必修五高中数学模块综合测试(附祥细答案)
(完整版)高中数学必修五综合测试题 含答案,推荐文档
![(完整版)高中数学必修五综合测试题 含答案,推荐文档](https://img.taocdn.com/s3/m/757135cf25c52cc58bd6beb6.png)
n2 2
n
D.
1 2n1
n2 2
n
试卷第 1 页,总 6 页
3
7.若ΔABC的三边长a,b,c成公差为2的 等差数列,最大角的正弦值为 2 ,则这个三角形
的面积为( )
15
A. 4
15 3
B. 4
21 3
C. 4
35 3
D. 4
8.在△ABC 中,已知a = 2,b = 2,A = 450,则 B 等于( )
绝密★启用前
高中数学必修五综合考试卷
第 I 卷(选择题)
一、单选题
1.数列0,23,45,67⋯的一个通项公式是( )
A.
an
=
n−1 (n
n+1
∈
N
∗
)
B.
an
=
n−1 (n
2n + 1
∈
N
∗
)
C.
an
=
2(n−1)(n
2n−1
∈
N
∗
)
D.
an
=
2n 2n +
(n
1
∈
N
∗
)
x−1
2.不等式2−x ≥ 0的解集是( )
11.已知函数f(x) = ax2−c满足:−4 ≤ f(1) ≤ −1,−1 ≤ f(2) ≤ 5.则f(3)应满足( )
A. −7 ≤ f(3) ≤ 26
B. −4 ≤ f(3) ≤ 15 C. −1 ≤ f(3) ≤ 20
28
35
D.
−
3
≤ f(3) ≤
3
12.已知数列{an}是公差为 2 的等差数列,且a1,a2,a5成等比数列,则a2为 ( ) A. -2 B. -3 C. 2 D. 3
最新人教版高中数学必修五综合测试题及答案2套
![最新人教版高中数学必修五综合测试题及答案2套](https://img.taocdn.com/s3/m/1b673b33cfc789eb172dc884.png)
最新人教版高中数学必修五综合测试题及答案2套模块综合检测(A)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,已知(a +c )(a -c )=b 2+bc ,则A 等于( ) A .30° B .60° C .120°D .150°解析: 由已知得b 2+c 2-a 2=-bc , ∴cos A =-12,∴A =120°.答案: C2.已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A .(-∞,-1) B .⎝⎛⎭⎫-1,-23 C .⎝⎛⎭⎫-23,3 D .(3,+∞)解析: A =⎩⎨⎧⎭⎬⎫x ∈R |x >-23,B ={x ∈R |x >3或x <-1}, ∴A ∩B ={x ∈R |x >3}. 答案: D3.等差数列{a n }的公差为1,若a 1,a 2,a 4成等比数列,则a 3=( ) A .1 B .2 C .-3D .3解析: ∵a 1,a 2,a 4成等比数列, ∴a 22=a 1·a 4即(a 1+1)2=a 1·(a 1+3) 解得:a 1=1,∴a 3=a 1+2d =3. 答案: D4.已知t =a +2b ,s =a +b 2+1,则t 和s 的大小关系正确的是( ) A .t ≤s B .t ≥s C .t <sD .t >s 解析: ∵t -s =a +2b -a -b 2-1=-(b -1)2≤0,∴t ≤s . 答案: A5.各项不为零的等差数列{a n }中,有a 27=2(a 3+a 11),数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )A .2B .4C .8D .16解析: b 6b 8=b 27=a 27,又a 27=2(a 3+a 11)=4a 7,∴a 7=4,∴b 6b 8=16,故选D. 答案: D6.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .6 2解析: ∵S △ABC =12ac sin B ,∴c =42,由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =5 2.(R 为△ABC 外接圆的半径)答案: C7.在等差数列{a n }中,a 1=120,公差d =-4,若前n 项和S n 满足S n <a n (n ∈N *),则n 的最小值是( )A .60B .63C .70D .72 解析: S n <a n ⇔120n +n (n -1)2×(-4)<120+(n -1)×(-4),即n 2-63n +62>0,解得n <1(舍去)或n >62,∴n 的最小值为63. 答案: B8.在R 上定义运算☆,a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析: 根据定义得:x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得 -2<x <1,所以实数x 的取值范围为(-2,1),故选B.答案: B9.一艘客船上午9∶30在A 处,测得灯塔S 在它的北偏东30°,之后它以每小时32海里的速度继续沿正北方向匀速航行,上午10∶00到达B 处,此时测得船与灯塔S 相距82海里,则灯塔S 在B 处的( )A .北偏东75°B .东偏南75°C .北偏东75°或东偏南75°D .以上方位都不对解析:根据题意画出示意图,如图,由题意可知AB =32×12=16,BS =82,∠A =30°.在△ABS 中,由正弦定理得 AB sin S =BSsin A, sin S =AB sin A BS =16sin 30°82=22,∴S =45°或135°, ∴B =105°或15°,即灯塔S 在B 处的北偏东75°或东偏南75°. 答案: C10.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .45D .45+1解析: 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1, 即a n +2=4a n +1.∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44.答案: A11.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定,若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3解析: 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)的坐标代入z =2x +y 得z 的最大值为4.答案: C12.在R 上定义运算⊕:x ⊕y =x2-y ,若关于x 的不等式x ⊕(x +1-a )>0的解集是集合{x |-2≤x ≤2}的子集,则实数a 的取值范围是( )A .[-1,3]B .[-3,1]C .[-3,-1)∪(-1,1]D .[-1,1)∪(1,3]解析: x ⊕(x +1-a )=x 2-x -1+a =-xx -(a +1)>0⇒xx -(a +1)<0,(1)⎩⎪⎨⎪⎧a >-10<x <a +1≤2⇒-1<a ≤1; (2)⎩⎪⎨⎪⎧a <-1-2≤a +1<x <0⇒-3≤a <-1; (3)a =-1时,不等式为x x -0<0,x ∈∅显然成立,故选B.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=____________. 解析: 由等差数列的性质知a 2+a 4+a 6+a 8=2(a 3+a 7)=2×37=74. 答案: 7414.已知关于x 的不等式ax 2+bx +c <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-2或x >-12,则不等式ax 2-bx +c >0的解集为________.解析: 由ax 2+bx +c <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-2或x >-12得-2,-12为方程ax 2+bx +c =0的两根且a <0,∴⎩⎨⎧-2-12=-b a,-2×⎝⎛⎭⎫-12=c a,即⎩⎪⎨⎪⎧b =52a <0,c =a <0,∴不等式ax 2-bx +c >0等价于2x 2-5x +2<0,解得12<x <2.∴不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2. 答案: ⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <215.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =________. 解析: 由正弦定理,得AC sin B =BCsin A. 所以AC =BC sin A ·sin B =12sin 60°sin 45°=4 6.答案: 4 616.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析: 记z =x -y ,则y =x -z ,所以z 为直线y =x -z 在y 轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC 区域所示.结合图形可知,当直线经过点B (1,1)时,x -y 取得最大值0,当直线经过点C (0,3)时,x -y 取得最小值-3.答案: [-3,0]三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC 中,已知a =23,b =6,A =30°,求B 及S △ABC . 解析: 在△ABC 中,由正弦定理得a sin A =bsin B ,∴sin B =b a sin A =623·12=32.又A =30°,且a <b ,∴B >A . ∴B =60°或120°.