八年级数学竞赛试题2010。05_5
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级数学竞赛试卷及答案
第 11 题图
12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个
图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多
4
个.则第 n 个图案中正三角形的个数为(
) ( 用含 n 的代数式表示 ) .
…
第一个图案
A .2n+1
第二个图案
第三个图案
第 12 题图
B. 3n+2
A.30°
B. 40°
C. 50°
D. 60°
7. 现有四根木棒,长度分别为 4cm,6cm,8cm,10cm. 从中任取三
根木棒,能组成三角形的个数为(
)
A.1 个
B.2 个
C.3 个
D.4 个
A
8. 如图,△ ABC 中, AB=AC ,D 为 BC 的中点,以下结论:
(1)△ ABD ≌△ ACD ; (2)AD ⊥BC;
第 24 题图
25.(本题 10 分)如图,点 B 在线段 AC 上,点 E 在线段 BD 上, ∠ ABD =∠ DBC ,AB =DB ,EB=CB,M , N 分别是 AE ,CD 的中点。试探索 BM 和 BN 的关系,并证明你的结论。
DEΒιβλιοθήκη M NAC
B
第 25 题图
26、(本题 10 分)如图,已知: E 是∠ AOB的平分线上 一点, EC⊥OB, ED⊥OA, C、 D 是垂足,连接 CD,且交 OE于点 F. ( 1)求证: OE是 CD的垂直平分线 . ( 2)若∠ AOB=60o,请你探究 OE, EF 之间有什么数量
八年级数学竞赛试卷
(考试用时: 120 分钟 ; 满分: 120 分)
一、选择题 (共 12 小题,每小题 3 分,共 36 分 . 在每小题给出的四个选项中只 有一项是符合要求的, 请将正确答案的序号填入对应题目后的括号内) 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
(整理版)八年级数学竞赛试题
八年级数学竞赛试题一、选择题〔每题4分,共40分〕1、计算)21(22x x x -÷-的结果是〔 〕A. x B. x 1- C . x x 2-- D. x1 2、假设a >0,那么aa 1> B. 假设a>a 2,那么a>1 C. 假设0<a<1,那么a>a 2 D. 假设a a =,那么0>a 3、,81002022=+-+-x x x 那么3x 的最大整数值是〔 〕A. 0B. 1C. 2D. 34、a-b=1,那么a 2-b 2-2b 的值是〔 〕 A. 0 B. 1 C. 2 D. 45、在平面直角坐标系内,A 、B 、C 三点的坐标分别是〔0,0〕,〔4,0〕,〔3,2〕,以 A 、B 、C 三点为顶点画平行四边形,那么第四个顶点不可能在〔 〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、三角形三边长分别是2、3、4,三边上的高分别是h a , h b , h c .那么 )111()cb ac b a h h h h h h ++⋅++(的值是〔 〕 A. 641 B. 538 C. 738 D. 439 7、 If 0<m <1,then m must be smaller than its ( )A. Opposite number.B. inverse.C.absolute value.D.square.〔英汉词典:inverse 倒数;absolute 绝对〕8、假设,k cb a b ac a c b =+=+=+那么直线y=kx-k 必经过〔 〕 A. 第一、二象限 B. 第二、三象限 C.第三、四象限 D.第一、四象限9、四个人的年龄分别为a,b,c,d,任取三个人的平均年龄加上余下一人的年龄分别是w,x,y,z,那么zy x w d c b a ++++++的值是〔 〕 A. 1 B. 2 C. 21 D. 32 10、如图,将△ABC 沿DE 折叠,使点A 与边BC 的中点F 重合,有下面四个结论:①EF ∥AB,且EF=21AB. ②AF 平分∠DFE. ③S 四边形ADFE =21AF ·DE.④∠BDF+∠FEC=2∠BAC. 其中正确的选项是〔 〕A. ①②③B. ②③④C. ③④D. ①②③④二、A 组填空题〔每题4分,共40分〕11、假设1<x <,那么2)2014(1-+-x x = . 12、假设4x 2+9y 2=8800,xy=-100,那么2x-3y= . 13、假设〔x-4〕〔x+n)=x 2-mx+24,那么m+n= .14、一次函数y=(m-3)x-2的图象不经过第二象限,一次函数y=(m-4)x+3的图象不 经过第三象限,化简:m m m m 6916822-+-+-= .15、关于x 的分式方程234222+=-+-x x mx x 会产生增根,那么m = . 16、如果要〔x-2)2+(x+3)2=15,那么〔2-x)(3+x)的值是 。
