly implemented in thefield.For example,the active source at Site3was simply a rock picked on the site ground.It should be mentioned that the effect of the active source(i.e.,offsets,weights,frequency,etc.)on the MSW measure-ment requires further study.5.ConclusionsThis paper proposes a simple procedure for a high-frequency passive surface-wave survey:It is possible to extend the frequency band by imposing active sources during continuous passive surface-wave observation,in a method we call‘‘MSW measure-ment.”We have applied this method at three sites with different noise levels;the results indicate our method’sflexibility and appli-cability in high-frequency phase velocity analysis.Although this preliminary work is not backed up by a theoretical demonstration, the results presented here strongly suggest that it will be construc-tive to perform MSW measurement during seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement.The results suggest that the proposed strategy can be an alternative choice in engineering,environmental,and other seismic projects. AcknowledgementsThis study is supported by the National Natural Science Foundation of China(41774115)and the National Nonprofit Institute Research Grant of the Institute for Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences (WHS201306).The authors thank the crews of AoCheng Technology for their help in data collection.Compliance with ethics guidelinesFeng Cheng,Jianghai Xia,Chao Shen,Yue Hu,Zongbo Xu,and Binbin Mi declare that they have no conflict of interest orfinancial conflicts to disclose.References[1]Yoon bined active-passive surface wave measurements atfive sites inthe western and southern US.KSCE J Civ Eng2011;15(5):823–30.[2]Song YY,Castagna JP,Black RA,Knapp RW.Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves.SEG Expanded Abst1989;8(1):1357.[3]Park CB,Miller RD,Xia J.Multichannel analysis of surface waves.Geophysics1999;64(3):800–8.[4]Xia J,Miller RD,Park CB.Estimation of near-surface shear-wave velocity byinversion of Rayleigh waves.Geophysics1999;64(3):691–700.[5]Xia J,Miller RD,Park CB;Kansas Geological Survey.Advantages of calculatingshear wave velocity from surface waves with higher modes.In:SEG technical program expanded abstracts2000.Tulsa:Society of Exploration Geophysicists;2000.p.1295–8.[6]Xia J,Miller RD,Park CB,Tian G.Inversion of high frequency surface waveswith fundamental and higher modes.J Appl Geophys2003;52(1):45–57. [7]Hayashi K,Suzuki H.CMP cross-correlation analysis of multi-channel surface-wave data.Explor Geophys2004;35(1):7–13.[8]Okada H,Suto K.The microtremor survey method.Tulsa:Society ofExploration Geophysicists;2003.[9]Aki K.Space and time spectra of stationary stochastic waves,with specialreference to micro-tremors.Bull Earthquake Res Inst1957;35:415–56. [10]Asten MW.Site shear velocity profile interpretation from microtremor arraydata by directfitting of SPAC curves.In:Proceedings of the Third International Symposium on the Effects of Surface Geology on Seismic Motion;2006Aug 30–Sep1;Grenoble,France;2006.[11]Xu Y,Zhang B,Luo Y,Xia J.Surface-wave observations after integrating activeand passive source data.Leading Edge2013;32(6):634–7.[12]Louie JN.Faster,better:shear-wave velocity to100meters depth fromrefraction microtremor arrays.Bull Seismol Soc Am2001;91(2):347–64. [13]Park C,Miller R,Laflen D,Neb C,Ivanov J,Bennett B,et al.Imagingdispersion curves of passive surface waves.SEG Expanded Abst 2004;1:1357–60.[14]Cheng F,Xia J,Luo Y,Xu Z,Wang L,Shen C,et al.Multi-channel analysis ofpassive surface waves based on cross-correlations.Geophysics2016;81(5): EN57–66.[15]Yoon S,Rix bined active-passive surface wave measurements for near-surface site characterization.In:Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems 2004;2004Feb22–26;Colorado Springs,A.Denver:Environment and Engineering Geophysical Society;2004.p.1556–64.[16]Liu Y,Bay J,Luke B,Louie J,Pullammanappallil bining active-andpassive-source measurements to profile shear wave velocities for seismic microzonation.In:Proceedings of the Geo-Frontiers Congress2005;2005Jan 24–26;Austin,TX,USA;2005.[17]Park CB,Miller RD,Ryden N,Xia J,Ivanov bined use of active and passivesurface waves.J Environ Eng Geophys2005;10(3):323–34.[18]Hayashi K,Cakir R,Walsh TJ,State parison of dispersion curves andvelocity models obtained by active and passive surface wave methods.In: Proceedings of the2016SEG Annual Meeting;2016Oct16–21;Dallas,TX, USA;2016.p.4983–8.692 F.Cheng et al./Engineering4(2018)685–693。