①当B =60°时,C =90°,△ABC 为直角三角形, S △ABC =12ab =6 3.②当B =120°时,C =30°,△ABC 为等腰三角形, S △ABC =12ab sin C =3 3.18.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解析: (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.19.(本小题满分12分)解关于x 的不等式ax 2-(a +1)x +1<0. 解析: 若a =0,原不等式可化为-x +1<0, 解得x >1;若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0 解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0, 其解的情况应由1a 与1的大小关系确定,当a =1时,解得x ∈∅; 当a >1时,解得1a <x <1;当0<a <1时,解得1<x <1a.综上所述,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 20.(本小题满分12分)已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.求:(1)4x -3y 的最大值和最小值; (2)x 2+y 2的最大值和最小值.解析: (1)不等式组⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,表示的平面区域如下图所示,其中A (4,1),B (-1,-6),C (-3,2).设z =4x -3y ,直线4x -3y =0经过原点(0,0),作一组与4x -3y =0平行的直线l :4x -3y =t ,当l 过C 点时,z 值最小;当l 过B 点时,z 值最大.∴z max =4×(-1)-3×(-6)=14, z min =4×(-3)-3×2=-18.(2)设u =x 2+y 2,则u 为点(x ,y )到原点(0,0)的距离.结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.∴(x 2+y 2)max =(-1)2+(-6)2=37;(x 2+y 2)min =0.21.(本小题满分13分)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,3,…(1)证明:数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n .解析: (1)证明:∵a n +1=2a na n +1,∴1a n +1=a n +12a n =12+12·1a n ,∴1a n +1-1=12⎝⎛⎭⎫1a n -1, 又a 1=23,∴1a 1-1=12, ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列,设数列⎩⎨⎧⎭⎬⎫1a n-1的前n 项和为T n ,则T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-⎝⎛⎭⎫12n, ∴S n =T n +n =1-⎝⎛⎭⎫12n +n =n +1-⎝⎛⎭⎫12n . 22.(本小题满分13分)某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解析: 设楼房每平方米的平均综合费用为f (x )元,则 f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x.∵x ≥10,∴48x +10 800x ≥1 440,当且仅当x =15时,等号成立. ∴f (x )≥2 000.因此,当x =15时,f (x )取得最小值f (15)=2 000.答:为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( ) A .23 B .2 2 C . 3D . 2解析: 由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A , 即sin B (sin 2A +cos 2A )=2sin A . 故sin B =2sin A ,所以ba = 2.答案: D2.等比数列公比为2,且前4项之和为1,则前8项之和为( ) A .15 B .17 C .19D .21解析: 由S 8-S 4S 4=q 4得S 8=17.答案: B3.如果a ,b ,c 满足c <b <a 且ac <0,那么下列选项中不一定成立的是( ) A .cb 2<ab 2 B .c (b -a )>0 C .ab <acD .ac (a -c )<0 解析: 若b =0,则cb 2=ab 2,∴A 不一定成立. 答案: A4.数列{a n }的通项公式为a n =1n +1+n,已知它的前n 项和S n =6,则项数n 等于( )A .6B .7C .48D .49解析: 将通项公式变形得: a n =1n +1+n=n +1-n(n +1+n )(n +1-n )=n +1-n ,则S n =(2-1)+(3-2)+(4-3)+…+(n +1-n ) =n +1-1,由S n =6,则有n +1-1=6,∴n =48. 答案: C5.在△ABC 中,b =a sin C ,c =a cos B ,则△ABC 一定是( ) A .等腰三角形但不是直角三角形B .直角三角形但不是等腰三角形C .等边三角形D .等腰直角三角形解析: 由c =a cos B 得,c =a ×a 2+c 2-b 22ac ,∴a 2=b 2+c 2,∴△ABC 为直角三角形, ∴b =a sin C =a ×ca =c ,∴△ABC 是等腰直角三角形. 答案: D6.不等式2x 2-x -1>0的解集是( ) A .⎝⎛⎭⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D .⎝⎛⎭⎫-∞,-12∪(1,+∞) 解析: ∵Δ=1+8=9>0,∴方程2x 2-x -1=0有两个不相等的实数根, 解得x 1=-12,x 2=1.∴2x 2-x -1>0的解集为⎝⎛⎭⎫-∞,-12∪(1,+∞). 答案: D7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y 的最大值为( )A .-2B .4C .6D .8解析: 作出可行域,如图阴影部分所示,易求得A (-1,0),B (3,0),C (1,2),由可行域可知,z =2x +y 过点B (3,0)时,z 有最大值,且z max =6.答案: C8.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B .22C .12D .-12解析: 利用余弦定理求解. ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2, ∴cos C ≥12.答案: C9.当点(x ,y )在直线x +3y =2上移动时,z =3x +27y +1的最小值是( ) A .339 B .7 C .1+2 2D .6解析: z =3x +27y +1≥23x ·27y +1=7.当且仅当3x =27y ,即x =1,y =13时,等号成立.故选B.答案: B10.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B .15C .2D .3解析: ∵b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0.∵b +c ≠0,∴b -2c =0.∴b =2c , ∴6=c 2+4c 2-2c ·2c ×78,∴c =2,b =4.∴S =12bc sin A =12×2×4×1-4964=152. 答案: A11.某学生用一不准确的天平(两臂不等长)称10 g 药品,他先将5 g 的砝码放在左盘,将药品放在右盘使之平衡;然后又将5 g 的砝码放在右盘,将药品放在左盘使之平衡,则此学生实际所得药品( )A .小于10 gB .大于10 gC .大于等于10 gD .小于等于10 g解析: 设左、右臂长分别为t 1,t 2,第一次称的药品为x 1 g ,第二次称的药品为x 2 g ,则有5t 1=x 1t 2,x 2t 1=5t 2,所以x 1+x 2=5⎝⎛⎭⎫t 1t 2+t 2t 1>5×2=10(g),即大于10 g.答案: B12.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: 因为(x -a )⊗(x +a )=(x -a )(1-x -a ),又不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,所以(x -a )(1-x -a )<1对任意实数x 恒成立,即x 2-x -a 2+a +1>0对任意实数x 恒成立,所以相应方程的Δ=(-1)2-4(-a 2+a +1)<0,解得-12<a <32.故选C.答案: C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 解析: 利用三边长是公比为2的等比数列,可把三边长表示为a ,2a,2a ,再利用余弦定理求解.设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a .在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a =-24.答案: -2414.设z =x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为________.解析: 如图,x +y =6过点A (k ,k ),k =3,z =x +y 在点B 处取得最小值,B 点在直线x +2y =0上,∴B (-6,3), ∴z min =-6+3=-3.