2010年八年级数学竞赛(决赛)试题
2010年八年级数学竞赛(决赛)试题(竞赛时间:2010年3月21日上午9:30-11:30)一、选择题(每小题5分,共30分)1.计算(1252011)(2462010)++++-++++ 的结果是( ) A . 1004 B . 1006 C . 1008 D .1010 2.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120° B.90° C. 60° D.45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;如果只由男教师完成,则每人应上辅导课( )节 A .9 B . 10 C . 12 D .14 4.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p )(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .285.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是( )A .4B .3C .2D .1 6.如果实数8181m n m m n m n n m n ++≠=+=++,且,则( ) A . 7 B . 8 C . 9 D .10二、填空题(每小题5分,共30分)7.若(20114149aQ a --,)是第三象限内的点,且a 为整数,则a = . 8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 .9.在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C,5∠C=9∠A,则∠B 的度数是 .F( 图2 )EDC BA10.已知22302010 672010 x yx y==+=,,则. 11.如图3所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的2倍,设乙的长和宽分别是:a b a b =和,则 .12.已知平面直角坐标系内A 、B 两点的坐标分别是(2 3B 4 1P , 0A x x --,),(,),()是轴上的一个动点,则当x =时,△PAB 的周长最短.以下三、四、五题要求写出解题过程。
初二数学竞赛试卷及答案
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
八年级数学竞赛试题及参考标准答案
C、直角三角形一边的平方等于其它两边的平方
D、直角三角形一边等于等于其它两边的和
12、如图4,正方形ABCD的边长为1cm,以对角线AC为边长再作一个正方形,则正方形ACEF的面积是( )
A、3cm2B、4cm2C、5cm2D、2cm2
13、以线段 为边,
八年级数学竞赛试题(二)
一、填空题(每小题4分,共40分)
1、实数包括______和________;一个正实数的绝对值是_______;一个非正实数的绝对值是_______。
2、 的算术平方根是________; 的算术平方根是__________。
3、甲、乙两位探险者到沙漠进行探险。某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。上午10∶00,甲、乙二人的距离的平方是_____。
9.小张和小李分别从A、B两地同时出发,相向而行,第一次在距A地5千米处相遇,继续往前走到各地(B、A)后又立即返回,第二次在距B地4千米处两人再次相遇,则A、B两地的距离是千米.
10.在△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值为m°,最小值为n°,则m°+n°=.
11.已知 .
10、如图3,在矩形ABCD中,DC=5cm,在DC上存在一点E,沿直线
AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF
的面积为30cm2,那么折叠的△AED的面积为_______。
二、选择题(每小题3分,共24分)
11、下列说法中正确的是( )
A、三角形一边的平方等于其它两边的平方和
且使a∥c作四边形,这样的四边形( )
初中数学八年级上数学竞赛试题含答案
初中数学八年级上数学竞赛试题含答案Newly compiled on November 23, 20200 1 2-1A 八年级(上)数学竞赛试题一、填空题:(40分)1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;2、计算:=⋅27 311 ;3 313÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;(6)7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )A 、51B 、52 C 、53D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为( )A 、B 、3.75C 、D 、 11、如果a a -=-1 1 ,则a 的取值范围是( )A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π14、如上右图所示,设ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有( )A 、21S S S +=B 、21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗若能,请画出图形。
(完整word版)初二数学竞赛试题及答案一,文档
初二数学竞赛试题及答案一〔说明:本卷可使用计算器,考试时间120 分钟,总分值120 分〕一、选择题〔每题 5 分,共 30 分〕1、使a b a b 成立的条件是〔〕A 、 ab> 0B、 ab> 1C、 ab≤ 0 D 、 ab≤ 12、某商品的标价比本钱价高p%,当该商品降价出售时,为了不亏损本钱,售价的折扣〔即降价的百分数〕不得超过 d%,那么 d 可用 p 表示为〔〕A 、pp B 、 p C、 100 p D、 100 p100100 p100 p3、有一种足球由32 块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,那么白皮的块数是〔〕A 、 22B 、 20C、 18 D 、 164、某个班的全体学生进行短跑、跳高、铅球三个工程的测试,有5 名学生在这三个工程的测试中都没有到达优秀,其余学生到达优秀的工程、人数如下表:短跳铅短跑、跳高、跑高球跳高铅球铅球、短跑短跑、跳高、铅球1718156652那么这个班的学生总数是〔〕A 、 35B 、 37C、 40 D 、 485、甲、乙、丙三个学生分别在 A 、B 、C 三所大学学习数学、物理、化学中的一个专业,假设:①甲不在 A 校学习;②乙不在 B 校学习;③在 B 校学习的学数学;④在 A 校学习的不学化学;⑤乙不学物理,那么〔〕A 、甲在B 校学习,丙在 A 校学习B、甲在 B 校学习,丙在C 校学习C、甲在 C 校学习,丙在 B 校学习 D 、甲在 C 校学习,丙在 A 校学习6、: a、b 是正数,且 a+b=2,那么a21b2 4 的最小值是〔〕A 、13B 、5C、25 D 、7二、填空题〔每题 5 分,共30 分〕7、2x=a, 3x=t,那么24x=(用含 a,t 的代数式表示 )8、△ ABC 中, AB=AC=5 , BC=6 ,点 F 在 BC 上,那么点 F 到另外两边的距离和是21999( x 2) 3( x 1) 211 的值为9、x5x0 ,那么代数式x2C 10、如图,正方形ABCD 的面积为 256,D点 F 在 AD 上,点 E 在 AB 的延长线上,F 直角△ CEF 的面积为200,那么 BE =.11、把 7 本不同的书分给甲、乙两人,A BE 甲至少要分到 2 本,乙至少要分到 1 本,两人的本数不能只相差1,那么不同的分法共有种 .12、如果用两个 1,两个2,两个3,两个 4,要求排成具有以下特征的数列:一对 1 之间正好有一个数字,一对2之间正好有两个数字,一对3之间正好有三个数字,一对 4 之间正好有四个数字,请写出一个正确答案.三、解答〔每小15 分,共 60 分〕13、某商店有 A 种本出售,每本零售0.30 元,一打〔 12 本〕售价 3.00 元, 10 打以上的,每打可以按2.70 元付款 .(1〕初二〔 1〕班共 57 人,每人需要 1 本 A 种本,班集体去,最少需要付多少元?