答案: -315.已知△ABC 中三边a ,b ,c 成等差数列,a ,b ,c 也成等差数列,则△ABC 的形状为________.解析: 由a ,b ,c 成等差数列得a +c =2b , ① 由a ,b ,c 成等差数列得a +c =2b , ②②2-①得2ac =2b ,即b 2=ac ,①平方得a 2+2ac +c 2=4b 2, 将b 2=ac 代入得a 2+2ac +c 2=4ac , 即(a -c )2=0,∴a =c . 又∵a +c =2b ,∴2a =2b , ∴a =b ,∴a =b =c . 答案: 等边三角形16.已知log 2(x +y )=log 2x +log 2y ,则xy 的取值范围是____________. 解析: 由已知得x +y =xy ,又x >0,y >0, ∴xy =x +y ≥2xy ,∴xy ≥4. 答案: [4,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解析: (1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2.(2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,∴T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12.18.(本小题满分12分)(2012·江西高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c . 解析: (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A =223.又S △ABC =22,即12bc sin A =22,解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13,解方程组⎩⎪⎨⎪⎧ bc =6,b 2+c 2=13,得⎩⎪⎨⎪⎧ b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2. 19.(本小题满分12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解析: (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.所以a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0, 即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.20.(本小题满分12分)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求a 2a 1的值;(2)若a 5=9,求a n 及S n 的表达式. 解析: (1)设等差数列{a n }的公差是d . ∵S 1,S 2,S 4成等比数列,∴S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ), 化简得d 2=2a 1d ,注意到d ≠0, ∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.(2)a 5=a 1+4d =9a 1=9,∴a 1=1,d =2. ∴a n =a 1+(n -1)d =2n -1,S n =n (a 1+a n )2=n 2.21.(本小题满分13分)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解析: (1)依题意,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784. 解得BC =28.所以渔船甲的速度为BC2=14海里/时.答:渔船甲的速度为14海里/时.(2)方法一:在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α, 由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC =12×3228=3314.答:sin α的值为3314.方法二:在△ABC 中,因为AB =12,AC =20,BC =28,∠BCA =α,由余弦定理,得cos α=AC 2+BC 2-AB 22AC ×BC ,即cos α=202+282-1222×20×28=1314.因为α为锐角, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫13142=3314.答:sin α的值为3314.22.(本小题满分13分)热心支持教育事业的李先生虽然并不富裕,但每年都要为山区小学捐款.今年打算用2 000元购买单价为50元的桌子和20元的椅子,希望桌椅的数量之和尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才合适?解析: 设桌子、椅子各买x 张和y 张, 则所买桌椅的总数为z =x +y . 依题意得不等式组⎩⎪⎨⎪⎧x ≤y ,y ≤1.5x ,50x +20y ≤2 000,其中x ,y ∈N *.由⎩⎪⎨⎪⎧ y =x ,50x +20y =2 000,解得⎩⎨⎧x =2007,y =2007.由⎩⎪⎨⎪⎧y =1.5x ,50x +20y =2 000,解得⎩⎪⎨⎪⎧x =25,y =752.设点A 的坐标为⎝⎛⎭⎫2007,2007. 点B 的坐标为⎝⎛⎭⎫25,752, 则前面的不等式组所表示的平面区域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752,O (0,0)为顶点的△AOB 的边界及其内部(如图中阴影所示).令z =0,得x +y =0,即y =-x .作直线l 0:y =-x .由图形可知,把直线l 0平移至过点B ⎝⎛⎭⎫25,752时,亦即x =25,y =752时,z 取最大值.因为x,y∈N*,所以x=25,y=37时,z取最大值.故买桌子25张,椅子37张较为合适.。
(完整版)高中数学必修五综合测试题 含答案
![(完整版)高中数学必修五综合测试题 含答案](https://img.taocdn.com/s3/m/bf385e8bb90d6c85ec3ac6e6.png)
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
(完整版)高中数学必修五综合测试题 含答案,推荐文档
![(完整版)高中数学必修五综合测试题 含答案,推荐文档](https://img.taocdn.com/s3/m/e2d6d555bceb19e8b8f6bad1.png)
12.D 【解析】 【分析】
选项 D 中,因为当 a2>b2 时,比如 a=-2,b=0,的不满足 a>b,故错误,排除法只有选 C.
考点:本试题主要考查了不等式的性质的运用。
点评:解决该试题的关键是注意可乘性的运用。只有同时乘以正数不等号方向不变。 10.B
【解析】
解:因为满足条件a
=
4,b
=
3
2,A
=
45
∘
,利用余弦定理可知得到关于
参考答案
【解析】
【分析】 观察数列分子为以 0 为首项,2 为公差的等差数列,分母是以 1 为首项,2 为公差的等差数 列,故可得数列的通项公式.
【详解】 观察数列分子为以 0 为首项,2 为公差的等差数列,分母是以 1 为首项,2 为公差的等差数 列,
2(n - 1)
故可得数列的通项公式 an= 2n - 1 (n∈Z*).
1 11 1 6.数列1 , 2 , 3 , 4 ,前 n 项的和为( )
2 4 8 16
1 n2 n
1 n2 n
1 n2 n
A.
B.
1
C.
D.
2n 2
2n 2
2n 2
1 2n1
n2 2
n
试卷第 1 页,总 6 页
3
7.若ΔABC的三边长a,b,c成公差为2的 等差数列,最大角的正弦值为 2 ,则这个三角形
(完整word版)高中数学必修5综合测试题含答案(三份)
![(完整word版)高中数学必修5综合测试题含答案(三份)](https://img.taocdn.com/s3/m/99c6c8a76edb6f1afe001faf.png)
D. a =﹣ 1 b =2
D.锐角三角形
5、在首项为 21,公比为 1 的等比数列中,最接近 1 的项是(
)
2
A.第三项
B
.第四项
C
.第五项
D
.第六项
6、在等比数列 an 中, a 7 a11 =6, a4 a14 =5,则 a 20 等于(
)
a10
2
A.
3 7、△ ABC中,已知 ( a b
1
高中数学必修 5 综合测试 (2)
1.根据下列条件解三角形,两解的是(
)
A . b = 10, A = 45 °, B = 70 ° C. a = 7, b = 5 ,A = 80 °
B. a = 60, c = 48, B = 100 ° D. a = 14,b = 16 , A = 45 °
2. m , 2n 的等差中项为 4, 2m , n 的等差中项为 5,则 m , n 的等差中项为( )
A. 2
B. 3
C. 6
D. 9
3. 若一个等比数列的前三项为 k , 2k 2 , 3k 3 ,则其第四项为(
)
A . 12
4.已知正数 x, y 满足 4 x
B . 13.5 9 1 ,则 xy 有( y
( 1)求∠ B 的大小;
( 2)若 a =4, S 5 3 ,求 b 的值。
cosB cosC
b 2a c
17、已知等差数列 an 的前四项和为 10,且 a2 , a3, a7 成等比数列
( 1)求通项公式 an ( 2)设 bn 2an ,求数列 bn 的前 n 项和 sn
18、已知: f ( x) ax2 (b 8)x a ab ,当 x ( 3,2) 时, f ( x) 0 ; x ( , 3) (2, ) 时, f (x) 0 ( 1)求 y f (x) 的解析式 ( 2)c 为何值时, ax 2 bx c 0 的解集为 R.