(2〕初三年共 227 人,每人需要 1 本 A 种本,年集体去,最少需付多少元?14、察式子1×2× 3× 4+ 1=5 22× 3×4× 5+ 1=112B3× 4×5× 6+ 1=192⋯⋯〔1〕猜测 20000× 20001× 20002× 20003+1=〔〕2〔2〕写出一个具有普遍性的,并出明. 15、如:四形ABCD 中, AD = DC,∠ ABC = 30°,∠ADC = 60° .探索以 AB 、 BC、 BD ,能否成直角三角形,并明理由 .AC16、四位数abcd是一个完全平方数,且D ab 2cd 1,求个四位数.[参答 ]1、C2、C3、 B4、C5、 A6、A7、a3 t8、9、 200410、 1211、 4912、 41312432 或 2342131413、〔1〕可买 5 打或 4 打 9 本,前者需付款× 5=,后者只需付款× 4+× 9= 14.7 元 .故该班集体去买时,最少需付14.7 元.〔2〕227= 12×18+11,可买 19 打或 18 打加 11 本,前者需付款×19=;后者需付款 2.70 ×18+×11=51.9 元,比前者还要多付 0.6 元.故该年级集体去买,最少需付 51.3 元.14、〔1〕 400060001〔2〕对于一切自然数n,有 n〔n+1〕 (n+2)(n+3)+1=(n2+3n+1)2.证略故20000×20001×20002× 20003+1=〔 200002+3×20000+1〕2.=400060001215、明:以BC 作等△ BCE , AE 、 AC.因∠ ABC = 30°,∠ CBE = 60°,所以∠ ABE =90°,所以 AB 2+ BE2=AE 2①, AD = DC ,∠ ADC = 60°,所以△ ADC 是等三角形.因在△ DCB 和△ ACE 中, DC= AC ,∠DCB =∠ DCA +∠ ACB =∠ ECB +∠ ACB =∠ ACE ,而BC =CE,所以△ DCB ≌△ ACE ,所以 BD = AE,而 BC =BE ,由①式,得BD 2=AB 2+ BC 2BA ECD16、设abcd m 2,那么32≤m≤99.又设 cd x ,那么 ab 2x 1.于是100〔2x+1〕+x=m2,201x= m2-100即67×3x=〔 m+10〕 (m-10).由于 67 是质数,故 m+10 与 m- 10 中至少有一个是67 的倍数 .〔1〕假设 m+10=67k〔k 是正整数〕,因为 32≤m≤99,则m+10=67,即 m=57.检验知 572=3249,不合题意,舍去 .〔2〕假设 m-10=67k〔k 是正整数〕,那么 m-10=67, m=77.所以, abcd 77 25929.。
2010八年级数学竞赛试题
初二数学试卷— 1 —(共4页)2010年秋期八年级竞赛试题数 学注意事项:1.本卷考试时间为100分钟,满分120分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、细心填一填(本大题共有10小题,15空,每空3分,共45分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.16的平方根是________;25的算术平方根是________;若y 3=-8,则y =________. 2.计算:(1)a 12÷a 4=________;(2)(m +2n )(m -2n )=__________;(3)(4a 3b 2-6a 2b 2+2ab )÷2ab =_________________.3.分解因式:(1-7t -7t 2-3t 3)(1-2t -2t 2-t 3)-(t +1)6= 4.我们知道,所有的正多边形都是旋转对称图形.其中,正九边形绕它的旋转中心至少旋转________︒后才能与原图形重合.5.在1、2、3、……、888中,既不与12互质,也不与45互质的整数共有 个。
6.若菱形ABCD 的两条对角线AC 、BD 的长分别为12cm 和16cm ,则菱形ABCD 的边长AB =________cm ,其面积S =________cm 2.7.若等腰△ABC 的底边BC 长为10cm ,周长为36cm ,则△ABC 的面积为________cm 2.8.如图,若□ABCD 的周长为10cm ,△ABC 的周长为8cm ,则对角线AC 的长为________cm .9.将一矩形纸条ABCD 按如图方式折叠后,若∠AED ′=64︒,则 ∠EFC ′=________︒.10.已知()222x 3B C 1(x 2)1x 2(x 2)A x x +=++-+-++,其中A ,B ,C 为常数,则A = ,B = ,C = .二、精心选一选(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)11.以下四个说法:①负数没有平方根;②一个正数一定有两个平方根;③平方根等于它本身的数是0和1;④一个数的立方根不是正数就是负数.其中正确说法有 ( ) A .0个 B .1个 C .2个 D .3 个12.若a,b 是正数,且满足12345=(111+a)(111-b)则a 与b 之间的大小关系是( )A 、a>bB 、a=bC 、a<bD 、不能确定13.将多项式ax 2-4ay 2分解因式所得结果为 ( ) A .a (x 2-4y 2) B .a (x +2y )(x -2y ) C .a (x +4y )(x -4y ) D .(ax +2y )(ax -2y )14.给出下列长度的四组线段:①1,2,3;②3,4,5;③6,7,8;④a -1,a +1,4a (a >1).其中能组成直角三角形的有 ( ) A .①②③ B .②③④ C .①② D .①②④15.在体育活动中,初二(7)班的n 个学生围成一圈做游戏,与每个学生左右相邻的两个学生的性别不同,则n 的取值可能是( )A 、 43B 、44C 、45D 、 4616.三角形ABC 中,AB=AC ,B E ⊥AC ,D 是AB 的中点,且DE=BE ,则∠C 的度数是( )A 、650B 、700C 、750D 、80017.已知x+y=1,x 3+3x 2+3x+3y-3y 2+y 3=37,则(x+1)4+(y-1)4=( )A 、337B 、17C 、97D 、1 18.下列判断中错误..的是 ( ) A .平行四边形的对边平行且相等B .四条边都相等且四个角也都相等的四边形是正方形C .对角线相等的平行四边形是矩形D .对角线互相垂直的四边形是菱形三、认真答一答(本大题共有7小题,共41分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!) 17.(本题4分)计算:(3x +2)(3x +1)-(3x +1)2.18.(本题6分)有这样一道计算题:“求[(a -b )2+(a +b )2-2(a +b )(a -b )]÷3b 的值,其中a =-12,DCBA (第8题)(第9题)2 —(共4页) b =3.”小明同学误把a =-12抄成a =12,但他计算的最后结果也是正确的.请你帮他找一找原因,并求出这个结果.19.(本题5分)若x 2y +xy 2=30,xy =6,求下列代数式的值:(1)x 2+y 2;(2)x -y .20.(本题6分)已知四边形ABCD (如图),请在所给的方格纸(图中小正方形的边长为1个单位)内,按下列要求画出相应的图形:①把四边形ABCD 先向右平移6个单位,再向下平移1个单位得到四边形A ′B ′C ′D ′;②画出四边形A ′B ′C ′D ′关于点A ′的中心对称四边形A ′B ′′C ′′D ′′.(友情提醒:请别忘了标上字母!)21.(本题6分)如图,在□ABCD 中,E 、F 分别为AD 、BC 上的点,且AE =13AD ,CF =13BC ,试说明BD 与EF 互相平分.22.(本题6分)如图,在梯形ABCD ,AD ∥BC ,AB =CD ,P 为梯形内一点,且PB =PC ,试说明:P A =PD .23.(本题8分)如图,已知等边△ABC 的边长为4,D 为△ABC 内一点,以BD 为一边作等边△BDE .(1)请找出图中的全等三角形,并说明理由.(2)试求出图中阴影部分的面积.四、动脑想一想(本题满分10分.只要你认真探索,仔细思考,你一定会获得成功的!) 24.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD (AB<BC )的对角线交点O 旋转(如图①→②→③),图中M 、N 分别为直角三角板的直角边与矩形ABCD 的边CD 、BC 的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD 重合)中,BN 2=CD 2+CN 2;在图③(三角板的一直角边与OC 重合)中,CN 2=BN 2+CD 2. 请你对这名成员在图①和图③中发现的结论选择其一....说明理由.(2)试探究图②中BN 、CN 、CM 、DM 这四条线段之间的关系,写出你的结论,并说明理由.BACDFEDCBAPD CBA→ 图①图②图③→。
初二数学竞赛题(含答案)
初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利元C 、亏本元D 、亏本15元 2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c << 3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 ! 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )。
A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。
八年级数学竞赛试题