最新精编高中人教A版必修五高中数学模块综合测评1(1)和答案
![最新精编高中人教A版必修五高中数学模块综合测评1(1)和答案](https://img.taocdn.com/s3/m/284a6823e87101f69e319531.png)
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,1.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC的面积为3,则a 的值为( ) A .1 B .2 C.32D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+nn -2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A.189 B.186 C.180 D.192【解析】由a n+1=2a n,知{a n}为等比数列,∴a n=2n.∴2b n=2n+2n+1,即b n=3·2n-1,∴S6=3·1+3·2+…+3·25=189.【答案】 A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b =3,则c=( )A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形.由勾股定理得c =12+32=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21q n -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,所以a n 1·qn n -2=64,即(a 21qn -1)n =642,即2n =642,所以n =12. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________.【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3,12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2+2n -2=-n n +2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n n -2+n 2=n n +2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n +1n n +2.【答案】 (-1)n +1n n +2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·ta n B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3actan B,所以cos B =a 2+c 2-b 22ac =32tan B,即tan B cos B =32,即sin B =32,所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞. 20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =1.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154.∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝ ⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n+1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 tA,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B 产品225t 时,可得最大利润. (2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15, 则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245t ,B 产品225t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
高中数学必修5模块试题及答案
![高中数学必修5模块试题及答案](https://img.taocdn.com/s3/m/9aaa6e573d1ec5da50e2524de518964bcf84d2f0.png)
数学必修5第一部分(选择题 共50分)一、 选择题(每小题5分;10小题;共50分)1、在ABC ∆中;︒===452232B b a ,,;则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D CB 或或2、在ABC ∆中;bc c b a ++=222;则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中;1660=︒=b A ,;面积3220=S ;则a 等于( ) A. 610.B. 75C . 49D. 514、等比数列{}n a 中293a a =;则313239310log log log log a a a a ++++等于( )A .9B .27C .81D .2435、三个数a ;b ;c 既是等差数列;又是等比数列;则a ;b ;c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1;公比为q ;前n 项和是n S ;则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n S B .n n q S - C .n n q S -1 D .11--n n q S7、在等差数列{}n a 中;前四项之和为40;最后四项之和为80;所有项之和是210;则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈;则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=;则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个第二部分(非选择题 共100分)二、填空题(每小题5分;4小题;共20分)11、已知0,0>>y x ;且191=+yx ;求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时;函数122-+=x x y 的值大于零 13、在等比数列}{n a 中;08,204321=+=+a a a a ;则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题(共六个题;前两题每题10分;后面每题15分;共80分)15、在△ABC 中;BC =a ;AC =b ;a ;b 是方程02322=+-x x 的两个根;且()1cos 2=+B A 。
人教A版高中数学必修五模块检测(含答案详解).docx
![人教A版高中数学必修五模块检测(含答案详解).docx](https://img.taocdn.com/s3/m/bf6ff9b189eb172ded63b7be.png)
模块检测(苏教版必修5)一、填空题(每小题5分,共70分)1.已知一等比数列的前三项依次为22x,x ,+33x +,那么2113-是此数列的第项. 2.若数列{ }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为. 3.已知三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =.4.在ABC △中,tan A 是以-4为第三项,4为第 七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是. 5.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a +++310log a =.6.若x ,y 均为整数,且满足约束条件20200≤,≥,≥,x y x y y +-⎧⎪-+⎨⎪⎩则2z x y =+的最大值为.7.已知在等差数列{ }中,01511>,=a S S ,则第一个使0<n a 的项是. 8.已知{}a 是等比数列,12==a a ,,则13221++++n n a a a a a a =.9.如果在△ABC 中,2sin cos =sin A B C,那么△ABC 一定是 . 10.若关于x 的不等式()201x a x ab +++>的解集是{}1或4x|x x <->,则实数a b +的值为. 11.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,且长和宽必须为整数米,现预算花费不超过100元,则做成的矩形框所围成的最大面积是 平方米.12.如图,在山脚A 处测得该山峰仰角为θ,对着山峰在平行地面上前进600 m 后测得仰角为原来的2倍,继续在平行地面上前进200 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度为.13.在200 m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30°和60°,则塔高为. 14.