八年级数理竞赛试题考号------------------ 总分-------------------一、选择题A:(每小题3分,共18分)1. 下列运动属于平移的是()(A)乒乓球比赛中乒乓球的运动.(B)推拉窗的活动窗扇在滑道上的滑行.(C)空中放飞的风筝的运动.(D)篮球运动员投出的篮球的运动.2.如图1,将△APB绕点B按逆时针方向旋转90o后得到△A P B''',若BP=2,那么PP'的长为( ) (A)22.(B)2.(C)2 .(D)3.3.已知a是正整数,方程组48326ax yx y+=⎧⎨+=⎩的解满足x>0,y<0,则a的值是()图1(A)4 .(B)5 .(C)6.(D)4,5,6以外的其它正整数.4.让k依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k2;③2 k;④2 k 就排成一个不变的大小顺序,这个顺序是()(A)①<②<③<④.(B)②<①<③<④.(C) ①<③<②<④.(D) ③<②<①<④.5.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于().(A)132.(B)121.(C)120.(D)111.6.若三角形三边的长均能使代数式是x2-9x+18的值为零,则此三角形的周长是().(A)9或18.(B)12或15 .(C)9或15或18.(D)9或12或15或18.选择题B:(每小题2分,共12分)1.一场大雪过后,人们会感到外面万籁俱静.其主要原因是( )A. 大雪后,行驶的车辆减少,噪声减小B. 大雪蓬松且多孔,对噪声有吸收作用C. 大雪后,大地银装素裹,噪声被反射D. 大雪后,气温较低,噪声传播速度变慢7.电视机的开启关闭及频道选择可以通过遥控器实现. 遥控器用来控制电视机的是( )A.红光B.红外线C.紫光D.紫外线8.蓝天上飘着白云,平静清澈的池塘中鱼在自由游动.人向池塘中看去,好像鱼在白云中游动.关于人观察到的鱼和白云,下列说法正确的是( )A. 鱼是实物,白云是光的反射形成的虚像B. 鱼和白云都是光的反射形成的虚像C. 鱼是实物,白云是光的折射形成的虚像D. 鱼和白云分别是光的折射和反射形成的虚像9.落在高压线上的鸟儿不会触电死亡,这是因为( )A.高压线上裹有绝缘层B.鸟爪上的角质层是绝缘的C.鸟爪间的电压几乎为零D.鸟儿有较强的抗高压能力10.成语“白纸黑字”喻指证据确凿,不容抵赖和否认。
八年级数学竞赛试题
八年级数学竞赛试题亲爱的同学们:老师投与你们信任的目光,相信同学们一定会细心审题、认真答题,..........预祝同学经过一次快乐的旅程!切记我们的口号“我诚信、我考试,我自信、我答题。
”一、相信你一定能选对!(每小题4分,共计40分)1、成人体内成熟的红细胞的平均直径一般为0.000007245m 保留三个有效数字的近似数,可以用科学记数法表示为( )A 、57.2510m -⨯B 、67.2510m ⨯C 、67.2510m -⨯D 、67.2410m -⨯ 2、已知一直角三角形的周长是264+,斜边上的中线长时2,则这个三角形的面积是( )A.5 B.25 C.45D.1 3、下列式子中一定是二次根式的有( ).A.4个B.3个C.2个D.1个 4、 7a =70b = 4.9等于( )A 、10a b +B 、10b a -C 、b aD 、10ab 5、如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE⊥AC 于E , PF⊥BD 于F ,则PE+PF 等于( )A. B. C. D. 6、若α、β是方程x 2+2x-2005=0的两个实数根,则α2+3α+β的值为( )A 、2005B 、2003C 、-2005D 、4010 7、已知a <0,那么a a 22-可化简为( )(A )-a (B )a (C )-3a (D )3a8、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是( ).(A )一组对边平行而另一组对边不平行 (B )对角线相等(C )对角线互相垂直 (D )对角线互相平分 9、计算23201012222+++++的结果是( )A .201121- B .201121+ C .20111(21)2- D .20111(21)2+D CBAH GFE 75125135145A D BCEF P10、若13+a 表示一个整数,则整数..a 的值有( ) A .1个 B .2个 C.3个 D.4个*温馨提示:请将选择题的答案填到下面选择题答题卡中.题号 1 2 3 4 5 6 7 8 9 10答案二、填空题(每小题5分,满分30分)1、因式分解:222944a b bc c -+-=.2、如图,在菱形ABCD 中,∠A=060,E 、F 分别是AB 、AD 的中点, 若EF=2,则菱形ABCD的边长是____ 3、若()()05422222=-+-+y x y x ,则=+22y x _________.4、在△ABC 中,AB=15,AC=20,BC 边上高AD=12,则BC 的长为5、如图3,△ABC 是等边三角形,点P 是三角形内 的任意一点,PD//AB ,PE//BC ,PF//AC ,若△ABC 的 周长为12,则PD+PE+PF=6、如图在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点, F 为AC 上一动点,则EF+BF 的最小值为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛试题 2010。