甲船在岛B 的正南方A 处,AB =10千米,甲船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是.二、解答题(共90分)15.(14分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD,DC ,且拐弯处的转角为120︒.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).16.(14分)研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”有如下解法:解:由20ax bx c -+>得2110a b c x x ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭,令1y x =,则121y <<,所以不等式20cx bx a -+>的解集为112,⎛⎫⎪⎝⎭.参考上述解法,已知关于x 的不等式0k x bx a x c++<++的解集为()()2123,,--,求关于x 的不等式1011kx bx ax cx -+<--的解集.17.(14分)某家具厂有方木料90 ,五合板600 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 ,五合板2 ,生产每个书橱需要方木料0.2 ,五合板1 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所获利润最大?18.(16分)已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n项和,=2,5=2.(1)求{}和{}的通项公式;(2)设=++…+,求.19.(16分)已知数列{}n a满足1112n na,a a+==+ ()1n+∈N.(1)求数列{}n a的通项公式;(2)若数列{}n b满足114b-•214b-•…•14n b-=(1)n bna+(n∈+N),证明:{}n b是等差数列.20.(16分)已知函数2222()f x x x =-+,数列{ }的前n 项和为 ,点 (n , )(n ∈ )均在函数()y f x =的图象上. (1)求数列{ }的通项公式 及前n 项和 ;(2)存在k ∈ ,使得1212nS S S k n+++<对任意n ∈ 恒成立,求出k 的最小值.模块检测答题纸得分:一、填空题1. 2.3. 4.5. 6.7.8.9.10.11.12. 13.14.二、解答题15.16.17.18.19.20.模块检测 参考答案1.4 解析:由题意得 ,解得1x =-或4x =-.当1x =-时,220x +=,故舍去,所以333x q +==,所以131134n -⎛⎫⨯-=-,所以4n =.2.213,, 解析:当1n =时,21112132-a S ==⨯+=;当2n =时,由221222233-S a a =+=⨯+=,得21a =;当3n =时,由2233233631-S a a a =++=⨯+=,得33a =.3.)2(:1:4-解析:22222,2,(2),540a c b c b a ab c b a a ab b +==-==--+=, 又,a b ≠∴4,2a b c b ==-.4.锐角三角形 解析:设等差数列为{}n a ,公差为d ,则7344,a a =-=,所以2d =,所以 设等比数列为{}n b ,公比为q ,则313b =,6b 9=,所以3q =,所以所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.5.10 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.6.4 解析:作出可行域如图中阴影部分,可知在可行域内的整点有()()()()()()201000102011,,,,,,,,,,,,---()()()011102,,,,,,分别代入2z x y =+可知当20,x y ==时,z 最大,为4.7.9a 解析:由511=S S 得12150+=a d .又10>a ,所以0<d . 而2 =()()12212170a n d n d +-=-<,所以2170->n ,即85>n .. 8.()32143n -- 解析: 41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --. 9.等腰三角形 解析一:∵ 在△ABC 中,++=πA B C ,即()C A B =π-+,∴()sin =sin +C A B . 由2sin cos =sin A B C ,得2sin cos =sin cos +cos sin A B A B A B ,即0sin cos -cos sin =A B A B ,即()0sin -=A B . 又∵-π<-<πA B ,∴ 0-=A B ,即=A B .∴△ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理.2sin cos =sin A B C 可化为2a ·2222a +cbc ac-=, 即2222+-=a c b c ,即22-=0a b ,22=a b ,故=a b . ∴△ABC 是等腰三角形.10.-3 解析:由不等式的解集为{}1或4x|x x <->可得14,-是方程()210a x b x a +++=的两根,∴()14114,,a ab ⎧-+=-+⎪⎨-⨯=⎪⎩解得41,a b .=-=⎧⎨⎩∴3a b +=-.11.40 解析:设长x 米,宽y 米,则610100≤x y +,即3550≤x y +.∵5035+x y ≥≥35x y =时等号成立,又∵, x y 为正整数,∴ 只有当324525,x y ==时面积最大,此时面积40xy =平方米.12.300 m 解析:依题意可知600====AB BP BC CP ,,∴ 222cos 222θ+-==⋅BC BP PC BC BP ∴23015,θθ=︒=︒,∴ 60300sin (m )PD PC =∙︒==.13.4003m 解析:依题意可得图象如图所示, 从塔顶向山体引一条垂线CM ,垂足为M , 则0=∙︒AB BD tan 6,0=∙︒=AM CM BD CM tan 3,, ∴200tan 30tan 603=⨯︒=︒AB AM ,∴塔高()20040020033=-= C D m . 点评:本题主要考查构造三角形求解实际问题,属基础题. 14.514小时 解析:假设经过x 小时两船相距最近,甲、乙分别行至,C D , 可知1046120﹣,,BC x BD x CBD ==∠=︒,22222212cos 104362104628201002﹣∠(﹣)(﹣)CD BC BD BC BD CBD x x x x x x ⎛⎫=+∙∙=+-∙∙∙-=-+ ⎪⎝⎭,当514x =小时,即1507分钟时距离最小. 点评:本题主要考查余弦定理的应用,关键在于画出图象,属基础题.15.解法一:设该扇形的半径为r 米.由题意,得500CD =米,300DA =米,60CDO ∠=︒, 在△CDO 中,2222cos 60 CD OD CD OD OC +-∙∙︒=,即()()222150030025003002r r r +--⨯-⨯=,解得490044511r =≈(米). 解法二:连接AC ,作OH AC ⊥,交AC 于点H , 由题意,得500CD =米,300AD =米,120,CDA ∠=︒在ACD △中,22222212cos 12050030025003007002AC CD AD CD AD =+-∙∙∙︒=++⨯⨯⨯=,∴700AC =(米),22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅ 在HAO Rt △中,350AH =米,11cos 14∠HAO =, ∴ 4900445cos 11∠AH OA HAO ==≈(米).点评:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;16.解:由于不等式0k x bx a x c++<++的解集为2123(,)(,)--, 则方程0k x bx a x c++=++的根分别为2123,,,--. 由1011kx bx ax cx -+<--,得1011 b k x a c x x-+<--, 因此方程1011 b k x a c x x-+=--的根为1111223--,,,. 所以不等式1011kx bx ax cx -+<--的解集为1111232,,⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭. 17.解:由题意可列表格如下:(1)设只生产书桌a 张,可获得利润b 元, 则01902600⎧⎨⎩.a a ≤,≤,解得900300⎧⎨⎩a a ≤,≤,即300a ≤.又80=b a ,所以当300=a 时,8030024000=⨯=b max (元), 即如果只安排生产书桌,最多可生产300张,可获得利润24000元.(2)设只生产书橱c 个,可获利润d 元,则02901600∙⎧⎨⎩.c c ≤,≤,解得450600⎧⎨⎩c c ≤,≤,即450c ≤.又120=d c ,所以当450=c 时,12045054000=⨯=d max (元), 即如果只安排生产书橱,最多可生产450个,可获得利润54000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则010*********≤,≤,≥且,≥且,.x .y x y x x y y +⎧⎪⎪⎨⎪⎪+∈∈⎩Z Z 即2900260000≤,≤,≥且,≥且x y x y x x y y .⎧⎪⎪⎨++∈∈⎪⎪⎩Z Z 80120z x y =+.在平面直角坐标内作出上面不等式组 所表示的平面区域,即可行域如图阴 影部分. 作直线230:l x y +=. 把直线l 向右上方平移至1l 的位置时, 直线经过可行域上的点M ,此时 80120z x y =+取得最大值.由29002600,,x y x y +=+=⎧⎨⎩解得点M 的坐标为100400(,),所以当100400,x y ==时,8010012040056000max z =⨯+⨯=(元).因此,生产书桌100张、书橱400个,可使所获利润最大.18.解:(1)设{}n a 的公比为q ,由 = ,得4q =,所以 = .设{}n b 的公差为d ,由5852=S S 及12b =得3d =,所以1131()n n b n b d =+-=-.(2)因为()21124548431n n T n -=⨯⨯⨯++++-,①()244245431n n T n ⨯⨯=+++-,②由②-①,得213234444312324())()(n n n n T n n ---++++-=+-∙=. 所以22433n n T n ⎛⎫=-∙+ ⎪⎝⎭.19.(1)解:∵ =2 +1(n ∈+N ),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +,∴{}1n a +是以112a +=为首项,2为公比的等比数列.∴12nn a +=,即 -1( +N ).(2)证明:∵()121114441n n b b b b n a ---=+,∴()1242n n b b b nnb +++-=.∴()122n n b b b n nb ⎡⎤+++-=⎣⎦, ①()()()1211211n n n b b b b n n b ++⎡⎤++++-+=+⎣⎦. ②②-①,得()()11211n n n b n b nb ++-=+-,即()1120n n n b nb +--+=,③()21120n n nb n b ++-++=. ④ ④-③,得2120n n n nb nb nb ++-+=,即2120n n n b b b ++-+=,211+++-=-∈+N n n n n b b b b n (),故{}n b 是等差数列.20.解:(1)因为点 (n , )(n ∈ )均在函数()y f x =的图象上,所以2222n S n n =-+.当1n =时, = =20;当2≥n 时, = - 424n =-+.120S =也符合.所以 (n ∈ ).(2)存在k ∈ ,使得1212n S S S k n +++<对任意n ∈ 恒成立,只需1212max n S S S n k ⎛⎫+++ ⎪⎝⎭>,由(1)知 ,所以222211()nS n n n -+=-=.当11n <时,0nS n >;当11n =时,0n S n=; 当11n >时,0n S n <. 所以当10n =或11n =时,1212n S S S n+++有最大值110.所以110k >. 又因为∈N k +,所以k 的最小值为111.。
高中数学人教版必修5模块测试题及答案
![高中数学人教版必修5模块测试题及答案](https://img.taocdn.com/s3/m/61d06a27e2bd960590c67743.png)
必修五数学模块测试题一、选择题:本大题共10小题,每小题5分,共50分1.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,则下列关系正确的是 A.222cos C a b c =+-B.222cos C a b c =-+C.222cos 2a b c C ab+-=D.222cos a b c C ab +-=2.不等式(2)(1)0x x +->的解集为 A.{}21x x x <->或 B.{}21x x -<< C.{}12x x x <->或D.{}12x x -<<3.n S 是等差数列{}n a 的前n 项和,如果10120S =,那么110a a +的值是 A.12B.24C.36D.484.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,若2220a b c +-<,则△ABC 是 A.锐角三角形B.直角三角形C.等腰三角形D. 钝角三角形5.在△ABC中,1,AB AC ==∠A =30︒,则△ABC 的面积等于D.126.对于任意实数a 、b 、c 、d ,下列命题: ①若a b >,0c ≠,则ac bc >; ②若a b >,则22ac bc >; ③若22ac bc >,则a b >; ④若a b >,则11a b< 中,真命题为 A. ①B. ②C. ③D. ④7.在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则b 等于A.B.C.D.3238.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为A.24B.20C.16D.129.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则1a 等于 A.4-B.6-C.8-D.10-10.在R 上定义运算a c ad bc b d =-,若32012x x x <-成立,则x 的取值范围是 A.(4,1)-B.(1,4)-C.(,4)(1,)-∞-+∞D.(,1)(4,)-∞-+∞二、填空题:本大题共4小题,每小题5分,共20分.11.比较大小:(2)(3)x x -+ 27x x +-(填入“>”,“<”,“=”之一). 12.在各项均为正数的等比数列{}n a 中,已知1231,6,a a a =+=则数列{}n a 的通项公式为 .13.用绳子围成一块矩形场地,若绳长为20米,则围成最大矩形的面积是__________平方米. 14.数列{}n a 的前n 项和为21n S n =+(*n ∈N ),则它的通项公式是_______. 三、解答题:本大题共3小题,共30分. 15.(10分)已知函数6)(2++=ax x x f .(Ⅰ)当5=a 时,解不等式0)(<x f ;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.C16.(10分)某货轮在A 处看灯塔B在货轮北偏东75︒,距离为mile ;在A 处看灯塔C在货轮的北偏西30︒,距离为mile.货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120︒,求: (Ⅰ)A 处与D 处之间的距离; (Ⅱ)灯塔C 与D 处之间的距离.21.(本小题满分10分) (Ⅰ)下面图形由单位正方形组成,请观察图1至图4的规律,并依此规律,在横线上方处画出适当 的图形;(Ⅱ)下图中的三角形称为希尔宾斯基三角形,在下图四个三角形中,着色三角形的个数依次构成数列的前四项,依此着色方案继续对三角形着色,求着色三角形的个数的通项公式n b ;(Ⅲ)依照(Ⅰ)中规律,继续用单位正方形绘图,记每个图形中单位正方形的个数为(1,2,3,)n a n = ,设21n nn a b c n =+,求数列{}n c 的前n 项和n S .图1 图2 图3 图4数学必修5模块测试题答案及评分参考二、填空题(每小题5分,共20分) 15.> 16.12n n a -= 17.25 18. 2(1)2 1 2)n n a n n =⎧=⎨-≥⎩(三、解答题(共3小题,共30分) 19.(本小题满分10分)解: (Ⅰ)当5=a 时,65)(2++=x x x f .由0)(<x f ,得652++x x <0.即 (0)3)(2<++x x .所以 32x -<<-.………………5分(Ⅱ)若不等式0)(>x f 的解集为R ,则有=∆0642<⨯-a .解得6262<<-a ,即实数a的取值范围是)62,62(-. ……………10分20.(本小题满分10分)解:(Ⅰ)在△ABD 中,由已知得 ∠ADB =60,B =45. 由正弦定理得1sin 24sin AB BAD ADB===.………………5分(Ⅱ)在△ADC 中,由余弦定理得 2222c o s 30C D A D A CA D A C =+-⋅︒,解得CD =.所以A 处与D 处之间的距离为24 n mile ,灯塔C 与D 处之间的距离为 ………………10分21.(本小题满分10分) 解:(Ⅰ)答案如图所示:………………3分 (Ⅱ)易知,后一个图形中的着色三角形个数是前一个的3倍,所以,着色三角形的个数的通项公式为:13n n b -=. ………………6分(Ⅲ)由题意知(1)2n n n a +=,11(1)23231n n n n n c n n --+⨯⨯=⋅+=, 所以 01113233n n S n -=⋅+⋅++⋅①12131323(1)33n n n S n n -=⋅+⋅++-⋅+⋅ ②①-②得 0112(333)3n n n S n --=+++-⋅2n S -=13313nn n --⋅-. 即 (21)31()4n n n S n -+=∈N + . ………………10分。
人教版高中数学必修五模块综合检测题 试题+答案解析(精教版)
![人教版高中数学必修五模块综合检测题 试题+答案解析(精教版)](https://img.taocdn.com/s3/m/66ba47abd0d233d4b14e6954.png)