05
(满分150分 时间120分钟)
一、选择题(每小题5分,共50分)
1、已知x 1,x 2,x 3的平均数为5,y 1,y 2,y 3的平均数为7,则2x 1+3y 1,2x 2+3y 2 2x 3+3y 3的平均数为 ( )
A 、31
B 、331
C 、593
D 、17
2、已知25x
=2000, 80y
=2000,则
y
1
x 1+等于 ( ) (A )2 (B )1 (C )21 (D )2
3
3、若x 取整数,则使分式
1
26
-x 的值为整数的x 值有 ( ) A 、3个 B 、4个 C 、6个 D 、8个 2x-4<0
4、若关于x 的不等式组 x-a+2>0的整数解有4个,则a 的取值范围为( ) A 、-3≤a <-2 B 、-3≤a ≤-2 C 、-1≤a <0 D 、-1<a <0
5、一根细长绳子沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成( ) A 、17段 B 、32段 C 、33段 D 、34段
6、Rt ⊿ABC 中,∠C=Rt ∠, ∠A=30°,在直线BC 或直线AC 上取一点P ,使得⊿PAB 为等腰三角形,则符合条件的P 点有 ( )
A 、2个
B 、4个
C 、6个
D 、8个 7、如下图四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,
则BC+CD 等于 ( ) A 、36 B 、35 C 、34 D 、33
(第7题) (第8题) (第9题) (第10题)
8中,E 是AD ABCD 的面积为1,则图中阴影部分的面积为
( )
A 、31
B 、51
C 、61
D 、81
9、如上图正方形ABCD 的边长为22,⊿ADE 是等边三角形,AF 是⊿ADE 的中线,BE 与AF 交于点M ,连接DM ,则DM 的长等于 ( ) A 、22 B 、2 C 、2 D 、1
10、如上图,一个大长方形被两条线段AB ,CD 分成四个小长方形。
如果图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为 ( )
A 、29
B 、27
C 、310
D 、815
二、填空题(每小题5分,共40分) 11、81的算术平方根是________.
12、把⊿ABC 中一角沿DE 折叠(如图),若∠1=60°∠2=40°,则∠A=_____度.
113
、已知:
__________,511=++=+b
a a
b b a b a 则. 14、a 、b 、
c 在数轴上的对应点如图所示,则化简22332)()(c b b a b a -+--+的结果是_________.
(第12题)
15、已知三个质数a 、b 、c 满足a+b+c+abc=99,则a c c b b a -+-+-的值等于_______ 16、如图BE 、CF 分别平分∠ABD 、∠ACD ,BE 与CF 交于点G ,若∠BDC=140°, ∠BGC=110°,则∠A=________度.
(第16题) (第17题)
17、如图⊿ABC 中,∠ABC 、∠ACB 的平分线的交点为I ,过点I 作BC 的平行线交AB 于点D ,交
AC 于E ,若AB=7,AC=5,BC=6则DE=_____.
18.有一个运算程序,可以使:当k n m =⊗(k 为常数)时,得
.2)1(,1)1(+=+⊗-=⊗+k n m k n m
现在,已知211=⊗,那么=⊗20072007 。
三、解答题(共60分)
19、(10分)若a 、b 、c 、d 是互不相等的整数,且整数x 满足等式 [9])(][)(22=++-++-cd x d c x ab x b a x 求证:(a+b+c+d )能被4整除
20、(10分)如图⊿ABC 中,AB=AC=4,P 为BC 上一点,求PA 2+PB ·PC 的值.
21、(10分)某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不
超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?
22、(14分)如图AB ∥CD ,AD 、BC 相交于点E ,过E 作EF ∥AB 交BD 于点F.
(1)求证:
1=+CD EF
AB EF (2)请找出S ⊿ABD 、S ⊿BED 、S ⊿BDC 间的关系式,并给出证明.
23.(16分)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以
CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a ,
,
CG=kb (a ≠b ,k >0),
猜想第(1)题①中得到的结论哪些成立,哪些不成立?
(3)运用第(2)题的猜想结果,在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =1
2
,求22
BE DG +的值.。