人教版高中数学必修五模块综合检测题(满分150分,时间120分钟)一、单选题.(每小题5分,共12题)1. 在ABC ∆中,若sin sin A B >,则角A 与角B 的大小关系是.A A B > .B A B < .C A B = .D 不能确定 2. ABC ∆中,78,7o A a b ===,则此三角形.A 有一个解 .B 有两个解 .C 无解 .D 不能确定 3. 已知在ABC ∆中,cos cos b A a B =,则ABC ∆是.A 等边三角形 .B 等腰三角形 .C 直角三角形 .D 锐角三角形4. 已知ABC ∆的三边分别为a 、b 、c ,且1a =,45o B =,2ABC S ∆=,则ABC ∆外接圆的直径为.A .5B .C.D 5. 如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75o 距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为 .A海里/时 .B海里/时 .C/时 .D/时6. 若0a b >>,0c d <<,则一定有.a b A c d > .a b B c d < .C a b d c > .a b D d c< 7. 数列{}n a 中,n n a =,则{}na 是.A 递增数列 .B 递减数列 .C 常数列 .D 摆动数列8. 已知1x +与1y -的等差中项为10,则x y +等于.0A .5B .10C .20D9. 等差数列{}n a 共有3m 项,若前2m 项的和为200,前3m 项的和为225,则中间m 项的和为 .25A .75B .100C .125D 10. 在等比数列{}n a 中,已知121264a a a =,则46a a 的值为.16A .24B .48C .128D 11. 若数列{}n a 是等比数列,则下列数列一定是等比数列的是{}.l g n A a {}.1n B a + 1.n C a ⎧⎫⎨⎬⎩⎭.DMN12. 已知集合{}240A t t =-≤,对于满足集合A 的所有实数t ,关于x 的不等式,221x tx t x +->-恒成立,则x 的取值范围为 ()().,13,A -∞-+∞ .B ()(),13,-∞+∞ ().,1C -∞- ().3,D +∞二、填空题.(每小题5分,共4小题)13. 若变量,x y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值为 .14. 已知0,0x y >>. 若2282y x m m x y+>+恒成立,则实数m 的取值范围为 . 15. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若tan 21tan A c B b+=,则A = .16. 在日常生活中,“糖水加糖更甜”,即加糖融化后,糖水的浓度变大了. 若a 克糖水中含b 克糖()0a b >>,再加()0m m >克糖融化后,则糖水更甜,用一个不等式表示这个现象为 . 三、解答题.17. (10分)已知关于x 的不等式20ax bx c ++≥的解集为{}12x x -≤≤,求不等式20cx bx a -+<的解集.18.(12分)如图,公园想修建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现在 有44米铁丝网可供使用(铁丝网可以有剩余),若利用x 米墙, (1)求x 的取值范围;(2)求最少需要多少米铁丝网.(精确到0.1米)19. (10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c,已知()cos cos cos 0C A A B +=. (1)求角B 的大小;(2)若1a c +=,求b 的取值范围.20.(12分)某公司2019年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元, 甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该广告公司所作的每分钟广告能给公司带来的收益为分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?21.(12分)已知数列{}*,n n a a N ∈,n S 是其前n 项和,()212n n S a =+.(1)求证:{}n a 是等差数列;(2)设1302n n b a =-,求数列{}n b 的前n 项和的最小值.22.(12分)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(),n n S 均在函数x y b r =+(0b >且1b ≠,,b r 均为常数)的图象上. (1)求r 的值;(2)当2b =时,记()*14n nn b n N a +=∈,求数列{}n b 的前n 项和n T .人教版高中数学必修五模块综合检测题参考答案一、单选题. 1.【答案】.A 【解析】根据正弦定理sin sin a b A B=,∵ sin sin A B >,∴ a b >,∴ A B >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五高中数学模块综合测试 (满分150分,测试时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|-4≤x≤7},N={x|x 2-x-12>0},则M∩N 为( ) A.{x|-4≤x <-3或4<x≤7} B.{x|-4<x≤-3或4≤x <7} C.{x|x≤-3或x >4} D.{x|x <-3或x≥4} 解析:N={x|x <-3或x >4},借助数轴,进行集合的运算,如图.得M∩N={x|-4≤x <-3或4<x≤7}.故选A. 答案:A2.若A 是△ABC 的一个内角,且sinA+cosA=32,则△ABC 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 解析:由sinA+cosA=32,得sinAcosA=185-<0. 又∵0<A <π,∴2π<A <π.故∠A 为钝角. 答案:C3.一群羊中,每只羊的重量数均为整千克数,其总重量为65千克,已知最轻的一只羊重7千克,除去一只10千克的羊外,其余各只羊的千克数恰能组成一等差数列,则这群羊共有( )A.6只B.5只C.8只D.7只 解析:设这群羊共有n+1只,公差为d (d ∈N *). 由题意,得7n+d n n 2)1(-=55,整理,得14n+n (n-1)d=110. 分别把A 、B 、C 、D 代入验证,只有B 符合题意,此时n=5,d=2. 答案:A 4.已知点P (x ,y )在经过A (3,0)、B (1,1)两点的直线上,那么2x +4y 的最小值是( ) A.22 B.42 C.16 D.不存在 解析:可求AB 的直线方程为x+2y=3.∴2x +4y =2x +22y ≥242222222322=+=•+yx y x . 答案:B5.若实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥--≥-≥.022,0,0y x y x y 则w=11+-x y 的取值范围是( )A.[-1,31] B.[31,21-]C.[21-,+∞) D.[21-,1] 解析:作出不等式组表示的平面区域如下图所示.据题意,即求点M (x ,y )与点P (-1,1)连线斜率的取值范围.由图可知w min =211101-=---,w max <1,∴w ∈[21-,1].答案:D6.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是P n =P 0(1+k )n (k >-1),其中P n 为预测期人口数,P 0为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有-1<k <0,那么在这期间人口数( ) A.呈上升趋势 B.呈下降趋势 C.摆动变化 D.不变解析:P n+1-P n =P 0(1+k )n+1-P 0(1+k )n =P 0(1+k )n (1+k-1)=P 0(1+k )n ·k , ∵-1<k <0,∴0<1+k <1.∴(1+k )n >0. 又∵P 0>0,k <0,∴P 0(1+k )n ·k <0. 即P n+1-P n <0,∴P n+1<P n . 答案:B7.设b >0,二次函数y=ax 2+bx+a 2-1的图象为下列之一,则a 的值为( )A.1B.-1C.251-- D.251+- 解析:由前两个图可知b=0,不合题意.根据后两个图过原点可知a 2-1=0,即a=-1或a=1.当a=1时,函数为y=x 2+bx ,其图象与x 轴交于(0,0)及(-b ,0)两点,不合题意; 当a=-1时,函数为y=-x 2+bx ,其图象与x 轴交于(0,0)及(b ,0)两点,第三个图符合.故选B. 答案:B8.已知凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间内的任意x 1,x 2,…,x n ,有n 1[f (x 1)+f (x 2)+…+f (x n )]≤)(21nx x x f n Λ++.已知y=sinx 在区间(0,π)上是凸函数,那么在△ABC 中,sinA+sinB+sinC 的最大值为( ) A.2 B.233 C.23D.3解析:据题意得31(sinA+sinB+sinC )≤233sin 3sin ==++πC B A . ∴sinA+sinB+sinC≤233. 答案:B 9.已知yx 35+=2(x >0,y >0),则xy 的最小值是( ) A.12 B.14 C.15 D.18 解析:∵x >0,y >0,∴2=xyy x 15235≥+. ∴xy≥15,当且仅当yx 35=等号成立. 答案:C10.已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.3,0,05x y x y x 则2x+4y 的最小值为( )A.6B.-6C.12D.-12 解析:作出平面区域如下图所示,令z=2x+4y ,欲求z 的最小值,即求y=421zx +-在y 轴上截距的最小值.可以看出当直线过点(3,-3)时,纵截距最小. ∴z min =2×3+4×(-3)=-6.故选B.答案:B11.设集合P={m|-1<m <0},Q={m ∈R |mx 2+4mx-4<0,对任意实数x 恒成立},则下列关系中成立的是( ) A.PQ B.QP C.P=Q D.P∩Q=∅解析:由mx 2+4mx-4<0对x ∈R 恒成立⇒⎩⎨⎧<+=∆<⇒0161602m m m -1<m <0. 当m=0时,-4<0.∴Q={m|-1<m≤0}.∴P Q.答案:A12.在锐角三角形中,a 、b 、c 分别是内角A 、B 、C 的对边,设B=2A ,则ab的取值范围是( )A.(-2,2)B.(2,3)C.(2,2)D.(0,2)解析:C=π-3A.由0<B <2π,0<C <2π,得6.230,220ππππ⇒⎪⎪⎩⎪⎪⎨⎧<-<<<A A <A <4π. 由正弦定理得AAA B a b B b A a sin 2sin sin sin sin sin ==⇒===2cosA.而22<cosA <23, ∴2<ab<3.故选B. 答案:B二、填空题(把答案填在题中横线上.本大题共4小题,每小题4分,共16分)13.在等差数列{a n }中,当a r =a s (r≠s )时,{a n }必定是常数数列.然而在等比数列{a n }中,对正整数r 、s (r≠s ),当a r =a s 时,非常数数列{a n }的一个例子是_____________.解析:因为在等差数列{a n }中,当a r =a s 时公差必为0,所以{a n }必定是常数数列,而在等比数列{a n }中,当a r =a s 时公比为±1,当公比为1时是常数数列,当公比为-1时,为摆动数列,所以要符合题意只要任写出一个摆动数列即可. 答案:a ,-a ,a ,-a ,…(a≠0)14.在等差数列{a n }中,已知a 1+a 3+a 5=18,a n-4+a n-2+a n =108,S n =420,则n=___________. 解析:∵(a 1+a 3+a 5)+(a n -4+a n-2+a n )=3(a 1+a n )=126,∴a 1+a n =42. 又S n =2422)(1⨯=+n a a n n =420,∴n=20. 答案:2015.已知函数y=f (x )是偶函数,当x >0时,f (x )=x+x4.当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m-n=______________.解析:∵y=f (x )是偶函数,∴即求f (x )在x ∈[1,3]上的最值. ∵x >0时,f (x )=x+x4≥4(x=2时,等号成立), ∴n=f (x )min =4.而m=f (x )max =f (1)=5,∴m-n=5-4=1. 答案:116.设x 、y ∈R +,S=x+y ,P=xy ,以下四个命题中正确命题的序号是_________________.(把你认为正确的命题序号都填上)①若P 为定值m ,则S 有最大值m 2;②若S=P ,则P 有最大值4;③若S=P ,则S 有最小值4;④若S 2≥kP 总成立,则k 的取值范围为k≤4. 解析:P 为定值m 时,S 应有最小值m 2,故①不正确.S=P 时,x+y=xy ⇒xy≥xy xy ⇒2≥2⇒xy≥4⇒P min =4,∴②也不正确.由S=P ⇒x+y=xy≤4)(2y x +⇒x+y≥4⇒S min =4,∴③正确.S 2≥kP ⇒k≤P S 2,又xy xy xy xy xy y x P S 222222+≥++==4,∴(PS 2)min =4.∴k≤4. ∴④正确.答案:③④三、解答题(答案应写出文字说明、证明过程或演算步骤.本大题共6小题,共74分) 17.(本题满分12分)在△ABC 中,已知角A 、B 、C 所对的三条边分别是a 、b 、c 且满足b 2=ac.(1)求证:0<B≤3π;(2)求函数y=B B B cos sin sin 12++的值域.(1)证明:∵b 2=ac ,∴cosB=21222222222=-≥-+=-+ac ac ac ac ac c a ac b c a .又∵0<B <π,∴0<B≤3π. (2)解:y=B B B B B B B cos sin )cos (sin cos sin 2sin 12++=++=sinB+cosB=2sin (B+4π).∵0<B≤3π,∴12744πππ≤+<B .∴当B+44ππ=,即B=4π时,y max =2.当B+44ππ=时,y min =2×22=1.∴y ∈(1,2).18.(本题满分12分)集合A={x|x 2-5x+4≤0},B={x|x 2-2ax+a+2≤0},若B ⊆A 且B≠∅,求a 的取值范围.解:由A={x|x 2-5x+4≤0}⇒A={x|1≤x≤4}. 令f (x )=x 2-2ax+a+2. ∵B A 且B≠∅,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<<-≤≥⇒⎪⎪⎩⎪⎪⎨⎧≥-≥-<<≥--⇒⎪⎪⎩⎪⎪⎨⎧≥≥<<≥∆.718,3,41,12.0718,03,41,02.0)4(,0)1(,41,02a a a a a a a a a a f f a 或⇒2≤a≤718.19.(本题满分12分)在△ABC 中,三内角A 、B 、C 成等差数列,角B 的对边b 为1,求证:1<a+c≤2.证法一:∵2B=A+C ,又A+B+C=180°, ∴B=60°,C=120°-A. 由正弦定理得︒==60sin 1sin sin C c A a , 再由合分比定理得a+c=332(sinA+sinC )=332[sinA+sin (120°-A )]=2sin (A+30°)≤2, 再由两边之和大于第三边,∴1<a+c.∴1<a+c≤2.证法二:先得B=60°(同上得).再利用余弦定理知cosB=ac b c a 2222-+,即acb c a 221222-+=,即(a+c )2-1=3ac≤2)2(3c a +. 解得a+c≤2.又∵a+c >1,∴1<a+c≤2.20.(本题满分12分)某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x 台(x ∈N *),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.解:依题意,当每批购入x 台时,全年需用保管费S=2 000x·k.∴全年需用去运输和保管总费用为y=x 3600·400+2 000x·k. ∵x=400时,y=43 600,代入上式得k=201,∴y=x1440000+100x≥x x 10014400002•=24 000.当且仅当x1440000=100x ,即x=120台时,y 取最小值24 000元. ∴只要安排每批进货120台,便可使资金够用.21.(本题满分12分)已知等比数列{a n }满足a 1+a 6=11,且a 3a 4=932. (1)求数列{a n }的通项a n ;(2)如果至少存在一个自然数m ,恰使132-m a ,2m a ,a m+1+94这三个数依次成等差数列,问这样的等比数列{a n }是否存在?若存在,求出通项公式;若不存在,请说明理由.解:(1)由题意得⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=•=+.2,3121,332932,11113121511q a q a q a q a q a a 或∴a n =31)21(3321=-n ×26-n 或a n =31·2n-1. (2)对a n =31·2n-1,若存在题设要求的m ,则2(31·2m-1)2=32·31·2m-2+31·2m +94.∴(2m )2-7·2m +8=0. ∴2m =8,m=3. 对a n =31·26-n ,若存在题设要求的m ,同理有(26-m )2-11·26-m -8=0. 而Δ=112+16×8不是完全平方数,故此时所需的m 不存在. 综上所述,满足条件的等比数列存在,且有a n =31·2n-1. 22.(本题满分14分)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a=0有两个相等的根,求f (x )的解析式; (2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)设f (x )=ax 2+bx+c ,则不等式f (x )>-2x 为ax 2+(b+2)x+c >0. ∵不等式的解集为(1,3), ∴a <0,ab 2+-=4,ac=3, 即a <0,b=-4a-2,c=3a.∵方程ax 2+bx+6a+c=0有两个相等的根, ∴Δ=b 2-4a (6a+c )=0.把b 、c 分别代入Δ中,得5a 2-4a-1=0.解得a=51-,a=1(舍). ∴b=56-,c=53-.∴f (x )的解析式为f (x )=5356512---x x . (2)由(1)知a <0,所以当x=ab2-时,函数f (x )取到最大值.由题设,得a (a b 2-)2+b·(ab2-)+c >0.代入b 、c 并整理,得a 2+4a+1>0. 解得a <-2-3或a >-2+3.又∵a <0,∴a 的取值范围为(-∞,-2-3)∪(-2+3,0).。